
1

Master’s Thesis (YAMK)

Master’s Degree Programme in Technological Competence Management

2023

Lasse Raakavuori

Software Development Project

Overview from Management

Perspective

– Case: Maintenance Management Software

Opinnäytetyö (YAMK) | Tiivistelmä

Turun Ammattikorkeakoulu

Teknologiaosaamisen johtaminen

2023 | 100 sivua

Lasse Raakavuori

Yleiskatsaus Ohjelmistokehitysprojektista

Projektipäällikön Näkökulmasta

­ Case: Huollon hallinnan ohjelmisto

Tämän opinnäytetyön tarkoituksena on tarjota yleiskatsaus

projektinhallinnallisiin asioihin ohjelmistokehityksen kentällä. Kohdelukijakuntaa

ovat erityisesti henkilöt, joilla on kokemusta projektinhallinnasta perinteisen

vesiputousmallin muodossa, mutta joille ohjelmistokehityksen erityispiirteet eivät

ole vielä tuttuja. Aihe on rajattu yleisiin asioihin, metodologioihin, kehitystiimin

rooleihin ja kehitysprosesseihin. Teoreettisen viitekehyksen tärkeimpänä

lähdemateriaalina toimivat IEEE:n (Institute of Electrical and Electronics

Engineers) valitut julkaisut. Teoriatietoa sovelletaan ja verrataan käynnissä

olevan case-projektin toimintojen sekä kohdattujen ongelmien kuvauksilla.

Näiden kahden materiaalin synteesi tuottaa myös käytännönläheisiä

johtopäätöksiä sekä neuvoja ohjelmistokehitysprojektin hallinnan kehittämiseksi

ja joidenkin haasteiden välttämiseksi.

Asiasanat:

Software development, software project management, software development

life cycle (SDLC), case-study, Project Manager, agile methods, development

team, scrum, development processes.

Master’s Thesis | Abstract

Turku University of Applied Sciences

Master’s Degree Programme in Technological Competence Managemet

2023 | 100 pages

Lasse Raakavuori

Software Development Project Overview from

Management Perspective

­ Case: Maintenance Management Software

This thesis is meant to provide a general overview of project management-

related issues in the field of software development. The target audience are

people who have project management experience in conventional waterfall

projects, but are not yet familiar with the specifics of agile software

development. The subject matter is limited to general aspects, methodologies,

team roles and development processes. The main source material for the

theory part is selected IEEE (Institute of Electrical and Electronics Engineers)

publications. The theory is applied and compared with descriptions of the

activities from an ongoing software development case project as well as the

challenges it has faced. The synthesis of the materials leads to pragmatic

conclusions and advise to help develop software development management as

well as avoid some of it’s pitfalls.

Keywords:

Software development, software project management, software development

life cycle (SDLC), case-study, Project Manager, agile methods, development

team, scrum, development processes.

Contents

1 Introduction 10

1.1 Case-example’s company 11

1.2 Case-project background 12

1.3 Assumptions and limitations 13

2 Maintenance management software overview 14

2.1 Marine sector additions 16

2.2 Other philosophies and types of maintenance management 17

3 General aspects of a software development project 18

3.1 Agile methods 18

3.2 Scrum 20

3.3 Other methodologies in SWEBOK 22

3.3.1 Rapid application development (RAD) 22

3.3.2 Extreme programming (XP) 23

3.3.3 Feature-driven development (FDD) 25

3.4 Social aspects of agile 26

3.5 Agile methods challenges 28

3.6 Work breakdown 30

3.7 Unified modelling language 32

3.8 Case-project’s insights for common practices 33

3.9 Case-project tools 36

4 Development team 42

4.1 Scrum roles 43

4.2 Development team stakeholders 46

4.3 Team scaling 47

4.4 Case-project’s insights for development team 48

5 Software development process division 52

6 Requirements process 53

6.1 Activities during the requirements process 54

6.2 Case-project insights for requirements process 58

7 Design process 62

7.1 Architecture definition 62

7.2 Design definition 64

7.3 Case-project insights for design process 66

8 Construction process 69

8.1 Construction process metrics 69

8.1.1 Velocity chart 70

8.1.2 Cumulative flow diagram 71

8.1.3 Burndown and epic burndown charts 71

8.2 Environments 73

8.3 Meetings 73

8.3.1 Daily stand ups 74

8.3.2 Sprint planning 74

8.3.3 Sprint review / demo 75

8.3.4 Sprint retrospective 76

8.3.5 Backlog grooming 76

8.4 Other meetings 77

8.5 Spikes 78

8.5.1 Item status workflow 78

8.5.2 Case-project insights for construction process 80

9 Testing process 83

9.1 Functional and non-functional testing 85

9.2 Common testing types 86

9.2.1 Unit testing 86

9.2.2 Integration testing 87

9.2.3 Regression testing and retesting 88

9.2.4 Exploratory testing 88

9.2.5 User acceptance testing 89

9.2.6 Cyber Security testing 90

9.2.7 Testing automation 90

9.3 Case-project insights for testing process 91

10 Concluding assesment 95

List of references 97

List of figures

Figure 1. Difference in project implementation between waterfall and agile. In

waterfall, the deliveries are large and happen in conjunction, whereas in agile,

the deliveries happen more frequently and in a priority order. 21

Figure 2. Two example box-sets on a Kanban-style scrum board. 22

Figure 3. Phases of RAD (adapted from outsystems n.d.). 23

Figure 4. Feedback loop -testing system in extreme programming (Dennehy

2009, 6). 24

Figure 5. The five-phase process of FDD (Holcombe 2008, 14). 25

Figure 6. Tiers and designations of work breakdown in a software development

project. 31

Figure 7. Examples of UML diagram elements (Loyola Marymount University

2023). 32

Figure 8. example view from the software before any design towards visual

look. 35

Figure 9. Example view from Jira. 37

Figure 10. Example view of Confluence (Atlassian, Confluence 2023). 38

Figure 11. Example vie of M-Files (M-Files 2023). 39

Figure 12. General software development team composition. 42

Figure 13. Examples of stakeholders. 46

Figure 14. A simplification of the team roles' level of importance on a time-axis.

 47

Figure 15. Case-project's organizational structure after one year from kick-off.

Lines represent the main interactions. 49

file:///C:/Users/lraakavuori/OneDrive%20-%20Elomatic%20Oy/ONT-tikku/OPPARI.docx%23_Toc136006811
file:///C:/Users/lraakavuori/OneDrive%20-%20Elomatic%20Oy/ONT-tikku/OPPARI.docx%23_Toc136006811
file:///C:/Users/lraakavuori/OneDrive%20-%20Elomatic%20Oy/ONT-tikku/OPPARI.docx%23_Toc136006811
file:///C:/Users/lraakavuori/OneDrive%20-%20Elomatic%20Oy/ONT-tikku/OPPARI.docx%23_Toc136006812
file:///C:/Users/lraakavuori/OneDrive%20-%20Elomatic%20Oy/ONT-tikku/OPPARI.docx%23_Toc136006814
file:///C:/Users/lraakavuori/OneDrive%20-%20Elomatic%20Oy/ONT-tikku/OPPARI.docx%23_Toc136006814
file:///C:/Users/lraakavuori/OneDrive%20-%20Elomatic%20Oy/ONT-tikku/OPPARI.docx%23_Toc136006815
file:///C:/Users/lraakavuori/OneDrive%20-%20Elomatic%20Oy/ONT-tikku/OPPARI.docx%23_Toc136006820

Figure 16. Elements of a software process (IEEE 2014, 150), expanded with

orange boxes by the author to reflect the software development processes. 52

Figure 17. Requirements process’ activities (IEEE 2014, 33). 54

Figure 18. Example of a use case diagram (Gonzalez 2022). 56

Figure 19. Case-project's "selected for development” Epics on Jira's Kanban

board. Backlogged Epics are blurred because of NDA reasons. 59

Figure 20. The Feature view after opening the platform -Epic. All Features have

been assigned statuses and priorities as well as other information. 60

Figure 21. The view of requirements after clicking open the data model

requirements -Feature. Same status designations apply. 60

Figure 22. Example of a class diagram (Otero 2012, 45). 63

Figure 23. Example of a state diagram (Swain et al. 2010, 7). 63

Figure 24. Example of a sequence diagram (Otero 2012, 60). 64

Figure 25. Example of the quality level of diagrams provided by the Partner

during so called definition phase. 67

Figure 26. Example of a velocity chart. 70

Figure 27. Example of a cumulative flow diagram (indicating that the number of

developers could be increased). 71

Figure 28. Example of a burndown chart. 72

Figure 29. Example of an Epic burndown chart. 72

Figure 30. All possible statuses, and the workflow of a user story in the Case-

project. 79

Figure 31. Kanban board view of an ongoing sprint. The statuses are: Ready for

dev, In progress, Ready for QA, In QA, Done. 79

Figure 32. Case-example format and contents of a sprint retrospective memo.

 81

Figure 33. Test management process breakdown with central documentation on

a project-level (IEEE 2022. Part 1, 26). 84

Figure 34. Costs over time between manual and automated testing (Jose 2021,

6). 91

Figure 35. Example of the contents from the Case-project's test strategy -

documentation, the environment possibilities for different kinds of testing. 92

file:///C:/Users/lraakavuori/OneDrive%20-%20Elomatic%20Oy/ONT-tikku/OPPARI.docx%23_Toc136006833
file:///C:/Users/lraakavuori/OneDrive%20-%20Elomatic%20Oy/ONT-tikku/OPPARI.docx%23_Toc136006840
file:///C:/Users/lraakavuori/OneDrive%20-%20Elomatic%20Oy/ONT-tikku/OPPARI.docx%23_Toc136006840
file:///C:/Users/lraakavuori/OneDrive%20-%20Elomatic%20Oy/ONT-tikku/OPPARI.docx%23_Toc136006844
file:///C:/Users/lraakavuori/OneDrive%20-%20Elomatic%20Oy/ONT-tikku/OPPARI.docx%23_Toc136006844

Figure 36. Example of a sprint's test plan, which can be viewed as a test report

after the sprint. 93

Glossary

Asset An item of value/use in the pursuit of value creation.

Asset produces information, has a function, and has

recorded data.

Backlog A list of broken-down tasks needed to be done in order

to create the product. (Cobb. 2015, 40).

Classification Society An independent party, owning a set of standards, which

need to be adhered to in order to receive certificates of

compliance and classifications.

Feedback Loop A tool for refining a process, using the analyzed output

of a previous cycle as the input for the next.

KPI Key Performance Indicator

OpEx Operating expenses a company incurs to keep its

business running (Ross 2022).

Scope creep The unintended growth of the project’s scope during

software development projects by either adding items

or finding out that certain items are more complex than

expected.

SDLC Software Development Life Cycle.

Technical debt A term meant to describe the costs of later reiteration

of a solution, which was done in a simplistic way

earlier.

Test-Driven

Development An approach with a main idea that testing aspects of

the units in development are considered and executed

already during production, not after it and that constant

testing in various forms is a part of the team’s toolbox.

TDD tends to find defects earlier, and can refine code

from the beginning, as it is written to be able to handle

the test cases (IEEE 2014, 76).

Velocity The combined amount of quantifiable work a

development team can implement in a single sprint.

Waterfall A conventional model of project management, which

views project phases as linear and emphasizes

planning and minimizing deviations.

10

1 Introduction

The subject of this thesis was chosen because of the need to increase

knowledge in the field of software development is emergent in the author’s

company. The need is dual. Firstly, there is a need for rapid adaptation to a new

business environment. Adaptation is meant to be achieved by gathering

information from the field. This thesis aims to collect information from

established publications that present industry standards from the IEEE (Institute

of Electrical and Electronics Engineers), such as SWEBOK and ISO/IEC 29119,

which can be considered as compilations of general practices in software

development. The information is supplemented with literature to provide an

additional layer of depth. Secondly, a basic process guideline is needed for

similar future endeavours. The direction chosen here is to combine pragmatic

data from an ongoing case project with the theoretical body of knowledge. The

aim is to show how theoretical guidelines have been translated into practical

work. The project in question is a software development project taking place in

a company that has previously focused on design & engineering projects. As

the project proceeded, some pitfalls were found. These pitfalls express the

dissonance between theory and practice and their presentation in the form of

descriptions and tips is essential for the usefulness of this thesis.

Along with strategic digitalization efforts, projects similar to the one described in

this paper will undoubtedly emerge. It is therefore essential that the company’s

knowledge base is enriched by studies such as this. The focus of this thesis is

on the Project Manager's perspective. The content is intended to provide a

curated summary of the most important issues concerning the Project

Manager's skills during a software development project and to present real-life

examples of how the presented issues have been handled in an actual project.

The content of this thesis also provides top management with high-level

information on the organisational and resource requirements of software

development projects.

11

Most companies have project execution guidelines, but they often arguably

consist of several versions due to different business areas and requirements. It

is not possible to create a comprehensive, all-encompassing project guide,

except at a high level. Similarly, it is not possible or feasible to have the same

ambition towards the software development process. The aim of this thesis is

therefore to maintain a level of generality that is broadly applicable to software

development projects. Questions through which the above mentioned goals are

meant to be achieved are: What is involved in a typical B2B software

development project? What issues are relevant from a Project Manager's point

of view? How is the theory implemented in a real-life project? What can go

wrong? After reading this paper, the Project Manager should have a framework

in place for understanding the characteristics of software development,

deepening his/her knowledge and avoiding some probable beginner’s pitfalls.

1.1 Case-example’s company

The author’s employing company (referred to as “company”) is a design &

engineering office, operating in multiple locations and industries. company’s

main project types are:

• Design projects (Engineering)

• EPC/EPCM/Turn Key -projects (Engineering, Procurement,

Construction, Management)

• R&D projects (Research and Development)

The company has previously been involved in software development, but

overall the business is marginal and the market share is small. The internal staff

involved in software development are scattered and no guidance documentation

has been produced from previous projects. On this basis, it can be argued that

the company's competence in software development is low.

12

1.2 Case-project background

The company has considerable expertise in ship design and works almost

exclusively for shipyards that have a shipbuilding contract with a shipowner.

Apart from small consultancy projects, the company is not in very close direct

contact with shipowners, but acts as a third link in the chain. The strategic

direction is to broaden the range of services in order to develop closer

relationships with shipowners. This requires the company to develop solutions

for servicing ships after they have been built and are in service.

Irrespective of the shipowner's customer profile (cruise ships, cargo ships,

government and military vessels, etc.), ship maintenance constitutes a portion

of the total operating expenses (OpEx). In addition, if a vital piece of equipment

on a ship fails mid-voyage due to lack of maintenance, the cost of such a failure

can be disproportionately high. It is imperative for shipowners to use some form

of maintenance management software (see Chapter 2) to meet regulatory

requirements and to eliminate the risk of unexpected failures. On the other

hand, proper maintenance management will improve the performance of the

vessel and extend its life. Ship maintenance software is a relatively large market

with an estimated value of USD 1.71 billion in 2022 and an estimated annual

growth rate of 11.3% between 2022 and 2030 (Infinity Business Insights 2023,

19).

It was decided that the software development project would be carried out in

partnership with an experienced software development company (referred to as

the partner). The rough division of roles was that the company was responsible

for requirements management and overall project management, while the

partner was responsible for developing the actual product according to the

given scope and requirements. It can be thus argued that the company might

have been more strongly involved in the development than is regular.

13

1.3 Assumptions and limitations

This thesis builds upon conventional design & engineering project management,

so the basics of a project manager's role and responsibilities in a waterfall-type

project are not elaborated.

Software development project attributes in this thesis are compared with a

waterfall-type project. Typically, a waterfall approach emphasizes pre-planning

and a negative stance towards changes along the way. In waterfall, it is also

common that the work is done in large, concurrent parts. Often the output of the

previous part is needed as the input of the next. In a waterfall model, the

customer gets to give feedback at a very late stage.

A significant amount of decisions regarding the issues highlighted in this thesis

are based on IEEE publications. IEEE is the world's largest technical

professional organisation with a portfolio of over 1000 industry standards.

(ieee.org 2022.) The main focus is SWEBOK (a guide to Software Engineering

Body of Knowledge). It is a comprehensive collection of peer-reviewed

descriptions of software development. Although the publication is starting to

age, the topics and practices described in it can arguably still be considered a

baseline in 2023. Another valuable and more recent IEEE publication cited in

this thesis is the standard 12207:2020 Systems and Software Engineering:

Software Life Cycle Processes.

This thesis only examines the processes involved in the software development

life cycle (SDLC) as defined by IEEE. The processes of SDLC are:

requirements, design, construction and testing. The entire software life cycle,

called Software Product Life Cycle, or SPLC, is longer and more multi-sectional,

and also includes post-development activities, i.e.: deployment, maintenance,

support, and retirement processes (IEEE 2014, 151).

14

2 Maintenance management software overview

This chapter provides an overview of the nature of the software being

developed in the case project. The information presented here is intended to

clarify the scope and complexity of the project, which will help to provide

perspective, find similarities and compare this project with others. It should be

noted, however, that in a situation where software is developed entirely in-

house or with a partner, there may be significant differences in the aspects

mentioned below.

The aim of the case project is to develop maintenance management software

for ships. The software contains functions that are generally considered to be

CMMS functions. CMMS stands for Computerized Maintenance Management

System and is the most rudimentary of the maintenance systems, or at least the

scope it aims to fulfil is the narrowest. At its core, CMMS is a maintenance log

that manages the maintenance of assets (machine, plant, ship, etc.) by setting

maintenance intervals for them. The maintenance philosophy of CMMS is

usually preventive maintenance, where the intervals are based on elapsed time

or hours of operation of the asset. In the case of a machine or part, for example,

the intervals are often specified by the manufacturer. The simplified question of

this philosophy is, "When is the next maintenance due on the asset?" This type

of philosophy is the easiest to implement because it requires minimal interaction

between the asset and the software. It does not take into account failures,

unexpected operating modes or the operating environment. (Mobley 2004, 4.)

15

The case-example software’s properties can be separated into five individual

units:

• PLATFORM. The basic overall functionalities of the system,

e.g. user management, data import, search function,

authentication, alarms, interfaces etc.

• EQUIPMENT INFORMATION MANAGEMENT. Basic

information of assets, systems and sub-systems.

• WORK MANAGEMENT. Maintenance plans, workflows for

tasks.

• MATERIALS MANAGEMENT. Features relating to checking

and editing the inventory for spare parts and other

(maintenance-related) consumables.

• DOCUMENT MANAGEMENT. Storing documents and

document attributes, possibility to explore and comment

documents.

The duration of the project is approximately 18 months. This thesis will be

completed approximately 14 months after the start of development. The project

is planned to continue through other phases, refining the product, adding

features and providing services to other industries, but this thesis focuses only

on the first phase because 1. it embodies the aspects of the SDLC. 2. it is an

ongoing process with practical information available.

16

2.1 Marine sector additions

The software being developed is aimed at customers in the maritime

environment, which is a complexity-adding factor. The users of the software are

the personnel of ship operating companies. Some of the users are located

onshore, usually in administrative roles, but a large portion of the user group

consists of ship crew members. Internet coverage of the world's oceans ends

usually a few kilometers from the shore, and satellite uplinks are rarely used for

anything other than critical data transfer, because of the high costs and limited

bandwidth. This means, for example, that the software must enable ships to

manage maintenance activities onboard independently and offline. When there

is a reliable connection to the internet and cloud server (e.g. when the vessel is

near a port), all information is updated to the shore office and vice versa. This

means that the system has to run in two environments: on the ship's internal

network and in a cloud environment. For the crew, the software provides a

mobile application connected to the ship's internal network. As the software is

intended to serve a large customer base of shipowners, it must be able to cope

with a wide range of fleet and ship technology levels and service expectations.

In order for the software to be valid in the maritime market sector, it also

requires a certificate of compliance from a classification society. The

certification proves that the software is capable of performing the necessary

functions to be accepted as the maintenance management software of choice

on any ship. The functions are relatively straightforward (such as filtering out all

class-relevant items and generating their maintenance history), but it does

affect the priority of certain features to be developed. It is also possible to obtain

a cyber security notation from a classification society, which certifies that the

software has been designed to combat cyber attacks. (Det Norske Veritas

2023.)

17

2.2 Other philosophies and types of maintenance management

As the field of maintenance management encompasses a number of terms and

acronyms that are sometimes used interchangeably, it is worth highlighting a

few that were not covered in the previous chapter. They are also important

because, outside the scope of the current case project, the company's software

aims to achieve a much higher level of service, more akin to the concepts

presented below.

As a continuum to the preventive maintenance mentioned above, there are two

other more complex types. The next level is condition-based maintenance,

which also takes into account the mode of operation and operating conditions of

an asset (Mobley 2004, 5). This is achieved by monitoring values (such as

speed, temperature, pressure, etc.) and alerting when a pre-set threshold is

exceeded. This allows maintenance activities to be more accurately timed and

based on need. As the decision rules are static, condition-based maintenance is

still a reactive method (Neurospace 2019). However, it should be noted that this

level of monitoring requires a more complex level of instrumentation. The

simplified basic question that defines condition-based maintenance could be

"How do operating conditions change maintenance activities?

The highest level in terms of development is the predictive maintenance

philosophy. This monitors the operation of the asset in a similar way, but in a

more proactive way, using machine learning to analyse the data collected and,

over time, make predictions about the appropriate maintenance intervals

(Neurospace 2019). The ultimate goal of the predictive maintenance philosophy

is to answer the question "How should maintenance activities be optimised?

18

3 General aspects of a software development project

3.1 Agile methods

According to IEEE (2020, 139), agile methods are widely used in software

projects. Some of the reasons given are that agile methods are more flexible

and reactive compared to traditional project management models, mainly

waterfall. Flexibility is an important quality in software development, as the

process is prone to change and emergent requirements. Agile methods are also

considered to produce applicable content more quickly and are more affordable

because they reduce overhead costs compared to large, intensely planned

methods (IEEE 2014, 170).

There are several different agile methodologies, but they share some common

denominators. The first is that they can be thought of as 'lightweight' models in

which work is divided into short, incremental, successive iterations or cycles.

Each cycle is intended to produce a small but functional part of the product,

meaning that (re)planning, design, integration and testing take place

concurrently during the cycles (IEEE 2014, 63). The workload and pace of the

cycles is such, that they can be performed indefinitely (Measey et al. 2015, 8).

The process also includes evaluation, which is carried out after each cycle. The

evaluation is done with an emphasis on informality and aims to look for areas

for improvement. This creates a consistent and precise feedback loop that

works towards improvements after each cycle.

Another common factor is that the stance towards change is more accepting

with agile methods than in waterfall. Agile emphasises reacting to change

quickly and with minimized costs, rather than opposing differentiation from the

created plan. (Kent et al. 2001.) In fact, because the content of the process can

change dramatically during a project, according to IEEE (2020, 140), the

dedication of agile projects is directed more towards the results than the

planned activities. However, it is important to note that agile methods as a

19

whole have a requirements and design process that can generally be placed in

the same timeframe as the planning process.

A third commonality of agile methods is that stakeholders and customers are

heavily involved throughout the process (IEEE 2020, 139). The involvement of

stakeholders, such as representatives of end users and potential customers,

can ensure that the direction of the product is correct and that each iteration

cycle produces a validated part of a whole. (Kent et al. 2001.)

A fourth factor is that agile teams are much more empowered and flatter than

hierarchical models. Because progress is intense and change likely, the team

must be able to make quick decisions and low-level improvisational pivots

without consulting higher management or strict protocol (Holcombe 2008, 11).

The fifth factor common for agile is the critical attitude towards “comprehensive

documentation”. This does not mean that documentation wouldn’t be important,

but it should not take priority over delivering a working product. (Kent et al.

2001). Also, the created documentation should only fill the minimum critical

requirements (term used for this is Just Barely Good Enough, or JBGE). Using

more than the minimum effort on documentation can be considered a waste of

resources in an agile mindset. (Cobb 2015 ,29).

The field of agile methods is dynamic. New methods emerge as some old ones

are replaced as obsolete. Others may persist but change. Therefore, it is a

challenge to provide a framework by which these methodologies can be

selected for presentation. This thesis presents the agile methodologies

described in SWEBOK, considering their mention in the publication as a reason

to accept their generality and validity in the software development business.

The main differences between the methodologies can be found in the life cycle

models. However, since agile methods have several similarities, it is not

uncommon to combine parts of them or to use only project-specific parts. This

kind of combination is part of agile, and no single methodology is preferred over

others (IEEE 2020, 139-140). The methodologies are intended to be taught as

ways of thinking rather than as strict routines.

20

3.2 Scrum

Scrum is a well-known and widely used agile approach. Probable reasons for its

popularity are the versatility of the methodology. Scrum can be used in

conjunction with other methodologies (Holcombe 2008, 15). In addition, the

methodology is considered to be "project management-friendly". The

friendliness refers to the fact that in theory it is easier to monitor progress with

Scrum compared to other agile methods. (IEEE 2014, 170.) In addition, Scrum

is relatively easy to adopt (Kasurinen 2017, 19).

The development team in a scrum framework includes several different roles

that work to ensure that production stays on track and that the product meets

the customer's requirements. The roles are presented in chapter 4.1.

Sprints are an essential part of Scrum. Essentially, sprints are the division of

work into separate, more manageable increments, all with the same pre-agreed

duration, sometimes called a time-box (IEEE 2020, 139). The duration of a

sprint varies from one to four weeks. To maintain focus, the duration of a sprint

should not exceed 30 days (IEEE 2014, 170). In line with test-driven

development, the scope of work in a sprint includes unit testing as well as UX

design. The goal is to produce one or more functional and tested units of

software as the end result of a sprint. One way of understanding sprints is that

they are successive miniature lifecycles in themselves, affecting only certain

parts of the overall product.

With this type of methodology, the intensity of the work should remain constant.

Instead, the challenge is to break down the tasks into appropriately small

increments. By default, there should be no single task that is too large to be

completed in a single sprint (Cobb 2015, 40). The main idea of Scrum is to

divide the workload of the development project into different units during the

process. Initially, the division is high-level and becomes more specific as the

project matures. At the most usable level, the units are user stories (see Section

3.7), ideally all of which are assigned importance values and estimated effort to

produce. This kind of division allows the project team to always select the most

21

important items to be put into production, and also to include the right amount of

them in order to maintain a moderate workload. The list formed from this activity

is called the product backlog (Alt-Simmons 2016, 68). From the collective

perspective of the stakeholders across the team, an obvious advantage over

the waterfall is that large wholes do not have to be created completely and one

after another, but instead the customer receives small pieces for validation at a

steady pace. The highest value items can be created in any order, as shown in

Figure 1. In practice, however, there may be several limitations due to

conflicting interests (See Ch. 6.1.1).

For easy visual understanding, the team often maintains a Scrum Board, which

is often a Kanban Board, on which all the items in the current sprint are placed

in appropriate boxes representing their status (see Figure 2). With such a

board, the status of each item selected for the sprint can be seen at a glance,

providing an overview of the sprint situation. The use of Kanban boards

improves the flow of work. (Gross & McInnis 2003, 1-3.) The number of boxes

and their names vary from team to team. Typically, there is one box at the

starting end of the linear formation for items not yet built and one box at the

opposite end for completed items. The kanban board is a visual tool that is not

inherently tied to any methodology, but is used in most. It should be noted that

the states of the Kanban board do not necessarily represent all possible item

statuses an item can have, but only those which are needed during the

Figure 1. Difference in project implementation between waterfall and agile. In

waterfall, the deliveries are large and happen in conjunction, whereas in agile,

the deliveries happen more frequently and in a priority order.

22

construction process (See Ch. 8). For an example of the full status options, see

Ch. 8.4.1.

3.3 Other methodologies in SWEBOK

3.3.1 Rapid application development (RAD)

Rapid application development arguably places the greatest emphasis on

getting something on the table for comment as quickly as possible (outsystems

n.d.). This is achieved through the use of prototyping tools. The RAD process

starts with a requirement specification phase, which is notably short. Only the

main features and the vision of the product are worked out in the team, no time

is spent on the specifics, mostly on the assumption that they can be changed.

After a broad specification, prototypes are created using various specialised

tools (IEEE 2014, 170). The created prototypes then serve as a medium for

feedback, discussion and more specific requirements. Iterations are made as

needed. The actual functional product is only constructed if the feedback from

the prototype iteration is positive, as shown in Figure 3. In this way, the design

is already validated. The prototypes are by nature focused on the front-end (see

Section 4.1), so the construction phase then focuses on the backend. The

Figure 2. Two example box-sets on a Kanban-style scrum board.

23

overall schedule is quite similar to other methodologies, mainly because the

time saved in a short specification period is used in prototyping and correcting

possible shortcuts made when prototypes were created.

Figure 3. Phases of RAD (adapted from outsystems n.d.).

some criticism of RAD is that there are no pre-determined timeframes for

activities, so there is no constant pace or easily measured speed. This makes

the RAD methodology difficult to manage. Other negative aspects include the

need for extensive prototyping skills and tools within the team, RAD does not

work well with large teams and long projects, and also does not work when

developing systems that cannot be modularised (Outsystems n.d.).

3.3.2 Extreme programming (XP)

As the name suggests, extreme programming stems from the need to increase

productivity by emphasising the most useful practices of software engineering.

The emphasis is on ease of use and product quality. The goal of extreme

programming is to find the simplest functional solution to any problem. The

written code is kept simple because of expected changes along the process.

The work is intended to be carried out through feedback loops in various forms

and timeframes, as shown in Figure 4. An example of this is pair programming,

where each line of code is simultaneously 'tested' by the observer as it is written

by the driver. There is a strong emphasis on testing, and in fact tests are

developed before anything else (IEEE 2014). Even requirement specifications

can be written in terms of test acceptance criteria, and test results are the main

source of product validation. (Holcombe 2008, 25-26).

24

Unlike RAD, extreme programming uses development cycles of predetermined

length, which makes forecasting easier. However, because the focus is on

validating code, the long-term scope of the product is poorly understood.

Extreme programming is very much focused on the present moment.

(Holcombe 2008, 25-27.)

XP is unique in that one of its cornerstones is that the customer should always

be available. This means that a representative of the customer is included in the

project team, takes part in the definition and is available to answer questions,

preferably on-site. (Holcombe 2008, 28.) This aspect has the potential to have a

negative impact on the project in the form of, for example, micro-management

by the customer in an otherwise flat management system

(extremeprogramming.org n.d).

With the increased emphasis on creating functionality, the overall design of the

system and the UI/UX aspects are left to accumulate technical debt. Also,

because the requirements are essentially an acceptance test and new

requirements are written with each failure, both the design of the system and it's

Figure 4. Feedback loop -testing system in extreme programming

(Dennehy 2009, 6).

25

requirements are not well known in the beginning and their expansion is

incremental. From a project manager's point of view, especially from an

engineering project background, this can be challenging.

3.3.3 Feature-driven development (FDD)

Although it contains the elements of cyclic evolution and stakeholder

involvement, feature-driven development takes steps towards a traditional

waterfall model by having distinct phases (shown in Figure 5), a comparatively

much larger amount of up-front planning, and a lower propensity to refactor

(Holcombe 2008, 13-14).

The first three phases of an FDD project are evolutionary planning, and the last

two are the actual design, component by component. Unlike XP, code

ownership is at the individual member level rather than the team level (IEEE

2014, 170). Features are often grouped into feature sets and assigned to

appropriate developers. Pre-production planning facilitates the early introduction

of written documentation and makes it easier to produce interim reports and

performance updates (Holcombe 2008, 13-14).

The disadvantages of FDD are that it takes a lot of time to plan, which also

results in delayed deliveries. FDD is considered to be more complex than other

methods and it's success relies heavily on the coordination skills of the design

Figure 5. The five-phase process of FDD (Holcombe 2008, 14).

26

leads. As whole features or feature sets are designed and built sequentially, the

possibility to create high-value items first diminishes.

3.4 Social aspects of agile

Agile methodologies differ from waterfall models also in the sense of what kind

of social aspects and skills are valued. The Agile Manifesto identifies twelve

defining principles, which shape the nature of agile methods (Kent et al. 2001).

By analysing these principles, it is possible to deduce that some of them contain

promoted social values. The value-loaded principles and their analysis are

presented below (Kent et al. 2001):

“Business people and developers must work together daily throughout the

project”. “The most efficient and effective method of conveying information to

and within a development team is face-to-face communication.” These two

principles clearly emphasize the importance of constant and frequent

communication between various people. From a social aspect this emphasis

can translate to good communication skills and a certain level of

extrovertedness. Even though Measey et al. (2015, 8) points out that well

implemented virtual collaboration spaces can also constitute as a

communication enabler, the full benefit of communication is expected to be

received face-to-face in an agile mindset.

“Build projects around motivated individuals. Give them the environment and

support they need, and trust them to get the job done”. “The best architectures,

requirements and designs emerge from self-organizing teams.” The underlying

social aspects sought after here could be the ability for each team member to

take responsibility and initiative of their work as well as willingness to share

burdens and maintain other’s motivation (IEEE 2014, 200). Literature even

seems to imply that agile team’s motivation would be in direct correlation with

the amount of self-empowerment it possesses (Measey et al. 2015, 9).

27

“At regular intervals, the team reflects on how to become more effective, then

tunes and adjusts its behaviour accordingly”. Open mind, willingness to accept

critique and resilience to change are qualities at the core of an agile team’s

social attributes. Also a critical but constructive mindset towards oneself and

other team members is required in order improve.

All of the qualities mentioned above are concerning to each team member of

the development team. From the Project Manager’s perspective, the set of

social skills are additionally complimented with the ability to motivate the team

and communicate in a supporting way. Management overall must be able to

trust the team’s ability to deliver quality products on time, give the team all

necessary tools for success and then take a step back. A derivative of these

issues is that the Project Manager needs to additionally possess good team-

building skills.

28

3.5 Agile methods challenges

When making the transition from managing an engineering project to managing

a software development project, certain fundamental aspects of the difference

need to be accepted and the management style adapted accordingly. An

appropriate mindset might be that instead of seeing aspects as disadvantages,

they are trade-offs that have a positive impact elsewhere. With this in mind,

there are however some items listed below, which require familiarisation from a

Project Manager accustomed to waterfall.

• The project manager's position is more vague. In the optimal situation,

where everyone on a team can focus on one role, some responsibilities

related to general day-to-day team activities, such as work-sharing, are

more naturally handled by another role than by the PM. In fact, a Scrum

team does not have a Project Manager role within it. It exists at a higher

level because there needs to be one person responsible for the overall

schedule, budget and scope of the product. This forces the PM to move

up and possibly look at the project from a different level than they are

used to.

• Flat organisational structure. Software engineering is less hierarchical

than traditional project fields. Decision-making power is spread across

more team members, and even developers are more empowered to

steer the product. Decisions are also made much more quickly, and it is

a challenge for the project manager to keep track of them and assess

their relationship to the scope.

• Challenges in assessing far-reaching progress. The Scrum Master, with

the help of the development team, should usually have the best

knowledge of the total workload. However, the Scrum Master’s main

focus is on filling the next few sprints with correct and defined User

Stories, rather than providing accurate information about the total

workload far in advance. In addition, features and large user stories are

often broken down into smaller pieces on a just-in-time basis, meaning

that the backlog is likely incomplete until the end of the project.

29

• High uncertainty, low sense of control. Once the requirements for the

product have been specified and the scope agreed, the project manager

has only experience-based, high-level information about the schedule.

The pace at which accuracy increases is slow, and there is a risk of

emergent issues and scope creep. Agile methodology also seems to

stem from the starting point that the team always knows what it’s doing,

and can arrive to the correct solutions if left alone. With the combined

effect of the above, the project manager is subject to a significantly lower

sense of control, and the future is much fuzzier than in a general

engineering projects.

• Documentation. In most agile methodologies, documentation is a

relatively low priority. Software projects do produce documentation, but

much of it is produced towards the end of the project. Instead of "this is

what we plan to do", the theme of the documentation is "this is what we

did". This deviation makes it very difficult for the project manager to

accurately report, control and validate at the beginning of the project. The

project backlog is an important initial document, but because it's often

incomplete at the start of the project, its value is limited. The “Just Barely

Good Enough” -mentality does not help in this respect.

• Stakeholder Resources. The agile development team produces new

content frequently, which means that customers need to be involved in

validating and commenting frequently. Customers also need to

communicate their needs to the team with increasing specificity. This

means that the customer's own resource commitment is likely larger than

in waterfall.

• Social demands. Agile methods are fundamentally based on teamwork,

self guidance and constant communication and collaboration. Individuals

who do not possess teamwork skills, are not self-guided or would prefer

to work independently from others are not suitable members of an agile

team. It could be thus argued that agile team building can be more

exclusive when compared to waterfall-type teams.

30

3.6 Work breakdown

The basic idea of breaking work down into smaller parts within a project is the

same in software development as it is in other fields. Smaller pieces of work are

easier to assign, easier to manage and less daunting. With agile methodologies,

especially Scrum, the importance of this activity is key because of the time

sensitivity. There are several ways to divide the work into parts. As a basic rule

of thumb, there should be at least three different piece sizes: one that a full-

stack developer can complete within a design cycle, another that takes 2-5

cycles and a third that combines the two smaller units and acts as the largest

unit, with a completion time of 5+ cycles. This composition is illustrated in Figure

6. The tiers may have different names, depending, for example, on the

corporate culture. There is a risk of confusion if a particular term is used for a

different tier in different circumstances. The overarching theme of the tiers is

user-centredness (IEEE 2020, 18, 45).

The breakdown and designations presented in this thesis follow the guideline

used in the case project. It is found to be a useful framework because it is

intuitively understood by both the company and the partner, it is well

established, and it is supported in commonly used project management

software.

Starting from the bottom, the lowest level unit is called a Task, sometimes a

Subtask. Often, however, Tasks are only considered as framework level entities

and are rarely documented. This is because Tasks are such short activities and

there are so many of them. An example of a Task might be Create a button with

the text "Add Document".

One level above tasks are User Stories, or simply Stories. They are the optimal

level into which all work should be broken down. User Stories are documented

and should contain all the information the team needs to complete them. The

most important information is the non-technical, narrative description of what

needs to be done, why, and by whom. Example of a User Story: "As the Chief

Engineer creating a work order, I want to be able to select and add the required

31

documents to the work order so that the technicians know what documents they

need to complete the work order”. Other important information attached to a

User Story:

• Definition of Done (called also acceptance

criteria), i.e. the metrics for evaluating when the

development has achieved the functionality of the

user story.

• Linked information, such as UX-designs.

• Link to relating higher tier.

• Priority indication.

• Workload, i.e. story/action point estimate (See Ch.

8.3.2)

Continuing upwards, the next level items are called Features, which contain the

combination of multiple user stories associated with them. A Feature is a

distinctive aspect of the whole product. An example following the theme of the

User Story above might be User-Created Work Orders.

At the top level are Epics, which in turn collect related Features to form a

substantial part of the product. Because of their size, epics usually take several

development cycles to complete. Example: Work Management.

Figure 6. Tiers and designations of work breakdown in a software development

project.

32

3.7 Unified modelling language

The documentation produced during the various stages of software

development is often presented in a visual form, called models or diagrams. In

order to fully understand the information presented in the documentation, it is

necessary to have a basic understanding of the lingua franca of software

development, the Unified Modelling Language, or UML. UML diagrams aim to

show the structure of the software, the behaviour of its components, and how

the components interact. Components are often represented as different

shapes with descriptive text inside. Interactions are shown using different types

of arrows. Examples are shown in Figure 7. The benefits of UML are improved

communication between stakeholders and improved ability to specify the

software system. (Otero 2012, 36.) Examples of the central diagrams are

presented in chapters 6.1.1 and 7.

Figure 7. Examples of UML diagram elements (Loyola Marymount University

2023).

33

3.8 Case-project’s insights for common practices

There are several factors indicating that the Case-project utilized an agile

approach in its activities:

The workload of the development team was divided into cycles throughout

the project. Meeting types and the teams division of roles were those

incorporated into the scrum approach (See Ch. 8.3 & 4.1). Work was

categorized into epics, features and user stories and the workload was

estimated using story points. Lastly, the tools used for managing the project

are directed towards software development projects (See Ch. 3.9)

Simultaneously, there were also factors present suggesting towards a more

conventional method of project management, or at least in contrast with agile

methodology:

Company emphasized the importance of planning and producing

documentation before the design phase. This was partly due because it was

urgent to provide company-wide information about the software in order to

plan continuation. Company and partner were in practical terms two

separate teams working together, instead of one common team with shared

efforts. Some reasons for this were time difference, customer-service

provider -relationship and need-to-know -basis of company information. Dual

team structure caused some duplication of duties, resulting in a larger

management structure than what might be present in an average agile

development team.

34

The method of working in the case-project could be described as a

combination of Scrum and FDD. Work was organized into sprints, which

lasted 2 weeks each. The combined amount of development sprints for this

project is 23. Sprints were started only at the moment when software

construction began, before that the activities were not time-boxed.

Additionally, task management in Jira was not executed before the start of

construction. Tasks could be found from meeting memos, which were

posted for all participants to see.

The partner was trusted with much liberties in planning the sprint contents in

the beginning. This lead to a phenomenon, where the team decided to

create complete Epics in the spirit of FDD feature sets. The first two Epics

created were Platform and Company Management. From the perspective of

PO and business side, these were the two most low-value Epics. Their

content (e.g. creating new company profile to which to insert basic

information, creating a method for logging in, flow for creating new password

etc.) was so trivial that company personnel had nothing to show potential

customers for an extended duration of time. Another factor which caused

problems was that there was no visual look for the product designed for

quite some time, leading the team utilize a very basic IBM Carbon -design

system coloring, which had a plain appearance, an example screen can be

seen in Figure 8.

35

Figure 8. example view from the software before any design towards visual

look.

The progress was presented well in biweekly sprint demos (See Ch. 8.3.3), but

backend solutions, ever larger technological decisions were not presented well.

The Partner did not provide options to be reviewed, but instead chose a certain

path independently and and built the foundation on it. At a later stage it was

discovered that this solution caused the program to be slow and unresponsive,

with waiting times of up to seven seconds. At that stage of the project, pivoting

to a different solutions would have set the timeline back several months, so the

36

only solution was to try all available methods to quicken the response time of

the selected solution.

3.9 Case-project tools

The main project management -related tool used in this project is Jira (Atlassian

corp.) The main tools for document management and storage are Confluence

(Atlassian corp.) and M-Files (M-Files Corp.). In accordance with the theme of

this thesis, tools mentioned above are at the centre of focus. It should be noted

that Jira and Confluence were selected on purpose for this project, the usage of

M-Files was according to Company policy. For communication purposes the

team utilized Teams (Microsoft), Slack (Slack Technologies) and Outlook

(Microsoft). These or similar tools can be considered standard practice in any

type of modern project communication regardless of approach and as such are

deemed unnecessary to be presented deeper by the author. Tools used for

actual software engineering are outside the scope of this thesis.

Jira is a software especially designed to facilitate services for the needs of

software development life cycle (Atlassian Jira. 2023). It utilizes many useful

instruments, such as Kanban charts, roadmaps, charts, reports and

customizable dashboards. Jira facilitates the possibility to create and assign

various different kinds of items, and track their progress.

37

Figure 9. Example view from Jira.

The Company and Partner had separate instances of Jira. This was mainly due

to the fact that it enabled a simpler way of managing both teams. At the

beginning of the project, all participants had access to certain parts of the

Company’s instance, because the requirements for the software were stored

there. However, because it was not necessary for the Partner to be able to see

Company personnel’s internal tasks, two separate instances were created. The

whole team had full access to the Partner’s instance. User stories were refined

and sprints planned and executed there. An example view of Jira can be seen

in Figure 9.

For document management, the team utilized Confluence, which is also an

Atlassian product. Confluence is a workspace onto which team members are

able to upload media and documentation. Additionally, documentation pages

can be created and edited with the help of shortcut tools (Atlassian Confluence.

2023). For document management and archiving purposes, Confluence enables

exporting of documentation in various forms.

38

In the Case-project, there were also two instances of Confluence, but the

Company’s internal one was in lighter use. Instead. it was more practical to

have all project-critical content in one place. Examples for the contents of

Confluence for this project are initial information, process overviews, meeting

notes, sprint demo recordings and test approach clarification as can be seen in

Figure 10. During the process, it was apparent that Confluence was not in daily

use of the team. The amount of content could stay unchanged for extended

durations and there existed several pages of material acting as a space

reservation for a certain topic, but never progressing further than the headline.

For team collaboration purposes, especially discourse about topics, Confluence

was underused in the Case-project.

Figure 10. Example view of Confluence (Atlassian, Confluence 2023).

39

Another document management system in use was M-Files which is based on

sorting information by content instead of folder structure (M-Files. 2023). In the

Project scope, it was used as the final place to store documentation. All

important Confluence documentation ultimately needs to be found on the

Company’s M-Files. The Partner had no access. Example M-Files view can be

seen in Figure 11.

Figure 11. Example vie of M-Files (M-Files 2023).

40

Tips:

• The selection of methodologies and meeting routines should

be negotiated and decided together among the most

relevant stakeholders.

• The aim of the development team should be to present every

internal product decision to the customer representative for

feedback. The positive effects of agile development dissipate

if e.g. an architectural decision has been made unilaterally

and it is deemed a wrong decision by the customer upon

discovery. This risk can be mitigated with short sprints and

defined backlog, but in practical life, the risk still exists.

• On the other hand, it should be acknowledged that customer

feedback has a risk of containing items that were out of the

agreed scope. These need to be clearly identified and

negotiated. Facilitating frequent feedback cycles does not

guarantee quality feedback. It should not be taken as a given

that customers and stakeholders would able to convey all

their comments clearly and on time, although this is the goal.

A helping factor would be that the team members possess

basic domain knowledge for informed decision-making to

prevent a situation where unreceived feedback would halt

production. Domain knowledge can be trained e.g. through

workshops.

• When deciding sprint length, all pros and cons should be

addressed. In general, a longer sprint is probably more

productive because the meetings and ceremonies take less

time in relation. On the other hand, e.g. four-week sprints

have only 50% of the feeback loops compared to two-week

sprints.

41

• In a situation where the customer is not the end user, it is

important for project management to ensure an effective

method of attaining domain knowledge for the team, or

involving presentatives of end users to view and comment

the product along the whole process.

• In the spirit of agile, the made decisions should not be

considered set in stone, and can be changed later if deemed

necessary. In practicality however, this always has an effect

on the project aspects of timeline, scope and budget. With

some decisions (such as selection of Cloud host), the effect

is so large that they do not allow pivoting.

• The brand and visual look of the product should ideally be

defined as early on as possible. Otherwise, the look and

possibly even layout of all of the software’s screen views will

need to be reiterated later. UX Designer’s most important

objective at the beginning is to create wireframes of the

usage flow, in order to gain headway in relation to the

developers. Therefore it is advisable to utilize a separate

expert to design the look and feel. This activity does not

affect the development team’s routines, so the expert can

also be an external.

42

4 Development team

The composition of a software development team is well established in

literature. Rather than a specific methodology, the team organisation is based

on the roles needed to produce functional software. These roles may have

several different names and may vary slightly in content between different

approaches. This thesis uses the Scrum team names as a basis because of

their widespread recognisability. An overview of the Scrum team roles is shown

in Figure 12.

Figure 12. General software development team composition.

Although the management structure of development teams is deliberately kept

flat, there is a need for specialised roles and overall team management. In this

respect, the same rules apply as for conventional management styles, e.g. the

recommended number of subordinates to be managed by one person. A typical

software development team is generally considered to have 5-10 members with

cross-functional expertise (Schwaber & Sutherland 2020). Measey et al. (2015,

8) arrive at nearly similar figures, suggesting team size to be between 3 to 11

members. In a very small team, each individual single-handedly represents a

specific role and therefore needs to have a high level of competence. One or

two people in the team will be in a managerial position, preferably at least one.

A large or complex software project may have several individual teams,

sometimes called pods. The software features are divided between the teams,

so that each one has it's own implementation track and backlog. In these

43

situations, coordination activities between the teams are very important in order

to create a cohesive product and to match timelines. (Resnick et al. 2011.)

4.1 Scrum roles

Scrum Master

The Scrum Master's role is to keep the Scrum team's process on track, to

facilitate the work and to remove any obstacles the team encounters. The

Scrum Master's role is prominent at the beginning of the project, but as the

development team evolves into a self-managing unit, the role changes form to

support. (Pries & Quigley 2010, 51.) Throughout the project, the Scrum Master

is focused inward, concentrating on the team. Some pragmatic examples of the

Scrum Master's tasks are facilitating meetings, refining User Stories and

selecting appropriate work quantities for sprint plans.

Product Owner

Pries & Quigley (2010, 52) refer to the product owner as the voice of the

customer. The product owner is more externally focused on the business

perspective. The role involves making sure that the product contains everything

the customer wants it to contain, and actively validating that the team is doing

the right things in the right order. Very often the Product Owner is the centre of

communication between the development team and stakeholders. Practical

examples of the role's tasks include writing User Stories, refining the backlog

with the Scrum Master, and answering the team's product-related questions.

As both Scrum Master and Product Owner are management positions, it is

possible, especially in small teams, for these roles to be held by the same

person. The same applies to managers of separate teams/pods.

44

Developers

The term developer encompasses several job titles, but in essence developers

are the part of the group that 'builds' the software (Evans 2004, 77). The two

main paradigms for building software are front-end and back-end. Front-end

elements are everything that the user of the software sees and interacts with in

the program, such as the functionality of software that responds to the click of a

button. Backend refers to elements that work in the background, inaccessible to

the user, such as rules for resolving data conflicts. To produce viable units of

software in each sprint, the team needs both front-end and back-end

development. This is usually achieved by having people on the team who

specialise in one or the other. A developer who can handle both front-end and

back-end is called a full-stack developer. When considering a single pod, the

natural number of developers is 2-4 people. A developer's role is to estimate the

workload of each story assigned to them at the beginning of each sprint, and to

complete the stories, report progress and issues during the sprint. Other roles

associated into the developer term are e.g.

• Technical Writer, who is usually participating at a

relatively late stage of development, responsible for

documenting all relating features and their development

as well as creating a user guide.

• AI expert, depending whether the software is required to

utilize machine learning or other contemporary

technological solutions which require targeted expertise.

• Lead Developer, who manages the design in, mostly in

large organization structures.

45

QA Engineer

The quality assurance (QA) of software under development is usually verified by

various types of testing (see Chapter 9). For this reason, the QA Engineer can

also be called a Test Engineer. The role includes planning the tests for the

stories in each sprint, executing the tests, and reporting any defects and bugs to

the team. Since the goal is to create a working unit with each sprint, it is

expected that all defects will be fixed before the end of the sprint. The QA

Engineer's work is therefore intensive and requires planning. (Westfall 2016,

447-448.) Depending on the complexity of the features and the speed of

production, there may be more than one test engineer in the team. In such

cases, the other may be dedicated to creating test automation.

UX Designer

UX is derived from the words user experience. As the name suggests, a UX

Designer has the perspective of the future users of the software. By creating a

clear and informative UI (user interface) and logical, intuitive usage flows, the

UX Designer ensures that using the product is a positive experience.

(Rosenzweig 2015, 7.) The UX Designer optimally works a few sprints ahead of

the rest of the team, providing tangible wireframes for the team to use in

development. In many cases, the wireframes can also be compiled into no-code

prototypes of the software's features. The overall look and feel of the software

may also be the responsibility of the UX Designer.

Data Architect

The Data Architect creates the models for the flow and use of data between

different entities in the software. This role is key to clarifying the overall

principles and behaviour of the product. The Data Architect tends to work at a

high level, and the content he/she produces is often in the form of diagrams.

The task of actualising these plans may be assigned to another person, whose

title is often Data Engineer. (Nath et al. 2017, 19.)

46

4.2 Development team stakeholders

The environment outside the development team, as in other business

environments, has a variety of stakeholders (see Figure 13). The stakeholders

can be categorised as internal and external, where internal means that the

stakeholders are within the same organisation that employs the development

team. The composition of the stakeholders and their titles will vary from

situation to situation and no general definition can be given. Stakeholders often

have no direct contact with the team, the Product Owner is primarily the link

between them.

Figure 13. Examples of stakeholders.

47

4.3 Team scaling

Due to the nature of software development, the importance of the roles listed in

Section 4.1 changes as the project matures. A simplification of this is shown in

Figure 14. Not all team members are necessarily involved in the development

from start to finish. If it is a single development team, the possible scaling tends

to be downward (people become detached from the team rather than attached

to it) and intensifies towards the end of the project.

Figure 14. A simplification of the team roles' level of importance on a time-axis.

The only role where the need is constant and stable is the Developer. Coding

can be expected to start from the first sprint of the design phase and continue

until the last. Towards the end, the amount of Developers might however be

dropped because of clarifired backlog and a moderate amount of remaining

User Stories. The need for Data Architects and UX Designers can be seen as

highest at the beginning of the project, as their input dramatically influences and

48

directs the work of the Developers. The Data Architect creates the framework

from which the logic of the software is built, but after this effort the need for the

role diminishes. The Data Architect is the most likely person not to continue until

the end of the project. For the UX Designer, the need is constant until the full

design round is completed. After that, the developers should have all the

information they need to build the system. However, the need does not drop to

zero, because in reality there is a lot of iterative work to be done.

The managerial positions of Scrum Master and Product Owner should become

less important as the project progresses, signalling that the team understands

the product and is empowered to continue. However, due to the volatile nature

of software development, it is preferable not to eliminate these roles altogether.

The role of testing is initially low due to the limited number of items to be tested,

but the work involves planning, so the need is by no means negligible. As the

product expands, testing becomes more complex, and by the end of the build

phase, the tester's role has become the most important, as the product must

pass acceptance criteria to be considered complete.

4.4 Case-project’s insights for development team

As the case-project was carried out as a collaboration between two companies,

it is obvious that there was some partial duplication of roles. Examples of this

phenomenon are the roles of Project Manager and Product Owner. Although in

theory a project should have only one manager and the product (of this size)

should have only one owner, in practice in a joint global operation it is

necessary for both participants to have their own internal organisational

structure. This structure is visualised in Figure 15. An additional reason for the

number of Product Owners was that during the project the product was split into

two distinct but aligned pods (online & offline environments). Both of the

partner’s PO’s also doubled as Scrum Masters, maintaining the production

routine of the two teams. As the nature of the collaboration could be condensed

into that of a customer and a service provider, the hierarchy could still be

49

formed and the effect of duplication on the practical work was limited. Each

team member had a fairly clear and separate set of responsibilities.

Figure 15. Case-project's organizational structure after one year from kick-off.

Lines represent the main interactions.

The Company's team members were permanent, full-time employees. All had

been with the Company before the case project began. The team was formed

by the Project Supervisor's internal search for suitable people. At the beginning

of the project, the Business Analyst was not involved.

As the partner created a new branch for this project, all team members are new

hires. The author of this paper does not have access to the employment

contracts of the Partner's team members, but it is assumed that they are fixed-

term contracts for the duration of the project. The partner started with a Project

Manager, UX designer, QA engineer and Developer. After a year, the Partner's

team had expanded to include a Data Architect, two Scrum Masters / Product

Owners and three Developers.

The foreseeable need for additional hiring from the Company's point of view is

to fill the Business Analyst role, as the previous analyst has moved on to relieve

the PO's workload. This is partly due to the fact that the Partner's PO/Scrum

50

Master has not yet fully embraced the business principles and scope of the

product, leading to misunderstandings. In addition, as the time for extensive

UAT is approaching, the need to hire a dedicated person to handle the activities

associated with it is imminent.

The partner's team is otherwise in order, except that the progress of the product

has reached a point where the QA engineer can no longer carry out all the

necessary testing alone and needs additional help to share the load.

At the start of the project, the total number of team members was eight. With

current and projected additional hires, the team size will be approximately 17

people by the end of the project.

Tips:

• It is advisable that team members are included into the project from a

need-basis, and similarly downscaling should be exercised when the

role’s importance diminishes. In the case of distributed teams the

downscaling should always primarily mean subtracting the affected team

member’s workload to e.g. 50% rather than cutting the role off altogether.

This is because the person might commit very quickly to another project

full-time, and is a lost resource in the case of re-emerging need.

• Product Owner is the main medium between the customer and the

development team, which is good for consistency, but also leads to

customer feedback being filtered. This phenomenon should be

acknowledged.

• If the Product Owner role is doubled with the role of Scrum Master as the

responsibility of a single person, the workload can likely grow to be so

large that it will cause a bottleneck.

• When considering a partner in a distributed team -situation, the issue of

time difference should not be underestimated. If the difference is large,

responses are always delayed to the next working day with both parties.

Additionally, certain meetings such as daily stand ups are not possible to

51

attend and Mondays and Fridays (40% of possible meeting days in a

week) might not be suitable days for larger meetings. If the common

suitable meeting times are limited, it is recommendable to facilitate

workshops.

• If there is only one representative for each team role, mishandling or

poor competence in any role is rapidly affecting production and require

immediate intervention or personnel change.

• If the team is small and unilateral, workload estimation can be misguided,

when no one contests anyone’s initial estimates.

• If there are multiple teams, their management cooperation needs to be

emphasized so that the architecture is common and sprints are in

synchronization (see Scrum of Scrums, Ch. 8.4).

• Domain knowledge transfer from expert to team is a long process and

might need constant checking for regression. From practical experience,

a recommendable method of knowledge transfer is facilitating

workshops. Non-recommendable approach is providing the team with

large quantities of initial data for independent studying.

• If there is a need to scale the team size up, it is important to

acknowledge that the velocity of team may drop for some time, because

the current members need to onboard and advise the new ones.

Therefore, team additions should not be applied as a remedy if the

project is already late, because the result could be an even longer delay.

52

5 Software development process division

According to SWEBOK (IEEE 2014, 153), “A software development life cycle

includes the software processes used to specify and transform software

requirements into a deliverable software product”. The processes are (IEEE

2020, 23; IEEE 2014, 151-153): requirements, design, construction and testing.

The following chapters present the main themes of each process. In an agile

environment all of these processes are occurring concurrently with each

evolutionary iteration, but when expanding the view to the whole development

project, the same processes can be identified also as the major stages, as

shown in Figure 16. In this view, the stages must happen more sequentially

because their individual outputs are the next stages’ input. In real life however,

all four processes are happening at the same time, but depending on the point

in the software development life cycle, the activities of one process is

emphasized over others. The duration of this lifecycle is fully dependant on the

size of the effort, but as a basic rule of thumb, Resnick et al. (2010, 22) suggest

that a major release with an agile approach takes between 6-12 months.

Figure 16. Elements of a software process (IEEE 2014, 150), expanded with

orange boxes by the author to reflect the software development processes.

53

6 Requirements process

According to SWEBOK (IEEE 2014, 32), "Software requirements express the

needs and constraints placed on a software product that contribute to the

solution of a real-world problem". Software requirements can be divided into

functional (representing needs) and non-functional (representing constraints).

Functional requirements are a collection of functionalities that must be

successfully executed by the software. Non-functional requirements concern the

quality aspects of the software, such as performance and reliability. Non-

functional requirements are sometimes referred to as quality requirements.

What they have in common is that they must be in a form that can be validated.

(IEEE 2014, 33-34.) Validating functional requirements is, on average, easier

because they are either executable or not. Creating a non-functional

requirement in a form that is quantifiable and verifiable is more challenging. For

example, "The response time of the software for the search function shall be

fast" is a subjective requirement and very difficult to measure. A better

requirement would be "The response time of the software for the search

function shall be less than X during any hour of operation".

Requirements are often gathered in an interdisciplinary process involving

several stakeholders. This can lead to a collection of requirements that is

overstretched in terms of time and budget. Therefore, the process involves

negotiation. Software requirements are often prioritised to assist in these

negotiations. For project management purposes, requirements also often have

statuses so that their progress can be monitored. (IEEE 2014, 33.)

When talking about requirements, an important distinction is that software

requirements are product requirements, but the project itself has it's own set of

requirements, called process requirements, or in practical life, project

requirements. These requirements define how the project will be run. An

example might be "The project risk assessment -document will be updated

monthly".

54

6.1 Activities during the requirements process

Requirements elicitation and refinement is a living process that continues

throughout the development life cycle, with decreasing intensity. However,

because the product requirements form the basis of the entire software and

therefore shape the project scope, the intensive part of the work must take

place before any other phases. IEEE (2014, 33) divides the requirements

process into four activities (Figure 17).

Figure 17. Requirements process’ activities (IEEE 2014, 33).

The first activity is called requirements elicitation or requirements capture. This

activity initiates communication between internal and external stakeholders to

understand what is expected of the software. The expectations are shaped by

goals, business rules, operational and organisational environments. (IEEE

2014, 36-37.) The Product Owner should act as the main point of contact for

communication, as part of his/her role is to have the best overall understanding

of the product from all angles. A critical consideration is the equality of

stakeholder requirements. Some ideas about the balance of power:

55

• If the technological angle (Represented by Scrum Master &

Development Team) has more decisive power related to others, there is

a risk that though the end product is “watertight” and works flawlessly, it

does not meet all the business requirements set to it, i.e. does not fulfil

all of the reasons for which it was developed. Second considerable risk

is that the project timeline and budget are exceeded, when the

development has concentrated on fine-tuning technical details instead of

completing the whole product.

• If the Business feasibility angle (customer, management) has more

decisive power related to others, the product’s list of requirements is

excessive and not possible to achieve in the allotted time. Another risk is

that these requirements are missing crucial technical elements of the

software, which are not part of Business domain knowledge.

• If the Project Management angle (Project Manager, Program Manager)

has more decisive power related to others, the project might be

completed in time and within budget, but the product created as the end

result might be considered lacking in overall quality, or unstable on

account of corner-cutting.

Stakeholders rarely have a complete list of requirements, so they have to be

elicited using various techniques, such as workshops, meetings, interviews

and prototypes. There are also tools designed for requirements elicitation,

an example of which is a use case diagram (Figure 18), a subclass of UML

behavioural diagrams. A use case diagram focuses on the high-level

external functions that occur in different use cases by different users. It

56

visually represents actors, associations, and system boundaries. (Aleryani

2016, 124-126.)

Figure 18. Example of a use case diagram (Gonzalez 2022).

The requirements analysis activity begins to organise and classify the collected

requirements, as well as find new emergent requirements that enable the

original ones. In the analysis phase, the negotiation of the main requirements

begins. The importance of the presence of experienced software developers in

this phase is emphasised because, at a technical level, some requirements may

be contradictory or require an unreasonable amount of effort to create in

relation to the benefits gained in the software. Experience is also needed to get

an overall picture of the high-level interactions and initial architecture of the

software. (IEEE 2014, 38-39.)

57

The requirements specification activity documents the results of the previous

stages. The nature of the documentation is such that it can be systematically

evaluated. Depending on the software, 1-3 documents are produced. Highly

complex software, especially when interfacing with specialised hardware, will

produce separate system definition and system requirements specification

documents. However, regardless of the level of complexity, the one common

document for all software is the software requirements specification. (IEEE

2014, 41-42.) The software requirements specification represents the

requirements agreed between the stakeholders. In addition to natural language,

the document may contain more formal descriptions and diagrams. The main

goal of this approach is to produce the information in the most precise way

possible. The software requirements specification is the first formal document

that can be used to estimate project scope and risks. (IEEE 2014, 42.)

The final activity in the requirements process is validation, where the software

requirements specification is evaluated and either approved or revised. This

includes the validation of any models that have been created, such as use case

diagrams. Validation usually takes the form of cross-cutting reviews. It is also

possible that prototypes have been created to demonstrate the functionality of

e.g. certain complex or ambiguous issues, and validation is done by assessing

the prototype. An integral part of requirements validation is planning how to

verify that the requirements are met in the final product. (IEEE 2014, 43.) This is

achieved by creating acceptance test criteria, which will help to work more

systematically in the user acceptance testing phase (see Chapter 9.2) and will

be part of the quality plan for the project. The format of the document should be

considered to allow for changes, scaling and history tracking. It is therefore

advisable to use a dedicated tool for this purpose.

58

Once the scope is clearer, other project-related documentation can be started.

Examples of these are the project plan and the risk assessment. As mentioned

in Chapter 1.3, this thesis does not go through general project management

procedures, including documents, but the risk assessment in a software

development project has a special quality that is important to note. In addition to

the traditional project risks, software development has a separate category of

product risks. This means that both the process and the result are treated as

separate risk factors. An example of a product risk might be that the software is

too difficult for the average user of the target audience to use. Both project and

product risks go through the same processes of identification and analysis, both

groups can be placed on a risk matrix, and mitigation and contingency plans

can be created for both groups.

6.2 Case-project insights for requirements process

The requirements for the software in the case project were initially compiled

internally by the company. Although the partner was given access, comment on

the requirements was sparse. Part of the reason for this was that the partner's

team was initially quite small and didn't necessarily include enough experts to

comment. There was also some confusion about the terms used, particularly

when the aim was to produce a prototype or actual product during the scope

period. The company's requirements were finalised just before the summer

holidays and left (along with other additional material) for the partner to study

while the company's staff were away. However, the result after the holidays was

that not much progress had been made.

On the other hand, the requirements selected by the company were seen as

mandatory to fulfil the company's view of a minimum viable product. Therefore,

the requirements were "already negotiated", leaving little room for compromise.

There was a strong emphasis on functional requirements, with non-functional

requirements left to be discussed during the project.

59

All requirements were documented in Jira, divided into hierarchical linked

structures. The hierarchy, which consists of three levels, was broken down

during construction in a similar way to the work (Figures 19-21). The actual

requirements represent the User Story level. They were generally written in the

form of "System shall...etc". All items that were to be part of the Phase 1 scope

were given the status "selected for development". They were also given priority

ratings. The items did not include work estimates because the company staff

did not have the domain knowledge to provide such estimates.

Figure 19. Case-project's "selected for development” Epics on Jira's Kanban

board. Backlogged Epics are blurred because of NDA reasons.

60

Figure 20. The Feature view after opening the platform -Epic. All Features have

been assigned statuses and priorities as well as other information.

Figure 21. The view of requirements after clicking open the data model

requirements -Feature. Same status designations apply.

61

Tips:

• Even with agile methods, there is a clear need for documentation and

planning in the beginning of the project. If the development project is

done with a partner, their personnel should be already present in the

requirements elicitation activity. Non-functional requirements should be

considered as important to elicit and document than functional.

• When negotiating the requirements, it is advisable to follow the guideline

that nothing is agreed until everything is agreed. If the requirement list

items are frozen one by one, there will be no room for negotiation later.

• Project scope is a logical discussion not only after requirements

specification document has been produced, but after it has been

meticulously inspected and approved by the software developer in order

to avoid friction later.

• Risk management activities in a software development project require

more resources than in a project containing only project risks. Also, the

number of responsible persons for risk mitigation is likely larger.

62

7 Design process

The software design process can be described as a deeper iteration of the

requirements process as solution evaluation and negotiation continues. During

this process, various UML models are created to define the product more

precisely and to provide alternative solutions to aid decision making. The

ultimate goal is to provide usable input to the design. Standard 12207, Software

Life Cycle Processes (IEEE 2020, 74-81) lists two distinct processes that fall

under the design process: architecture definition and design definition.

7.1 Architecture definition

The purpose of architecture definition is to identify the components of the

software system and their relationships to each other, so that all stakeholder

concerns are addressed. A function of this process is also defining the external

interface and boundaries of the system. The architecture should be as design-

agnostic as possible and should remain an unchanging baseline throughout the

development process, even though the software design may change. This is

possible because the architecture definition deals only with those requirements

that relate to the architecture, whereas the design definition process must take

all requirements into account. A class diagram is a typical representation of the

structural diagram type for architecture definition (IEEE 2014, 40). It shows

different types of objects needed for the software, called classes. It also shows

the relationships or associations between each class (Kasurinen 2017, 22).

Classes are shown as rectangles with three compartments, each presenting

specific information about the class. The compartments are name, attribute and

operation. Associations are shown as different types of lines/arrows between

the class boxes (see Figure 22). The main advantage of class diagrams is that

they contain information in a form that is applicable to many programming

languages, i.e. it is possible to generate code based on class diagram

information. (Otero 2012, 43.).

63

Figure 22. Example of a class diagram (Otero 2012, 45).

Another example is a state diagram (also called state machine diagram or state

chart), which functions as an example of a behavioural diagram (See Figure

23). Whereas the class diagram is static, the state machine diagram is dynamic.

The emphasis here are the different states an object on each class can have

and the flow from state to state (IEEE 2014, 58). This is achieved by showing

how an object responds to instances (Swain et al. 2010, 6-8).

Figure 23. Example of a state diagram (Swain et al. 2010, 7).

64

7.2 Design definition

The design definition process has the same aim of increasing the level of

specificity. It uses the architectural definitions as a basis for designing the

behaviour and characteristics of each system element. The emphasis is on

compatibility. The products of the design process should provide information

that is accurate enough to start development. An example of a UML diagram

where the interaction study has reached a deep level is the sequence diagram,

as shown in Figure 24. The sequence diagram is also a behavioural and

dynamic model, but it focuses on specifying object interactions, taking into

account the order in which messages move (IEEE 2014, 58). The typical

reading style of sequence diagrams is left to right and top to bottom (Otero

2012, 59). The diagrams show the event flow of each action as a step-by-step

path.

Figure 24. Example of a sequence diagram (Otero 2012, 60).

65

It may be considered unnecessary to create all of the above diagrams in the

project because as documents are prone to change, maintaining and

synchronising multiple diagrams can be challenging. This effort is nervetheless

recommended because alternative abstractions complement each other and

provide different perspectives on problems. (IEEE 2014, 228.)

The design process should also serve as a stage for making decisions that

affect the subsequent construction process. When the whole system is known

and documented, decisions can be informed and logical. IEEE (2014, 68-69.)

identifies the following decision paths to be taken that have an impact on

construction

• Communication protocol

• Programming languages

• Coding standards

• Tools

In addition to the above, it is also beneficial to make early decisions about

service providers, such as cloud hosts. Efforts should also be made to assess

whether there are parts of the system that can be bought off the shelf, rather

than having the team build everything themselves. It is possible to use many

open source software (OSS) and commercial off-the-shelf (COTS) products to

significantly reduce the workload and enable scope fulfilment. COTS products in

particular are often very well made and easy to implement. On the downside,

off-the-shelf solutions may contain outdated code, so informed choices are key.

66

7.3 Case-project insights for design process

Both the requirements and design processes were considered as a common

“definition phase” in the case project. In terms of the elements and activities

presented in the literature as belonging to the design phase, the project

products fell short. The efforts of obtaining documentation from the partner at

the beginning of the project were not particularly successful, the scarce

documentation which was received did not exceed even the requirement of

JBGE. This caused a considerable amount of friction between the personnel of

the company and partner. The possible root cause for the problem is likely the

fact that Data Architect was not involved in the project since the beginning, and

other members that were, did not consider document creation as part of their

work, so the Partner’s Scrum Master / Product Owner did not have anyone to

assign documentation tasks to besides himself. When the Data Architect

became involved, his diagrams did not follow the principles of UML, and did not

produce additional value when compared to the initial data gathered by

company personnel. This lasted for several months, because the message from

the partner’s side was that the obscure diagrams would start to “make sense”

when they were specified more. This never happened, and the Data Architect

position had to be reassigned. In retrospect, a surprising amount of the

documentation provided by the partner was not UML compliant. On the other

hand, this was not part of the process requirements for the project. Some

rudimentary diagrams (see example in Figure 25) were provided by the

partner's Scrum Master, but they were close to the obvious level and contained

errors that persisted for a long time.

67

Figure 25. Example of the quality level of diagrams provided by the Partner

during so called definition phase.

For the project, the message of the Company was for the team to utilize COTS

and OSS components. Company’s suggested targets for ready solutions were

e.g. calendar and Gantt chart. It however turned out that the Partner was not

especially eager to utilize COTS solutions, at least in such small pieces. The

Company expected the Partner to provide necessary information for selection of

suitable areas for using ready solutions, and additionally recommendations on

the best solution. This proved to be unfeasible by the Partner. Some

propositions were delivered, with highest recommendation that the Partner

creates all aspects by itself. The recommendation did not however take into

account the timeline and budget of the project and thus proved to be of low

value.

68

Tips:

• Data Architect is a high-value role at the beginning of the project,

therefore it is essential that the person selected for it has extensive

experience and verifiable domain knowledge.

• Generally, developers are not necessarily equipped with the skillset and

interest to create documentation. This should be discussed preferable in

contract stage.

• All central project documentation should be required to follow UML

standards.

• UML diagrams will not necessarily be created if the team is encumbered

in work. It is advisable to assign responsibilities for document creation for

the most feasible team members as early on as possible. These should

be included as top-priority items in the backlog to ensure that time is

allocated for creating it.

• Even though the software development company might be experienced,

if the development team has not worked together before, the learning

curve might require a certain length of time. A well-established company

Best Practices -guideline helps in this aspect.

• It is possible to utilize COTS and OSS components, so the software does

not need to be entirely built by the team

• Also with the software’s UI, It is logical to adhere to well-established

principles, such as IBM Carbon Design System because of their

intuitiveness. However, as other products have likely done the same,

many software products are homogenized and resemble each other in

their design.

69

8 Construction process

The agile approach to software development is arguably at it's most concrete

during the construction process. It poses some challenges to separate

construction as an independent activity because of the ongoing concurrent

design and testing of the constructed items. At its core, software construction is

defined as "the detailed creation of working software..." (IEEE 2014, 66). The

creation of software elements or units is done by writing code and integrating

the created elements together to form the software build. It is common for the

code to include notations to guide the work of other programmers and to later

produce documentation, such as a user manual. The construction process

typically produces the largest amount of documentation (IEEE 2014, 66). The

construction of elements and their integration are considered by IEEE (2020,

85-91) as two separate functions, called the implementation process and the

integration process, but from the project manager's point of view this distinction

has little difference.

8.1 Construction process metrics

Software projects are no different from other development projects in the sense

that both process efficiency and effectiveness are of interest to project

management. Software process efficiency compares actual resource

consumption with expectations, while effectiveness is the ratio of actual to

expected output. Even if a process is highly effective, it may not produce

efficient results and vice versa. (IEEE 2014, 156.) Measuring efficiency is

always strongly dependent on the right context. A simple example of this might

be: the number of user stories completed per sprint has increased, implying that

the team's efficiency has increased. However, if it’s considered that the team

has recently recruited two new members, it’s noticeable that the effectiveness

has not increased enough in relation to the new efficiency of the team, in fact it

has decreased.

70

8.1.1 Velocity chart

A basic measure of team effectiveness is velocity, i.e. the number of User

Stories the development team is able to deliver per sprint. If the team size

remains constant, the velocity should either stay the same or increase over

time. This is in alignemt with the agile principle of keeping a constant pace

indefinitely (Kent et al. 2001). However, this is somewhat dependent on the

consistency of the sprint plan content. The velocity chart tracks the velocities of

each sprint, so a trend can be established. It can also show the relationship

between the number of story points completed and the number of points

planned for each sprint, as shown in Figure 26. This comparison gives an idea

of how accurately the team is in estimating it's performance in advance.

Figure 26. Example of a velocity chart.

71

8.1.2 Cumulative flow diagram

Cumulative flow diagram shows the statuses of User Stories within a selected

time-box (Figure 27). It is good for determining bottlenecks, i.e. certain interim

status is prevalent. An especially interesting aspect is comparing the amount of

completed User Stories to the number of stories added to the backlog during

refinement of Features. By the ned of the project, the amounts should be equal.

If the amounts of added stories starts to grow, corrective measures are needed.

Figure 27. Example of a cumulative flow diagram (indicating that the number of

developers could be increased).

8.1.3 Burndown and epic burndown charts

The burndown chart shows the percentage of activities completed within each

sprint, as shown in Figure 28. Particularly when team members report only fully

completed tasks rather than remaining story points per task, the information

presented is highly contextual (e.g. there may only be large items under

construction, so the burndown appears static until near the end of the sprint).

From a Project Manager's point of view, the burndown chart is of little value and

72

is a metric more suited to the Scrum Master. On the other hand, the Epic

Burndown Chart is more useful for management. It shows how many items

within an epic have been completed in each sprint, how many items have been

added and how many sprints it has taken in total to complete an Epic. If the

Epic has not yet been completed, the chart provides the historical data needed

to make a prediction. An example chart is shown in Figure 29.

Figure 28. Example of a burndown chart.

Figure 29. Example of an Epic burndown chart.

73

8.2 Environments

During this process, the software build resides in several different

environments. The number and purpose of these environments will depend on

the culture of the organisation and the type of software. Typically, the build is

constructed and modified in a development environment. For consistency, only

selected members of the development team usually have access to the

development environment. The build environment may also contain 'work in

progress' material, or messy mock-ups that are not meant to be seen by anyone

other than the programmers themselves. This depends a lot on the version

management approach. (IEEE 2014, 77.) For testing purposes, the build is

copied to a separate environment, called the testing/QA/beta environment. All

sorts of testing can be done there without risk of adversely affecting the build in

the development environment. It is already possible to start User Acceptance

Testing in this environment, but because it is different from other types of

testing (see Section 9.2.5), it can also be done in a dedicated UAT environment,

also called a staging environment. This environment contains mature software,

with most bugs and problems already found and fixed. The UAT environment

can be used to demonstrate the software to potential customers and to obtain

feedback from end users. The final environment, where the software is "live"

and functioning commercially, is called the production environment. (IEEE 2014,

90-91, 113.)

8.3 Meetings

Because development cycles are relatively short, agile methodologies are

meeting intensive, especially during software development. To prevent

meetings from taking up too much of the development time, some are designed

to be very short. The exact number and function of meetings will depend on the

choice of methodology and the organisation's preferences. There are also other

types of meeting that are not directly related to a methodology, but are still

recommended. For example, as part of standard project management, it is

74

common to have weekly status meetings between representatives and the

client. In addition, it is often advisable to have a high-level steering meeting at

regular intervals. As this is more or less standard procedure in any field, these

meetings will not be discussed further in this thesis. Because Scrum is a widely

used framework and because it contains such clearly defined meeting types

(called ceremonies), this thesis will present Scrum meetings as the proposed

choice. The four types are Daily Stand Up, Sprint Planning, Sprint Review and

Sprint Retrospective.

8.3.1 Daily stand ups

The cornerstone meeting type in a scrum framework are short daily meetings

called daily stand ups. The stand up occurs at the beginning of each working

day. The team gets together, and each member quickly recaps what they have

done on the previous day, and what they will do next. They will also report any

possible obstacles, to which Scrum Master can react accordingly. Stand up

meetings are very short, with a maximum duration of approx. 15 minutes. (Cobb

2015, 42.)

8.3.2 Sprint planning

At the beginning of each sprint there is a sprint planning meeting, where the

team members evaluate together the workload of the User Stories and other

items that the Product Owner has selected from the backlog to be included in

the coming sprint. The meeting is a negotiation because at this stage it is still

possible to change the content if too much or too little is selected (Cobb. 2015,

41-42). Instead of hourly or daily estimates, the workload of each user story is

often conveyed by other figures. The simplest is the T-shirt model, where the

workload of items is considered to be small, medium or large. The idea behind

this is that a single person may only be able to complete one large item per

75

sprint, or two medium ones, or several small ones. The most common method,

however, is to assign story points, also called action points. The actual

numerical values of the points are arbitrary, what matters is their relationship to

each other. If the simplest task is worth 2 points (one point to create, another to

test), then a task with roughly twice the workload would be worth 4, and so on.

A suitable and used set of numbers for this kind of evaluation is part of the

Fibonacci sequence: 2, 3, 5, 8, 13, 21. There are items that require no testing at

all, such as a UI design, but these are rarely listed as a single task, rather

several designs relating to a particular feature are bundled together to create a

workload that can be estimated using the Fibonacci sequence. (Cobb. 2015,

41.)

If the calculation shows that there are too many tasks for the upcoming sprint,

they can be scheduled for later sprints. This allows the planning process to

span multiple sprints, so that after each sprint is planned, the following sprints

often already have items in them. Therefore, sprint planning doesn't have to

start from zero every time.

Especially when the team is new, or the product is different from what the team

members have done before, it is common for the calculated workloads of the

project's first sprints to mismatch the actual deliverables. The accuracy of sprint

plans should improve as the process progresses. If the workload is

miscalculated and there is too much work, the excess is carried forward to be

included in the scope of the next sprint. If the workload is too low, items planned

for the next sprint can be dynamically added to the current sprint.

8.3.3 Sprint review / demo

After each sprint cycle, the outcomes are demonstrated to stakeholders. This

meeting is called sprint demo or sprint review. These meetings are essential for

the agile ideology of obtaining feedback as early as possible. The reviews

should include a representative of the customer as a spectator, so that the

76

created content gets validation. On the other hand, if there are comments, tasks

can be created in real time and added to the sprint plan for following sprints.

8.3.4 Sprint retrospective

The fourth and final type of Scrum meeting is the sprint retrospective, where the

development team goes through the completed sprint (traditionally only

internally), before initiating sprint planning and a new sprint. Following the Lean

ideology, the team tries to find ways to be more effective by analysing what

could have been done better or what activities do not add value. The findings

can very quickly be adopted as new ways of working and tested in the next

sprint cycle. Obstacles are also identified and put on the Scrum Master's desk.

The obstacles are sometimes divided into those that can be dealt with internally

and those that require external involvement, e.g. from management. (Resnick et

al 2010, 251.)

8.3.5 Backlog grooming

Another meeting outside of the basic scrum -meeting framework but closely

related to it, is backlog grooming session (also known as backlog refinement),

which is a re-occurring meeting, where the development team is utilized to

refine the product backlog. The meetings should include the roles of Product

Owner and Scrum Master at the very least. The purpose of the meetings is to

facilitate the progress of development by executing several different actions:

• Backlog item’s order is changed so that the user stories with the highest

priority for any given stage of the process are at the top, meaning that

they are next in line to be developed.

• Large user stories are continually broken down to smaller ones, so that

they can be implemented piece by piece.

• User stories are modified or re-written, so that they are more specific,

understandable by the team and meet the business requirements.

77

• Acceptance criteria are added to upcoming user stories.

• Unclear items and issues are clarified and discussed.

In particular, the process of prioritising items is complex, as they need to be

analysed from the point of view of technical logic, business feasibility and

project scope. For example, a particular user story that is considered to be a

high priority from a business point of view may be left out of the next few sprints

in the series, because in order for the story to be implemented, a lower priority

feature (technical logic) may need to be developed first as a foundation. It

should be noted, however, that in such a situation it may be possible to replace

the low-priority feature with a temporary fix, e.g. a stub (see Section 9.2.2), in

order to develop the higher-priority story, and it is actually the lower-priority item

that will be left for development in later sprints. The sessions are an ongoing

negotiation between the Project Manager, Product Owner, Scrum Master and

the Development Team.

8.4 Other meetings

If several issues arise during the project, they can be dealt with in separate,

dedicated meetings involving only the relevant people. This is to avoid taking

too much of the whole team's time away from the development work. The

separate topics can be, for example, architecture, UX, QA, business, etc.

In a case where several separate tracks are being progressed at the same time,

the derivative is that project personnel also consist of several development

teams/pods. It would be against agile principles to organise all the meetings for

such a large number of people, as they would take much longer. In these cases,

a coordination meeting called the Scrum of Scrums is established. This meeting

brings together a representative from each team to discuss and ensure that the

development paths are in harmony and that the product is coherent. (Resnick et

al. 2011, 38).

78

8.5 Spikes

Spikes are a method of dealing with impending obstacles or complex

challenges in a software development project. The method consists of relevant

team members (can be anything from one person to the whole team) taking

time out from creating software content to solve the problem or make

preparations. The time-out can be arranged to occur either between sprints or

during sprints. If the problem to be solved requires all or almost all team

members, and especially if the challenge is very close to the future pipeline, it is

preferable to address it as quickly as possible, with a spike between sprints.

The duration of the spike is usually less than a sprint, with 50% being a good

rule of thumb. If the spike involves only a few team members, and the challenge

does not pose a risk of negative impact in the near future, spike activities can

replace some user stories in the sprint plan, and the spike can last several

sprints. In this way, production is not halted. (Resnick et al. 2010, 263-266.)

Case-project insights for construction process

8.5.1 Item status workflow

The first status a user story must have in order to be placed on the Sprint Plan

and Scrum Board is "Ready for Development". Before that, however, the story

has a separate round in which the Scrum Master, i.e. the most potential creator

of the user story, moves it to be validated by the Product Owner. This adds

status possibilities, as shown in Figure 30. Only when it is confirmed that the

story is coherent and meets the business requirements will it be moved forward.

The Product Owner also makes the final decision on the priority of the story,

either moving it to the bottom or the top of the backlog. During construction, the

story passes through five states (see Figure 31), the last of which is Done, a

fully tested and viable increment of the product.

79

Figure 31. Kanban board view of an ongoing sprint. The statuses are: Ready for

dev, In progress, Ready for QA, In QA, Done.

Figure 30. All possible statuses, and the workflow of a user

story in the Case-project.

80

8.5.2 Case-project insights for construction process

All the types of meetings listed in chapter 8.3 were used during the case project.

Due to the time difference of the partner, the meetings were mostly held in the

evenings during the week, Finnish time. This meant that the company's staff

had a considerable burden of evening meetings, although these were

distributed between the different roles. The weekly meetings were the only

common meeting for all. Fortnightly they were accompanied by Sprint Demo

and Sprint Planning meetings. There were also separate backlog grooming

sessions, architecture meetings and test status meetings. There were high-level

steering meetings, but they were held at fairly long intervals. Occasionally, there

were additional project meetings attended by Project Managers from both

parties.

Company personnel were not able to attend the daily stand-ups. In addition,

sprint retrospectives were held internally by the partner's team. On the other

hand, company personnel had their own internal weekly meeting and several

ad-hoc meetings, e.g. on marketing, brand, sales, organisation, etc. To avoid

disruptions in the flow of information, the whole team was kept informed of

general issues by providing memos or creating new Confluence pages on the

topics discussed in the meetings. Example documentation is shown in Figure

32.

81

Figure 32. Case-example format and contents of a sprint retrospective memo.

82

Tips

• If the development team has access to software elements from the

assets of previous projects, their identification and reuse is highly

advisable for the purpose of reducing labor.

• Especially with dispersed teams, the meeting effectiveness should not be

expected to be high from the beginning, but improving along the way.

• Cumulative flow diagrams may appear to be indicating stagnation,

because new user stories are being constantly written as existing one

are accomplished. It is more feasible to monitor the trend of created and

accomplished stories.

• Sprints should preferably not be ended on Fridays, because end of week

deadlines may cause stress and do not provide “slack” towards over-

exteding the work (Resnick et al. 2011, 67).

83

9 Testing process

The output of a software project is validated through rigorous testing. This

aspect is one of the main differentiators when compared to the process of a

traditional engineering project. Software is a complex set of components and

the code that controls their function. The validation criteria for software are

mostly concerned with the programme behaving in an expected way with all

selected execution possibilities (IEEE 2014, 82). This type of validation requires

a structured testing process. The execution possibilities need to be selected

and based on probability and risk severity, because even a very simple program

input can be broken down into so many different variations and combinations

(i.e. different behavioural possibilities) that a fully tested program is not a

commercially feasible notion. According to IEEE (2020, 18), testing serves three

purposes: 1. Testing detects and removes defects, thereby improving the

quality of the software. 2. Testing generates information to support continuous

improvement. 3. Testing builds stakeholder confidence. The activity of fixing

defects found by testing is called debugging, but this activity is not grouped with

the testing process (Homès 2012, 11).

It is important to note that, according to Kasurinen (2017, 9), on average only

10% of all testing work is automated. This means that most of the work is done

manually, making testing a significant cost factor in software development. In

contrast, the sooner a bug or error in the program is discovered, the cheaper it

is to fix. The biggest risk of inadequate testing is the risk of a program that

doesn't work.

In a software development project, the responsibility for managing testing

usually lies with the QA Engineer. The amount of project documentation related

to testing has several levels, such as the organisational level, which produces

high-level documentation, such as the test policy. However, IEEE (2022. Part 1,

24) states that this level of documentation is usually produced in larger and/or

84

more technologically mature companies. It is perfectly possible to run a project

without it.

This thesis focuses on the project level, which is common to all development

projects and produces the most central documentation related to testing. As

shown in Figure 33, the processes are test strategy and planning, test

monitoring and control, and test closure. The documents are the test plan, test

status reports and test completion reports.

Figure 33. Test management process breakdown with central documentation on

a project-level (IEEE 2022. Part 1, 26).

The test planning process forms the project's test strategy and produces the

test plan document. Inputs to the plan include project plan, software

requirements, risk assessment and organisational level documents where

they exist. The Test Plan should be a clear indicator of the roles, tools and

methods, schedule, KPIs, monitoring, evaluation and reporting practices of

testing for the project. The test plan is a living document that may evolve

throughout the project.

The test monitoring and control process concerns the execution and

evaluation of the actual test work. It is the plan that is put into practice, and

in particular the test completion criteria are scrutinised. This process may

reshape the plan as the project progresses and may also produce status

reports for work in progress.

The test completion process covers activities that occur after testing is

complete, namely reporting, archiving and gathering lessons learned

85

information for the project. This process produces the Test Completion

Report, which closes the loop by providing information to the organisational

level about the state of testing in the particular project, as well as acting as a

"sanity check" for the testing process. There can be multiple test completion

reports, e.g. from different types of tests, as well as test status reports,

which can be compiled at any time. It is important to note that this reporting

is done throughout the testing process.

9.1 Functional and non-functional testing

At a high level, testing can be divided into two types (Kasurinen 2017, 37):

• Functional testing, also called dynamic testing is, in a nutshell

testing of the program in action. This means that the program is

actively used, inputs given and code executions made, in order

to survey if the response is expected.

• Non-Functional testing, also called static testing is in a way, the

opposite of Functional testing. Here, the system is not in use

during the testing but the non-functional qualities, such as

security and load-bearing capabilities are tested. Non-Functional

testing also encompasses the study of the general structure and

logic of the program. Non-Functional testing can be started very

early on, starting from the software’s architectural diagrams.

86

9.2 Common testing types

9.2.1 Unit testing

Unit tests (also called component tests) are executed to individual modules of

the software. The main characteristic is that the module is separate from other

modules, so the testing can be isolated (IEEE 2014, 71). The tests contain

criteria for success and failure, and failed test cases are flagged. Unit testing

can happen whenever a module is mature enough, so the software can be

tested piece by piece. The testing should happen during the same sprint as the

unit’s creation, and automatically whenever a code change is committed to their

repository. It important to note that test scripts can and should be written

already before the development of a unit, or software in general (IEEE 2014,

76). Generally, bulk of the unit tests should be executed by the developer who

has created the unit, and the defects fixed instantly. The negative side for this is

that a lot of defects are never reported, leading to skewed statistics. (Homès

2012, 60). Another challenge for unit testing is that the component might need

the creation of one or several mock objects to simulate other, still non-existing,

interacting units in order for it to work (Kasurinen 2017, 38). When testing is

conducted by a developer instead of QA member, the tests more often tend to

be happy-path -types, which means that the inputs to the system are those that

are expected to produce the correct response from the program and possible

execptional inputs are ignored.

87

9.2.2 Integration testing

Where there are multiple units to be tested, or where a unit and hardware

can be combined, testing of their interactions can take place. This is called

integration testing. Incrementally, units are added to the system and their

interactions are verified through testing, eventually resulting in a complete

system. If the number of units is still small, replacement components, called

stubs, must be created to complete integration testing. Kasurinen (2017, 39)

notes that the creation and maintenance of stubs can be the most expensive

aspect of integration testing. The cost depends on the integration approach:

• Bottom-up integration: lower level components first. Low level of

stubs needed.

• Top-down integration: Highest level component first, all lower

level components replaced by stubs until real component is

created. High stub usage.

• Sandwich integration: components are built simultaneously high

and low, medium amount of stubs.

• Big bang testing: All components are put together and their

integration is tested all in one go. Big bang test doesn’t utilize

stubs, but is not possible to do before the project is already in an

advanced stage and all components ready. The most likely use

case for this kind of testing is when only small changes are

made to the software.

Unit and integration testing are the two most common test types, and are

actually considered as a pair under the term construction testing in SWEBOK

(IEEE 2014, 71).

88

9.2.3 Regression testing and retesting

Testing that is performed after corrections based on a previous test is called

regression testing (Kasurinen 2017, 43). However, this statement can

confuse regression testing with retesting unless their end goals are clarified

(IEEE. 2022, 87). The end goal of regression testing is to check for possible

unintended side effects of the fixes for the system or it's parts, whereas

retesting is only concerned with validating that a previously found defect has

been fixed.

9.2.4 Exploratory testing

Exploratory testing is the least structured of all the types of testing presented. It

is based on the tester's expert ability to search and find defects based on

experience. Testing is spontaneous and heuristic, which is why it is also called

experience-based testing (IEEE. 2022, 28). The work is in a way free of

documentation, which means that it doesn't have to follow a created plan

(Kasurinen 2017, 47-48). However, exploratory testing should take into account

the major risks associated with the product and focus testing based on

probability and impact. SWEBOK (IEEE 2014, 89) defines exploratory testing as

"simultaneous learning, test design and test execution".

89

9.2.5 User acceptance testing

User Acceptance Testing (UAT) focuses on the end user's point of view and the

main objective of this testing is to obtain acceptance of the software.

Acceptance is obtained when the users’ requirements are met. (Homès 2012,

64). Since most users do not have technical knowledge, they evaluate the user

experience (UX) instead. This means the usability, intuitiveness, logic and

aesthetics of the software's user interface (UI), as well as non-functional

characteristics such as speed and performance. Users can make comments

and compile a report. In addition, usage situations can be recorded to obtain

more specific data, such as buttons pressed, search paths, etc. Importantly,

UAT can begin at a relatively early stage of the project, using prototypes such

as the UI demo created by the UX designer.

Very common terms in the field of software testing are alpha and beta testing.

These terms refer to testing with a focus group. Often the group in alpha

consists of participants from the customer's staff and possibly independent

testers from the software development team. It is defined as internal approval

testing (Kasurinen 2017, 47). When Alpha testing is completed, the software is

introduced to a larger group of potential users, and the test becomes Beta

testing. The common denominators for alpha and beta testing are that although

the testing usually takes place on the actual platform of the software, the

software has not yet been released, and that alpha and beta testing are usually

uncontrolled due to their unpredictability (IEEE 2014, 87). Beta testing among

potential customers can also be seen as a sales activity, since at this stage

there should not be many bugs and the goal is more to generate interest in the

product.

90

9.2.6 Cyber Security testing

A crucial non-functional requirement for software is that it provides security

against cyber-attacks. This is an aspect that can't be considered as a separate

element, but the whole system must be built according to selected security

standards. Testing for preparedness against malicious cyber-attacks is usually

carried out by an external party in the form of “friendly” penetration testing,

which means that the external expert will attempt to access the system in

various ways, but will not cause any damage if successful. After the attempts,

the expert prepares a report on the level of security of the software, together

with possible recommendations for further improvement. (Det Norske Veritas

2023.) There are also many types of cybersecurity certifications. According to

the case-project documentation, the appropriate time to consider performing a

penetration test is when the software is about 80% complete. If some high-risk

features are added afterwards (e.g. document upload), it is possible to repeat

the test. External cyber security services in addition to penetration testing are

design and code reviews, in which the software’s structure is assessed.

9.2.7 Testing automation

Deciding where and when to use automation, and the ability to script it, requires

extensive technical knowledge. The basic rule of thumb is that if a particular test

is likely to be run multiple times during the project, automation should be

considered. Multiple in this case means 4-20 iterations. This is because manual

testing always takes about the same amount of time, whereas test automation

initially requires more resources, but is much easier to repeat as many times as

required (visualised in Figure 34). The most favourable target for test

automation is regression testing at unit and integration level. (Kasurinen 2017,

49-50).

91

9.3 Case-project insights for testing process

Testing activities (excluding developer-led unit testing) in the Case project were

carried out by a dedicated QA engineer. For the first half of the project, the

workload was such that only one person was required, but as the development

team has grown and the system has become more complex, additional staff will

be required. According to the Scrum Master, the recommended ratio of test

engineers to developers on a software project is 1:2,5. The QA engineer was

mostly involved with the partner's team, but in addition, a bi-weekly testing

meeting was organised to summarise the testing activities of each sprint to the

project management. During the Case project, unit testing was entirely the

responsibility of the developers, while QA took the lead on other types of

testing. This is because unit testing in the project consisted only of validating

any changes made to a unit. Testing the unit's functionality was separated

under the term functional testing. At the time of writing, the UAT environment is

up and running and the user acceptance process is underway, both by the

company and by representatives of a potential customer.

Figure 34. Costs over time between manual and

automated testing (Jose 2021, 6).

92

The testing documentation is extensive. The main database for the

documentation is the partner's instance of Confluence. The documentation

includes, for example, the test strategy, including planning for the types of tests,

the test process, the automation plan, the environments in which the tests will

be performed, and the test management workflow. The information is not in the

form of UML diagrams, but rather text and diagrams, an example of which is

shown in Figure 35.

Figure 35. Example of the contents from the Case-project's test strategy -

documentation, the environment possibilities for different kinds of testing.

93

Documentation for test monitoring, control and completion was created and

stored in Jira. It took the form of sprint-specific test plans, bug lists with bug

statuses, and sprint test reports. Test plans and test reports had their own item

types, and items were filled as tasks and their subtasks, as with user stories, for

example. As tests are executed, they are logged in the system and it is possible

to create a test report from the activities during the sprint. An example of this is

shown in Figure 36.

Figure 36. Example of a sprint's test plan, which can be viewed as a test report

after the sprint.

94

Tips

• User acceptance testing is an activity which requires resources,

and it is advisable to have a dedicated person doing it. Often

the effort is shared with multiple persons.

• The switching of system requirements into UAT acceptance

criteria is rather straightforward, so well-defined requirements

for both functional and non-functional aspects reduce the

workload in the testing.

• When considering the external party for e.g. penetration testing,

the selection should take into consideration which candidate

gives the maximum benefit for the product and is most relatable

to the product’s business field. In the case-project, the best

selection would be a Classification Society, because they are

well-known and closely related to the field.

95

10 Concluding assesment

The biggest challenge in writing this thesis was the breadth of the chosen topic.

Attempting to narrow down the subject matter and summarise the essence of

each topic in a small chapter proved difficult and carried the risk of being

superficial. It might have been more fruitful to concentrate on the topic of one

main chapter for the whole thesis. On the other hand, the aim of the thesis was

to provide an overview from which to build. The benefit of this approach to the

author's employer is arguably greater than a deep understanding of only one

part of the process.

The selection of the main themes based on the content of a well-established

publication proved to be a logical solution to build the framework of the thesis,

but on the other hand it led to possibly too much reference to a single (albeit

extensive) source. As a result, this thesis falls short if it is considered purely as

a literary review. The selection of supplementary sources proved to lack a

systematic approach. Many books that could be considered key literature in the

field were not available without purchase, which added to the challenge of

selection.

The risk of superficiality was countered by adding practical depth in the form of

the case-project. The experience of an actual software development project,

and access to its documentation, added a layer of pragmatism to the content

that would have been lost if the thesis had been based purely on literature.

Delaying the completion of the dissertation until after the case project had been

completed would arguably have produced more material, particularly in relation

to the construction and testing processes.

96

The questions raised at the beginning of this thesis have been answered, but

perhaps an additional question "What are the biggest differences between

theoretical knowledge and the implementation of the case project?" could have

been asked and answered by highlighting the points where theory differed from

practice and explaining possible reasons for the deviations.

The tips at the end of each chapter are undoubtedly useful, but are almost

entirely unreferenced. Some of the tips are also conclusions that could not

necessarily be drawn from the text, but rather from experience. However, they

offer insights and have been included at the risk of partly decreasing the

coherence of the thesis.

97

List of references

Aleryani, A. 2016. Comparative Study between Data Flow Diagram and Use

Case Diagram. International Journal of Scientific and Research Publications,

Vol. 6 Issue 3.

Alt-Simmons, R. 2016. Agile by design: an implementation guide to analytic

lifecycle management. 1st Edition. Wiley.

Atlassian 2023. About Confluence. Referred 23.4.2023.

https://www.atlassian.com/software/confluence/guides/get-started/confluence-

overview#about-confluence.

Atlassian 2023. Welcome to Jira Software. Referred 21.4.2023.

https://www.atlassian.com/software/jira/guides/getting-

started/introduction#what-is-jira-software.

Cobb, C. 2015. The Project Manager's Guide to Mastering Agile : Principles

and Practices for an Adaptive Approach. John Wiley & Sons.

Dennehy, S. 2009. Agile Requirements – irritation or Opportunity? Conference

paper. Researchgate.

Det Norske Veritas 2023. Testing and verification. Referenced 19.05.2023.

https://www.dnv.com/cybersecurity/services/cyber-security-testing-and-

verification.html?utm_source=DNV-services&utm_medium=weblinkredirect

Evans, I. 2004. Achieving Software Quality Through Teamwork. Artech House.

Extremeprogramming.org n.d. The customer is always available. Referenced

21.05.2023. http://www.extremeprogramming.org/rules/customer.html

Gonzalez, N. 2022. Drive-Thru Use Case Diagram. Technical report.

Researchgate.

Gross, J., McInnis, K. 2003. Kanban Made Simple: Demystifying and Applying

Toyota’s Legendary Manufacturing Process. AMACOM.

https://www.atlassian.com/software/confluence/guides/get-started/confluence-overview#about-confluence
https://www.atlassian.com/software/confluence/guides/get-started/confluence-overview#about-confluence
https://www.atlassian.com/software/jira/guides/getting-started/introduction#what-is-jira-software
https://www.atlassian.com/software/jira/guides/getting-started/introduction#what-is-jira-software
https://www.dnv.com/cybersecurity/services/cyber-security-testing-and-verification.html?utm_source=DNV-services&utm_medium=weblinkredirect
https://www.dnv.com/cybersecurity/services/cyber-security-testing-and-verification.html?utm_source=DNV-services&utm_medium=weblinkredirect
http://www.extremeprogramming.org/rules/customer.html

98

Holcombe, M. 2008. Running an Agile Software Development Project. John

Wiley & Sons, Inc.

Homès, B. 2012. Fundamentals of Software Testing. John Wiley & Sons Inc.

IEEE 2014. Guide to the Software Engineering Body Of Knowledge. Version

3.0. IEEE Computer Society.

IEEE 2020. SFS-ISO/IEC/IEEE 12207:2020:en: Systems and software

engineering – Software life cycle processes. Requires purchase. IEEE

Computer Society.

IEEE 2022. IEEE at a Glance. ieee.org. Referenced 29.04.2023.

https://www.ieee.org/about/at-a-glance.html.

IEEE 2022. International Standard for Software and systems engineering, Parts

1 & 3. Requires purchase. Institute of Electrical and Electronic Engineers Inc.

Infinity Business Insights 2023. Global Marine Maintenance Software Market

Research Report, 2019-2030. Requires purchase.

Jose, B. 2021. Test Automation: A manager’s guide. BCS Learning &

Development Ltd.

Kasurinen, J. 2017. Ohjelmistotestauksen käsikirja. e-book.

Beck, K., Beedle, M., van Bennekum, A., Cockburn, A., Cunningham, W.,

Fowler, M., Grenning, J., Highsmith, J., Hunt, A., Jeffries, R., Kern, J., Marick,

B., Martin, R., Mellor, S., Schwaber, K., Sutherland, J., Thomas, D. 2001.

Manifesto for Agile Software Development. Referenced 01.02.2023.

https://agilemanifesto.org/

Loyola Marymount University 2023. An overview of UML. Referenced

01.05.2023. https://cs.lmu.edu/~ray/notes/umloverview/

M-Files 2023. Overview. Referenced 24.4.2023. https://userguide.m-

files.com/user-guide/web/latest/eng/web_overview.html.

https://www.ieee.org/about/at-a-glance.html
https://agilemanifesto.org/
https://cs.lmu.edu/~ray/notes/umloverview/
https://userguide.m-files.com/user-guide/web/latest/eng/web_overview.html
https://userguide.m-files.com/user-guide/web/latest/eng/web_overview.html

99

Measey, P., Berridge, C., Gray, A., Wolf, L., Oliver, L., Roberts, B., Short, M.,

Wilshurst, D. 2015. Agile Foundations Principles, practices and frameworks. 1st

Edition. BSC Learning Ltd.

Mobley, K. 2004. Maintenance Fundamentals. 2nd edition. Elsevier Science &

Technology.

Nath, S., Stackowiak, R., Romano, C. 2017. Architecting the Industrial Internet:

the achitect’s guide to designing industrial internet solutions. Packt Publishing.

neurospace 2019. Condition-based Maintenance vs Predictive Maintenance.

Neurospace.io blog. Referenced 28.01.2023.

https://neurospace.io/blog/2019/08/condition-based-maintenance-vs-predictive-

mainte-

nance/#:~:text=Condition%2Dbased%20maintenance%20uses%20conditions,n

eed%20to%20service%20your%20equipment.

Otero, Carlos. 2012. Software Engineering design: Theory and Practice. CRC

Press.

Outsystems low code platform 2023. What is Rapid Application Development?

Referenced 14.4.2023. https://www.outsystems.com/glossary/what-is-rapid-

application-development/.

Resnick, S.; Bjork, A.; De la Maza, M. 2010. Professional Scrum with Team

Foundation. Wiley Publishing.

Rosenzweig, E. 2015. Successful User Experience: Strategies and Roadmaps.

Elsevier Science and Technology.

Ross, Sean. 2022. CapEx vs. OpEx: What’s the Difference? Investopedia.com.

referred 28.01.2023. https://www.investopedia.com/ask/answers/112814/whats-

difference-between-capital-expenditures-capex-and-operational-expenditures-

opex.asp.

Schwaber, K.; Sutherland, J. 2020. The Scrum Guide: The Definitive Guide to

Scrum: The Rules of the Game. scrumguide.org. Referenced 07.05.2023.

https://scrumguides.org/docs/scrumguide/v2020/2020-Scrum-Guide-

US.pdf#zoom=100.

https://neurospace.io/blog/2019/08/condition-based-maintenance-vs-predictive-mainte-nance/#:~:text=Condition%2Dbased%20maintenance%20uses%20conditions,need%20to%20service%20your%20equipment
https://neurospace.io/blog/2019/08/condition-based-maintenance-vs-predictive-mainte-nance/#:~:text=Condition%2Dbased%20maintenance%20uses%20conditions,need%20to%20service%20your%20equipment
https://neurospace.io/blog/2019/08/condition-based-maintenance-vs-predictive-mainte-nance/#:~:text=Condition%2Dbased%20maintenance%20uses%20conditions,need%20to%20service%20your%20equipment
https://neurospace.io/blog/2019/08/condition-based-maintenance-vs-predictive-mainte-nance/#:~:text=Condition%2Dbased%20maintenance%20uses%20conditions,need%20to%20service%20your%20equipment
https://www.outsystems.com/glossary/what-is-rapid-application-development/
https://www.outsystems.com/glossary/what-is-rapid-application-development/
https://www.investopedia.com/ask/answers/112814/whats-difference-between-capital-expenditures-capex-and-operational-expenditures-opex.asp
https://www.investopedia.com/ask/answers/112814/whats-difference-between-capital-expenditures-capex-and-operational-expenditures-opex.asp
https://www.investopedia.com/ask/answers/112814/whats-difference-between-capital-expenditures-capex-and-operational-expenditures-opex.asp
https://scrumguides.org/docs/scrumguide/v2020/2020-Scrum-Guide-US.pdf#zoom=100
https://scrumguides.org/docs/scrumguide/v2020/2020-Scrum-Guide-US.pdf#zoom=100

100

Swain, S.; Mohapatra, D.; Mall, R. 2010. Test Case Generation Based on State

Activity Models. Journal of Object Technology 9(5):1-27.

Uppuluri, K. 2018. Enterprise Asset Management (EAM) vs. Asset Performance

Management (APM). Article. LinkedIn.com. Referenced 29.01.2023.

https://www.linkedin.com/pulse/enterprise-asset-management-eam-vs-

performance-apm-krishna-uppuluri.

Westfall, L. 2016. The certified software quality engineer handbook. ASQ

Quality Press.

https://www.linkedin.com/pulse/enterprise-asset-management-eam-vs-performance-apm-krishna-uppuluri
https://www.linkedin.com/pulse/enterprise-asset-management-eam-vs-performance-apm-krishna-uppuluri

	1 Introduction
	1.1 Case-example’s company
	1.2 Case-project background
	1.3 Assumptions and limitations

	2 Maintenance management software overview
	2.1 Marine sector additions
	2.2 Other philosophies and types of maintenance management

	3 General aspects of a software development project
	3.1 Agile methods
	3.2 Scrum
	3.3 Other methodologies in SWEBOK
	3.3.1 Rapid application development (RAD)
	3.3.2 Extreme programming (XP)
	3.3.3 Feature-driven development (FDD)

	3.4 Social aspects of agile
	3.5 Agile methods challenges
	3.6 Work breakdown
	3.7 Unified modelling language
	3.8 Case-project’s insights for common practices
	3.9 Case-project tools

	4 Development team
	4.1 Scrum roles
	4.2 Development team stakeholders
	4.3 Team scaling
	4.4 Case-project’s insights for development team

	5 Software development process division
	6 Requirements process
	6.1 Activities during the requirements process
	6.2 Case-project insights for requirements process

	7 Design process
	7.1 Architecture definition
	7.2 Design definition
	7.3 Case-project insights for design process

	8 Construction process
	8.1 Construction process metrics
	8.1.1 Velocity chart
	8.1.2 Cumulative flow diagram
	8.1.3 Burndown and epic burndown charts

	8.2 Environments
	8.3 Meetings
	8.3.1 Daily stand ups
	8.3.2 Sprint planning
	8.3.3 Sprint review / demo
	8.3.4 Sprint retrospective
	8.3.5 Backlog grooming

	8.4 Other meetings
	8.5 Spikes
	8.5.1 Item status workflow
	8.5.2 Case-project insights for construction process

	9 Testing process
	9.1 Functional and non-functional testing
	9.2 Common testing types
	9.2.1 Unit testing
	9.2.2 Integration testing
	9.2.3 Regression testing and retesting
	9.2.4 Exploratory testing
	9.2.5 User acceptance testing
	9.2.6 Cyber Security testing
	9.2.7 Testing automation

	9.3 Case-project insights for testing process

	10 Concluding assesment
	List of references

