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The emergence of quantum computers has presented a significant challenge to 
the traditional encryption algorithms that are commonly employed in public key 
infrastructure. As a result, many applications such as email, messaging, e-
commerce, and banking authentication, which rely on these encryption 
algorithms, are at risk of being compromised. This thesis aims to analyze and 
research potential post-quantum encryption algorithms that could potentially 
replace the traditional algorithms in the existing public key infrastructure. The 
thesis utilizes observation and applied methods in the field of cyber security to 
evaluate the effectiveness of various post-quantum encryption algorithms and 
identify implementations of the selected algorithms from reputable post-quantum 
competitions. This provides valuable insight into the efficacy of post-quantum 
encryption and its ability to be integrated with existing or simplified versions of 
public key infrastructure. To support this research, a range of implementations of 
each post-quantum encryption algorithm were identified in various languages and 
can be utilized by organizations for upcoming projects or further research if 
necessary. 

The thesis highlights the potential danger posed by quantum computing to 
traditional encryption algorithms, with the possibility that existing algorithms may 
be rendered obsolete soon. To prepare for this eventuality, companies should 
source information and build a post-quantum public key infrastructure, or 
consider replacing existing algorithms with post-quantum algorithms as soon as 
practicable. This will ensure that their systems remain secure against quantum 
computing threats. Through providing comprehensive analysis and 
implementation suggestions, this thesis provides a valuable resource to the 
cybersecurity field and could have far-reaching implications for the future of public 
key infrastructure. 
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1 INTRODUCTION 

Within the realm of information security, cryptography plays an essential role in 

protecting the integrity, confidentiality, and authenticity of digital 

communications and transactions. Over the years, a variety of encryption 

algorithms have been developed, forming the basis of modern public key 

infrastructure (PKI). However, with the rapid advancement of quantum 

computing, the traditional cryptographic algorithms that have been relied upon 

are facing an imminent threat. 

Quantum computers possess the potential to revolutionize computing power by 

utilizing the principles of quantum mechanics to perform computations 

exponentially faster than classical computers. While this technological 

breakthrough holds immense promise for many fields, it also presents a significant 

challenge to the security landscape. The inherent computational power of 

quantum computers has the potential to render the currently employed 

cryptographic algorithms vulnerable to attacks, thus compromising the 

confidentiality and privacy of sensitive data. 

To address this emerging threat, a new field of study known as post-quantum 

cryptography has gained prominence. Post-quantum cryptography focuses on 

developing encryption algorithms that are resistant to attacks from quantum 

computers, thus ensuring the continued security of digital communications and 

transactions even in the face of this unprecedented computing power. 

This thesis aims to investigate the implementation and integration of post-

quantum encryption algorithms into the existing public key infrastructure. The 

goal is to assess the feasibility and efficacy of these quantum-resistant algorithms 

as potential replacements for the traditional cryptographic algorithms currently 

employed. By anticipating the future need for secure encryption mechanisms, this 

research aims to bridge the gap between the current cryptographic landscape and 

the looming threat of quantum computers. 
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In this study, we will explore the fundamental concepts and principles of post-

quantum cryptography, examining various encryption schemes, signature 

algorithms, and key exchange protocols that offer resistance against quantum 

attacks. We will analyze their strengths, weaknesses, and performance 

characteristics in the context of public key infrastructure. Additionally, we will 

investigate the challenges associated with implementing these new algorithms, 

such as computational complexity, key size, and compatibility with existing 

systems. 

The research will involve a comprehensive review of the current state of post-

quantum cryptographic algorithms, including lattice-based, code-based, multi-

variate, and hash-based, among others. By examining their mathematical 

foundations, security assumptions, and practical implementations, we aim to 

provide a comprehensive understanding of the strengths and limitations of these 

algorithms. 

Furthermore, the thesis will investigate the challenges associated with the 

transition from traditional cryptographic algorithms to post-quantum 

cryptography in PKI. We will explore the strategies and best practices for migrating 

existing systems to quantum-resistant algorithms, ensuring a smooth transition 

without compromising security or disrupting critical operations.  

By conducting this research, we hope to contribute to the ongoing efforts of the 

information security community in ensuring the long-term security of digital 

communications and transactions. The findings and recommendations derived 

from this study will aid in forming a robust and quantum-resistant public key 

infrastructure, providing organizations and individuals with the necessary tools to 

protect their sensitive information against the growing threat of quantum 

computing. 
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2 PURPOSE OF THE RESEARCH 

2.1 Problem and Questions 

With the rapid advancements in quantum computing, it is anticipated that current 

state-of-the-art cryptographic algorithms will offer only short-term data security. 

To address this challenge, various mathematical approaches have been proposed 

to enhance the resilience of algorithms against both traditional and quantum 

computer attacks. However, the existing implementations of PKI lack support for 

this new generation of algorithms. As VisionSpace Technologies, a company 

operating in the space industry, explores the development of next-generation 

spacecraft and the satellite ground segment, there is a pressing need to gain a 

comprehensive understanding of how these technologies can be effectively 

combined. Furthermore, it is crucial to analyze and document the tradeoffs and 

limitations associated with integrating post-quantum cryptography algorithms 

within the context of the space sector. 

Therefore, the primary objective of this research is to conduct a state-of-the-art 

analysis of post-quantum cryptography algorithms and explore their integration 

with public key infrastructure for application in next-generation spacecraft and the 

satellite ground segment. This investigation seeks to explore several key questions 

surrounding the integration of post-quantum cryptography in various sectors, with 

a specific focus on the space industry. Firstly, it aims to examine the current 

limitations of traditional cryptographic algorithms when faced with the emerging 

capabilities of quantum computing. Secondly, the investigation will explore how 

post-quantum cryptography algorithms can be effectively integrated with existing 

public key infrastructure implementations. Next, the investigation will consider 

the potential tradeoffs and considerations associated with implementing post-

quantum cryptography in the space sector. Finally, the investigation will assess the 

implications and advantages of integrating post-quantum cryptography 
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algorithms with public key infrastructure for next-generation spacecraft and the 

satellite ground segment. 

By addressing these questions, this research endeavors to provide valuable 

insights into the state-of-the-art in post-quantum cryptography, facilitate the 

development of a proof-of-concept integration with public key infrastructure, and 

offer comprehensive documentation and analysis of the tradeoffs and limitations 

associated with utilizing these technologies within the space industry. 

2.2 Method 

In this thesis, the observation method and applied observational method will be 

used. Observational research, which includes exploratory studies, is highly 

valuable for comprehending the behavior of real-world cyber systems and their 

techno-social aspects. This research approach is particularly effective in 

addressing broad and open-ended research questions. Observational research 

methods involve carefully observing real-world environments and analyzing 

collected data to reveal interesting patterns and phenomena. Exploratory studies 

involve the collection, analysis, and interpretation of observations related to 

known designs, systems, models, abstract theories, or subjects. These studies 

primarily use an inductive process to gain understanding, as opposed to 

experimental research which progresses from a general theory to a specific 

understanding. Exploratory studies focus on specific phenomena to identify 

patterns and develop general theories of behavior, with the primary emphasis 

lying on evaluating and analyzing data rather than creating new designs or models. 

In the social and health sciences, this type of research is often referred to as 

qualitative studies, which prioritize gaining perspective and determining relative 

importance /1/. 

Applied observational research is commonly conducted in the field of 

cybersecurity. The main distinction between applied studies and observational 

studies lies in their scope. Applied studies focus on observing specific subjects, 
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such as their performance, function, or security, while fundamental observational 

studies observe the entire system without any presumptions about its behavior. 

The focus of this research is to explore how to adapt scientific techniques and 

approaches for studying real-world applications, with an emphasis on applied 

observational studies. Although various types of studies can be employed in an 

applied context, case-control studies, case studies, and case reports are frequently 

used. Applied studies aim to gain an understanding of performance or function by 

introducing specific changes or systems that can be measured. 

In an applied study, researchers observe a new solution to assess its performance 

under different conditions, often involving the introduction of a new defensive 

feature or system change. This is accompanied by an expectation or prediction. 

The researcher anticipates or assumes how the subject should behave. The goal of 

an applied study is to understand the impact of a change or effect under 

observation while assuming a particular performance or behavior. For instance, 

studying the performance cost implications of adding a firewall to a network 

would be considered an applied study /1/. 

2.3 Assurance and Ethics 

The assurance and ethics of research are guided by three fundamental principles 

from the Belmont Report. Firstly, respect for persons emphasizes individual 

autonomy and informed consent, including privacy and confidentiality 

considerations. Secondly, beneficence involves minimizing harm and maximizing 

potential benefits, with clear communication of risks and benefits to participants. 

Finally, justice focuses on fairness and equal treatment, ensuring unbiased 

participant selection and providing access to information. These principles ensure 

the protection of participants' rights and well-being. In this thesis, adherence to 

these ethical principles will uphold integrity, safeguard autonomy, minimize harm, 

and promote fairness throughout the research process /2/.  
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For research to be considered ethical, reliable, and credible, it must adhere to the 

principles of responsible conduct of research. The responsible conduct of research 

is an essential aspect of ensuring the quality and integrity of research 

organizations. From the perspective of research integrity, the following premises 

underlie the responsible conduct of research: Research should uphold the 

principles of integrity, thoroughness, and accuracy throughout the entire research 

process, including data collection, recording, presentation, and evaluation of 

results. The methods employed for data acquisition, research, and evaluation 

should align with scientific criteria and uphold ethical standards. When 

disseminating research findings, they should be communicated openly and 

responsibly to contribute to the advancement of scientific knowledge. 

Researchers should demonstrate respect for the work and accomplishments of 

other researchers by appropriately acknowledging and citing their publications. 

They should acknowledge and give due credit to the contributions and significance 

of others' work when conducting their research and publishing its outcomes. 

Researchers should comply with the established standards of scientific knowledge 

when planning, conducting, and reporting their research. This includes accurately 

recording and reporting the data obtained during the research process. Research 

projects should obtain the necessary research permits and undergo ethical review, 

particularly in fields that require such scrutiny. Before commencing the research 

or involving researchers, all parties involved in the research project or team should 

reach an agreement on the researchers' rights, responsibilities, and obligations. 

This agreement should also address authorship principles, data archiving, and data 

access. Further specifications may be made as the research progresses. Any 

sources of funding, conflicts of interest, or relevant commitments that may 

influence the conduct of the research should be disclosed to all members of the 

research project. These should also be reported when publishing the research 

results. By upholding these premises, researchers can ensure ethical and 

responsible conduct in research, contributing to the credibility, reliability, and 

integrity of the scientific community /3/. 
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3 THEORETICAL BACKGROUND 

3.1 Public Key Infrastructure 

PKI is a highly secure and sophisticated system that facilitates secure 

communication by increasing the security of a network and providing the 

foundation for securing all internet-connected things, including e-mail, messaging, 

and e-commerce. It employs advanced encryption algorithms such as Rivest 

Shamir Adleman (RSA) and Elliptic Curve Cryptography (ECC), digital certificates, 

and certificate authorities (CA) to guarantee the integrity of data and verify the 

identities of both the senders and receivers of digital transactions. With the help 

of PKI, organizations can ensure the confidentiality, authenticity, and integrity of 

their digital communication and transactions /4/. 

PKI is a widely used security infrastructure that employs public key cryptography 

to ensure secure digital communication services are delivered using public-key 

concepts and techniques /5/. 

One of the significant advantages of public key cryptography is that it eliminates 

the need for exchanging secret keys. However, in public key cryptography, 

effective management of keys is essential. This is where public key infrastructures 

come into play, providing secure management of key pairs throughout their 

lifecycle to ensure the confidentiality and authenticity of digital transactions /6/. 

PKI is a pivotal technology that plays a significant role in ensuring the necessary 

level of security and scalability for digital transactions. While other security 

approaches such as Identity-based Cryptography, Certificateless Cryptography 

have been either scalable but not secure, or secure but not scalable, PKI provides 

a comprehensive framework that offers both security and scalability for online 

communication. In addition, PKI is adaptable and flexible, making it a standard that 

can be used across different industries and applications in the coming years /7/. 
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PKI ensures confidentiality through encryption, authenticity via digital signatures, 

and integrity using hash functions. It uses both asymmetric and symmetric keys, 

certificates, and trust models to secure communications and verify the identity of 

the parties involved. Data privacy and secrecy must be protected by cryptographic 

encryption mechanisms to be considered confidential. Integrity refers to the 

assurance that data cannot be altered or corrupted and that transactions cannot 

be changed. By using public key certificates and digital signature envelopes, 

authentication means confirming that the identity of entities is provided /8/. 

3.1.1 Public Key Cryptography 

Public Key Cryptography (PKC), also known as public-key encryption and 

asymmetric encryption, is an advanced encryption technology that employs a key 

pair consisting of a public key and a private key. The public key is made available 

to anyone who needs to use it, while the private key must be kept confidential to 

maintain its integrity. PKC enables secure communication between two parties 

without prior knowledge of each other and eliminates the need for sharing a 

secret key. It accomplishes this by utilizing the public key cryptography process, 

which involves mathematical algorithms that enable secure encryption and 

decryption of digital data. PKC's flexibility and robustness make it a popular choice 

for securing digital communication channels and ensuring the confidentiality, 

integrity, and authenticity of digital transactions /9/. 

Using public-key encryption (PKE), a sender can encrypt a message and send it to 

a recipient who has the corresponding secret key by using the recipient's public 

key. One of the main objectives would be to design effective PKE schemes with 

weak and reasonable computational assumptions that are provably secure in 

strong security notions /10/. 

The main principle of a public key cryptosystem is the use of two different but 

related keys: one for encryption and one for decryption. Only the decryption key 

can be used for encryption, and vice versa, for decryption. The encryption key can 
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be made public because the decryption key cannot be determined from the 

encryption key /6/. 

One of the significant advantages of public key encryption is that it simplifies the 

distribution of keys by making public keys accessible to all parties. This feature not 

only ensures confidentiality but can also be used to establish secure identification 

protocols /6/. 

 

Figure 1. Public Key Cryptography Process 

3.1.2 Digital Certificates 

A digital certificate is a fundamental mechanism used in modern cryptography to 

establish the identity of users, devices, applications, and services. It involves the 

generation of a private key and the binding of a corresponding public key to its 

owner, which creates a unique identifier known as the certificate. This certificate 

serves as a trusted third-party verification of identity, which helps to establish 

secure communication channels between different parties. Digital certificates are 

widely used in various applications, including secure web browsing, email 
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encryption as S/MIME (Secure/Multipurpose Internet Mail Extensions), and digital 

signatures /11/. 

A data structure known as a digital certificate links personal data to a public key. 

A private key is the source of the public key. There is no way to identify the owner 

of a public key by looking at it. A public key can be used to identify the owner of 

the key and confirm that it is the correct key by being combined with other 

identifying information, such as a name, address, and other details. Of course, we 

want to make sure the digital certificate is authentic by having a reliable third-

party digitally certify it to make sure no one tampers with it and inserts a different 

key. The issuer of the digital certificate is this dependable third party. 

It is not required to issue a digital certificate to an individual. In actuality, most 

aren't. A wide range of entities, including people, businesses, groups, 

organizations, governments, and things, maybe granted digital certificates. The 

certificate subject is the organization whose identity is linked to the public key in 

the certificate /12/. 

A digital certificate is a method of establishing electronic identities. These 

certificates are pieces of digital information that allow each entity to be verified. 

To make this possible, an authority must control, distribute, and verify the 

identities. A certificate authority is one of the most commonly used authorities to 

accomplish this. There are numerous CA providers. During a typical Internet 

session, a dozen different CAs could be used without even realizing it /9/. 

3.1.3 Certificate Authorities 

A third party has signed or validated the data in the digital certificate of the 

authentication server (AS), which contains information in a standard format that 

identifies the owner. The AS and the supplicants both know and trust the third 

party, also known as a CA. To validate the certificate it receives from the AS, the 
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supplicant must also have the CA certificate. A public key that can be used to assist 

in decrypting messages from the AS /13/. 

A company or organization that issues certificates is called a CA. It is the CA's duty 

as a reputable entity to guarantee the validity and legitimacy of the certificates it 

issues. To comply with this requirement, the CA must prove beyond a reasonable 

doubt that each certificate's public key belonged to the organization claiming to 

have issued it. The CA must be able to demonstrate the legitimacy of any 

certificate it issues upon request to uphold this trust. The function of a CA is 

essential to the public key infrastructure (PKI) that supports secure internet 

communication /14/. 

The two most common types of CAs are. A private CA is only trusted by members 

of its organization and is responsible for only issuing certificates to members of 

that organization. To issue certificates to any member of the public, a public CA 

must enjoy public trust. Depending on the type of CA that issued the certificate 

and the type of certificate itself, different burdens of proof apply /14/. 

CA carries out the following duties in the server networks: establishes a certificate 

requestor's identity. To issue a certificate, the CA must first verify the identity of 

the requestor. The CA issues the requested type of certificate to the user, 

computer, network device, or service after verifying the requestor's identity. The 

content of the issued certificate depends on the type of certificate requested. 

Managing certificate revocation by publishing a certificate revocation list (CRL) at 

specified intervals. The CRL includes a record of certificate serial numbers that 

have been revoked, along with the corresponding reason codes for each 

revocation /15/. 

3.1.4 Certificate Revocation 

To ensure the security of digital communications, it is essential to maintain the 

integrity of certificates. To prevent compromised certificates from being used, a 



   

 

21 

list of revoked certificates, known as the CRL, must be maintained and regularly 

updated. This allows users to check the validity of certificates before accepting 

them /16/. 

The revocation of a certificate, as the name suggests, enables a CA to revoke a 

certificate and notify browsers of the change. However, the process of revocation 

has a complex history. CRLs were initially proposed to allow CAs to maintain a list 

of revoked certificates. However, the use of CRLs has been limited due to the 

potential for the lists to grow significantly, requiring frequent updates and 

increasing the burden on CAs and browsers alike. As such, other methods for 

revocation, such as Online Certificate Status Protocol (OCSP), have been 

developed to address these issues /17/. 

Devices can check CRL to see if a certificate has been revoked before it expires. 

The serial number of the certificate (issued by the granting authority) and the date 

of revocation make up a list of certificates that have been revoked. The CRL 

database may be found on the CA or an external server. The CRL will by default be 

kept locally by the CA. The cs-server subconfiguration mode is used to configure 

this /7/. 

 

Figure 2. Certificate revocation: CRLs, OCSP, and OCSP stapling /17/.   
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3.1.5 PKI Standards 

The standardization of PKIs has become increasingly important as these systems 

are adopted more widely. Standardization efforts have been devoted to all aspects 

of PKIs, including certificate formats, certificate profiling, and certificate and CRL 

repository issues. The potential benefits of standardization include the ability to 

enable large-scale interworking between PKIs, as well as lower costs through 

economies of scale and increased competition, ultimately contributing to a more 

secure and efficient digital ecosystem /18/. 

The groups listed here involved in standardizing PKIs are interrelated to different 

degrees. Efforts focused on defining certificate formats, such as X.509, Simple 

Public Key Infrastructure (SPKI), Open Specification for Pretty Good Privacy 

Working Group (OpenPGP), and Electronic Data Interchange Administration, 

Commerce, and Transport (EDIFACT), are largely independent of each other, but 

collectively aim to provide a common language for PKI systems to communicate. 

On the other hand, those focused on profiling certificates for specific 

environments and uses, including PKIX, TC68, S/MIME, IPsec, TLS, WAP, XMLdsig, 

XMLenc, and SOAP, overlap to a greater degree. Finally, certificate and CRL 

repository issues, primarily for X.509 formats, are the focus of efforts such as 

X.500, LDAP, and XKMS /19/. 

3.1.6 X.509 Formats 

The X.509 format is the most widely accepted format for certificates and has seen 

three versions since its introduction in 1988, namely X.509v1, X.509v2, and 

X.509v3. The latter version was released in 1996 and has been widely adopted due 

to its increased security and support for extensions. These extensions allow for 

additional information to be included in the certificate such as an issuer's identity, 

the purpose of the certificate, and so on. This provides a greater level of 

trustworthiness to the certificate and is one of the main reasons why X.509v3 has 

become so popular /14/.  
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An X.509 certificate is a data structure used to securely bind a public key to an 

identity. It is the most widely used digital certificate format and is frequently used 

in a variety of security protocols, such as TLS (Transport Layer Security). It contains 

information about the subject (the entity being identified), such as the name of 

the entity, its serial number, and the digital signature of the issuing authority. A 

certificate may be saved to a file or transmitted via a network, and also as a part 

of a secure network protocol, such as TLS. An X.509 certificate binds an identity to 

a public key using a digital signature /20/.  

 

Figure 3. An X.509 certificate /20/.  
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An X.509X certificate includes the following fields:  

• X.509 version: version 3.  

• Serial number: Unique number signed by the issuer.  

• Signature algorithm: Denotes hash function and the digital signature 

algorithm used.  

• Issuer: Entity that signed certificate in DN format.  

• Validity: Timestamp fields define the certificate's validity.  

• Subject: Entity certificate identifies in DN format.  

• The certificate’s public key: Important for identity verification, and 

supports RSA, DSA, ECDSA, and EdDSA. Note: X.509 certificate does not 

contain a private key, only a public key.  

• X509v3 extensions: Optional additional information.  

• Certificate signature: Produced by the issuer /20/. 

There are several steps in the X.509 certificate generation process: 

• The private and public keys for the certificate are generated by the 

applicant (future certificate owner).  

• Creating a Certificate Signing Request is done by the applicant (CSR). The 

CSR includes the subject, the upcoming certificate's public key, the 

applicant's requested X509v3 extensions, and the CSR signature. The 

private key for the certificate signs the CSR.  

• A CA receives the CSR from the applicant for signing.  

• The applicant's identity is verified by the CA.  

• Based on data from the CSR, the CA creates a certificate. The CA 

additionally includes the issuer, validity fields, and X509v3 extensions in 

the certificate.  

• Finally, the certificate is signed by the CA. The applicant receives the 

certificate back from the CA and is now the certificate's owner or holder. 
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3.2 Quantum Computing 

The current Information Age and all of its revolutionary digital advancements, 

including personal computing, Internet communication, smartphones, machine 

learning, and the knowledge economy in general, were ushered in by classical 

computers. Bits are the basic unit of data encoding and manipulation in traditional 

computers. To switch or amplify electrical signals, today's general-purpose 

machines employ billions of transistors and semiconductor components. A 

traditional bit, like the power button on a preferred electronic device, can only 

ever be in one of two states at once: 0 or 1. For this reason, traditional information 

processing is described as binary. 

Quantum computing is an emerging field of computing that offers a fundamentally 

unique and powerful approach to processing information and calculating solutions 

to problems. Quantum computers are capable of taking advantage of the 

principles of quantum mechanics to operate in a seemingly infinite number of 

states simultaneously, exponentially increasing their computational power 

compared to classical computers which can operate in only one state at any given 

moment. Therefore, scientists believe that these quantum computers can deliver 

exponential speedups and solve problems that are intractable for traditional 

computers. While the technology is still in its early stages, the potential uses for 

quantum computing are vast and hold promise for revolutionizing many areas of 

research, such as artificial intelligence, cryptography, materials science, and more 

/21/. 

3.2.1 Quantum Computers 

Early in the 1980s, scientists learned that quantum mechanics presents fresh 

possibilities for data processing. The creation of a proven secure encryption key is 

made possible by the non-classical aspects of quantum mechanics, as shown by 

Charles Bennett and Gilles Brassard. The entanglement property of particles is 

linked to a quantum phenomenon that Richard Feynman and Yuri Manin 
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discovered cannot be replicated by the so-called Touring's machine. This led to the 

question of whether the phenomenon could be applied to generally speed up 

calculations. The principles of quantum mechanics are the foundation of quantum 

computing. A quantum computer is a physical system that uses quantum 

computation /22/. 

A quantum computer is a device that receives data as input and performs 

operations on said data through a process that is only explicable through the 

principles of quantum physics /23/. 

There are currently two primary categories of quantum computers: Quantum 

Circuit Computers and Quantum Adiabatic Computers. Quantum Circuit 

Computers are made of a network of quantum gates that transform an initial guess 

of the solution to a computational task into one that solves the problem using 

quantum mechanics. In Quantum Adiabatic Computers, the energy of a particular 

configuration of subatomic particles is used in these computers to represent the 

computational task. The solution is then reached by annealing, or gradually 

lowering the energy. Both are computationally equal. Quantum algorithms 

designed for one type of hardware can be transformed to execute on the other in 

a comparable time /24/. 

Quantum computers use the properties of subatomic particles such as electrons, 

ions, or photons to process information. Information is stored in quantum 

registers, which consist of qubits, or quantum bits. Qubits are not limited to the 

binary states of 0 and 1 but can exist in a superposition of states until measured. 

This is similar to Schrödinger's cat, which can be both dead and alive until 

observed. When a qubit is measured, it collapses into a classical bit with a binary 

state. 

Entanglement is another property of quantum physics where particles become 

connected in such a way that they cannot be described independently, even over 

great distances. This is in contrast to classical bits, which are independent of each 
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other. In quantum computing, entangled qubits can fall into a shared quantum 

state, and manipulating one qubit can affect the whole system. 

Interference is a mathematical description of qubits in quantum mechanics, 

represented by the wave function. The wave functions of entangled qubits can 

interfere constructively or destructively, increasing or decreasing the probability 

of obtaining the correct solution when the quantum computer is measured. 

Quantum algorithms are designed to choreograph this interference to increase the 

probability of obtaining useful measurement states.  

One of the tricks used in quantum computing is called inversion about the mean, 

where finding the optimal number of iterations through the circuit can increase 

the probability of identifying the correct solution when the measurement is taken. 

Theoretically, a quantum computer with enough qubits and free from 

decoherence and noise could possess immense processing power, capable of 

examining more possibilities than the number of atoms in the observable universe 

/21/. 

3.2.2 Quantum Algorithms 

Algorithms are utilized in computation and data processing for modeling and 

solving real-life situations through the use of heuristics and methods. Generally, 

an algorithm is comprised of a set of instructions that, when executed, achieve a 

specific task. Quantum algorithms are particularly useful for providing solutions to 

complex problems that are unable to be solved by classical computers. 

To further facilitate the development of quantum software, quantum 

programming languages have been created to enable the implementation of 

quantum algorithms. Generally, these algorithms consist of steps such as encoding 

quantum data into quantum bits, the application of a unitary quantum gate chain 

operating on the quantum bits, and the termination of the algorithm following the 

measurement of the quantum bits. It is important to note that a unitary quantum 
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gate is analogous to a unitary matrix, which operates on the quantum bits, and 

that the inverse of a unitary matrix is equal to its conjugate transpose /25/. 

The utilization of quantum algorithms for obtaining speedups in solving problems 

that necessitate searching for inputs to a function is of great importance. These 

functions may be obfuscated, such as hash functions, or computationally difficult 

to evaluate, which is common in the study of mathematical problems. 

Consequently, the utilization of quantum computers for such problems 

necessitates an understanding of how to program and provide input to quantum 

algorithms. A quantum program is an implementation of a quantum algorithm, 

which consists of a classical program that sends instructions to a quantum device 

to prepare a particular state or measurement result /23/. 

Quantum algorithms are a series of mathematical steps that, when executed on a 

quantum device, will yield a specific result. With the advent of a functional 

quantum computer, researchers can take a problem that is addressed by a 

quantum algorithm, apply the algorithm, and observe the results. Most quantum 

algorithms are deemed revolutionary due to the substantial speed increases they 

provide when compared to traditional computers, as well as the types of complex 

problems they can solve. Ultimately, many modern cryptographic techniques can 

be broken by a combination of quantum properties, computers, and algorithms 

/26/. 

3.2.2.1 Shor's Algorithm 

Peter Shor is widely recognized as a figurehead of quantum computing and the 

breaking of traditional asymmetric cryptography in the modern era. Shor's 

algorithm is believed to have provided at least an exponential improvement, and 

potentially a polynomial time improvement, for the factorization of large primes. 

Utilizing quantum computers with a sufficient number of stable qubits, Shor's 

algorithm is capable of factoring prime number equations of considerable 

magnitude in a matter of seconds to minutes. Through the implementation of an 
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equation that takes a random guess at one of the prime numbers and 

subsequently turns it into a much more accurate guess, Shor's algorithm can 

significantly reduce the number of guesses needed, in comparison to a classical 

brute-force method, by exploiting the mathematical relationship between the two 

prime numbers involved /27/. 

Far from being merely a mathematical curiosity, the ability to quickly factorize 

large numbers is beneficial in cracking the RSA public-key cryptosystem /28/. 

The RSA Algorithm, which is employed to encrypt a large portion of today's data, 

is based on the factorization of prime numbers. Examples of information that use 

this algorithm as part of their security infrastructure include bank records, 

passwords, and health records. The popularity of this algorithm is that it would 

take a significant amount of time to determine the two factored prime numbers 

of a product, particularly when the product is of considerable size. Shor's 

Algorithm has gained recognition for its capability to quickly factor out integers, 

particularly its capacity to solve period-finding problems in polynomial time /29/. 

3.2.2.2 Grover’s Algorithm 

Search algorithms are distinguished by their ability to be employed by various 

algorithms to locate information, whether in a data repository or a list of values 

such as features in an image. The advantage of quantum computing lies in the 

potential to expedite the search process. Grover's algorithm utilizes a well-known 

technique that allows the use of interference to amplify certain states in our 

quantum circuit in a manner that will amplify the amplitude of the value being 

sought and diminish those that are not /29/.  

Grover's Search Algorithm is a quantum variant of the searching algorithm that is 

utilized to achieve an unordered search, which entails locating one or multiple 

elements in a database or array. This algorithm demonstrates the capabilities of 

quantum computing by minimizing the number of operations required to 

complete the search process, as compared to its classical search versions. Grover's 
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Algorithm provides a boost in the search process and employs the technique of 

amplitude amplification for the item that is being sought /30/. 

This is an unstructured quantum search algorithm developed by Lov Grover which 

is capable of finding an input with a high probability using a black box function. 

Grover can find an item in N to the power of 1/2 steps as opposed to a classical 

average of N/2 steps /31/. 

Grover's algorithm can solve a phone book search on the order of the square root 

of the number of phone book numbers. For example, if a phone book contains 100 

million phone numbers, Grover's algorithm can find a number with 10,000 steps. 

This quantum algorithm utilizes quantum mechanics-based methods to accelerate 

the search /25/. 

Grover's search algorithm can be divided into two main components: Grover's 

oracle and the Grover diffusion operator /29/. Grover's oracle can be 

conceptualized as a black box. The Grover diffusion operator is responsible for the 

process of amplitude amplification, wherein the amplitude of a designated item is 

augmented while the amplitude of other elements is reduced. The process of 

amplitude amplification can be interpreted as augmenting the amplitude of the 

marked element, thus making it more likely to be identified during measurement 

/30/. 

3.2.3 Algorithms Break 

It has been demonstrated that a quantum computer-based algorithm can break 

the symmetric key cryptographic algorithm by a factor of the square root of the 

size of the key. For instance, to find an image of a 256-bit hash function, a quantum 

algorithm will take only 2128 times. In addition, Shor's algorithm assists in the 

quantum factorization of large numbers, necessitating that security systems be 

quantum-resistant. Furthermore, Elliptic Curve Cryptography has been 
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demonstrated to augment the cracking process by 21 percent, as it is based on 

multiplying polynomials and adding random noise.  

Financial institutions must begin to invest in post-quantum cryptography to ensure 

the security of blockchain-based solutions. Examples of existing cryptographic 

systems that will be rendered ineffective by quantum algorithms and computing 

power include DES (Data Encryption Standard), Triple DES, AES (Advanced 

Encryption Standard), RSA, Merkle hash-tree signatures, Merkle–Hellman 

knapsack encryption, Buchmann–Williams class-group encryption, ECDSA, HFEv-, 

and others. In particular, Shor's algorithm is a quantum algorithm that poses a 

threat to RSA, DSA, and ECDSA cryptographic algorithms /25/. 

Shor's Algorithm has rendered RSA, ECC, and Diffie-Hellman vulnerable in the 

quantum computing world, as the attacker can use the algorithm to resolve a hard-

mathematical problem in polynomial time and reconstruct the private key with 

ease. Grover's Algorithm, which finds with high probability the unique input to a 

function that produces a particular output value, further aids the brute attack for 

key searching by reducing the effective key strength by half.  

Symmetric cryptography is not greatly impacted, as AES is presumed to be 

quantum-safe, with Grover's Algorithm only aiding the brute force search. To 

counter this, the key size must be doubled, from AES-128 to AES-256. Asymmetric 

cryptography, however, is heavily impacted, as RSA/ECC/DH and their derivatives 

are not quantum-safe due to Shor's Algorithm. Therefore, a replacement must be 

found, with potential options including hash-based digital signature, lattice-based 

cryptography, code-based cryptography, and Multivariate Public Key 

Cryptography /32/. 

The security of Diffie-Hellman is contingent upon the difficulty of resolving the 

discrete logarithm problem. Shor's algorithm can also be utilized to solve discrete 

logarithms. This implies that, with a quantum computer executing Shor's 

algorithm, Diffie-Hellman can be compromised in a reasonable timeframe /33/. 
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It has been determined that hashing algorithms, such as SHA-1 and MD5, are 

vulnerable to quantum attacks since the Grover Quantum Search Algorithm can 

be utilized to obtain hash collisions at a much faster rate. As a result, Grover's 

Quantum Algorithm has the potential to drastically reduce the security level of 

symmetric cryptographic systems /34/. 

Shor's solution for determining the order has been demonstrated to be far more 

efficient than the Grover algorithm in terms of breaking RSA. The most 

straightforward solution is to seek the prime factors of N through the utilization 

of combined classical-quantum algorithms. Furthermore, it is worth noting that 

public key cryptosystems based on discrete logarithms are also highly vulnerable 

as the discrete logarithm problem can be linked to period finding, which is a 

common practice in order finding through factorization /35/. 

3.3 Post Quantum Cryptography 

The utilization of immense computing power could be revolutionary in the field of 

cryptography. Generally, brute force attacks, which involve attempting all 

potential key values, are unfeasible. This was demonstrated in 1997 and 1998 

when the DES was broken due to its 56-bit key length, which was deemed 

satisfactory in 1977 but was surpassed by the continuous acceleration of 

computing technology. The success of the brute force attack was only made 

possible by the rapid development of hardware. In response to this breach, the 

AES was developed, featuring keys of 128 bits or more, thus rendering brute force 

attacks virtually impossible at that time /36/. 

The sufficiently large quantum computer implementing Shor’s algorithm would be 

capable of breaking the public key algorithms currently in use. As a result, the 

world must begin the process of transitioning to replacement algorithms based on 

mathematical problems that are not solvable by classical or quantum computers 

in a reasonable amount of time.  
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These algorithms are also referred to as quantum-resistant, quantum-safe, or 

post-quantum cryptography (PQC). It is therefore essential to begin the migration 

away from existing public key algorithms before the potential existence of a 

sufficiently large quantum computer /37/. 

Post-quantum cryptography is a field of study that focuses on the development of 

public-key algorithms that are resistant to being broken by quantum computers. 

These algorithms would be quantum-safe and could be used to replace RSA and 

elliptic curve-based algorithms in a future where quantum computers can easily 

break 4096-bit RSA moduli /38/. 

PQC is an area of research in which new quantum-resistant (primarily) public-key 

algorithms are developed for a wide range of devices and applications. Quantum 

Cryptography, on the other hand, typically refers to the utilization of Quantum Key 

Distribution (QKD) in combination with modern encryption techniques /39/. 

It is not advisable to design algorithms that are based on a hard problem that is 

known to be efficiently solvable by Shor's algorithm, as this would effectively 

nullify the hardness of factoring and discrete logarithm problems. Symmetric 

algorithms, such as block ciphers and hash functions, would only experience a 

reduction in their theoretical security by half in the event of a quantum computer, 

as opposed to RSA which would be severely compromised. As such, these 

algorithms could potentially form the foundation of a post-quantum scheme /38/. 

Classical cryptographic algorithms are based on either integer factorization (for 

example, RSA) or discrete logarithms (for instance, ElGamal). These approaches 

provide robust security within the current computing environment; however, their 

future may be uncertain due to the discovery of algorithms such as Shor's 

algorithm which could potentially be used to break contemporary encryption 

schemes. As powerful quantum computers become available, measures must be 

taken to protect against them. The first step is to increase the key sizes used in 

modern encryption algorithms from, for example, 128 to 256 bits (and beyond). 
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The next step is to transition to full-scale encryption which is intrinsically quantum-

resistant. Most proposed PQC protocols employ an asymmetric approach. There 

are several major implementations of PQC which are currently being researched 

/39/. 

In the following sections, we shall analyze four of the most renowned families of 

schemes: hash-based, lattice-based, code-based, and multivariate cryptography.  

3.3.1 Hash-based Cryptography 

Hash-based cryptography is based on cryptographic hashes, as the nomenclature 

implies, and is typically utilized in digital signature schemes (as opposed to 

encryption). A hash is a one-way function that converts the hashed content into a 

representative set of bits (commonly referred to as a hash, hash result, signature, 

or message digest) that is unique for each unique content.  

It has been established that hash-based cryptography is quantum-resistant, as 

hashes are not vulnerable to Shor's algorithm. However, they are susceptible to 

Grover's algorithm, which, when implemented on quantum computers, offers a 

square root improvement in comparison to binary computers for certain tasks, 

such as cracking hashes. This, in turn, reduces the strength of hash-based 

cryptography by half. To counter this, it is necessary to double the key size of the 

hash, thereby nullifying the benefits of Grover's algorithm and quantum 

computing /26/. 

Hash-based signatures are often characterized by a variety of parameters that can 

affect factors such as security, signature size, and computational complexity /37/. 

Hash-based cryptography is vulnerable to the potential of repeating a one-time 

key for two different inputs, which could grant attackers access to the private key. 

For this reason, developers of hash and hash-based cryptography take extensive 

measures to avoid the repetition of one-time keys. A common method to prevent 

such repetition is to make the hash stateful, as opposed to stateless. A stateful 
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hash keeps a record of all one-time secret keys used and ensures that none of 

them are reused. Most traditional signature-based hashes are stateful. If a 

repeated key is detected, the algorithm is re-run or a different part of the longer 

keystream is chosen to generate a unique one-time key /26/. 

Stateful schemes are significantly more efficient than their stateless counterparts; 

however, stateful implementations must be exceptionally diligent in maintaining 

an accurate state. It is possible for an implementation to misplace the count of 

items that have been signed if a process is interrupted and restarted, or if multiple 

services are utilizing the same public key /37/. 

3.3.1.1 One-time Signature with Lamport 

On October 18, 1979, Leslie Lamport introduced his concept of one-time 

signatures (OTS): key pairs that can only be utilized for signing once. Most 

signature schemes are partially dependent on the security of one-way functions 

(commonly hash functions) for their security proofs. The appeal of Lamport's 

scheme is that his signature is exclusively reliant on the security of such one-way 

functions.  

A Lamport signature is a type of OTS based solely on hash functions. To generate 

a key pair that is capable of signing a bit, two random numbers must be generated, 

which will serve as the private key. Subsequently, each of these numbers must be 

hashed individually to produce the two digests of the public key. To sign a bit that 

is set to 0, the first random number must be revealed; conversely, to sign a bit that 

is set to 1, the second random number must be revealed /17/. 

The individual who generated the keys now desires to sign a message. The initial 

step is to hash the message so that a 256-bit hash or digest is produced. 

Subsequently, for each bit in the hash, one number from the pairs that constitute 

the private key is chosen. This usually implies that if the bit is 0, the first number 

is utilized; if it is 1, the second number is utilized. This will generate a sequence of 

256 numbers, each one 256 bits long. Consequently, the signature is 64 kilobytes. 



   

 

36 

What distinguishes this from other signature algorithms is that the signature is 

utilized one time only. The sender will then discard the private keys used. To 

authenticate the signature, the recipient will also hash the message to acquire a 

256-bit hash/digest. Then, the recipient utilizes the bits in that hash/digest to 

select 256 of the hashes in the sender’s public key. The same selection method 

that the sender utilized is employed (i.e., if it is 0, use the first hash; if it is 1, use 

the second). Now, the recipient will hash each of the 256 random numbers in the 

sender’s signature. If all of these precisely match the 256 hashes selected from the 

sender’s public key, the signature is confirmed. If any do not match, the signature 

is rejected /33/. 

 

Figure 4. Lamport's Steps /33/. 

3.3.1.2 Many Times Signature with XMSS  

The Extended Merkle Signature Scheme (XMSS) was introduced in 2011, and it 

shares many similarities with the Merkel Signature Scheme. XMSS is a more secure 

version of the aforementioned scheme, and it often produces smaller signature 

sizes as well. XMSS MT is a more powerful, multitree variant of this scheme and it 

is capable of signing an infinite number of messages; compared to XMSS, this 

variant typically produces signatures faster, albeit at the cost of a larger file size 

/39/. 
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The XMSS, as standardized in RFC 8391, was developed to improve upon Merkle's 

signature scheme by introducing several optimizations. One such optimization is 

the reduction of the size of the private key required to sign N messages. Rather 

than having to generate N OTS private keys and store the public key as a root hash, 

XMSS allows for the deterministic generation of OTS keys using a seed and the leaf 

position in the tree. This means that only the seed needs to be stored as the 

private key, and any OTS key pair can be quickly regenerated from its position in 

the tree and the seed. To keep track of which leaf/OTS was used last, the private 

key also contains a counter which is incremented each time it is used for signing.  

The XMSSMT Stateful Hash-Based Signature Scheme utilizes multiple trees to 

enhance the number of signatures supported by the Scheme, while 

simultaneously diminishing the workload during the generation of keys and 

signing of messages. Each tree is generated in a deterministic manner only when 

it is employed in the path leading to the ultimate leaf that contains the OTS utilized 

to sign a message /17/. 

 

Figure 5. XMSS signature scheme /17/. 

3.3.2 Lattice-based Cryptography 

Lattice-based cryptography is regarded as being very reliable because it illustrates 

the learning with errors (LWE) idea. LWE encrypts datasets and introduces a small, 

controlled error that renders them impossible to decrypt (at least within a 
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reasonable amount of time). A significant component of machine learning is this 

method. Oded Regev, a theoretical computer scientist who later won the 2018 

Gödel Prize, first proposed the LWE problem in 2005. 

A lattice is a concept in mathematics related to set theory, which is characterized 

by a repeating pattern of points. It is also known as a coordinate vector in an n-

dimensional space, where 'n' stands for the number of vectors in this space. An 

example of a lattice in the real world is a crystal. This type of lattice is defined by 

its number of vectors in a vector space /39/. 

 

Figure 6. Two-dimension versus three-dimension lattice /39/.  

Lattice-based cryptography may need slightly bigger key sizes than other 

encryption techniques, yet this is not necessarily the case when it comes to many 

of the lattice-based proposals submitted to the National Institute of Standards and 

Technology (NIST), such as CRYSTAL-Kyber, LAC, NewHope, NTRU, NTRUPrime, 

Round5, SABER, and ThreeBears. FRODO-KEM is the only one with an appreciably 

larger key size, though some code-based ciphers have much bigger ones.  

The first lattice-based cipher was NTRU, introduced in 1998, followed by several 

ciphers based on LWE and RLWE math problems. Today, lattice-based ciphers are 

the most commonly submitted type of post-quantum crypto submitted to NIST. 

Additionally, Craig Gentry used lattice-based cryptography in his 2009 dissertation 

to create the first fully homomorphic real-world encryption system, allowing a 

third party to correctly tamper with encrypted data without first decrypting it /26/. 
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Two NIST finalist schemes are closely related: CRYSTALS-Kyber and CRYSTALS-

Dilithium, which are candidates from the same research team, and both are based 

on the LWE problem. Kyber is a public key cryptographic primitive that can be used 

as a key exchange primitive, which will explain in this section. Dilithium is a 

signature scheme that will explain in the next section. Also note that since these 

algorithms are still in flux, will only write about the ideas and intuitions behind 

both schemes /17/. 

3.3.3 Code-based Cryptography 

Error-correcting codes are a component of code-based cryptographic schemes. 

Error-correcting codes were initially developed to address the issue of 

communication or storage systems that could have a small number of bits that 

were corrupted. A k-bit string called a codeword is expanded into an n-bit string 

by an error-correcting code. An n-bit codeword with up to t errors (flipped bits) 

can be given to an inverse function, which can then identify the flipped bits and 

restore the original k-bit string. The more redundant bits that are added to a string, 

the more mistakes the error-correcting code can fix. If there are too many errors, 

the error-correcting code might report that the error cannot be recovered or it 

might recover the wrong data /37/. 

A Russian/Soviet mathematician named Valery Denisovich Goppa connected 

geometric shapes and combinations to error-correcting codes in the 1970s and 

1980s. The Goppa codes are now well-known and were adopted by 

cryptographers. The majority of code-based ciphers in general, including McEliece, 

one of the most popular code-based ciphers, are built on binary Goppa codes. 

Code-based ciphers came in at number two in terms of popularity among the 

asymmetric encryption cipher types submitted to NIST. The code-based ciphers 

BIKE, Classic McEliece, HQC, LEDAcrypt, NTS-KEM, Rollo, and RQC are among those 

that have been submitted to the NIST PQC competition and qualified for the 

second round /26/. 
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The first application of the code-based approach was the asymmetric McEliece 

cryptosystem, which dates back to 1978. This method employs the binary Goppa 

error correction code. The foundation of a Goppa code is modular arithmetic, in 

which numbers that reach a predetermined target value return to zero once more. 

The twelve-hour clock is the most prevalent example of this in everyday life. Aside 

from the McEliece, many cryptographic algorithms, such as RSA and AES, make 

use of modular arithmetic in different ways.  

The Goppa codes are extremely reliable, but they frequently require very large 

public keys. Possibly more work needs to be done on this aspect of the McEliece 

plan. Although other, lighter codes have been suggested to take the place of the 

trapdoor functions offered by the Goppa codes, none have shown to be as 

resistant to cryptanalysis. 

An updated version of the McEliece cryptosystem is the Niederreiter 

cryptosystem. The method, created in 1986 by Harald Niederreiter, is regarded as 

having an equivalent level of security to that of its forerunner. Niederreiter, 

however, encrypts data more quickly than the McEliece cryptosystem /39/. 

3.3.4 Multivariate Cryptography 

Multivariate polynomial-based asymmetric cryptographic primitives are referred 

to as multivariate cryptography. Post-quantum cryptography is seen as having 

been very robustly interpreted by it. By 2020, the majority of this technology may 

have reached full maturity, but it's still possible that attack vectors that have not 

yet been identified pose a threat /39/. 

Multivariate is an abbreviation for "multiple variables." Multivariate math 

equations, like x + y + z = n, are used to create the cryptographic primitives in 

asymmetric encryption and signature schemes known as multivariate 

cryptography. Multivariate quadratic (MQ) polynomial equation cryptography is 

another name for cryptography based on multivariate polynomial mathematics. 
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This means that at least one of the variables has been raised to the second power 

(for instance, x^2 + y + z = n). Correctly designed multivariate cryptography is not 

protected by large primes and cannot be cracked in polynomial time. They are 

therefore regarded as quantum-resistant. They are a strong performance 

candidate for hardware implementations like application-specific integrated 

circuits (ASIC) and field-programmable gate arrays (FPGA) due to their inherent 

qualities. 

HFE, Gui, Balanced Oil & Vinegar, Unbalanced Oil & Vinegar, and Tame 

Transformation Signature are examples of multivariate cryptography. The 

multivariate digital signature protocols GeMSS, LUOV, MQDSS, and Rainbow have 

all been submitted. Unbalanced Oil & Vinegar is implemented in several layers as 

Rainbow /26/. 

In 1996, cryptographer Jacques Patarin unveiled the Hidden Field Equations (HFE) 

public-key cryptosystem. This is still a widely used type of multivariate 

cryptography, and it may have been the first. The foundation of HFE is the 

complexity of the problems posed by a system of quadratic equations. To obscure 

the relationship between private and public keys, HFE is based on polynomials 

over finite fields of various sizes.  

Based on his earlier work, Patarin created the signature scheme known as 

Unbalanced Oil and Vinegar (UOV). UOV is based on how difficult it is to distinguish 

between two different types of variables, known as "oil" and "vinegar." The phrase 

"unbalanced" refers to the use of this scheme of varying ratios of the two 

aforementioned variables. UOV requires the solution of a minimal quadratic 

equation system to generate and receive signatures. This plan is thought to be 

quantum-resistant. Since UOV is primarily based on addition and multiplication, it 

is also very easy to implement in even the most basic hardware devices. This 

scheme typically has rather long key lengths, resulting in fairly large key file sizes. 

An earlier version of UOV, known as Balanced Oil and Vinegar, was broken in 1998, 

calling for this updated version /40/. 
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The McEliece cryptosystem has been updated as the Niederreiter cryptosystem. 

The method, created in 1986 by Harald Niederreiter, is regarded as being on par 

with its predecessor in terms of overall security. When encrypting data, 

Niederreiter is quicker than the McEliece cryptosystem /41/. 
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4 APPROACH AND IMPLEMENTATION 

4.1 Review of Available PKI Software  

PKI software provides the requisite tools to generate, disseminate, and supervise 

digital certificates and public keys, as well as to authenticate digital signatures and 

ensure secure communication between parties.  

The fundamental operation of PKI software involves the utilization of a CA which 

issues digital certificates to entities such as individuals, devices, or organizations. 

These certificates incorporate the entity's public key and other pertinent data and 

are signed by the CA to guarantee their legitimacy.  

When an individual desires to communicate securely with another entity, they 

must first acquire the other entity's public key from their digital certificate. 

Subsequently, they utilize this public key to encrypt the message before 

transmitting it. Upon receipt, the other entity utilizes its private key to decrypt the 

message. 

Furthermore, PKI software provides additional functions such as certificate 

revocation, which permits the revocation of compromised or invalid certificates, 

and certificate validation, which verifies the authenticity and validity of digital 

certificates. 

There are several PKI software solutions available on the internet that support 

post-quantum algorithms, a majority of them are either closed-source or 

commercial PKI solutions. The present chapter entails an extensive investigation 

and comparative analysis of various open-source PKI software solutions to offer a 

comprehensive overview of the current state of development in the field of PKI 

software. The primary objective is to select the most suitable PKI software that 

can seamlessly integrate with post-quantum algorithms, or serve as crucial 

information for future research endeavors. 
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4.1.1 Candidates 

OpenXPKI is designed to function as an online Registration Authority (RA) and CA 

for X.509 version 3 certificates, but its flexibility allows it to serve a wide range of 

cryptographic key management use cases. OpenXPKI has a mature and stable code 

base and is continually evolving to meet the needs of its growing user base. 

Furthermore, the development team actively supports multiple professional 

installations that have been in operation since 2009, hosting multiple logical CAs 

and hundreds of thousands of active certificates /42/. 

OpenXPKI is a PKI software solution that is written in the Perl programming 

language and is licensed under the Apache 2.0 license. Notably, OpenXPKI also 

offers a Graphical User Interface (GUI) for ease of use. There are 33 active 

developers of the software who continue to actively maintain and update the 

software's repository, with the latest commit being made in February 2023 upon 

the release of a new version 3.24. This highlights the ongoing development of the 

software and commitment to providing users with an up-to-date and reliable PKI 

solution /43/.  

OpenXPKI supports Simple Certificate Enrollment Protocol (SCEP) and Enrollment 

over Secure Transport (EST) and allows for the use of Hardware Security Modules 

(HSMs). It also allows for easy customization of workflows and can run multiple 

separate CAs with a single installation. Additionally, it can issue certificates with 

publicly trusted CAs and is based on OpenSSL and Perl, making it compatible with 

most *nix platforms /42/. 

EJBCA is one of the most extensively utilized PKI platforms in the world, providing 

comprehensive certificate management, registration, enrollment, and certificate 

validation capabilities. It encompasses all essential PKI components, including CA, 

RA, and Validation Authority (VA). 
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EJBCA provides flexibility and scalability to accommodate nearly every PKI use 

case, including DevOps, Internet of Things (IoT), Industrial IoT, Enterprise PKI, and 

more. Additionally, EJBCA offers effortless integrations into third-party systems 

for full automation and easy operations. It also features multitenancy, which 

enables the hosting of multiple CAs and PKIs in a single server installation /44/. 

EJBCA is a Java-based software that operates under the LGPL 2.1 license and 

incorporates a graphical user interface. The project currently benefits from the 

contributions of 14 active contributors, with the most recent commit having taken 

place four months ago which is in February 2023. The latest iteration of EJBCA is 

version 7.12. 

EJBCA provides a comprehensive turnkey PKI solution that offers pre-packaged 

components, protocols, and software for quick and easy deployment. It offers 

various deployment models, including turnkey software and hardware appliances, 

cloud-based solutions, and hybrid models, enabling flexible and scalable PKI 

implementation. Additionally, it supports SaaS-based PKI deployment /45/. 

For EJBCA, public key algorithms, including RSA, DSA, and ECDSA (Elliptic Curve 

Digital Signature Algorithm), are implemented to facilitate secure key operations 

and digital signatures. Key exchange algorithms, such as Diffie-Hellman and 

Elliptic-curve Diffie–Hellman (ECDH) are employed during the TLS handshake 

process to establish secure sessions. Hash functions, utilized for generating 

message digests and certificate signatures, encompass MD5, SHA-1, and the SHA-

2 family, encompassing SHA-256, SHA-384, and SHA-512 while the use of MD5 and 

SHA-1 is regarded as a legacy, and their vulnerability to attacks is recognized. 

The Dogtag Certificate System is an open-source CA designed for enterprise use. 

This full-featured system has been rigorously tested through real-world 

deployments, resulting in a hardened solution capable of managing all aspects of 

the certificate lifecycle. The system capabilities include key archival, OCSP 
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management, and smartcard integration, making it a comprehensive tool for 

certificate management in large-scale environments /46/. 

The Dogtag PKI is a Java-based software system designed for PKI deployment. The 

system is licensed under the GPL 2.0 license and comes with GUI support. 

Currently, there are 44 active contributors involved in the development of this 

project, ensuring a constantly evolving and robust platform. The project has been 

actively maintained, with the latest commit made in May 2023, coinciding with the 

release of this thesis. The current version available is 11.0.0, highlighting the 

continued evolution of the system to meet the changing needs of enterprise-level 

PKI management /47/.  

Dogtag is a comprehensive suite of technologies that facilitates the 

implementation of PKI on a large scale. It offers a wide range of features, such as 

certificate issuance, revocation, and retrieval, as well as CRL generation and 

publishing. Furthermore, Dogtag is compatible with various Certificate Profiles. It 

integrates the SCEP to simplify the certificate enrollment process. Additionally, 

Dogtag provides a Local Registration Authority (LRA) for organizational 

authentication and policy enforcement.  

Dogtag also enables organizations to effectively manage their encryption keys, 

which includes Smartcard lifecycle management and Token profiles. Furthermore, 

Token enrollment, on-hold, key recovery, format, and face-to-face enrollment 

with the security officer workstation interface, ensure the highest levels of 

security during the enrollment process /46/. 

The OpenCA PKI Project is a collaborative initiative aimed at creating a 

comprehensive, fully-featured, and open-source Certification Authority with 

robust capabilities, implementing widely-used protocols utilizing state-of-the-art 

cryptography globally. The project draws upon several open-source software 

projects, including OpenLDAP, OpenSSL, Apache Project, and Apache mod_ssl, to 

achieve its objectives. 
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The development of the project is structured around two primary objectives: 

rigorous analysis and refinement of the security framework, ensuring the selection 

of the optimal model for deployment in a CA, and the development of software 

tools to facilitate the efficient establishment and management of a CA /48/. 

OpenCA PKI is developed using the Perl programming language and is licensed 

under the Apache license. The web-based management tool for OpenCA PKI, 

OpenCA-NG, offers a user-friendly interface for configuring and managing the 

certification authority. While the project's Github repository lists two contributors, 

it appears that the development of OpenCA PKI has been inactive for 

approximately nine years. Additionally, the latest version of the software, OpenCA 

PKI V1.5.0, was released in August 2013 /49/. 

Step-CA is an internet-based Certificate Authority (CA) that facilitates the secure 

and automated management of X.509 and SSH certificates. Serving as the server-

side counterpart to the Step CLI, Step-CA offers robust TLS security. The system 

features default algorithms and attributes that are designed to be both practical 

and secure, making it accessible to users who may not possess extensive expertise 

in security engineering. 

Step-ca is a widely utilized tool among developer teams for a range of critical 

functions. It enables the generation of TLS certificates for private infrastructure 

via the Automated Certificate Management Environment (ACME) protocol. Step-

ca facilitates automated TLS certificate renewal, which is essential for ensuring the 

continued secure operation of online systems. Step-ca allows for the integration 

of ACME support with legacy subordinate CAs, offering a seamless solution to a 

common challenge in modern security contexts and the issuance of short-lived 

Secure Shell (SSH) certificates through the use of OAuth OIDC single sign-on. 

Finally, Step-ca empowers teams to issue customized X.509 and SSH certificates, 

thereby providing them with greater flexibility in managing their security 

infrastructure /50/.  
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Step-ca is a command-line tool that is primarily used through a terminal interface 

and is implemented in the Go programming language under the Apache 2.0 

license. It provides a solution for managing digital certificates, including X.509 and 

SSH certificates, and features a user-friendly web-based interface for the efficient 

management and monitoring of certificates issued by the CA. The project has a 

substantial following, with 65 active contributors to the codebase, reflecting a 

vibrant and dynamic community committed to improving the PKI. Notably, the 

most recent commit to the codebase was made in May 2023, indicating that the 

project is highly active and focused on delivering cutting-edge PKI solutions. The 

latest version, Step CA v0.24.2, was also released in May 2023, providing users 

with the most up-to-date features and functionality /51/. 

CFSSL is an open-source toolkit that caters to all aspects of TLS and Secure Sockets 

Layer (SSL). CloudFlare, a leading internet security company, has integrated CFSSL 

into its infrastructure for aggregating TLS/SSL certificate chains and for 

maintaining an internal Certificate Authority infrastructure. One of CFSSL's key 

advantages is its ability to balance performance, security, and compatibility, which 

makes it an ideal tool for website owners and large software-as-a-service 

companies alike. CFSSL offers a JSON API web service and a convenient command-

line interface, which can be utilized in diverse settings /52/.  

CFSSL is a program that is authored in the popular programming language, Golang. 

The tool requires version 1.16 or newer of Go to compile successfully and is 

distributed under the permissive BSD-2-Clause open-source license. CFSSL offers 

both command-line functionality and HTTP API server capabilities, making it a 

versatile tool for signing, verifying, and bundling TLS certificates.  A large and 

diverse community of contributors has contributed to the project, resulting in a 

robust and reliable software package. The most recent commit to the project was 

made in May 2023, demonstrating the continued commitment of the project's 

maintainers to ensure its ongoing development. The current stable release version 

of Cfssl is v1.6.4, which provides a stable and reliable toolset for developers /53/. 
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At present, Cloudflare is running CFSSL on highly secure and tightly controlled 

computing systems. However, to further bolster the security of our infrastructure, 

Cloudflare plans to incorporate the software with cost-effective Trusted Platform 

Modules (TPMs) to offer a more advanced level of hardware security. This strategy 

is intended to protect private keys from unauthorized access, even in the 

improbable event of a breach /52/. 

The public key algorithms employed by CFSSL include RSA and DSA, which are 

utilized for cryptographic key operations and digital signatures. CFSSL also 

incorporates key exchange algorithms, such as Diffie-Hellman and its elliptic curve 

variants ECDH, which are crucial components of the TLS handshake process for 

secure session establishment. In terms of hash functions, CFSSL employs the 

Message Digest 5 (MD5) and SHA-1, which play vital roles in generating message 

digests and creating certificate signatures.  

X Certificate and Key Management is a powerful software application developed 

to facilitate the effective creation and management of X.509 certificates, 

certificate requests, RSA, DSA and EC private keys, Smartcards, and CRLs. This 

software provides the comprehensive functionality necessary for a Certificate 

Authority, enabling the signing of sub-CAs in a recursive manner with a clear 

display of the resulting certificate chains. Additionally, the software offers 

configurable templates for generating certificates or requests, which is especially 

advantageous for the smooth implementation of this application on a corporate 

level /54/. 

XCA is a Certificate Authority software application developed using the C/C++ 

programming language and licensed under the BSD-3-Clause license. Its GUI 

facilitates the generation, signing, revocation of certificates, and the management 

of private keys and configuration of certificate authorities. The software has been 

enhanced by the collaborative efforts of 36 active developers. The most recent 

commit to the project was made approximately seven months ago, in November 

2022. The latest version is XCA 2.4.0 /55/. 
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The software application offers a comprehensive set of features that enable users 

to create, manage, and export private keys, certificates, requests, or CRLs in 

various formats, including PEM, DER, PKCS#7, and PKCS#12. The certificates 

generated can be utilized for various certificate-based setups, such as IPsec, 

OpenVPN, and TLS. The application provides a convenient way to manage Smart-

Cards via the PKCS#11 interface. Additionally, the software offers the ability to 

create Subject and/or Extension templates that make issuing similar certificates 

more straightforward, converting existing certificates or requests to templates as 

required. The x509v3 extensions are supported, allowing for a broad range of 

customization options while remaining user-friendly /54/. 

In the context of PKI systems, XCA employs a range of encryption algorithms for 

different purposes. XCA utilizes traditional encryption algorithms such as RSA, 

DSA, ECDSA, Diffie-Hellman, ECDH, and hash functions such as MD5, SHA-1, and 

SHA-2 family (including SHA-256, SHA-384, and SHA-512) for public key operations 

and message digests. These algorithms play a vital role in ensuring the security and 

integrity of data within the XCA PKI environment, allowing for secure 

authentication, encryption, and verification processes. 

Easy-RSA is a command-line interface (CLI) tool that is specifically designed to 

facilitate the management of PKI, using the widely recognized X.509 standard. 

With Easy-RSA, it is possible to establish and manage a PKI CA with ease. In 

essence, PKI is built around the principle of relying on a trusted authority to verify 

the authenticity of a remote peer. Therefore, Easy-RSA represents a reliable utility 

for ensuring secure and authenticated communication in a networked 

environment /56/. 

Easy-RSA is a highly versatile utility that has been developed to run on a variety of 

different host systems, owing to its reliance on the platform-neutral POSIX shell. 

Moreover, the official Windows release is bundled with all the required programs 

for seamless integration with Easy-RSA. The philosophy software aims to reduce 

dependencies on external programs, with OpenSSL serving as the backend for 
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crypto-related tasks. Although Easy-RSA does not offer a GUI by default, it 

provides a powerful command-line interface that requires manual input and 

terminal interaction. The project boasts active development by 60 contributors, 

with the latest commit having been created in May 2023, and the most recent 

release version being v3.1.2 in January 2023 /57/. 

One of its notable advantages is the ability to manage multiple PKIs independently, 

with different configurations and storage directories. Easy-RSA supports several 

Subject Name formatting options, allowing for a cleaner setup for VPNs using 

commonName only. Easy-RSA employs a single backend that is compatible with 

various platforms, including Unix-alikes (BSD, Linux, etc.) and Windows, ensuring 

all platforms have access to its rich features. Its X.509 support includes advanced 

features such as CRL, CDP, and keyUsage/eKu attributes, with the option to add or 

modify features as needed. Easy-RSA offers flexible operation modes, with both 

interactive and automated (batch) modes of operation. The configuration is also 

flexible, with features enabled through command-line options, environment 

variables, a config file, or a combination of these. Built-in defaults enable Easy-RSA 

to be used without having to first edit a configuration file /56/. 

Django-ca is a tool that facilitates the management of TLS certificate authorities 

and streamlines the process of issuing and revoking certificates. The tool is built 

on top of the highly secure cryptography framework and integrated with the 

powerful Django web framework. Notably, the entire system can be effectively 

administered through the command line interface, leveraging the manage.py 

commands /58/. 

Django-ca is built upon Django, a full-stack framework widely recognized in the 

software development community. Licensed under the GPL-3.0 license, Django-ca 

offers a rich set of features for managing TLS certificate authorities. It is worth 

noting that Django-ca does not provide GUI. 
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The project boasts a vibrant development community, with a dedicated team of 

10 contributors actively advancing its capabilities. As evidenced by the latest 

commit in May 2023, the project is continuously evolving and improving with 

regular updates. The most recent release, version 1.24.0, was launched in May 

2023, further solidifying the commitment to ongoing development and 

enhancement of Django-ca /59/. 

A key feature is the ability to quickly and easily set up a secure local CA, 

streamlining the process of issuing and managing certificates. Furthermore, the 

software provides for CRLs and OCSP to ensure the efficient and secure revocation 

of certificates when necessary. The application allows for certificate issuance 

through multiple mediums, including ACMEv2, command line, and web interface, 

offering users flexibility and ease of use. Management of the certificates can be 

done through the command line and/or Django's admin interface, providing a 

simple and efficient management process. To ensure the timely renewal of 

certificates, the software can be configured to send email notifications regarding 

certificates that are nearing expiration. The application uses Python 3.8+, Django 

3.2+, and cryptography 37.0+, providing a stable and dependable platform for 

certificate management /58/. 

Django-ca incorporates various encryption algorithms within its PKI system. 

Django-ca utilizes traditional encryption algorithms such as RSA, DSA, ECDSA, 

Diffie-Hellman, ECDH, and hash functions like MD5, SHA-1, and SHA-2 family 

(including SHA-256, SHA-384, and SHA-512) for public key operations and message 

digests. Furthermore, Django-ca also places notable emphasis on symmetric key 

algorithms, including AES, DES, 3DES, RC4, Blowfish, and Twofish.  

The Open Quantum Safe (OQS) project is a collaborative effort aimed at advancing 

and exploring quantum-resistant cryptography. It consists of two main 

components: liboqs, an open-source C library that provides quantum-resistant 

cryptographic algorithms, and the integration of prototypes into various protocols 

and applications. Notably, the project is integrated with the widely utilized 
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OpenSSL library, allowing developers to incorporate quantum-resistant 

cryptography into their projects. The OQS project is a valuable resource for 

enterprises seeking to create their own post-quantum PKI. Its C-based source code 

makes it easy to integrate with future algorithms, guaranteeing adaptability as 

new cryptographic methods emerge. By utilizing widely used algorithms originally 

written in C, developers can easily incorporate novel cryptographic approaches 

into their systems. The project has an active community of developers, as 

evidenced by the release of 12 versions as of May 2023. Its repository contains a 

wide range of renowned and efficient post-quantum algorithms, including 

CRYSTAL-kyber, BIKE, FrodoKEM for key exchange, and Dilithium, Falcon, and 

SPHINCS+ for signature algorithms. While the OQS project does not provide a 

complete PKI solution on its own, it presents an appealing integration option due 

to its broad selection of post-quantum algorithms and compatibility with OpenSSL, 

a widely accepted library. 

The Open Quantum Safe (OQS) project is a collaborative effort aimed at advancing 

and exploring quantum-resistant cryptography. It consists of two main 

components: liboqs, an open-source C library that provides quantum-resistant 

cryptographic algorithms, and the integration of prototypes into various protocols 

and applications. Notably, the project is integrated with the widely utilized 

OpenSSL library, allowing developers to incorporate quantum-resistant 

cryptography into their projects. The OQS project is a valuable resource for 

enterprises seeking to create their own post-quantum PKI. Its C-based source code 

makes it easy to integrate with future algorithms, guaranteeing adaptability as 

new cryptographic methods emerge. By utilizing widely used algorithms originally 

written in C, developers can easily incorporate novel cryptographic approaches 

into their systems. The project has an active community of developers, as 

evidenced by the release of 12 versions as of May 2023. Its repository contains a 

wide range of renowned and efficient post-quantum algorithms, including 

CRYSTAL-kyber, BIKE, FrodoKEM for key exchange, and Dilithium, Falcon, and 

SPHINCS+ for signature algorithms. While the OQS project does not provide a 
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complete PKI solution on its own, it presents an appealing integration option due 

to its broad selection of post-quantum algorithms and compatibility with OpenSSL, 

a widely accepted library /60/. 

4.1.2 Selected PKI 

After conducting a comprehensive evaluation and analysis of various PKI solutions, 

a carefully curated selection has been compiled, resulting in a refined list of 

potential candidates. These candidates exhibit numerous advantageous qualities 

that make them highly suitable for integration and further research purposes. 

Notably, they have garnered a commendable reputation, with active contributions 

from developers. Moreover, their seamless integration capabilities with different 

platforms and programming languages, coupled with their robust security 

measures, further enhance their suitability for deployment. 

The first candidate is CFSSL which developed and maintained by Cloudflare, is a 

highly reputable and widely utilized PKI toolkit, renowned for its dependability and 

industry recognition. CFSSL boasts an active community and robust support, 

enabling consistent development, frequent updates, and efficient issue resolution 

for improved security and user assistance. CFSSL is particularly known for its 

scalability, accommodating organizations with extensive certificate needs. Its 

strong architecture efficiently manages high volumes of certificate issuance and 

management for large-scale deployments. CFSSL provides seamless integration 

with a variety of systems, platforms, and programming languages, affording 

flexibility for straightforward incorporation into existing infrastructures. This 

allows developers and system administrators to integrate CFSSL into their 

preferred environments with ease. CFSSL provides extensive documentation and 

resources, including tutorials, guides, and examples. These valuable references 

assist users in comprehending CFSSL's capabilities and implementing them 

effectively for their particular use cases.  
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The second candidate is Django-ca which offers seamless integration with the 

Django web framework, taking advantage of its powerful features and ecosystem. 

This integration enables developers to easily incorporate Django-ca into their 

applications, benefitting from Django's robust development practices and saving 

time and effort in the construction and maintenance of a PKI solution. Django-ca 

provides a highly customizable and extensible architecture, allowing users to 

customize certificate fields, user roles, and signing policies to meet their unique 

requirements. Furthermore, Django-ca features a user-friendly administrative 

interface, facilitating efficient management of the PKI system. This interface 

simplifies essential tasks such as certificate issuance, revocation, and 

management, utilizing the familiar Django admin interface to enhance usability 

and reduce the learning curve for administrators and users. Additionally, Django-

ca enables comprehensive certificate lifecycle management, supporting CSRs, 

issuance, revocation, and renewal. This streamlined approach simplifies PKI 

infrastructure management, ensuring efficient handling of certificates throughout 

their lifecycle. Finally, Django-ca implements role-based access control (RBAC) to 

enforce fine-grained user permissions and actions in the PKI system. RBAC ensures 

secure access while maintaining data integrity, enabling organizations to enforce 

least privilege principles and enhance system security. 

The third candidate is EJBCA CE which is a comprehensive PKI solution that offers 

a range of features for certificate management. It provides customizable 

certificate profiles, robust features for issuance, revocation, and validation, and 

comprehensive certificate lifecycle management. EJBCA CE is highly scalable, 

making it suitable for organizations with large-scale PKI needs. It is capable of 

efficiently managing high volumes of certificate issuance and management, 

thereby ensuring seamless operations in complex environments. Furthermore, 

EJBCA CE is supported by an active community of users and contributors, which 

facilitates continuous development, support, and regular updates. This vibrant 

community also provides valuable resources, documentation, and support 

channels, thus promoting knowledge sharing and facilitating prompt issue 
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resolution. In addition, EJBCA CE prioritizes security and compliance with industry 

standards, including features such as CRLs, OCSP support, and granular access 

control. Furthermore, it follows best practices for cryptographic operations and 

certificate management, ensuring a robust and secure infrastructure. Lastly, EJBCA 

CE offers seamless integration with diverse systems and platforms, thereby 

enhancing flexibility and adaptability in various environments. It supports 

integration with popular software such as LDAP directories, databases, and 

external certificate authorities, making it easy to incorporate into existing 

infrastructures. 

The fourth candidate is XCA which offers an intuitive and user-friendly interface, 

making PKI system management easier for administrators and users. The 

simplified interface facilitates tasks such as certificate issuance, revocation, and 

management, thus reducing the learning curve and improving usability. XCA is 

lightweight and portable, allowing for compatibility with a variety of environments 

and operating systems. It is deployable on both desktop and server platforms, 

providing flexibility and seamless integration with existing infrastructure. XCA 

provides advanced cryptographic support, offering a wide range of algorithms and 

protocols. Users can take advantage of the latest security standards and 

encryption techniques, including secure options for key pair generation, certificate 

signing, and encryption. This ensures strong security for digital certificates. XCA 

has a highly customizable architecture, allowing organizations to customize the 

PKI system to their individual needs. It supports custom certificate fields, 

extensions, and integration with external systems through APIs, thus promoting 

flexibility and adaptability. XCA is an open-source project with a vibrant 

community of users and contributors. The active community guarantees 

continuous development, support, and regular updates, providing valuable 

resources, documentation, and support channels. The open-source nature 

encourages transparency and facilitates community-driven enhancements and 

improvements. 
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4.2 Possible Alternatives for Traditional Encryption Algorithms in PKI 

Quantum computers can out-calculate traditional encryption algorithms, making 

existing cryptographic systems vulnerable to attack. To counter this, the NIST has 

evaluated post-quantum algorithms to potentially replace existing ones. It is 

important to consider and integrate post-quantum algorithms into the current 

infrastructure or explore their potential. Doing so is essential for bolstering PKI 

security against quantum computer attacks. A selection of encryption algorithms 

commonly used in PKI software will be briefly examined. 

Within the third round of the NIST post-quantum encryption competition, a 

selection of encryption algorithms emerged as noteworthy candidates for 

replacing traditional cryptographic algorithms. These algorithms have undergone 

rigorous evaluation and demonstrate promising characteristics. In the category of 

Public-key Encryption and Key-establishment Algorithms, the finalist algorithms 

include Classic McEliece, CRYSTALS-KYBER, NTRU, and SABER. Moreover, 

alternative options such as BIKE, FrodoKEM, HQC, NTRUPrime, and SIKE are 

available. In terms of Digital Signature Algorithms, the finalists encompass 

CRYSTAL-DILITHIUM, Rainbow, and Falcon, while choices consist of GeMSS, Picnic, 

and SPHINCS+. Each of these algorithms possesses distinct advantages and trade-

offs in various scenarios. Collectively, they present a viable approach to achieving 

quantum-resistant security, thus rendering them suitable for integration within 

PKI software or any application requiring quantum-safe cryptographic 

mechanisms /61/. 

Cloudflare recently published a blog post that conducted a comprehensive 

assessment and comparison of Digital Signature Algorithms concerning their 

traditional counterparts. The evaluation was based on two key factors: size and 

relative time. These factors were carefully analyzed to determine the effectiveness 

and efficiency of the Digital Signature Algorithms in practical applications. By 

considering the size of the signature and the relative time required for signature 

generation and verification, Cloudflare aimed to provide a thorough 
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understanding of the performance characteristics and feasibility of these 

algorithms compared to traditional alternatives. This analysis from Cloudflare's 

blog post provides valuable insights for evaluating the suitability and practicality 

of Digital Signature Algorithms in real-world scenarios, thus enhancing the 

understanding of cryptographic choices in the context of the thesis /62/. 

 

Figure 7. Digital Signature Algorithms comparison /62/. 

4.3 Review of Available Post-quantum Encryption Algorithms 

The field of cryptography encompasses numerous algorithms for public key 

encryption and digital signature schemes, as previously mentioned. In this thesis, 

our focus will primarily be on the algorithms recommended by the NIST. The 

selected algorithm for public key encryption and the key establishment is 

CRYSTALS-KYBER, while for digital signature schemes, the chosen algorithms are 

CRYSTALS-DILITHIUM, falcon, and SPHINCS+ /63/. 
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Given NIST's endorsement, our objective is to identify and examine a wide range 

of implementations for each of these selected algorithms. This will provide us with 

a comprehensive set of options to either support our implementation or facilitate 

further research. By delving deeper into the characteristics and intricacies of these 

algorithms, we aim to foster their integration and explore their potential for future 

advancements. 

In the subsequent section, we will delve into a comprehensive discussion of the 

aforementioned algorithms, shedding light on their distinct features and providing 

valuable insights to aid in their integration and further investigation. 

4.3.1 Public-key Encryption and Key-establishment Algorithms 

Kyber is an IND-CCA2-secure key encapsulation mechanism (KEM), which is based 

on the hardness of solving the LWE problem over module lattices. It provides 

different levels of security depending on the size of the key being used. 

Specifically, Kyber-512 provides security roughly equivalent to AES-128, Kyber-768 

provides security roughly equivalent to AES-192, and Kyber-1024 provides security 

roughly equivalent to AES-256. Due to its impressive performance, Kyber is already 

being integrated into libraries and systems by the industry. For example, 

Cloudflare has integrated Kyber alongside other post-quantum algorithms into 

CIRCL. The performance of Kyber can be seen in Figure 8 below, which 

demonstrates its efficiency compared to other algorithms. 

The main repository contains the official reference implementation of the Kyber 

key encapsulation mechanism, as well as an optimized implementation specifically 

designed for x86 CPUs that support the AVX2 instruction set. While the original 

implementation is written in the C programming language, it is worth noting that 

numerous implementations in other languages are available on the internet. 

These alternative implementations can be leveraged to suit our specific needs if 

the original implementation is not compatible with the language requirements of 

our PKI software. 
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Figure 8. Kyber Performance /64/. 

The primary implementation of the Kyber algorithm within the repository was 

initially developed three years ago in 2020. However, it is noteworthy that active 

development efforts have continued, as evidenced by the most recent commit 

made in May 2023. This ongoing development highlights the commitment to 

refining and enhancing the implementation of the algorithm, ensuring it remains 

up to date with the latest advancements and addressing any potential 

vulnerabilities or performance optimizations /65/. 

In addition to the official C implementation, a wide array of implementations in 

various programming languages are available. These include but are not limited to 

C++, Rust, Python, Java, TypeScript, Golang, JavaScript, and VHDL. This diverse 
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range of language options provides ample choices for developers seeking to utilize 

the Kyber algorithm in their projects, enabling them to integrate it seamlessly 

without the need to develop an implementation from scratch. 

4.3.2 Digital Signature Algorithms 

The first algorithm is Dilithium. The hardness of lattice problems over module 

lattices makes Dilithium a digital signature scheme that is strongly secure under 

chosen message attacks. This security notion means that an adversary, even with 

access to a signing oracle, cannot produce a signature of a message whose 

signature he has not yet seen, nor produce a different signature of a message that 

he already saw signed. Lyubashevsky's "Fiat-Shamir with Aborts" technique, which 

uses rejection sampling to make lattice-based Fiat-Shamir schemes compact and 

secure, serves as the design basis for Dilithium. Dilithium improves on the most 

efficient scheme of Bai and Galbraith, which only uses uniform distribution, by 

using a new technique that shrinks the public key by more than a factor of 2. To 

the best of our knowledge, Dilithium has the smallest public key + signature size 

of any lattice-based signature scheme that only uses uniform sampling. We offer 

two different implementations: a C reference implementation and an optimized 

implementation using AVX2 vector instructions. The efficiency of the algorithms is 

depicted in Figure 9 below. 

The main repository hosts the official reference implementation of the Dilithium 

signature scheme, along with an optimized implementation specifically tailored 

for x86 CPUs that support the AVX2 instruction set. These implementations 

include various test and benchmarking programs, as well as a Makefile to 

streamline the compilation process. The primary codebase of the repository was 

developed approximately between 2020 and 2021. However, it appears that the 

project has become relatively inactive, with the most recent commit dating back 

to 2022 /67/. 
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Figure 9. Dilithium Performance /66/. 

Similar to Kyber, Dilithium has garnered attention in the cryptographic 

community, leading to the availability of implementations in multiple 

programming languages. The official repository provides the reference and 

optimized implementations of Dilithium, supplemented with test programs and a 

Makefile. Although not as abundant as Kyber, the languages commonly associated 

with Dilithium implementations include Java, Golang, Rust, C++, and JavaScript. 

These alternative language implementations broaden the accessibility and 

usability of Dilithium, enabling developers to adopt the scheme in their preferred 

programming languages, alongside the original C implementation. 
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The second algorithm is Falcon. Falcon builds upon the theoretical framework of 

Gentry, Peikert, and Vaikuntanathan for lattice-based signature schemes. It 

instantiates this framework using NTRU lattices and a trapdoor sampler known as 

"fast Fourier sampling." The foundation of Falcon relies on the computational 

challenge of solving the short integer solution problem (SIS) over NTRU lattices. To 

date, no efficient algorithm exists to solve this problem, even with the assistance 

of quantum computers. Falcon offers advanced security with negligible key 

leakage, compact signatures, fast processing, scalability, and efficient RAM usage. 

It utilizes true Gaussian sampling, NTRU lattices, and fast Fourier sampling for high-

security signatures, shorter signature sizes, rapid operations, scalability, and 

compatibility with memory-constrained devices. The performance of Falcon is 

depicted in the accompanying figure. 

 

Figure 10. Falcon Performance /68/. 

The primary repository of Falcon is implemented in C, demonstrating the initial 

development and focus of the project. However, an additional repository exists 

specifically for the Python implementation of Falcon, indicating efforts to expand 

its availability in different programming languages. While the main repository 

appears relatively inactive, the Python implementation continues to receive 

updates and maintenance, indicating ongoing development /69/. 

Furthermore, alternative versions of Falcon can be found on various platforms 

with implementations available in Golang, C++, C (besides the official one not in 

GitHub), Rust, and Javascript. Although the number of resources for Falcon is not 

as abundant as those for Kyber, it is comparable to the resources available for 

Dilithium.  
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Finally, SPHINCS+ is a stateless hash-based signature scheme that was originally 

proposed as part of the NIST post-quantum crypto project. It builds upon the 

advancements of the SPHINCS signature scheme, which was initially presented at 

EUROCRYPT 2015. SPHINCS+ incorporates several enhancements, primarily 

focused on reducing the size of signatures. 

These signature schemes are derived by instantiating the SPHINCS+ construction 

with three different hash functions: SHAKE256, SHA-256, and Haraka. In the 

second round submission of SPHINCS+, a split is introduced for each of the three 

variants, resulting in a simplified and robust version of the scheme for each hash 

function choice. The robust variant corresponds to the SPHINCS+ version 

submitted in the first round and retains all the conservative security guarantees 

provided earlier. The performance of SPHINCS+ is represented in Figure 11. 

 

Figure 11. SPHINCS+ Performance /70/. 

Similar to the aforementioned algorithms, the original implementation of 

SPHINCS+ was initially written in the C programming language. The repository was 

established approximately a year ago and is released under the CC0 1.0 Universal 

license. The developer and author of the repository continue to actively 

contribute, as evidenced by the latest commit made in April 2023. 

Additionally, like other digital signature algorithms, alternative implementations 

of SPHINCS+ in various programming languages have been identified. These 

languages include Java, Go, Rust, Python, and C++. While the availability of 
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resources for SPHINCS+ is substantial compared to other digital signature 

algorithms, it falls short in comparison to the extensive range of resources 

available for Kyber. While the resources for SPHINCS+ may not be as abundant as 

those for Kyber, they still offer a considerable selection for developers seeking to 

utilize this signature scheme /71/. 

4.4 Integration of Post-quantum Algorithms with PKI 

This chapter outlines the implementation and testing of the integration of Post-

Quantum PKI, which has several significant use cases. Firstly, it ensures the 

confidentiality and integrity of data against potential quantum attacks, making it 

essential for secure online transactions and e-commerce, as it safeguards sensitive 

information such as credit card details. Governments and defense organizations 

can benefit from post-quantum PKI by securing their classified communications, 

document signing processes, and identity management systems. Additionally, 

post-quantum PKI is essential in protecting critical infrastructure systems, 

preventing potential disruptions caused by quantum attacks. Cloud service 

providers can leverage post-quantum PKI to enhance the security of their 

infrastructure and protect customer data. In healthcare and medical systems, 

post-quantum PKI secures electronic health records, medical device 

communications, and telemedicine platforms, ensuring privacy and protection 

against quantum-based threats. These use cases illustrate the importance of 

implementing post-quantum PKI to protect sensitive information, secure 

communications, and maintain the integrity of various systems and applications in 

the face of quantum computing advancements. 

4.4.1 Planning 

Following the evaluation of selected PKIs and attempts to inspect their source 

code and integrate them with post-quantum algorithms, it was determined that 

such endeavors exceeded the time constraints established for this thesis. While 

the selected PKIs offered a wealth of resources for future research, their complex 
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nature, consisting of extensive lines of code, rendered them unsuitable for 

implementation within the scope of this study. As a result, a simpler PKI 

implementation will be pursued, leveraging various open-source resources and 

guidelines. The key aspect of this implementation is its reliance on the Open 

Quantum Safe (OQS) framework, as previously mentioned in the Candidates 

subchapter. The implementation will involve building a straightforward PKI system 

that encompasses crucial components such as a Root Certificate Authority 

(rootCA), capable of issuing server certificates, mechanisms for certificate 

revocation, and the inclusion of a CRL to store information on revoked certificates. 

As highlighted in the review of post-quantum algorithms, this implementation 

emphasizes the adoption of specific algorithms derived from the NIST 

competition. Notably, the chosen algorithms include CRYSTALS-kyber, CRYSTALS-

dilithium, Falcon, and SPHINCS+. These algorithms, provided by the OQS 

framework, are central to the implementation's design and execution /72/. 

4.4.2 Implementation 

This thesis outlines the implementation of a project on Linux Ubuntu version 

20.04.6 LTS. Therefore, the implementation and command line instructions 

provided are Linux-based. The initial phase of the implementation involves the 

installation of the OQS repository github.com/open-quantum-safe/, which serves 

as the foundation for the PKIs before additional components are incorporated. All 

the command lines will be demonstrated following each paragraph to clarify the 

process. 

The installation process of the OQS can be summarized as follows. To build the 

OQS, several libraries must be acquired. These libraries include cmake, gcc, libtool, 

libssl-dev, make, ninja-build, and git. The installation process can be completed 

with the installation command (1). It is imperative to remember to run the update 

(2) before installation to ensure all components are up to date. The following steps 

involve the cloning and installation of the liboqs library. This process is composed 

of several sub-steps. To begin, the liboqs repository should be cloned from the 
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official GitHub with the suffix liboqs. Subsequently, a build directory should be 

created within the liboqs directory. After navigating to the build directory, the next 

step involves executing the command (3). To complete the installation of liboqs, 

the ninja commands (4) and (5) should be executed in sequence. The concluding 

step of the installation process necessitates the construction of the OQS repository 

through the utilization of the make command. This step encompasses the 

following substeps: Initially, the aforesaid repository should be cloned, with the 

addition of the suffix "openssl" to its name. Subsequently, one must navigate to 

the directory containing OpenSSL and execute the command (6). Lastly, command 

(7) should be employed to initiate the build process. 

Upon the successful completion of the installation process, the next step is to 

proceed to construct our PKI based on the installed components. Furthermore, 

there are more to incorporate additional components functional PKI system. To 

establish PKI, it is necessary to have a Root CA and a Signing CA. Furthermore, the 

Signing CA should be utilized to generate a certificate for a sample server or email. 

Moreover, command line tools to revoke certificates and create CRLs should be 

incorporated, as well as the capability to view issued certificates. All of these 

components are indispensable for a successful and secure PKI implementation. 

To begin the process, navigate to openssl directory and create the RootCA by 

executing the (8) command. To provide further clarity, it is essential to understand 

$sudo apt install        (1) 

$sudo apt update        (2) 

$cmake -GNinja -DOQS_USE_OPENSSL=1 ..     (3) 

$ninja          (4) 

$sudo install ninja        (5) 

$./Configure no-shared linux-x86_64 -lm    (6) 

$make -j          (7) 

 



   

 

68 

the significance of each parameter used in the command line. The "req" parameter 

denotes the request, while "-x509" signifies the output format as the x509 

structure. The "-new" parameter indicates a new certificate request, while "-

newkey" specifies the type of the new key to be generated. The "-keyout" 

parameter determines the destination file for the key, and "-out" specifies the 

output file for the certificate. The "-nodes" flag ensures that the output key is not 

encrypted. The "-subj" parameter sets the subject for the certificate, and the "-

days" parameter defines the validity period of the certificate in days. Besides, the 

"-config" parameter refers to the request template file, which plays a crucial role 

in the certificate creation process. Lastly, it is important to note that the 

placeholder "<SIG>" in the aforementioned command represents the type of 

signature algorithm to be utilized for encryption. The OQS repository offers 

support for various signature algorithms recommended by NIST, such as Dilithium, 

Falcon, and SPHINCS+. The selection of a specific algorithm is contingent upon the 

preferences of the creator or the requirements of the PKI system being 

implemented. The following step involves the creation of a Signing CA, which 

follows a similar procedure as that of the RootCA setup. However, slight 

modifications are made to differentiate the Signing CA; these modifications 

include changing "_CA" to "_signingCA" in the file names and adjusting the 

Common Name to "SigningCA" within the same command line as mentioned 

earlier. 

In the subsequent step, the server generates its key pair and a certificate request, 

which is then forwarded to the CA. This can be achieved by executing the (9) 

command. This command generates a new key pair and creates a certificate 

request. The private key is saved in the file specified by "<SIG>_server.key", while 

the certificate request is stored in "<SIG>_server.csr". To sign and generate the 

server's certificate, the command (10) is used. To provide a more comprehensive 

explanation, this command performs the signing process and generates the 

server's certificate. The "-in" parameter denotes the input file as 

"<SIG>_server.csr", which contains the certificate request. The "-out" parameter 
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designates the output file as "<SIG>_server.crt", where the signed certificate will 

be stored. The "-CA" and "-CAkey" parameters respectively indicate the RootCA 

certificate file "<SIG>_CA.crt" and its corresponding private key file 

"<SIG>_CA.key" used for signing. The "-CAcreateserial" flag creates a serial 

number file for the certificate.  

To establish a basic server capable of key exchange with enabled algorithms, the 

previously created key and certificate are utilized. The following command lines 

demonstrate the creation of a server and client for key exchange within the PKI. 

For the server, execute (11). For the client in a separate terminal, execute (12). 

The server command initiates a server instance, utilizing the specified server 

certificate "<SIG>_server.crt" and its corresponding private key 

"<SIG>_server.key". The "-www" flag enables a basic web server functionality, 

while "-tls1_3" ensures that TLS version 1.3 is used. On the other hand, the client 

command creates a client instance in a separate terminal. The "-groups" 

parameter specifies the desired key exchange algorithm "<KEX>" such as 

kyber512, and the "-CAfile" parameter references the RootCA certificate 

"<SIG>_CA.crt" to establish trust. These commands facilitate the establishment of 

a secure key exchange environment within the PKI, allowing secure 

communication between the server and client. 

The final step in the establishment of a basic PKI using the OpenSSL repository 

involves generating a revocation list. This can be achieved by executing the (13) 

$apps/openssl req -x509 -new -newkey <SIG> -keyout 

<SIG>_CA.key -out <SIG>_CA.crt -nodes -subj "/CN=Root CA" -

days 365 -config apps/openssl.cnf    (8) 

$apps/openssl req -new -newkey <SIG> -keyout 

<SIG>_server.key -out <SIG>_server.csr -nodes -subj 

"/CN=Server" -config apps/openssl.cnf    (9) 

$apps/openssl x509 -req -in <SIG>_server.csr -out 

<SIG>_server.crt -CA <SIG>_CA.crt -CAkey <SIG>_CA.key -

CAcreateserial -days 365       (10) 
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command, which generates a revocation list denoted as "ca.crl" using the OpenSSL 

configuration file "openssl.cnf". The "-gencrl" option specifies the generation of a 

revocation list, ensuring that a comprehensive record of revoked certificates is 

maintained within the PKI system.  

Furthermore, it is essential to understand how to view certificates and revoke 

them when necessary. To view the certificate in a human-readable format, the 

command (14) should be executed, which provides a detailed textual 

representation of the certificate "<SIG>_server.crt", allowing for easy examination 

and analysis of its contents. To revoke a certificate, the command (15) should be 

used, which is performed by the Certification Authority (CA) and allows for the 

designation of a specific reason for revocation, with "superseded" used as an 

example here. These command lines enable the viewing and managing of 

certificates within the PKI system, guaranteeing transparency and control over the 

certificate lifecycle. 

In conclusion, a basic PKI has been established using the OpenSSL repository. This 

PKI includes the RootCA, and SigningCA, and covers essential procedures such as 

generating certificates for servers, enabling key exchange between servers and 

clients, creating CRLs, viewing certificate details, and revoking certificates using 

OpenSSL-based commands. This implementation demonstrates the fundamental 

components and operational aspects of a PKI, providing a solid foundation for 

secure communication within a networked environment. 

$apps/openssl s_server -cert <SIG>_server.crt -key 

<SIG>_server.key -www -tls1_3      (11) 

$apps/openssl s_client -groups <KEX> -CAfile <SIG>_CA.crt 

           (12) 

$openssl ca -gencrl -config openssl.cnf -out ca.crl  (13) 

$apps/openssl x509 -in <SIG>_server.crt -noout -text  (14) 

$apps/openssl ca -config apps/openssl.conf -revoke 

<SIG>_server.crt -crl_reason superseded    (15) 
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4.4.3 Testing 

The Testing Phase of Integration PKI involves three distinct tests: Verification 

Testing, Decoding Testing, and Time (Performance) Testing. The initial phase of 

the Testing Process entails conducting Verification Tests to validate the 

authenticity and integrity of the certificates generated in the preceding section. 

This Verification is carried out by utilizing a command line instruction, namely: 

$apps/openssl verify -CAfile <SIG>_CA.crt <SIG>_server.pem. This command line 

execution performs a comprehensive examination of the certificates, comparing 

them against the corresponding PEM or cert files. Upon successfully verifying the 

certificates using the aforementioned command line and obtaining the "OK" 

output, the subsequent step involves creating a revoke command to invalidate the 

certificate. This is achieved by employing the revoke command line specified in the 

implementation section. After a revocation, the verification command line is 

executed once more, resulting in a "fail" outcome. This outcome validates the 

effectiveness of the verification command line in accurately determining the 

validity of certificates. Hence, the verification command line successfully passes 

the test by effectively assessing the certificate's verifiability. Through this rigorous 

verification procedure, the validity and trustworthiness of the certificates are 

established, thereby ensuring the robustness and reliability of the Integration PKI 

System. 

The second phase of testing involves conducting Decoding Tests to assess the 

certificate's ability to accurately decode and present the information provided by 

the CA. For this purpose, a Python script is employed, which is included in the 

Appendices section. The Python code leverages the pyasn1 and pyasn1-modules 

libraries, which can be installed via the pip3 package manager. In Ubuntu 20.04, 

the pip3 installation can be executed using the following command line: $sudo apt 

install python-pip3. To ensure compatibility with the specific file requiring 

decoding, the script is modified accordingly. The Python script is executed using 

the command python3 filename.py to obtain the results. Upon conducting the 
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Decoding Test, the system successfully passes the assessment. The test verifies 

that the system can correctly decode the certificate and extract essential 

information such as valid time, invalid time, creation time, and the name of the 

CA. The obtained results align accurately with the information provided in the 

corresponding certificate file. 

The final phase of testing involves conducting Time (Performance) Tests, focusing 

on evaluating the speed and efficiency of specific algorithms without employing 

quantum computers for algorithm cracking. The objective of this testing is to 

measure the signing time and verification time for each algorithm selected in the 

previous section. The Performance Testing is conducted using the built-in 

command line functionality available in the repository. Specifically, the command 

line structure is as follows: $apps/openssl speed <algorithms>. The results 

obtained from the Performance Testing will be presented in a figure, providing a 

visual representation of the performance characteristics of the tested algorithms. 

This Performance Testing phase serves to assess and compare the signing and 

verification times of the selected algorithms, providing valuable insights into their 

efficiency and suitability for the Integration PKI System. 
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Algorithms Signing (s) Verification(s) Signing/s Verification/s 

dilithium2 0.0001 < 0.0001 8561 22399 

dilithium3 0.0002 0.0001 5895 15291 

dilithium5 0.0002 0.0001 4424 8011 

falcon512 0.0003 0.0001 2964 17198 

falcon1024 0.0007 0.0001 1349 8841 

sphincs-sha2 0.0099 0.0009 101 1131 

sphincs-shake 0.0221 0.0016 45 611 

 

Figure 12. Speed Testing. 
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5 DISCUSSION AND CONCLUSION 

5.1 Discussion  

This thesis aimed to explore the state-of-the-art post-quantum algorithms and 

integrate them with the PKI to address the increasing threat posed by quantum 

computers to conventional cryptographic systems. The objective of the study was 

to pave the way for the next generation of spacecraft and satellite ground segment 

systems, where secure communication is paramount.  

To this end, the student conducted a comprehensive analysis of nine different PKIs 

and the OpenSSL library, evaluating their compatibility and suitability for 

integration with PQC. By comparing their features, performance, and security, the 

study identified the recommended PKIs that can be effectively combined with PQC 

for practical implementation. Furthermore, the thesis delved into the NIST 

competition for post-quantum algorithms, offering a detailed examination of the 

selected algorithms. Through extensive research, various implementations of 

these algorithms in different programming languages were identified. 

Additionally, a practical aspect of the thesis involved the implementation of a 

simple PKI using the OQS library, serving as a proof-of-concept, demonstrating the 

feasibility of integrating PQC with PKI. 

The findings of this research have significant implications for the future of secure 

communication systems, particularly in the context of spacecraft and satellite 

ground segment operations. As quantum computers continue to advance in 

computational power, the vulnerabilities of current cryptographic systems 

become increasingly evident. The integration of PQC with PKI offers a promising 

solution to mitigate these risks and ensure the confidentiality, integrity, and 

authenticity of sensitive data. It is essential to acknowledge the limitations of this 

research. While the selected PKIs and algorithms were thoroughly evaluated, 

there may be other viable options that were not included in this study. 
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Additionally, the practical implementation was limited to a simplified version, and 

further research is required to develop more comprehensive and robust systems.  

In summary, by evaluating different PKIs, exploring the NIST competition 

algorithms, and implementing a proof-of-concept PKI, this research has laid the 

groundwork for the future development and implementation of secure 

communication systems resilient against quantum threats. The findings and 

recommendations of this study can guide organizations and researchers in 

adopting suitable PKIs and effectively integrating them with PQC, ensuring secure 

and quantum-resistant communication in the next generation of spacecraft and 

satellite ground segment systems. 

5.2 Future Challenges 

As quantum computing continues to advance and garner substantial investments, 

there is an impending threat posed by quantum computers to the so-called 

"quantum-resistant" algorithms. It is only a matter of time before quantum 

computers can potentially break these algorithms, making current cryptographic 

systems vulnerable. To address this challenge, it is essential to allocate more 

resources and investments to research and develop more robust post-quantum 

algorithms shortly. The ongoing advancements in quantum computing necessitate 

a proactive approach to stay ahead of potential cryptographic breaches. 

Furthermore, the integration of post-quantum algorithms with intricate PKIs 

presents another significant challenge. Many PKIs currently in use run and verify 

numerous applications and web browsers, making them inherently complex 

systems. While the thesis focused on the implementation of a simple PKI, 

integrating post-quantum algorithms with such complex PKIs is essential for 

ensuring their security in real-world applications, particularly in domains such as 

spacecraft or satellite operations. The challenge lies in effectively integrating post-

quantum cryptography into these intricate PKIs without compromising their 

functionality or introducing vulnerabilities. 
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To effectively address these challenges, it is important to adopt a forward-thinking 

approach that anticipates future advancements in quantum computing and their 

potential impact on cryptographic systems. By proactively investing in research 

and development, fostering interdisciplinary collaborations, and continually 

evaluating and updating PKIs, we can enhance the security and resilience of our 

digital infrastructure in the face of emerging quantum threats. 

To this end, it is necessary to allocate more resources and investments to research 

and develop stronger algorithms to withstand quantum attacks and integration of 

these algorithms into complex PKI frameworks. By addressing these challenges 

head-on, we can pave the way for a secure and quantum-resistant digital future. 

5.3 Conclusion  

In conclusion, this thesis has revealed several key findings. Firstly, there is a wide 

range of PKIs available on the internet, each with distinct features, reputation, and 

complexity. When integrating post-quantum algorithms into a PKI, it is essential 

to take into account the most suitable PKI and compatible post-quantum 

algorithms for ensuring a secure and efficient integration. Secondly, the strength 

of quantum computers will continue to increase shortly, thus posing a significant 

risk to organizations relying on traditional cryptographic algorithms. 

Consequently, it is recommended that organizations replace their existing PKIs and 

transition to post-quantum algorithms to enhance their resilience and protect 

their sensitive information against the imminent threat of quantum computing. 

Lastly, the most effective approach to withstanding the challenges posed by 

quantum computing lies in the integration of complex and sophisticated PKIs with 

post-quantum algorithms. By adopting such a strategy, organizations can 

significantly prolong the security and longevity of their cryptographic systems in 

the quantum era.  
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Stakeholders must recognize the urgency of this transition and take appropriate 

steps to protect their systems and data in the face of quantum computing 

advancements.  
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APPENDICES 

APPENDIX 1. Python Script for Decoding Testing 

from pyasn1_modules import pem, rfc2459  

from pyasn1.codec.der import decoder  

substrate = pem.readPemFromFile(open('cert-file.pem'))  

cert = decoder.decode(substrate, 

asn1Spec=rfc2459.Certificate())[0]  

print(cert.prettyPrint()) 
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