

Khanh Hoang

POST-QUANTUM CRYPTOGRAPHY FOR

PUBLIC KEY INFRASTRUCTURE

PQC - PKI

Information Technology
2023

2

VAASAN AMMATTIKORKEAKOULU
UNIVERSITY OF APPLIED SCIENCES
Information Technology

ABSTRACT

Author Khanh Hoang
Title Post-Quantum Cryptography for Public Key Infrastructure
Year 2023
Language English
Pages 82 + Appendices
Name of Supervisor Jukka Matila

The emergence of quantum computers has presented a significant challenge to
the traditional encryption algorithms that are commonly employed in public key
infrastructure. As a result, many applications such as email, messaging, e-
commerce, and banking authentication, which rely on these encryption
algorithms, are at risk of being compromised. This thesis aims to analyze and
research potential post-quantum encryption algorithms that could potentially
replace the traditional algorithms in the existing public key infrastructure. The
thesis utilizes observation and applied methods in the field of cyber security to
evaluate the effectiveness of various post-quantum encryption algorithms and
identify implementations of the selected algorithms from reputable post-quantum
competitions. This provides valuable insight into the efficacy of post-quantum
encryption and its ability to be integrated with existing or simplified versions of
public key infrastructure. To support this research, a range of implementations of
each post-quantum encryption algorithm were identified in various languages and
can be utilized by organizations for upcoming projects or further research if
necessary.

The thesis highlights the potential danger posed by quantum computing to
traditional encryption algorithms, with the possibility that existing algorithms may
be rendered obsolete soon. To prepare for this eventuality, companies should
source information and build a post-quantum public key infrastructure, or
consider replacing existing algorithms with post-quantum algorithms as soon as
practicable. This will ensure that their systems remain secure against quantum
computing threats. Through providing comprehensive analysis and
implementation suggestions, this thesis provides a valuable resource to the
cybersecurity field and could have far-reaching implications for the future of public
key infrastructure.

Keywords Post Quantum Cryptography, Public Key Infrastructure

3

CONTENTS

ABSTRACT

1 INTRODUCTION ...10

2 PURPOSE OF THE RESEARCH ...12

2.1 Problem and Questions ..12

2.2 Method ...13

2.3 Assurance and Ethics ...14

3 THEORETICAL BACKGROUND ..16

3.1 Public Key Infrastructure ...16

3.1.1 Public Key Cryptography ...17

3.1.2 Digital Certificates ...18

3.1.3 Certificate Authorities ..19

3.1.4 Certificate Revocation ..20

3.1.5 PKI Standards ..22

3.1.6 X.509 Formats ..22

3.2 Quantum Computing ..25

3.2.1 Quantum Computers ..25

3.2.2 Quantum Algorithms ..27

3.2.2.1 Shor's Algorithm ...28

3.2.2.2 Grover’s Algorithm ...29

3.2.3 Algorithms Break ...30

3.3 Post Quantum Cryptography..32

3.3.1 Hash-based Cryptography ..34

3.3.1.1 One-time Signature with Lamport35

3.3.1.2 Many Times Signature with XMSS36

3.3.2 Lattice-based Cryptography ...37

3.3.3 Code-based Cryptography ..39

3.3.4 Multivariate Cryptography ...40

4 APPROACH AND IMPLEMENTATION ...43

4.1 Review of Available PKI Software..43

4.1.1 Candidates ..44

4

4.1.2 Selected PKI ...54

4.2 Possible Alternatives for Traditional Encryption Algorithms in PKI57

4.3 Review of Available Post-quantum Encryption Algorithms58

4.3.1 Public-key Encryption and Key-establishment Algorithms59

4.3.2 Digital Signature Algorithms ...61

4.4 Integration of Post-quantum Algorithms with PKI65

4.4.1 Planning ...65

4.4.2 Implementation ..66

4.4.3 Testing ..71

5 DISCUSSION AND CONCLUSION ...74

5.1 Discussion ..74

5.2 Future Challenges ..75

5.3 Conclusion ...76

6 REFERENCES ..79

APPENDICES

5

LIST OF FIGURES AND TABLES

Figure 1. Public Key Cryptography Process 18

Figure 2. Certificate revocation: CRLs, OCSP, and OCSP stapling /17/. 21

Figure 3. An X.509 certificate /20/. 23

Figure 4. Lamport's Steps /33/. 36

Figure 5. XMSS signature scheme /17/. 37

Figure 6. Two-dimension versus three-dimension lattice /39/. 38

Figure 7. Digital Signature Algorithms comparison /62/. 58

Figure 8. Kyber Performance /64/. 60

Figure 9. Dilithium Performance /66/. 62

Figure 10. Falcon Performance /68/. 63

Figure 11. SPHINCS+ Performance /70/. 64

Figure 12. Speed Testing. 73

6

LIST OF APPENDICES

APPENDIX 1. Python Script for Decoding Testing

7

LIST OF ACRONYMS

ACME: Automated Certificate Management Environment protocol

AES: Advanced Encryption Standard

AS: Authentication Server

ASIC: Application-Specific Integrated Circuits

CA: Certificate Authorities

CLI: Command Line Interface

CRL: Certificate Revocation List

CSR: Certificate Signing Request

DES: Data Encryption Standard

ECC: Elliptic Curve Cryptography

ECDH: Elliptic Curve Diffie-Hellman

ECDSA: Elliptic Curve Digital Signature Algorithm

EDIFACT: Electronic Data Interchange Administration, Commerce, and Transport

EJBCA CE: Enterprise JavaBeans Certificate Authority Community Edition

EST: Enrollment over Secure Transport

FPGA: Field-Programmable Gate Arrays

HFE: Hidden Field Equations

HSM: Hardware Security Modules

IoT: Internet of Things

8

KEM: Key Encapsulation Mechanism

GUI: Graphical User Interface

LRA: Local Registration Authority

LWE: Learning With Errors

MD5: Message Digest 5

MQ: Multivariate quadratic

NIST: National Institute of Standards and Technology

OCSP: Online Certificate Status Protocol

OpenPGP: Open Specification for Pretty Good Privacy Working Group

OQS: Open Quantum Safe

OTS: One-time Signature

PKC: Public Key Cryptography

PKE: Public Key Encryption

PKI: Public Key Infrastructure

PQC: Post Quantum Cryptography

QKD: Quantum Key Distribution

RA: Registration Authority

RBAC: Role-Based Access Control

RSA: Rivest Shamir Adleman

SCEP: Simple Certificate Enrollment Protocol

9

SPKI: Simple Public Key Infrastructure

SSH: Secure Shell

SSL: Secure Sockets Layer

TLS: Transport Layer Security

UOV: Unbalanced Oil and Vinegar

VA: Validation Authority

XMSS: Extended Merkle Signature Scheme

10

1 INTRODUCTION

Within the realm of information security, cryptography plays an essential role in

protecting the integrity, confidentiality, and authenticity of digital

communications and transactions. Over the years, a variety of encryption

algorithms have been developed, forming the basis of modern public key

infrastructure (PKI). However, with the rapid advancement of quantum

computing, the traditional cryptographic algorithms that have been relied upon

are facing an imminent threat.

Quantum computers possess the potential to revolutionize computing power by

utilizing the principles of quantum mechanics to perform computations

exponentially faster than classical computers. While this technological

breakthrough holds immense promise for many fields, it also presents a significant

challenge to the security landscape. The inherent computational power of

quantum computers has the potential to render the currently employed

cryptographic algorithms vulnerable to attacks, thus compromising the

confidentiality and privacy of sensitive data.

To address this emerging threat, a new field of study known as post-quantum

cryptography has gained prominence. Post-quantum cryptography focuses on

developing encryption algorithms that are resistant to attacks from quantum

computers, thus ensuring the continued security of digital communications and

transactions even in the face of this unprecedented computing power.

This thesis aims to investigate the implementation and integration of post-

quantum encryption algorithms into the existing public key infrastructure. The

goal is to assess the feasibility and efficacy of these quantum-resistant algorithms

as potential replacements for the traditional cryptographic algorithms currently

employed. By anticipating the future need for secure encryption mechanisms, this

research aims to bridge the gap between the current cryptographic landscape and

the looming threat of quantum computers.

11

In this study, we will explore the fundamental concepts and principles of post-

quantum cryptography, examining various encryption schemes, signature

algorithms, and key exchange protocols that offer resistance against quantum

attacks. We will analyze their strengths, weaknesses, and performance

characteristics in the context of public key infrastructure. Additionally, we will

investigate the challenges associated with implementing these new algorithms,

such as computational complexity, key size, and compatibility with existing

systems.

The research will involve a comprehensive review of the current state of post-

quantum cryptographic algorithms, including lattice-based, code-based, multi-

variate, and hash-based, among others. By examining their mathematical

foundations, security assumptions, and practical implementations, we aim to

provide a comprehensive understanding of the strengths and limitations of these

algorithms.

Furthermore, the thesis will investigate the challenges associated with the

transition from traditional cryptographic algorithms to post-quantum

cryptography in PKI. We will explore the strategies and best practices for migrating

existing systems to quantum-resistant algorithms, ensuring a smooth transition

without compromising security or disrupting critical operations.

By conducting this research, we hope to contribute to the ongoing efforts of the

information security community in ensuring the long-term security of digital

communications and transactions. The findings and recommendations derived

from this study will aid in forming a robust and quantum-resistant public key

infrastructure, providing organizations and individuals with the necessary tools to

protect their sensitive information against the growing threat of quantum

computing.

12

2 PURPOSE OF THE RESEARCH

2.1 Problem and Questions

With the rapid advancements in quantum computing, it is anticipated that current

state-of-the-art cryptographic algorithms will offer only short-term data security.

To address this challenge, various mathematical approaches have been proposed

to enhance the resilience of algorithms against both traditional and quantum

computer attacks. However, the existing implementations of PKI lack support for

this new generation of algorithms. As VisionSpace Technologies, a company

operating in the space industry, explores the development of next-generation

spacecraft and the satellite ground segment, there is a pressing need to gain a

comprehensive understanding of how these technologies can be effectively

combined. Furthermore, it is crucial to analyze and document the tradeoffs and

limitations associated with integrating post-quantum cryptography algorithms

within the context of the space sector.

Therefore, the primary objective of this research is to conduct a state-of-the-art

analysis of post-quantum cryptography algorithms and explore their integration

with public key infrastructure for application in next-generation spacecraft and the

satellite ground segment. This investigation seeks to explore several key questions

surrounding the integration of post-quantum cryptography in various sectors, with

a specific focus on the space industry. Firstly, it aims to examine the current

limitations of traditional cryptographic algorithms when faced with the emerging

capabilities of quantum computing. Secondly, the investigation will explore how

post-quantum cryptography algorithms can be effectively integrated with existing

public key infrastructure implementations. Next, the investigation will consider

the potential tradeoffs and considerations associated with implementing post-

quantum cryptography in the space sector. Finally, the investigation will assess the

implications and advantages of integrating post-quantum cryptography

13

algorithms with public key infrastructure for next-generation spacecraft and the

satellite ground segment.

By addressing these questions, this research endeavors to provide valuable

insights into the state-of-the-art in post-quantum cryptography, facilitate the

development of a proof-of-concept integration with public key infrastructure, and

offer comprehensive documentation and analysis of the tradeoffs and limitations

associated with utilizing these technologies within the space industry.

2.2 Method

In this thesis, the observation method and applied observational method will be

used. Observational research, which includes exploratory studies, is highly

valuable for comprehending the behavior of real-world cyber systems and their

techno-social aspects. This research approach is particularly effective in

addressing broad and open-ended research questions. Observational research

methods involve carefully observing real-world environments and analyzing

collected data to reveal interesting patterns and phenomena. Exploratory studies

involve the collection, analysis, and interpretation of observations related to

known designs, systems, models, abstract theories, or subjects. These studies

primarily use an inductive process to gain understanding, as opposed to

experimental research which progresses from a general theory to a specific

understanding. Exploratory studies focus on specific phenomena to identify

patterns and develop general theories of behavior, with the primary emphasis

lying on evaluating and analyzing data rather than creating new designs or models.

In the social and health sciences, this type of research is often referred to as

qualitative studies, which prioritize gaining perspective and determining relative

importance /1/.

Applied observational research is commonly conducted in the field of

cybersecurity. The main distinction between applied studies and observational

studies lies in their scope. Applied studies focus on observing specific subjects,

14

such as their performance, function, or security, while fundamental observational

studies observe the entire system without any presumptions about its behavior.

The focus of this research is to explore how to adapt scientific techniques and

approaches for studying real-world applications, with an emphasis on applied

observational studies. Although various types of studies can be employed in an

applied context, case-control studies, case studies, and case reports are frequently

used. Applied studies aim to gain an understanding of performance or function by

introducing specific changes or systems that can be measured.

In an applied study, researchers observe a new solution to assess its performance

under different conditions, often involving the introduction of a new defensive

feature or system change. This is accompanied by an expectation or prediction.

The researcher anticipates or assumes how the subject should behave. The goal of

an applied study is to understand the impact of a change or effect under

observation while assuming a particular performance or behavior. For instance,

studying the performance cost implications of adding a firewall to a network

would be considered an applied study /1/.

2.3 Assurance and Ethics

The assurance and ethics of research are guided by three fundamental principles

from the Belmont Report. Firstly, respect for persons emphasizes individual

autonomy and informed consent, including privacy and confidentiality

considerations. Secondly, beneficence involves minimizing harm and maximizing

potential benefits, with clear communication of risks and benefits to participants.

Finally, justice focuses on fairness and equal treatment, ensuring unbiased

participant selection and providing access to information. These principles ensure

the protection of participants' rights and well-being. In this thesis, adherence to

these ethical principles will uphold integrity, safeguard autonomy, minimize harm,

and promote fairness throughout the research process /2/.

15

For research to be considered ethical, reliable, and credible, it must adhere to the

principles of responsible conduct of research. The responsible conduct of research

is an essential aspect of ensuring the quality and integrity of research

organizations. From the perspective of research integrity, the following premises

underlie the responsible conduct of research: Research should uphold the

principles of integrity, thoroughness, and accuracy throughout the entire research

process, including data collection, recording, presentation, and evaluation of

results. The methods employed for data acquisition, research, and evaluation

should align with scientific criteria and uphold ethical standards. When

disseminating research findings, they should be communicated openly and

responsibly to contribute to the advancement of scientific knowledge.

Researchers should demonstrate respect for the work and accomplishments of

other researchers by appropriately acknowledging and citing their publications.

They should acknowledge and give due credit to the contributions and significance

of others' work when conducting their research and publishing its outcomes.

Researchers should comply with the established standards of scientific knowledge

when planning, conducting, and reporting their research. This includes accurately

recording and reporting the data obtained during the research process. Research

projects should obtain the necessary research permits and undergo ethical review,

particularly in fields that require such scrutiny. Before commencing the research

or involving researchers, all parties involved in the research project or team should

reach an agreement on the researchers' rights, responsibilities, and obligations.

This agreement should also address authorship principles, data archiving, and data

access. Further specifications may be made as the research progresses. Any

sources of funding, conflicts of interest, or relevant commitments that may

influence the conduct of the research should be disclosed to all members of the

research project. These should also be reported when publishing the research

results. By upholding these premises, researchers can ensure ethical and

responsible conduct in research, contributing to the credibility, reliability, and

integrity of the scientific community /3/.

16

3 THEORETICAL BACKGROUND

3.1 Public Key Infrastructure

PKI is a highly secure and sophisticated system that facilitates secure

communication by increasing the security of a network and providing the

foundation for securing all internet-connected things, including e-mail, messaging,

and e-commerce. It employs advanced encryption algorithms such as Rivest

Shamir Adleman (RSA) and Elliptic Curve Cryptography (ECC), digital certificates,

and certificate authorities (CA) to guarantee the integrity of data and verify the

identities of both the senders and receivers of digital transactions. With the help

of PKI, organizations can ensure the confidentiality, authenticity, and integrity of

their digital communication and transactions /4/.

PKI is a widely used security infrastructure that employs public key cryptography

to ensure secure digital communication services are delivered using public-key

concepts and techniques /5/.

One of the significant advantages of public key cryptography is that it eliminates

the need for exchanging secret keys. However, in public key cryptography,

effective management of keys is essential. This is where public key infrastructures

come into play, providing secure management of key pairs throughout their

lifecycle to ensure the confidentiality and authenticity of digital transactions /6/.

PKI is a pivotal technology that plays a significant role in ensuring the necessary

level of security and scalability for digital transactions. While other security

approaches such as Identity-based Cryptography, Certificateless Cryptography

have been either scalable but not secure, or secure but not scalable, PKI provides

a comprehensive framework that offers both security and scalability for online

communication. In addition, PKI is adaptable and flexible, making it a standard that

can be used across different industries and applications in the coming years /7/.

17

PKI ensures confidentiality through encryption, authenticity via digital signatures,

and integrity using hash functions. It uses both asymmetric and symmetric keys,

certificates, and trust models to secure communications and verify the identity of

the parties involved. Data privacy and secrecy must be protected by cryptographic

encryption mechanisms to be considered confidential. Integrity refers to the

assurance that data cannot be altered or corrupted and that transactions cannot

be changed. By using public key certificates and digital signature envelopes,

authentication means confirming that the identity of entities is provided /8/.

3.1.1 Public Key Cryptography

Public Key Cryptography (PKC), also known as public-key encryption and

asymmetric encryption, is an advanced encryption technology that employs a key

pair consisting of a public key and a private key. The public key is made available

to anyone who needs to use it, while the private key must be kept confidential to

maintain its integrity. PKC enables secure communication between two parties

without prior knowledge of each other and eliminates the need for sharing a

secret key. It accomplishes this by utilizing the public key cryptography process,

which involves mathematical algorithms that enable secure encryption and

decryption of digital data. PKC's flexibility and robustness make it a popular choice

for securing digital communication channels and ensuring the confidentiality,

integrity, and authenticity of digital transactions /9/.

Using public-key encryption (PKE), a sender can encrypt a message and send it to

a recipient who has the corresponding secret key by using the recipient's public

key. One of the main objectives would be to design effective PKE schemes with

weak and reasonable computational assumptions that are provably secure in

strong security notions /10/.

The main principle of a public key cryptosystem is the use of two different but

related keys: one for encryption and one for decryption. Only the decryption key

can be used for encryption, and vice versa, for decryption. The encryption key can

18

be made public because the decryption key cannot be determined from the

encryption key /6/.

One of the significant advantages of public key encryption is that it simplifies the

distribution of keys by making public keys accessible to all parties. This feature not

only ensures confidentiality but can also be used to establish secure identification

protocols /6/.

Figure 1. Public Key Cryptography Process

3.1.2 Digital Certificates

A digital certificate is a fundamental mechanism used in modern cryptography to

establish the identity of users, devices, applications, and services. It involves the

generation of a private key and the binding of a corresponding public key to its

owner, which creates a unique identifier known as the certificate. This certificate

serves as a trusted third-party verification of identity, which helps to establish

secure communication channels between different parties. Digital certificates are

widely used in various applications, including secure web browsing, email

19

encryption as S/MIME (Secure/Multipurpose Internet Mail Extensions), and digital

signatures /11/.

A data structure known as a digital certificate links personal data to a public key.

A private key is the source of the public key. There is no way to identify the owner

of a public key by looking at it. A public key can be used to identify the owner of

the key and confirm that it is the correct key by being combined with other

identifying information, such as a name, address, and other details. Of course, we

want to make sure the digital certificate is authentic by having a reliable third-

party digitally certify it to make sure no one tampers with it and inserts a different

key. The issuer of the digital certificate is this dependable third party.

It is not required to issue a digital certificate to an individual. In actuality, most

aren't. A wide range of entities, including people, businesses, groups,

organizations, governments, and things, maybe granted digital certificates. The

certificate subject is the organization whose identity is linked to the public key in

the certificate /12/.

A digital certificate is a method of establishing electronic identities. These

certificates are pieces of digital information that allow each entity to be verified.

To make this possible, an authority must control, distribute, and verify the

identities. A certificate authority is one of the most commonly used authorities to

accomplish this. There are numerous CA providers. During a typical Internet

session, a dozen different CAs could be used without even realizing it /9/.

3.1.3 Certificate Authorities

A third party has signed or validated the data in the digital certificate of the

authentication server (AS), which contains information in a standard format that

identifies the owner. The AS and the supplicants both know and trust the third

party, also known as a CA. To validate the certificate it receives from the AS, the

20

supplicant must also have the CA certificate. A public key that can be used to assist

in decrypting messages from the AS /13/.

A company or organization that issues certificates is called a CA. It is the CA's duty

as a reputable entity to guarantee the validity and legitimacy of the certificates it

issues. To comply with this requirement, the CA must prove beyond a reasonable

doubt that each certificate's public key belonged to the organization claiming to

have issued it. The CA must be able to demonstrate the legitimacy of any

certificate it issues upon request to uphold this trust. The function of a CA is

essential to the public key infrastructure (PKI) that supports secure internet

communication /14/.

The two most common types of CAs are. A private CA is only trusted by members

of its organization and is responsible for only issuing certificates to members of

that organization. To issue certificates to any member of the public, a public CA

must enjoy public trust. Depending on the type of CA that issued the certificate

and the type of certificate itself, different burdens of proof apply /14/.

CA carries out the following duties in the server networks: establishes a certificate

requestor's identity. To issue a certificate, the CA must first verify the identity of

the requestor. The CA issues the requested type of certificate to the user,

computer, network device, or service after verifying the requestor's identity. The

content of the issued certificate depends on the type of certificate requested.

Managing certificate revocation by publishing a certificate revocation list (CRL) at

specified intervals. The CRL includes a record of certificate serial numbers that

have been revoked, along with the corresponding reason codes for each

revocation /15/.

3.1.4 Certificate Revocation

To ensure the security of digital communications, it is essential to maintain the

integrity of certificates. To prevent compromised certificates from being used, a

21

list of revoked certificates, known as the CRL, must be maintained and regularly

updated. This allows users to check the validity of certificates before accepting

them /16/.

The revocation of a certificate, as the name suggests, enables a CA to revoke a

certificate and notify browsers of the change. However, the process of revocation

has a complex history. CRLs were initially proposed to allow CAs to maintain a list

of revoked certificates. However, the use of CRLs has been limited due to the

potential for the lists to grow significantly, requiring frequent updates and

increasing the burden on CAs and browsers alike. As such, other methods for

revocation, such as Online Certificate Status Protocol (OCSP), have been

developed to address these issues /17/.

Devices can check CRL to see if a certificate has been revoked before it expires.

The serial number of the certificate (issued by the granting authority) and the date

of revocation make up a list of certificates that have been revoked. The CRL

database may be found on the CA or an external server. The CRL will by default be

kept locally by the CA. The cs-server subconfiguration mode is used to configure

this /7/.

Figure 2. Certificate revocation: CRLs, OCSP, and OCSP stapling /17/.

22

3.1.5 PKI Standards

The standardization of PKIs has become increasingly important as these systems

are adopted more widely. Standardization efforts have been devoted to all aspects

of PKIs, including certificate formats, certificate profiling, and certificate and CRL

repository issues. The potential benefits of standardization include the ability to

enable large-scale interworking between PKIs, as well as lower costs through

economies of scale and increased competition, ultimately contributing to a more

secure and efficient digital ecosystem /18/.

The groups listed here involved in standardizing PKIs are interrelated to different

degrees. Efforts focused on defining certificate formats, such as X.509, Simple

Public Key Infrastructure (SPKI), Open Specification for Pretty Good Privacy

Working Group (OpenPGP), and Electronic Data Interchange Administration,

Commerce, and Transport (EDIFACT), are largely independent of each other, but

collectively aim to provide a common language for PKI systems to communicate.

On the other hand, those focused on profiling certificates for specific

environments and uses, including PKIX, TC68, S/MIME, IPsec, TLS, WAP, XMLdsig,

XMLenc, and SOAP, overlap to a greater degree. Finally, certificate and CRL

repository issues, primarily for X.509 formats, are the focus of efforts such as

X.500, LDAP, and XKMS /19/.

3.1.6 X.509 Formats

The X.509 format is the most widely accepted format for certificates and has seen

three versions since its introduction in 1988, namely X.509v1, X.509v2, and

X.509v3. The latter version was released in 1996 and has been widely adopted due

to its increased security and support for extensions. These extensions allow for

additional information to be included in the certificate such as an issuer's identity,

the purpose of the certificate, and so on. This provides a greater level of

trustworthiness to the certificate and is one of the main reasons why X.509v3 has

become so popular /14/.

23

An X.509 certificate is a data structure used to securely bind a public key to an

identity. It is the most widely used digital certificate format and is frequently used

in a variety of security protocols, such as TLS (Transport Layer Security). It contains

information about the subject (the entity being identified), such as the name of

the entity, its serial number, and the digital signature of the issuing authority. A

certificate may be saved to a file or transmitted via a network, and also as a part

of a secure network protocol, such as TLS. An X.509 certificate binds an identity to

a public key using a digital signature /20/.

Figure 3. An X.509 certificate /20/.

24

An X.509X certificate includes the following fields:

• X.509 version: version 3.

• Serial number: Unique number signed by the issuer.

• Signature algorithm: Denotes hash function and the digital signature

algorithm used.

• Issuer: Entity that signed certificate in DN format.

• Validity: Timestamp fields define the certificate's validity.

• Subject: Entity certificate identifies in DN format.

• The certificate’s public key: Important for identity verification, and

supports RSA, DSA, ECDSA, and EdDSA. Note: X.509 certificate does not

contain a private key, only a public key.

• X509v3 extensions: Optional additional information.

• Certificate signature: Produced by the issuer /20/.

There are several steps in the X.509 certificate generation process:

• The private and public keys for the certificate are generated by the

applicant (future certificate owner).

• Creating a Certificate Signing Request is done by the applicant (CSR). The

CSR includes the subject, the upcoming certificate's public key, the

applicant's requested X509v3 extensions, and the CSR signature. The

private key for the certificate signs the CSR.

• A CA receives the CSR from the applicant for signing.

• The applicant's identity is verified by the CA.

• Based on data from the CSR, the CA creates a certificate. The CA

additionally includes the issuer, validity fields, and X509v3 extensions in

the certificate.

• Finally, the certificate is signed by the CA. The applicant receives the

certificate back from the CA and is now the certificate's owner or holder.

25

3.2 Quantum Computing

The current Information Age and all of its revolutionary digital advancements,

including personal computing, Internet communication, smartphones, machine

learning, and the knowledge economy in general, were ushered in by classical

computers. Bits are the basic unit of data encoding and manipulation in traditional

computers. To switch or amplify electrical signals, today's general-purpose

machines employ billions of transistors and semiconductor components. A

traditional bit, like the power button on a preferred electronic device, can only

ever be in one of two states at once: 0 or 1. For this reason, traditional information

processing is described as binary.

Quantum computing is an emerging field of computing that offers a fundamentally

unique and powerful approach to processing information and calculating solutions

to problems. Quantum computers are capable of taking advantage of the

principles of quantum mechanics to operate in a seemingly infinite number of

states simultaneously, exponentially increasing their computational power

compared to classical computers which can operate in only one state at any given

moment. Therefore, scientists believe that these quantum computers can deliver

exponential speedups and solve problems that are intractable for traditional

computers. While the technology is still in its early stages, the potential uses for

quantum computing are vast and hold promise for revolutionizing many areas of

research, such as artificial intelligence, cryptography, materials science, and more

/21/.

3.2.1 Quantum Computers

Early in the 1980s, scientists learned that quantum mechanics presents fresh

possibilities for data processing. The creation of a proven secure encryption key is

made possible by the non-classical aspects of quantum mechanics, as shown by

Charles Bennett and Gilles Brassard. The entanglement property of particles is

linked to a quantum phenomenon that Richard Feynman and Yuri Manin

26

discovered cannot be replicated by the so-called Touring's machine. This led to the

question of whether the phenomenon could be applied to generally speed up

calculations. The principles of quantum mechanics are the foundation of quantum

computing. A quantum computer is a physical system that uses quantum

computation /22/.

A quantum computer is a device that receives data as input and performs

operations on said data through a process that is only explicable through the

principles of quantum physics /23/.

There are currently two primary categories of quantum computers: Quantum

Circuit Computers and Quantum Adiabatic Computers. Quantum Circuit

Computers are made of a network of quantum gates that transform an initial guess

of the solution to a computational task into one that solves the problem using

quantum mechanics. In Quantum Adiabatic Computers, the energy of a particular

configuration of subatomic particles is used in these computers to represent the

computational task. The solution is then reached by annealing, or gradually

lowering the energy. Both are computationally equal. Quantum algorithms

designed for one type of hardware can be transformed to execute on the other in

a comparable time /24/.

Quantum computers use the properties of subatomic particles such as electrons,

ions, or photons to process information. Information is stored in quantum

registers, which consist of qubits, or quantum bits. Qubits are not limited to the

binary states of 0 and 1 but can exist in a superposition of states until measured.

This is similar to Schrödinger's cat, which can be both dead and alive until

observed. When a qubit is measured, it collapses into a classical bit with a binary

state.

Entanglement is another property of quantum physics where particles become

connected in such a way that they cannot be described independently, even over

great distances. This is in contrast to classical bits, which are independent of each

27

other. In quantum computing, entangled qubits can fall into a shared quantum

state, and manipulating one qubit can affect the whole system.

Interference is a mathematical description of qubits in quantum mechanics,

represented by the wave function. The wave functions of entangled qubits can

interfere constructively or destructively, increasing or decreasing the probability

of obtaining the correct solution when the quantum computer is measured.

Quantum algorithms are designed to choreograph this interference to increase the

probability of obtaining useful measurement states.

One of the tricks used in quantum computing is called inversion about the mean,

where finding the optimal number of iterations through the circuit can increase

the probability of identifying the correct solution when the measurement is taken.

Theoretically, a quantum computer with enough qubits and free from

decoherence and noise could possess immense processing power, capable of

examining more possibilities than the number of atoms in the observable universe

/21/.

3.2.2 Quantum Algorithms

Algorithms are utilized in computation and data processing for modeling and

solving real-life situations through the use of heuristics and methods. Generally,

an algorithm is comprised of a set of instructions that, when executed, achieve a

specific task. Quantum algorithms are particularly useful for providing solutions to

complex problems that are unable to be solved by classical computers.

To further facilitate the development of quantum software, quantum

programming languages have been created to enable the implementation of

quantum algorithms. Generally, these algorithms consist of steps such as encoding

quantum data into quantum bits, the application of a unitary quantum gate chain

operating on the quantum bits, and the termination of the algorithm following the

measurement of the quantum bits. It is important to note that a unitary quantum

28

gate is analogous to a unitary matrix, which operates on the quantum bits, and

that the inverse of a unitary matrix is equal to its conjugate transpose /25/.

The utilization of quantum algorithms for obtaining speedups in solving problems

that necessitate searching for inputs to a function is of great importance. These

functions may be obfuscated, such as hash functions, or computationally difficult

to evaluate, which is common in the study of mathematical problems.

Consequently, the utilization of quantum computers for such problems

necessitates an understanding of how to program and provide input to quantum

algorithms. A quantum program is an implementation of a quantum algorithm,

which consists of a classical program that sends instructions to a quantum device

to prepare a particular state or measurement result /23/.

Quantum algorithms are a series of mathematical steps that, when executed on a

quantum device, will yield a specific result. With the advent of a functional

quantum computer, researchers can take a problem that is addressed by a

quantum algorithm, apply the algorithm, and observe the results. Most quantum

algorithms are deemed revolutionary due to the substantial speed increases they

provide when compared to traditional computers, as well as the types of complex

problems they can solve. Ultimately, many modern cryptographic techniques can

be broken by a combination of quantum properties, computers, and algorithms

/26/.

3.2.2.1 Shor's Algorithm

Peter Shor is widely recognized as a figurehead of quantum computing and the

breaking of traditional asymmetric cryptography in the modern era. Shor's

algorithm is believed to have provided at least an exponential improvement, and

potentially a polynomial time improvement, for the factorization of large primes.

Utilizing quantum computers with a sufficient number of stable qubits, Shor's

algorithm is capable of factoring prime number equations of considerable

magnitude in a matter of seconds to minutes. Through the implementation of an

29

equation that takes a random guess at one of the prime numbers and

subsequently turns it into a much more accurate guess, Shor's algorithm can

significantly reduce the number of guesses needed, in comparison to a classical

brute-force method, by exploiting the mathematical relationship between the two

prime numbers involved /27/.

Far from being merely a mathematical curiosity, the ability to quickly factorize

large numbers is beneficial in cracking the RSA public-key cryptosystem /28/.

The RSA Algorithm, which is employed to encrypt a large portion of today's data,

is based on the factorization of prime numbers. Examples of information that use

this algorithm as part of their security infrastructure include bank records,

passwords, and health records. The popularity of this algorithm is that it would

take a significant amount of time to determine the two factored prime numbers

of a product, particularly when the product is of considerable size. Shor's

Algorithm has gained recognition for its capability to quickly factor out integers,

particularly its capacity to solve period-finding problems in polynomial time /29/.

3.2.2.2 Grover’s Algorithm

Search algorithms are distinguished by their ability to be employed by various

algorithms to locate information, whether in a data repository or a list of values

such as features in an image. The advantage of quantum computing lies in the

potential to expedite the search process. Grover's algorithm utilizes a well-known

technique that allows the use of interference to amplify certain states in our

quantum circuit in a manner that will amplify the amplitude of the value being

sought and diminish those that are not /29/.

Grover's Search Algorithm is a quantum variant of the searching algorithm that is

utilized to achieve an unordered search, which entails locating one or multiple

elements in a database or array. This algorithm demonstrates the capabilities of

quantum computing by minimizing the number of operations required to

complete the search process, as compared to its classical search versions. Grover's

30

Algorithm provides a boost in the search process and employs the technique of

amplitude amplification for the item that is being sought /30/.

This is an unstructured quantum search algorithm developed by Lov Grover which

is capable of finding an input with a high probability using a black box function.

Grover can find an item in N to the power of 1/2 steps as opposed to a classical

average of N/2 steps /31/.

Grover's algorithm can solve a phone book search on the order of the square root

of the number of phone book numbers. For example, if a phone book contains 100

million phone numbers, Grover's algorithm can find a number with 10,000 steps.

This quantum algorithm utilizes quantum mechanics-based methods to accelerate

the search /25/.

Grover's search algorithm can be divided into two main components: Grover's

oracle and the Grover diffusion operator /29/. Grover's oracle can be

conceptualized as a black box. The Grover diffusion operator is responsible for the

process of amplitude amplification, wherein the amplitude of a designated item is

augmented while the amplitude of other elements is reduced. The process of

amplitude amplification can be interpreted as augmenting the amplitude of the

marked element, thus making it more likely to be identified during measurement

/30/.

3.2.3 Algorithms Break

It has been demonstrated that a quantum computer-based algorithm can break

the symmetric key cryptographic algorithm by a factor of the square root of the

size of the key. For instance, to find an image of a 256-bit hash function, a quantum

algorithm will take only 2128 times. In addition, Shor's algorithm assists in the

quantum factorization of large numbers, necessitating that security systems be

quantum-resistant. Furthermore, Elliptic Curve Cryptography has been

31

demonstrated to augment the cracking process by 21 percent, as it is based on

multiplying polynomials and adding random noise.

Financial institutions must begin to invest in post-quantum cryptography to ensure

the security of blockchain-based solutions. Examples of existing cryptographic

systems that will be rendered ineffective by quantum algorithms and computing

power include DES (Data Encryption Standard), Triple DES, AES (Advanced

Encryption Standard), RSA, Merkle hash-tree signatures, Merkle–Hellman

knapsack encryption, Buchmann–Williams class-group encryption, ECDSA, HFEv-,

and others. In particular, Shor's algorithm is a quantum algorithm that poses a

threat to RSA, DSA, and ECDSA cryptographic algorithms /25/.

Shor's Algorithm has rendered RSA, ECC, and Diffie-Hellman vulnerable in the

quantum computing world, as the attacker can use the algorithm to resolve a hard-

mathematical problem in polynomial time and reconstruct the private key with

ease. Grover's Algorithm, which finds with high probability the unique input to a

function that produces a particular output value, further aids the brute attack for

key searching by reducing the effective key strength by half.

Symmetric cryptography is not greatly impacted, as AES is presumed to be

quantum-safe, with Grover's Algorithm only aiding the brute force search. To

counter this, the key size must be doubled, from AES-128 to AES-256. Asymmetric

cryptography, however, is heavily impacted, as RSA/ECC/DH and their derivatives

are not quantum-safe due to Shor's Algorithm. Therefore, a replacement must be

found, with potential options including hash-based digital signature, lattice-based

cryptography, code-based cryptography, and Multivariate Public Key

Cryptography /32/.

The security of Diffie-Hellman is contingent upon the difficulty of resolving the

discrete logarithm problem. Shor's algorithm can also be utilized to solve discrete

logarithms. This implies that, with a quantum computer executing Shor's

algorithm, Diffie-Hellman can be compromised in a reasonable timeframe /33/.

32

It has been determined that hashing algorithms, such as SHA-1 and MD5, are

vulnerable to quantum attacks since the Grover Quantum Search Algorithm can

be utilized to obtain hash collisions at a much faster rate. As a result, Grover's

Quantum Algorithm has the potential to drastically reduce the security level of

symmetric cryptographic systems /34/.

Shor's solution for determining the order has been demonstrated to be far more

efficient than the Grover algorithm in terms of breaking RSA. The most

straightforward solution is to seek the prime factors of N through the utilization

of combined classical-quantum algorithms. Furthermore, it is worth noting that

public key cryptosystems based on discrete logarithms are also highly vulnerable

as the discrete logarithm problem can be linked to period finding, which is a

common practice in order finding through factorization /35/.

3.3 Post Quantum Cryptography

The utilization of immense computing power could be revolutionary in the field of

cryptography. Generally, brute force attacks, which involve attempting all

potential key values, are unfeasible. This was demonstrated in 1997 and 1998

when the DES was broken due to its 56-bit key length, which was deemed

satisfactory in 1977 but was surpassed by the continuous acceleration of

computing technology. The success of the brute force attack was only made

possible by the rapid development of hardware. In response to this breach, the

AES was developed, featuring keys of 128 bits or more, thus rendering brute force

attacks virtually impossible at that time /36/.

The sufficiently large quantum computer implementing Shor’s algorithm would be

capable of breaking the public key algorithms currently in use. As a result, the

world must begin the process of transitioning to replacement algorithms based on

mathematical problems that are not solvable by classical or quantum computers

in a reasonable amount of time.

33

These algorithms are also referred to as quantum-resistant, quantum-safe, or

post-quantum cryptography (PQC). It is therefore essential to begin the migration

away from existing public key algorithms before the potential existence of a

sufficiently large quantum computer /37/.

Post-quantum cryptography is a field of study that focuses on the development of

public-key algorithms that are resistant to being broken by quantum computers.

These algorithms would be quantum-safe and could be used to replace RSA and

elliptic curve-based algorithms in a future where quantum computers can easily

break 4096-bit RSA moduli /38/.

PQC is an area of research in which new quantum-resistant (primarily) public-key

algorithms are developed for a wide range of devices and applications. Quantum

Cryptography, on the other hand, typically refers to the utilization of Quantum Key

Distribution (QKD) in combination with modern encryption techniques /39/.

It is not advisable to design algorithms that are based on a hard problem that is

known to be efficiently solvable by Shor's algorithm, as this would effectively

nullify the hardness of factoring and discrete logarithm problems. Symmetric

algorithms, such as block ciphers and hash functions, would only experience a

reduction in their theoretical security by half in the event of a quantum computer,

as opposed to RSA which would be severely compromised. As such, these

algorithms could potentially form the foundation of a post-quantum scheme /38/.

Classical cryptographic algorithms are based on either integer factorization (for

example, RSA) or discrete logarithms (for instance, ElGamal). These approaches

provide robust security within the current computing environment; however, their

future may be uncertain due to the discovery of algorithms such as Shor's

algorithm which could potentially be used to break contemporary encryption

schemes. As powerful quantum computers become available, measures must be

taken to protect against them. The first step is to increase the key sizes used in

modern encryption algorithms from, for example, 128 to 256 bits (and beyond).

34

The next step is to transition to full-scale encryption which is intrinsically quantum-

resistant. Most proposed PQC protocols employ an asymmetric approach. There

are several major implementations of PQC which are currently being researched

/39/.

In the following sections, we shall analyze four of the most renowned families of

schemes: hash-based, lattice-based, code-based, and multivariate cryptography.

3.3.1 Hash-based Cryptography

Hash-based cryptography is based on cryptographic hashes, as the nomenclature

implies, and is typically utilized in digital signature schemes (as opposed to

encryption). A hash is a one-way function that converts the hashed content into a

representative set of bits (commonly referred to as a hash, hash result, signature,

or message digest) that is unique for each unique content.

It has been established that hash-based cryptography is quantum-resistant, as

hashes are not vulnerable to Shor's algorithm. However, they are susceptible to

Grover's algorithm, which, when implemented on quantum computers, offers a

square root improvement in comparison to binary computers for certain tasks,

such as cracking hashes. This, in turn, reduces the strength of hash-based

cryptography by half. To counter this, it is necessary to double the key size of the

hash, thereby nullifying the benefits of Grover's algorithm and quantum

computing /26/.

Hash-based signatures are often characterized by a variety of parameters that can

affect factors such as security, signature size, and computational complexity /37/.

Hash-based cryptography is vulnerable to the potential of repeating a one-time

key for two different inputs, which could grant attackers access to the private key.

For this reason, developers of hash and hash-based cryptography take extensive

measures to avoid the repetition of one-time keys. A common method to prevent

such repetition is to make the hash stateful, as opposed to stateless. A stateful

35

hash keeps a record of all one-time secret keys used and ensures that none of

them are reused. Most traditional signature-based hashes are stateful. If a

repeated key is detected, the algorithm is re-run or a different part of the longer

keystream is chosen to generate a unique one-time key /26/.

Stateful schemes are significantly more efficient than their stateless counterparts;

however, stateful implementations must be exceptionally diligent in maintaining

an accurate state. It is possible for an implementation to misplace the count of

items that have been signed if a process is interrupted and restarted, or if multiple

services are utilizing the same public key /37/.

3.3.1.1 One-time Signature with Lamport

On October 18, 1979, Leslie Lamport introduced his concept of one-time

signatures (OTS): key pairs that can only be utilized for signing once. Most

signature schemes are partially dependent on the security of one-way functions

(commonly hash functions) for their security proofs. The appeal of Lamport's

scheme is that his signature is exclusively reliant on the security of such one-way

functions.

A Lamport signature is a type of OTS based solely on hash functions. To generate

a key pair that is capable of signing a bit, two random numbers must be generated,

which will serve as the private key. Subsequently, each of these numbers must be

hashed individually to produce the two digests of the public key. To sign a bit that

is set to 0, the first random number must be revealed; conversely, to sign a bit that

is set to 1, the second random number must be revealed /17/.

The individual who generated the keys now desires to sign a message. The initial

step is to hash the message so that a 256-bit hash or digest is produced.

Subsequently, for each bit in the hash, one number from the pairs that constitute

the private key is chosen. This usually implies that if the bit is 0, the first number

is utilized; if it is 1, the second number is utilized. This will generate a sequence of

256 numbers, each one 256 bits long. Consequently, the signature is 64 kilobytes.

36

What distinguishes this from other signature algorithms is that the signature is

utilized one time only. The sender will then discard the private keys used. To

authenticate the signature, the recipient will also hash the message to acquire a

256-bit hash/digest. Then, the recipient utilizes the bits in that hash/digest to

select 256 of the hashes in the sender’s public key. The same selection method

that the sender utilized is employed (i.e., if it is 0, use the first hash; if it is 1, use

the second). Now, the recipient will hash each of the 256 random numbers in the

sender’s signature. If all of these precisely match the 256 hashes selected from the

sender’s public key, the signature is confirmed. If any do not match, the signature

is rejected /33/.

Figure 4. Lamport's Steps /33/.

3.3.1.2 Many Times Signature with XMSS

The Extended Merkle Signature Scheme (XMSS) was introduced in 2011, and it

shares many similarities with the Merkel Signature Scheme. XMSS is a more secure

version of the aforementioned scheme, and it often produces smaller signature

sizes as well. XMSS MT is a more powerful, multitree variant of this scheme and it

is capable of signing an infinite number of messages; compared to XMSS, this

variant typically produces signatures faster, albeit at the cost of a larger file size

/39/.

37

The XMSS, as standardized in RFC 8391, was developed to improve upon Merkle's

signature scheme by introducing several optimizations. One such optimization is

the reduction of the size of the private key required to sign N messages. Rather

than having to generate N OTS private keys and store the public key as a root hash,

XMSS allows for the deterministic generation of OTS keys using a seed and the leaf

position in the tree. This means that only the seed needs to be stored as the

private key, and any OTS key pair can be quickly regenerated from its position in

the tree and the seed. To keep track of which leaf/OTS was used last, the private

key also contains a counter which is incremented each time it is used for signing.

The XMSSMT Stateful Hash-Based Signature Scheme utilizes multiple trees to

enhance the number of signatures supported by the Scheme, while

simultaneously diminishing the workload during the generation of keys and

signing of messages. Each tree is generated in a deterministic manner only when

it is employed in the path leading to the ultimate leaf that contains the OTS utilized

to sign a message /17/.

Figure 5. XMSS signature scheme /17/.

3.3.2 Lattice-based Cryptography

Lattice-based cryptography is regarded as being very reliable because it illustrates

the learning with errors (LWE) idea. LWE encrypts datasets and introduces a small,

controlled error that renders them impossible to decrypt (at least within a

38

reasonable amount of time). A significant component of machine learning is this

method. Oded Regev, a theoretical computer scientist who later won the 2018

Gödel Prize, first proposed the LWE problem in 2005.

A lattice is a concept in mathematics related to set theory, which is characterized

by a repeating pattern of points. It is also known as a coordinate vector in an n-

dimensional space, where 'n' stands for the number of vectors in this space. An

example of a lattice in the real world is a crystal. This type of lattice is defined by

its number of vectors in a vector space /39/.

Figure 6. Two-dimension versus three-dimension lattice /39/.

Lattice-based cryptography may need slightly bigger key sizes than other

encryption techniques, yet this is not necessarily the case when it comes to many

of the lattice-based proposals submitted to the National Institute of Standards and

Technology (NIST), such as CRYSTAL-Kyber, LAC, NewHope, NTRU, NTRUPrime,

Round5, SABER, and ThreeBears. FRODO-KEM is the only one with an appreciably

larger key size, though some code-based ciphers have much bigger ones.

The first lattice-based cipher was NTRU, introduced in 1998, followed by several

ciphers based on LWE and RLWE math problems. Today, lattice-based ciphers are

the most commonly submitted type of post-quantum crypto submitted to NIST.

Additionally, Craig Gentry used lattice-based cryptography in his 2009 dissertation

to create the first fully homomorphic real-world encryption system, allowing a

third party to correctly tamper with encrypted data without first decrypting it /26/.

39

Two NIST finalist schemes are closely related: CRYSTALS-Kyber and CRYSTALS-

Dilithium, which are candidates from the same research team, and both are based

on the LWE problem. Kyber is a public key cryptographic primitive that can be used

as a key exchange primitive, which will explain in this section. Dilithium is a

signature scheme that will explain in the next section. Also note that since these

algorithms are still in flux, will only write about the ideas and intuitions behind

both schemes /17/.

3.3.3 Code-based Cryptography

Error-correcting codes are a component of code-based cryptographic schemes.

Error-correcting codes were initially developed to address the issue of

communication or storage systems that could have a small number of bits that

were corrupted. A k-bit string called a codeword is expanded into an n-bit string

by an error-correcting code. An n-bit codeword with up to t errors (flipped bits)

can be given to an inverse function, which can then identify the flipped bits and

restore the original k-bit string. The more redundant bits that are added to a string,

the more mistakes the error-correcting code can fix. If there are too many errors,

the error-correcting code might report that the error cannot be recovered or it

might recover the wrong data /37/.

A Russian/Soviet mathematician named Valery Denisovich Goppa connected

geometric shapes and combinations to error-correcting codes in the 1970s and

1980s. The Goppa codes are now well-known and were adopted by

cryptographers. The majority of code-based ciphers in general, including McEliece,

one of the most popular code-based ciphers, are built on binary Goppa codes.

Code-based ciphers came in at number two in terms of popularity among the

asymmetric encryption cipher types submitted to NIST. The code-based ciphers

BIKE, Classic McEliece, HQC, LEDAcrypt, NTS-KEM, Rollo, and RQC are among those

that have been submitted to the NIST PQC competition and qualified for the

second round /26/.

40

The first application of the code-based approach was the asymmetric McEliece

cryptosystem, which dates back to 1978. This method employs the binary Goppa

error correction code. The foundation of a Goppa code is modular arithmetic, in

which numbers that reach a predetermined target value return to zero once more.

The twelve-hour clock is the most prevalent example of this in everyday life. Aside

from the McEliece, many cryptographic algorithms, such as RSA and AES, make

use of modular arithmetic in different ways.

The Goppa codes are extremely reliable, but they frequently require very large

public keys. Possibly more work needs to be done on this aspect of the McEliece

plan. Although other, lighter codes have been suggested to take the place of the

trapdoor functions offered by the Goppa codes, none have shown to be as

resistant to cryptanalysis.

An updated version of the McEliece cryptosystem is the Niederreiter

cryptosystem. The method, created in 1986 by Harald Niederreiter, is regarded as

having an equivalent level of security to that of its forerunner. Niederreiter,

however, encrypts data more quickly than the McEliece cryptosystem /39/.

3.3.4 Multivariate Cryptography

Multivariate polynomial-based asymmetric cryptographic primitives are referred

to as multivariate cryptography. Post-quantum cryptography is seen as having

been very robustly interpreted by it. By 2020, the majority of this technology may

have reached full maturity, but it's still possible that attack vectors that have not

yet been identified pose a threat /39/.

Multivariate is an abbreviation for "multiple variables." Multivariate math

equations, like x + y + z = n, are used to create the cryptographic primitives in

asymmetric encryption and signature schemes known as multivariate

cryptography. Multivariate quadratic (MQ) polynomial equation cryptography is

another name for cryptography based on multivariate polynomial mathematics.

41

This means that at least one of the variables has been raised to the second power

(for instance, x^2 + y + z = n). Correctly designed multivariate cryptography is not

protected by large primes and cannot be cracked in polynomial time. They are

therefore regarded as quantum-resistant. They are a strong performance

candidate for hardware implementations like application-specific integrated

circuits (ASIC) and field-programmable gate arrays (FPGA) due to their inherent

qualities.

HFE, Gui, Balanced Oil & Vinegar, Unbalanced Oil & Vinegar, and Tame

Transformation Signature are examples of multivariate cryptography. The

multivariate digital signature protocols GeMSS, LUOV, MQDSS, and Rainbow have

all been submitted. Unbalanced Oil & Vinegar is implemented in several layers as

Rainbow /26/.

In 1996, cryptographer Jacques Patarin unveiled the Hidden Field Equations (HFE)

public-key cryptosystem. This is still a widely used type of multivariate

cryptography, and it may have been the first. The foundation of HFE is the

complexity of the problems posed by a system of quadratic equations. To obscure

the relationship between private and public keys, HFE is based on polynomials

over finite fields of various sizes.

Based on his earlier work, Patarin created the signature scheme known as

Unbalanced Oil and Vinegar (UOV). UOV is based on how difficult it is to distinguish

between two different types of variables, known as "oil" and "vinegar." The phrase

"unbalanced" refers to the use of this scheme of varying ratios of the two

aforementioned variables. UOV requires the solution of a minimal quadratic

equation system to generate and receive signatures. This plan is thought to be

quantum-resistant. Since UOV is primarily based on addition and multiplication, it

is also very easy to implement in even the most basic hardware devices. This

scheme typically has rather long key lengths, resulting in fairly large key file sizes.

An earlier version of UOV, known as Balanced Oil and Vinegar, was broken in 1998,

calling for this updated version /40/.

42

The McEliece cryptosystem has been updated as the Niederreiter cryptosystem.

The method, created in 1986 by Harald Niederreiter, is regarded as being on par

with its predecessor in terms of overall security. When encrypting data,

Niederreiter is quicker than the McEliece cryptosystem /41/.

43

4 APPROACH AND IMPLEMENTATION

4.1 Review of Available PKI Software

PKI software provides the requisite tools to generate, disseminate, and supervise

digital certificates and public keys, as well as to authenticate digital signatures and

ensure secure communication between parties.

The fundamental operation of PKI software involves the utilization of a CA which

issues digital certificates to entities such as individuals, devices, or organizations.

These certificates incorporate the entity's public key and other pertinent data and

are signed by the CA to guarantee their legitimacy.

When an individual desires to communicate securely with another entity, they

must first acquire the other entity's public key from their digital certificate.

Subsequently, they utilize this public key to encrypt the message before

transmitting it. Upon receipt, the other entity utilizes its private key to decrypt the

message.

Furthermore, PKI software provides additional functions such as certificate

revocation, which permits the revocation of compromised or invalid certificates,

and certificate validation, which verifies the authenticity and validity of digital

certificates.

There are several PKI software solutions available on the internet that support

post-quantum algorithms, a majority of them are either closed-source or

commercial PKI solutions. The present chapter entails an extensive investigation

and comparative analysis of various open-source PKI software solutions to offer a

comprehensive overview of the current state of development in the field of PKI

software. The primary objective is to select the most suitable PKI software that

can seamlessly integrate with post-quantum algorithms, or serve as crucial

information for future research endeavors.

44

4.1.1 Candidates

OpenXPKI is designed to function as an online Registration Authority (RA) and CA

for X.509 version 3 certificates, but its flexibility allows it to serve a wide range of

cryptographic key management use cases. OpenXPKI has a mature and stable code

base and is continually evolving to meet the needs of its growing user base.

Furthermore, the development team actively supports multiple professional

installations that have been in operation since 2009, hosting multiple logical CAs

and hundreds of thousands of active certificates /42/.

OpenXPKI is a PKI software solution that is written in the Perl programming

language and is licensed under the Apache 2.0 license. Notably, OpenXPKI also

offers a Graphical User Interface (GUI) for ease of use. There are 33 active

developers of the software who continue to actively maintain and update the

software's repository, with the latest commit being made in February 2023 upon

the release of a new version 3.24. This highlights the ongoing development of the

software and commitment to providing users with an up-to-date and reliable PKI

solution /43/.

OpenXPKI supports Simple Certificate Enrollment Protocol (SCEP) and Enrollment

over Secure Transport (EST) and allows for the use of Hardware Security Modules

(HSMs). It also allows for easy customization of workflows and can run multiple

separate CAs with a single installation. Additionally, it can issue certificates with

publicly trusted CAs and is based on OpenSSL and Perl, making it compatible with

most *nix platforms /42/.

EJBCA is one of the most extensively utilized PKI platforms in the world, providing

comprehensive certificate management, registration, enrollment, and certificate

validation capabilities. It encompasses all essential PKI components, including CA,

RA, and Validation Authority (VA).

45

EJBCA provides flexibility and scalability to accommodate nearly every PKI use

case, including DevOps, Internet of Things (IoT), Industrial IoT, Enterprise PKI, and

more. Additionally, EJBCA offers effortless integrations into third-party systems

for full automation and easy operations. It also features multitenancy, which

enables the hosting of multiple CAs and PKIs in a single server installation /44/.

EJBCA is a Java-based software that operates under the LGPL 2.1 license and

incorporates a graphical user interface. The project currently benefits from the

contributions of 14 active contributors, with the most recent commit having taken

place four months ago which is in February 2023. The latest iteration of EJBCA is

version 7.12.

EJBCA provides a comprehensive turnkey PKI solution that offers pre-packaged

components, protocols, and software for quick and easy deployment. It offers

various deployment models, including turnkey software and hardware appliances,

cloud-based solutions, and hybrid models, enabling flexible and scalable PKI

implementation. Additionally, it supports SaaS-based PKI deployment /45/.

For EJBCA, public key algorithms, including RSA, DSA, and ECDSA (Elliptic Curve

Digital Signature Algorithm), are implemented to facilitate secure key operations

and digital signatures. Key exchange algorithms, such as Diffie-Hellman and

Elliptic-curve Diffie–Hellman (ECDH) are employed during the TLS handshake

process to establish secure sessions. Hash functions, utilized for generating

message digests and certificate signatures, encompass MD5, SHA-1, and the SHA-

2 family, encompassing SHA-256, SHA-384, and SHA-512 while the use of MD5 and

SHA-1 is regarded as a legacy, and their vulnerability to attacks is recognized.

The Dogtag Certificate System is an open-source CA designed for enterprise use.

This full-featured system has been rigorously tested through real-world

deployments, resulting in a hardened solution capable of managing all aspects of

the certificate lifecycle. The system capabilities include key archival, OCSP

46

management, and smartcard integration, making it a comprehensive tool for

certificate management in large-scale environments /46/.

The Dogtag PKI is a Java-based software system designed for PKI deployment. The

system is licensed under the GPL 2.0 license and comes with GUI support.

Currently, there are 44 active contributors involved in the development of this

project, ensuring a constantly evolving and robust platform. The project has been

actively maintained, with the latest commit made in May 2023, coinciding with the

release of this thesis. The current version available is 11.0.0, highlighting the

continued evolution of the system to meet the changing needs of enterprise-level

PKI management /47/.

Dogtag is a comprehensive suite of technologies that facilitates the

implementation of PKI on a large scale. It offers a wide range of features, such as

certificate issuance, revocation, and retrieval, as well as CRL generation and

publishing. Furthermore, Dogtag is compatible with various Certificate Profiles. It

integrates the SCEP to simplify the certificate enrollment process. Additionally,

Dogtag provides a Local Registration Authority (LRA) for organizational

authentication and policy enforcement.

Dogtag also enables organizations to effectively manage their encryption keys,

which includes Smartcard lifecycle management and Token profiles. Furthermore,

Token enrollment, on-hold, key recovery, format, and face-to-face enrollment

with the security officer workstation interface, ensure the highest levels of

security during the enrollment process /46/.

The OpenCA PKI Project is a collaborative initiative aimed at creating a

comprehensive, fully-featured, and open-source Certification Authority with

robust capabilities, implementing widely-used protocols utilizing state-of-the-art

cryptography globally. The project draws upon several open-source software

projects, including OpenLDAP, OpenSSL, Apache Project, and Apache mod_ssl, to

achieve its objectives.

47

The development of the project is structured around two primary objectives:

rigorous analysis and refinement of the security framework, ensuring the selection

of the optimal model for deployment in a CA, and the development of software

tools to facilitate the efficient establishment and management of a CA /48/.

OpenCA PKI is developed using the Perl programming language and is licensed

under the Apache license. The web-based management tool for OpenCA PKI,

OpenCA-NG, offers a user-friendly interface for configuring and managing the

certification authority. While the project's Github repository lists two contributors,

it appears that the development of OpenCA PKI has been inactive for

approximately nine years. Additionally, the latest version of the software, OpenCA

PKI V1.5.0, was released in August 2013 /49/.

Step-CA is an internet-based Certificate Authority (CA) that facilitates the secure

and automated management of X.509 and SSH certificates. Serving as the server-

side counterpart to the Step CLI, Step-CA offers robust TLS security. The system

features default algorithms and attributes that are designed to be both practical

and secure, making it accessible to users who may not possess extensive expertise

in security engineering.

Step-ca is a widely utilized tool among developer teams for a range of critical

functions. It enables the generation of TLS certificates for private infrastructure

via the Automated Certificate Management Environment (ACME) protocol. Step-

ca facilitates automated TLS certificate renewal, which is essential for ensuring the

continued secure operation of online systems. Step-ca allows for the integration

of ACME support with legacy subordinate CAs, offering a seamless solution to a

common challenge in modern security contexts and the issuance of short-lived

Secure Shell (SSH) certificates through the use of OAuth OIDC single sign-on.

Finally, Step-ca empowers teams to issue customized X.509 and SSH certificates,

thereby providing them with greater flexibility in managing their security

infrastructure /50/.

48

Step-ca is a command-line tool that is primarily used through a terminal interface

and is implemented in the Go programming language under the Apache 2.0

license. It provides a solution for managing digital certificates, including X.509 and

SSH certificates, and features a user-friendly web-based interface for the efficient

management and monitoring of certificates issued by the CA. The project has a

substantial following, with 65 active contributors to the codebase, reflecting a

vibrant and dynamic community committed to improving the PKI. Notably, the

most recent commit to the codebase was made in May 2023, indicating that the

project is highly active and focused on delivering cutting-edge PKI solutions. The

latest version, Step CA v0.24.2, was also released in May 2023, providing users

with the most up-to-date features and functionality /51/.

CFSSL is an open-source toolkit that caters to all aspects of TLS and Secure Sockets

Layer (SSL). CloudFlare, a leading internet security company, has integrated CFSSL

into its infrastructure for aggregating TLS/SSL certificate chains and for

maintaining an internal Certificate Authority infrastructure. One of CFSSL's key

advantages is its ability to balance performance, security, and compatibility, which

makes it an ideal tool for website owners and large software-as-a-service

companies alike. CFSSL offers a JSON API web service and a convenient command-

line interface, which can be utilized in diverse settings /52/.

CFSSL is a program that is authored in the popular programming language, Golang.

The tool requires version 1.16 or newer of Go to compile successfully and is

distributed under the permissive BSD-2-Clause open-source license. CFSSL offers

both command-line functionality and HTTP API server capabilities, making it a

versatile tool for signing, verifying, and bundling TLS certificates. A large and

diverse community of contributors has contributed to the project, resulting in a

robust and reliable software package. The most recent commit to the project was

made in May 2023, demonstrating the continued commitment of the project's

maintainers to ensure its ongoing development. The current stable release version

of Cfssl is v1.6.4, which provides a stable and reliable toolset for developers /53/.

49

At present, Cloudflare is running CFSSL on highly secure and tightly controlled

computing systems. However, to further bolster the security of our infrastructure,

Cloudflare plans to incorporate the software with cost-effective Trusted Platform

Modules (TPMs) to offer a more advanced level of hardware security. This strategy

is intended to protect private keys from unauthorized access, even in the

improbable event of a breach /52/.

The public key algorithms employed by CFSSL include RSA and DSA, which are

utilized for cryptographic key operations and digital signatures. CFSSL also

incorporates key exchange algorithms, such as Diffie-Hellman and its elliptic curve

variants ECDH, which are crucial components of the TLS handshake process for

secure session establishment. In terms of hash functions, CFSSL employs the

Message Digest 5 (MD5) and SHA-1, which play vital roles in generating message

digests and creating certificate signatures.

X Certificate and Key Management is a powerful software application developed

to facilitate the effective creation and management of X.509 certificates,

certificate requests, RSA, DSA and EC private keys, Smartcards, and CRLs. This

software provides the comprehensive functionality necessary for a Certificate

Authority, enabling the signing of sub-CAs in a recursive manner with a clear

display of the resulting certificate chains. Additionally, the software offers

configurable templates for generating certificates or requests, which is especially

advantageous for the smooth implementation of this application on a corporate

level /54/.

XCA is a Certificate Authority software application developed using the C/C++

programming language and licensed under the BSD-3-Clause license. Its GUI

facilitates the generation, signing, revocation of certificates, and the management

of private keys and configuration of certificate authorities. The software has been

enhanced by the collaborative efforts of 36 active developers. The most recent

commit to the project was made approximately seven months ago, in November

2022. The latest version is XCA 2.4.0 /55/.

50

The software application offers a comprehensive set of features that enable users

to create, manage, and export private keys, certificates, requests, or CRLs in

various formats, including PEM, DER, PKCS#7, and PKCS#12. The certificates

generated can be utilized for various certificate-based setups, such as IPsec,

OpenVPN, and TLS. The application provides a convenient way to manage Smart-

Cards via the PKCS#11 interface. Additionally, the software offers the ability to

create Subject and/or Extension templates that make issuing similar certificates

more straightforward, converting existing certificates or requests to templates as

required. The x509v3 extensions are supported, allowing for a broad range of

customization options while remaining user-friendly /54/.

In the context of PKI systems, XCA employs a range of encryption algorithms for

different purposes. XCA utilizes traditional encryption algorithms such as RSA,

DSA, ECDSA, Diffie-Hellman, ECDH, and hash functions such as MD5, SHA-1, and

SHA-2 family (including SHA-256, SHA-384, and SHA-512) for public key operations

and message digests. These algorithms play a vital role in ensuring the security and

integrity of data within the XCA PKI environment, allowing for secure

authentication, encryption, and verification processes.

Easy-RSA is a command-line interface (CLI) tool that is specifically designed to

facilitate the management of PKI, using the widely recognized X.509 standard.

With Easy-RSA, it is possible to establish and manage a PKI CA with ease. In

essence, PKI is built around the principle of relying on a trusted authority to verify

the authenticity of a remote peer. Therefore, Easy-RSA represents a reliable utility

for ensuring secure and authenticated communication in a networked

environment /56/.

Easy-RSA is a highly versatile utility that has been developed to run on a variety of

different host systems, owing to its reliance on the platform-neutral POSIX shell.

Moreover, the official Windows release is bundled with all the required programs

for seamless integration with Easy-RSA. The philosophy software aims to reduce

dependencies on external programs, with OpenSSL serving as the backend for

51

crypto-related tasks. Although Easy-RSA does not offer a GUI by default, it

provides a powerful command-line interface that requires manual input and

terminal interaction. The project boasts active development by 60 contributors,

with the latest commit having been created in May 2023, and the most recent

release version being v3.1.2 in January 2023 /57/.

One of its notable advantages is the ability to manage multiple PKIs independently,

with different configurations and storage directories. Easy-RSA supports several

Subject Name formatting options, allowing for a cleaner setup for VPNs using

commonName only. Easy-RSA employs a single backend that is compatible with

various platforms, including Unix-alikes (BSD, Linux, etc.) and Windows, ensuring

all platforms have access to its rich features. Its X.509 support includes advanced

features such as CRL, CDP, and keyUsage/eKu attributes, with the option to add or

modify features as needed. Easy-RSA offers flexible operation modes, with both

interactive and automated (batch) modes of operation. The configuration is also

flexible, with features enabled through command-line options, environment

variables, a config file, or a combination of these. Built-in defaults enable Easy-RSA

to be used without having to first edit a configuration file /56/.

Django-ca is a tool that facilitates the management of TLS certificate authorities

and streamlines the process of issuing and revoking certificates. The tool is built

on top of the highly secure cryptography framework and integrated with the

powerful Django web framework. Notably, the entire system can be effectively

administered through the command line interface, leveraging the manage.py

commands /58/.

Django-ca is built upon Django, a full-stack framework widely recognized in the

software development community. Licensed under the GPL-3.0 license, Django-ca

offers a rich set of features for managing TLS certificate authorities. It is worth

noting that Django-ca does not provide GUI.

52

The project boasts a vibrant development community, with a dedicated team of

10 contributors actively advancing its capabilities. As evidenced by the latest

commit in May 2023, the project is continuously evolving and improving with

regular updates. The most recent release, version 1.24.0, was launched in May

2023, further solidifying the commitment to ongoing development and

enhancement of Django-ca /59/.

A key feature is the ability to quickly and easily set up a secure local CA,

streamlining the process of issuing and managing certificates. Furthermore, the

software provides for CRLs and OCSP to ensure the efficient and secure revocation

of certificates when necessary. The application allows for certificate issuance

through multiple mediums, including ACMEv2, command line, and web interface,

offering users flexibility and ease of use. Management of the certificates can be

done through the command line and/or Django's admin interface, providing a

simple and efficient management process. To ensure the timely renewal of

certificates, the software can be configured to send email notifications regarding

certificates that are nearing expiration. The application uses Python 3.8+, Django

3.2+, and cryptography 37.0+, providing a stable and dependable platform for

certificate management /58/.

Django-ca incorporates various encryption algorithms within its PKI system.

Django-ca utilizes traditional encryption algorithms such as RSA, DSA, ECDSA,

Diffie-Hellman, ECDH, and hash functions like MD5, SHA-1, and SHA-2 family

(including SHA-256, SHA-384, and SHA-512) for public key operations and message

digests. Furthermore, Django-ca also places notable emphasis on symmetric key

algorithms, including AES, DES, 3DES, RC4, Blowfish, and Twofish.

The Open Quantum Safe (OQS) project is a collaborative effort aimed at advancing

and exploring quantum-resistant cryptography. It consists of two main

components: liboqs, an open-source C library that provides quantum-resistant

cryptographic algorithms, and the integration of prototypes into various protocols

and applications. Notably, the project is integrated with the widely utilized

53

OpenSSL library, allowing developers to incorporate quantum-resistant

cryptography into their projects. The OQS project is a valuable resource for

enterprises seeking to create their own post-quantum PKI. Its C-based source code

makes it easy to integrate with future algorithms, guaranteeing adaptability as

new cryptographic methods emerge. By utilizing widely used algorithms originally

written in C, developers can easily incorporate novel cryptographic approaches

into their systems. The project has an active community of developers, as

evidenced by the release of 12 versions as of May 2023. Its repository contains a

wide range of renowned and efficient post-quantum algorithms, including

CRYSTAL-kyber, BIKE, FrodoKEM for key exchange, and Dilithium, Falcon, and

SPHINCS+ for signature algorithms. While the OQS project does not provide a

complete PKI solution on its own, it presents an appealing integration option due

to its broad selection of post-quantum algorithms and compatibility with OpenSSL,

a widely accepted library.

The Open Quantum Safe (OQS) project is a collaborative effort aimed at advancing

and exploring quantum-resistant cryptography. It consists of two main

components: liboqs, an open-source C library that provides quantum-resistant

cryptographic algorithms, and the integration of prototypes into various protocols

and applications. Notably, the project is integrated with the widely utilized

OpenSSL library, allowing developers to incorporate quantum-resistant

cryptography into their projects. The OQS project is a valuable resource for

enterprises seeking to create their own post-quantum PKI. Its C-based source code

makes it easy to integrate with future algorithms, guaranteeing adaptability as

new cryptographic methods emerge. By utilizing widely used algorithms originally

written in C, developers can easily incorporate novel cryptographic approaches

into their systems. The project has an active community of developers, as

evidenced by the release of 12 versions as of May 2023. Its repository contains a

wide range of renowned and efficient post-quantum algorithms, including

CRYSTAL-kyber, BIKE, FrodoKEM for key exchange, and Dilithium, Falcon, and

SPHINCS+ for signature algorithms. While the OQS project does not provide a

54

complete PKI solution on its own, it presents an appealing integration option due

to its broad selection of post-quantum algorithms and compatibility with OpenSSL,

a widely accepted library /60/.

4.1.2 Selected PKI

After conducting a comprehensive evaluation and analysis of various PKI solutions,

a carefully curated selection has been compiled, resulting in a refined list of

potential candidates. These candidates exhibit numerous advantageous qualities

that make them highly suitable for integration and further research purposes.

Notably, they have garnered a commendable reputation, with active contributions

from developers. Moreover, their seamless integration capabilities with different

platforms and programming languages, coupled with their robust security

measures, further enhance their suitability for deployment.

The first candidate is CFSSL which developed and maintained by Cloudflare, is a

highly reputable and widely utilized PKI toolkit, renowned for its dependability and

industry recognition. CFSSL boasts an active community and robust support,

enabling consistent development, frequent updates, and efficient issue resolution

for improved security and user assistance. CFSSL is particularly known for its

scalability, accommodating organizations with extensive certificate needs. Its

strong architecture efficiently manages high volumes of certificate issuance and

management for large-scale deployments. CFSSL provides seamless integration

with a variety of systems, platforms, and programming languages, affording

flexibility for straightforward incorporation into existing infrastructures. This

allows developers and system administrators to integrate CFSSL into their

preferred environments with ease. CFSSL provides extensive documentation and

resources, including tutorials, guides, and examples. These valuable references

assist users in comprehending CFSSL's capabilities and implementing them

effectively for their particular use cases.

55

The second candidate is Django-ca which offers seamless integration with the

Django web framework, taking advantage of its powerful features and ecosystem.

This integration enables developers to easily incorporate Django-ca into their

applications, benefitting from Django's robust development practices and saving

time and effort in the construction and maintenance of a PKI solution. Django-ca

provides a highly customizable and extensible architecture, allowing users to

customize certificate fields, user roles, and signing policies to meet their unique

requirements. Furthermore, Django-ca features a user-friendly administrative

interface, facilitating efficient management of the PKI system. This interface

simplifies essential tasks such as certificate issuance, revocation, and

management, utilizing the familiar Django admin interface to enhance usability

and reduce the learning curve for administrators and users. Additionally, Django-

ca enables comprehensive certificate lifecycle management, supporting CSRs,

issuance, revocation, and renewal. This streamlined approach simplifies PKI

infrastructure management, ensuring efficient handling of certificates throughout

their lifecycle. Finally, Django-ca implements role-based access control (RBAC) to

enforce fine-grained user permissions and actions in the PKI system. RBAC ensures

secure access while maintaining data integrity, enabling organizations to enforce

least privilege principles and enhance system security.

The third candidate is EJBCA CE which is a comprehensive PKI solution that offers

a range of features for certificate management. It provides customizable

certificate profiles, robust features for issuance, revocation, and validation, and

comprehensive certificate lifecycle management. EJBCA CE is highly scalable,

making it suitable for organizations with large-scale PKI needs. It is capable of

efficiently managing high volumes of certificate issuance and management,

thereby ensuring seamless operations in complex environments. Furthermore,

EJBCA CE is supported by an active community of users and contributors, which

facilitates continuous development, support, and regular updates. This vibrant

community also provides valuable resources, documentation, and support

channels, thus promoting knowledge sharing and facilitating prompt issue

56

resolution. In addition, EJBCA CE prioritizes security and compliance with industry

standards, including features such as CRLs, OCSP support, and granular access

control. Furthermore, it follows best practices for cryptographic operations and

certificate management, ensuring a robust and secure infrastructure. Lastly, EJBCA

CE offers seamless integration with diverse systems and platforms, thereby

enhancing flexibility and adaptability in various environments. It supports

integration with popular software such as LDAP directories, databases, and

external certificate authorities, making it easy to incorporate into existing

infrastructures.

The fourth candidate is XCA which offers an intuitive and user-friendly interface,

making PKI system management easier for administrators and users. The

simplified interface facilitates tasks such as certificate issuance, revocation, and

management, thus reducing the learning curve and improving usability. XCA is

lightweight and portable, allowing for compatibility with a variety of environments

and operating systems. It is deployable on both desktop and server platforms,

providing flexibility and seamless integration with existing infrastructure. XCA

provides advanced cryptographic support, offering a wide range of algorithms and

protocols. Users can take advantage of the latest security standards and

encryption techniques, including secure options for key pair generation, certificate

signing, and encryption. This ensures strong security for digital certificates. XCA

has a highly customizable architecture, allowing organizations to customize the

PKI system to their individual needs. It supports custom certificate fields,

extensions, and integration with external systems through APIs, thus promoting

flexibility and adaptability. XCA is an open-source project with a vibrant

community of users and contributors. The active community guarantees

continuous development, support, and regular updates, providing valuable

resources, documentation, and support channels. The open-source nature

encourages transparency and facilitates community-driven enhancements and

improvements.

57

4.2 Possible Alternatives for Traditional Encryption Algorithms in PKI

Quantum computers can out-calculate traditional encryption algorithms, making

existing cryptographic systems vulnerable to attack. To counter this, the NIST has

evaluated post-quantum algorithms to potentially replace existing ones. It is

important to consider and integrate post-quantum algorithms into the current

infrastructure or explore their potential. Doing so is essential for bolstering PKI

security against quantum computer attacks. A selection of encryption algorithms

commonly used in PKI software will be briefly examined.

Within the third round of the NIST post-quantum encryption competition, a

selection of encryption algorithms emerged as noteworthy candidates for

replacing traditional cryptographic algorithms. These algorithms have undergone

rigorous evaluation and demonstrate promising characteristics. In the category of

Public-key Encryption and Key-establishment Algorithms, the finalist algorithms

include Classic McEliece, CRYSTALS-KYBER, NTRU, and SABER. Moreover,

alternative options such as BIKE, FrodoKEM, HQC, NTRUPrime, and SIKE are

available. In terms of Digital Signature Algorithms, the finalists encompass

CRYSTAL-DILITHIUM, Rainbow, and Falcon, while choices consist of GeMSS, Picnic,

and SPHINCS+. Each of these algorithms possesses distinct advantages and trade-

offs in various scenarios. Collectively, they present a viable approach to achieving

quantum-resistant security, thus rendering them suitable for integration within

PKI software or any application requiring quantum-safe cryptographic

mechanisms /61/.

Cloudflare recently published a blog post that conducted a comprehensive

assessment and comparison of Digital Signature Algorithms concerning their

traditional counterparts. The evaluation was based on two key factors: size and

relative time. These factors were carefully analyzed to determine the effectiveness

and efficiency of the Digital Signature Algorithms in practical applications. By

considering the size of the signature and the relative time required for signature

generation and verification, Cloudflare aimed to provide a thorough

58

understanding of the performance characteristics and feasibility of these

algorithms compared to traditional alternatives. This analysis from Cloudflare's

blog post provides valuable insights for evaluating the suitability and practicality

of Digital Signature Algorithms in real-world scenarios, thus enhancing the

understanding of cryptographic choices in the context of the thesis /62/.

Figure 7. Digital Signature Algorithms comparison /62/.

4.3 Review of Available Post-quantum Encryption Algorithms

The field of cryptography encompasses numerous algorithms for public key

encryption and digital signature schemes, as previously mentioned. In this thesis,

our focus will primarily be on the algorithms recommended by the NIST. The

selected algorithm for public key encryption and the key establishment is

CRYSTALS-KYBER, while for digital signature schemes, the chosen algorithms are

CRYSTALS-DILITHIUM, falcon, and SPHINCS+ /63/.

59

Given NIST's endorsement, our objective is to identify and examine a wide range

of implementations for each of these selected algorithms. This will provide us with

a comprehensive set of options to either support our implementation or facilitate

further research. By delving deeper into the characteristics and intricacies of these

algorithms, we aim to foster their integration and explore their potential for future

advancements.

In the subsequent section, we will delve into a comprehensive discussion of the

aforementioned algorithms, shedding light on their distinct features and providing

valuable insights to aid in their integration and further investigation.

4.3.1 Public-key Encryption and Key-establishment Algorithms

Kyber is an IND-CCA2-secure key encapsulation mechanism (KEM), which is based

on the hardness of solving the LWE problem over module lattices. It provides

different levels of security depending on the size of the key being used.

Specifically, Kyber-512 provides security roughly equivalent to AES-128, Kyber-768

provides security roughly equivalent to AES-192, and Kyber-1024 provides security

roughly equivalent to AES-256. Due to its impressive performance, Kyber is already

being integrated into libraries and systems by the industry. For example,

Cloudflare has integrated Kyber alongside other post-quantum algorithms into

CIRCL. The performance of Kyber can be seen in Figure 8 below, which

demonstrates its efficiency compared to other algorithms.

The main repository contains the official reference implementation of the Kyber

key encapsulation mechanism, as well as an optimized implementation specifically

designed for x86 CPUs that support the AVX2 instruction set. While the original

implementation is written in the C programming language, it is worth noting that

numerous implementations in other languages are available on the internet.

These alternative implementations can be leveraged to suit our specific needs if

the original implementation is not compatible with the language requirements of

our PKI software.

60

Figure 8. Kyber Performance /64/.

The primary implementation of the Kyber algorithm within the repository was

initially developed three years ago in 2020. However, it is noteworthy that active

development efforts have continued, as evidenced by the most recent commit

made in May 2023. This ongoing development highlights the commitment to

refining and enhancing the implementation of the algorithm, ensuring it remains

up to date with the latest advancements and addressing any potential

vulnerabilities or performance optimizations /65/.

In addition to the official C implementation, a wide array of implementations in

various programming languages are available. These include but are not limited to

C++, Rust, Python, Java, TypeScript, Golang, JavaScript, and VHDL. This diverse

61

range of language options provides ample choices for developers seeking to utilize

the Kyber algorithm in their projects, enabling them to integrate it seamlessly

without the need to develop an implementation from scratch.

4.3.2 Digital Signature Algorithms

The first algorithm is Dilithium. The hardness of lattice problems over module

lattices makes Dilithium a digital signature scheme that is strongly secure under

chosen message attacks. This security notion means that an adversary, even with

access to a signing oracle, cannot produce a signature of a message whose

signature he has not yet seen, nor produce a different signature of a message that

he already saw signed. Lyubashevsky's "Fiat-Shamir with Aborts" technique, which

uses rejection sampling to make lattice-based Fiat-Shamir schemes compact and

secure, serves as the design basis for Dilithium. Dilithium improves on the most

efficient scheme of Bai and Galbraith, which only uses uniform distribution, by

using a new technique that shrinks the public key by more than a factor of 2. To

the best of our knowledge, Dilithium has the smallest public key + signature size

of any lattice-based signature scheme that only uses uniform sampling. We offer

two different implementations: a C reference implementation and an optimized

implementation using AVX2 vector instructions. The efficiency of the algorithms is

depicted in Figure 9 below.

The main repository hosts the official reference implementation of the Dilithium

signature scheme, along with an optimized implementation specifically tailored

for x86 CPUs that support the AVX2 instruction set. These implementations

include various test and benchmarking programs, as well as a Makefile to

streamline the compilation process. The primary codebase of the repository was

developed approximately between 2020 and 2021. However, it appears that the

project has become relatively inactive, with the most recent commit dating back

to 2022 /67/.

62

Figure 9. Dilithium Performance /66/.

Similar to Kyber, Dilithium has garnered attention in the cryptographic

community, leading to the availability of implementations in multiple

programming languages. The official repository provides the reference and

optimized implementations of Dilithium, supplemented with test programs and a

Makefile. Although not as abundant as Kyber, the languages commonly associated

with Dilithium implementations include Java, Golang, Rust, C++, and JavaScript.

These alternative language implementations broaden the accessibility and

usability of Dilithium, enabling developers to adopt the scheme in their preferred

programming languages, alongside the original C implementation.

63

The second algorithm is Falcon. Falcon builds upon the theoretical framework of

Gentry, Peikert, and Vaikuntanathan for lattice-based signature schemes. It

instantiates this framework using NTRU lattices and a trapdoor sampler known as

"fast Fourier sampling." The foundation of Falcon relies on the computational

challenge of solving the short integer solution problem (SIS) over NTRU lattices. To

date, no efficient algorithm exists to solve this problem, even with the assistance

of quantum computers. Falcon offers advanced security with negligible key

leakage, compact signatures, fast processing, scalability, and efficient RAM usage.

It utilizes true Gaussian sampling, NTRU lattices, and fast Fourier sampling for high-

security signatures, shorter signature sizes, rapid operations, scalability, and

compatibility with memory-constrained devices. The performance of Falcon is

depicted in the accompanying figure.

Figure 10. Falcon Performance /68/.

The primary repository of Falcon is implemented in C, demonstrating the initial

development and focus of the project. However, an additional repository exists

specifically for the Python implementation of Falcon, indicating efforts to expand

its availability in different programming languages. While the main repository

appears relatively inactive, the Python implementation continues to receive

updates and maintenance, indicating ongoing development /69/.

Furthermore, alternative versions of Falcon can be found on various platforms

with implementations available in Golang, C++, C (besides the official one not in

GitHub), Rust, and Javascript. Although the number of resources for Falcon is not

as abundant as those for Kyber, it is comparable to the resources available for

Dilithium.

64

Finally, SPHINCS+ is a stateless hash-based signature scheme that was originally

proposed as part of the NIST post-quantum crypto project. It builds upon the

advancements of the SPHINCS signature scheme, which was initially presented at

EUROCRYPT 2015. SPHINCS+ incorporates several enhancements, primarily

focused on reducing the size of signatures.

These signature schemes are derived by instantiating the SPHINCS+ construction

with three different hash functions: SHAKE256, SHA-256, and Haraka. In the

second round submission of SPHINCS+, a split is introduced for each of the three

variants, resulting in a simplified and robust version of the scheme for each hash

function choice. The robust variant corresponds to the SPHINCS+ version

submitted in the first round and retains all the conservative security guarantees

provided earlier. The performance of SPHINCS+ is represented in Figure 11.

Figure 11. SPHINCS+ Performance /70/.

Similar to the aforementioned algorithms, the original implementation of

SPHINCS+ was initially written in the C programming language. The repository was

established approximately a year ago and is released under the CC0 1.0 Universal

license. The developer and author of the repository continue to actively

contribute, as evidenced by the latest commit made in April 2023.

Additionally, like other digital signature algorithms, alternative implementations

of SPHINCS+ in various programming languages have been identified. These

languages include Java, Go, Rust, Python, and C++. While the availability of

65

resources for SPHINCS+ is substantial compared to other digital signature

algorithms, it falls short in comparison to the extensive range of resources

available for Kyber. While the resources for SPHINCS+ may not be as abundant as

those for Kyber, they still offer a considerable selection for developers seeking to

utilize this signature scheme /71/.

4.4 Integration of Post-quantum Algorithms with PKI

This chapter outlines the implementation and testing of the integration of Post-

Quantum PKI, which has several significant use cases. Firstly, it ensures the

confidentiality and integrity of data against potential quantum attacks, making it

essential for secure online transactions and e-commerce, as it safeguards sensitive

information such as credit card details. Governments and defense organizations

can benefit from post-quantum PKI by securing their classified communications,

document signing processes, and identity management systems. Additionally,

post-quantum PKI is essential in protecting critical infrastructure systems,

preventing potential disruptions caused by quantum attacks. Cloud service

providers can leverage post-quantum PKI to enhance the security of their

infrastructure and protect customer data. In healthcare and medical systems,

post-quantum PKI secures electronic health records, medical device

communications, and telemedicine platforms, ensuring privacy and protection

against quantum-based threats. These use cases illustrate the importance of

implementing post-quantum PKI to protect sensitive information, secure

communications, and maintain the integrity of various systems and applications in

the face of quantum computing advancements.

4.4.1 Planning

Following the evaluation of selected PKIs and attempts to inspect their source

code and integrate them with post-quantum algorithms, it was determined that

such endeavors exceeded the time constraints established for this thesis. While

the selected PKIs offered a wealth of resources for future research, their complex

66

nature, consisting of extensive lines of code, rendered them unsuitable for

implementation within the scope of this study. As a result, a simpler PKI

implementation will be pursued, leveraging various open-source resources and

guidelines. The key aspect of this implementation is its reliance on the Open

Quantum Safe (OQS) framework, as previously mentioned in the Candidates

subchapter. The implementation will involve building a straightforward PKI system

that encompasses crucial components such as a Root Certificate Authority

(rootCA), capable of issuing server certificates, mechanisms for certificate

revocation, and the inclusion of a CRL to store information on revoked certificates.

As highlighted in the review of post-quantum algorithms, this implementation

emphasizes the adoption of specific algorithms derived from the NIST

competition. Notably, the chosen algorithms include CRYSTALS-kyber, CRYSTALS-

dilithium, Falcon, and SPHINCS+. These algorithms, provided by the OQS

framework, are central to the implementation's design and execution /72/.

4.4.2 Implementation

This thesis outlines the implementation of a project on Linux Ubuntu version

20.04.6 LTS. Therefore, the implementation and command line instructions

provided are Linux-based. The initial phase of the implementation involves the

installation of the OQS repository github.com/open-quantum-safe/, which serves

as the foundation for the PKIs before additional components are incorporated. All

the command lines will be demonstrated following each paragraph to clarify the

process.

The installation process of the OQS can be summarized as follows. To build the

OQS, several libraries must be acquired. These libraries include cmake, gcc, libtool,

libssl-dev, make, ninja-build, and git. The installation process can be completed

with the installation command (1). It is imperative to remember to run the update

(2) before installation to ensure all components are up to date. The following steps

involve the cloning and installation of the liboqs library. This process is composed

of several sub-steps. To begin, the liboqs repository should be cloned from the

67

official GitHub with the suffix liboqs. Subsequently, a build directory should be

created within the liboqs directory. After navigating to the build directory, the next

step involves executing the command (3). To complete the installation of liboqs,

the ninja commands (4) and (5) should be executed in sequence. The concluding

step of the installation process necessitates the construction of the OQS repository

through the utilization of the make command. This step encompasses the

following substeps: Initially, the aforesaid repository should be cloned, with the

addition of the suffix "openssl" to its name. Subsequently, one must navigate to

the directory containing OpenSSL and execute the command (6). Lastly, command

(7) should be employed to initiate the build process.

Upon the successful completion of the installation process, the next step is to

proceed to construct our PKI based on the installed components. Furthermore,

there are more to incorporate additional components functional PKI system. To

establish PKI, it is necessary to have a Root CA and a Signing CA. Furthermore, the

Signing CA should be utilized to generate a certificate for a sample server or email.

Moreover, command line tools to revoke certificates and create CRLs should be

incorporated, as well as the capability to view issued certificates. All of these

components are indispensable for a successful and secure PKI implementation.

To begin the process, navigate to openssl directory and create the RootCA by

executing the (8) command. To provide further clarity, it is essential to understand

$sudo apt install (1)

$sudo apt update (2)

$cmake -GNinja -DOQS_USE_OPENSSL=1 .. (3)

$ninja (4)

$sudo install ninja (5)

$./Configure no-shared linux-x86_64 -lm (6)

$make -j (7)

68

the significance of each parameter used in the command line. The "req" parameter

denotes the request, while "-x509" signifies the output format as the x509

structure. The "-new" parameter indicates a new certificate request, while "-

newkey" specifies the type of the new key to be generated. The "-keyout"

parameter determines the destination file for the key, and "-out" specifies the

output file for the certificate. The "-nodes" flag ensures that the output key is not

encrypted. The "-subj" parameter sets the subject for the certificate, and the "-

days" parameter defines the validity period of the certificate in days. Besides, the

"-config" parameter refers to the request template file, which plays a crucial role

in the certificate creation process. Lastly, it is important to note that the

placeholder "<SIG>" in the aforementioned command represents the type of

signature algorithm to be utilized for encryption. The OQS repository offers

support for various signature algorithms recommended by NIST, such as Dilithium,

Falcon, and SPHINCS+. The selection of a specific algorithm is contingent upon the

preferences of the creator or the requirements of the PKI system being

implemented. The following step involves the creation of a Signing CA, which

follows a similar procedure as that of the RootCA setup. However, slight

modifications are made to differentiate the Signing CA; these modifications

include changing "_CA" to "_signingCA" in the file names and adjusting the

Common Name to "SigningCA" within the same command line as mentioned

earlier.

In the subsequent step, the server generates its key pair and a certificate request,

which is then forwarded to the CA. This can be achieved by executing the (9)

command. This command generates a new key pair and creates a certificate

request. The private key is saved in the file specified by "<SIG>_server.key", while

the certificate request is stored in "<SIG>_server.csr". To sign and generate the

server's certificate, the command (10) is used. To provide a more comprehensive

explanation, this command performs the signing process and generates the

server's certificate. The "-in" parameter denotes the input file as

"<SIG>_server.csr", which contains the certificate request. The "-out" parameter

69

designates the output file as "<SIG>_server.crt", where the signed certificate will

be stored. The "-CA" and "-CAkey" parameters respectively indicate the RootCA

certificate file "<SIG>_CA.crt" and its corresponding private key file

"<SIG>_CA.key" used for signing. The "-CAcreateserial" flag creates a serial

number file for the certificate.

To establish a basic server capable of key exchange with enabled algorithms, the

previously created key and certificate are utilized. The following command lines

demonstrate the creation of a server and client for key exchange within the PKI.

For the server, execute (11). For the client in a separate terminal, execute (12).

The server command initiates a server instance, utilizing the specified server

certificate "<SIG>_server.crt" and its corresponding private key

"<SIG>_server.key". The "-www" flag enables a basic web server functionality,

while "-tls1_3" ensures that TLS version 1.3 is used. On the other hand, the client

command creates a client instance in a separate terminal. The "-groups"

parameter specifies the desired key exchange algorithm "<KEX>" such as

kyber512, and the "-CAfile" parameter references the RootCA certificate

"<SIG>_CA.crt" to establish trust. These commands facilitate the establishment of

a secure key exchange environment within the PKI, allowing secure

communication between the server and client.

The final step in the establishment of a basic PKI using the OpenSSL repository

involves generating a revocation list. This can be achieved by executing the (13)

$apps/openssl req -x509 -new -newkey <SIG> -keyout

<SIG>_CA.key -out <SIG>_CA.crt -nodes -subj "/CN=Root CA" -

days 365 -config apps/openssl.cnf (8)

$apps/openssl req -new -newkey <SIG> -keyout

<SIG>_server.key -out <SIG>_server.csr -nodes -subj

"/CN=Server" -config apps/openssl.cnf (9)

$apps/openssl x509 -req -in <SIG>_server.csr -out

<SIG>_server.crt -CA <SIG>_CA.crt -CAkey <SIG>_CA.key -

CAcreateserial -days 365 (10)

70

command, which generates a revocation list denoted as "ca.crl" using the OpenSSL

configuration file "openssl.cnf". The "-gencrl" option specifies the generation of a

revocation list, ensuring that a comprehensive record of revoked certificates is

maintained within the PKI system.

Furthermore, it is essential to understand how to view certificates and revoke

them when necessary. To view the certificate in a human-readable format, the

command (14) should be executed, which provides a detailed textual

representation of the certificate "<SIG>_server.crt", allowing for easy examination

and analysis of its contents. To revoke a certificate, the command (15) should be

used, which is performed by the Certification Authority (CA) and allows for the

designation of a specific reason for revocation, with "superseded" used as an

example here. These command lines enable the viewing and managing of

certificates within the PKI system, guaranteeing transparency and control over the

certificate lifecycle.

In conclusion, a basic PKI has been established using the OpenSSL repository. This

PKI includes the RootCA, and SigningCA, and covers essential procedures such as

generating certificates for servers, enabling key exchange between servers and

clients, creating CRLs, viewing certificate details, and revoking certificates using

OpenSSL-based commands. This implementation demonstrates the fundamental

components and operational aspects of a PKI, providing a solid foundation for

secure communication within a networked environment.

$apps/openssl s_server -cert <SIG>_server.crt -key

<SIG>_server.key -www -tls1_3 (11)

$apps/openssl s_client -groups <KEX> -CAfile <SIG>_CA.crt

 (12)

$openssl ca -gencrl -config openssl.cnf -out ca.crl (13)

$apps/openssl x509 -in <SIG>_server.crt -noout -text (14)

$apps/openssl ca -config apps/openssl.conf -revoke

<SIG>_server.crt -crl_reason superseded (15)

71

4.4.3 Testing

The Testing Phase of Integration PKI involves three distinct tests: Verification

Testing, Decoding Testing, and Time (Performance) Testing. The initial phase of

the Testing Process entails conducting Verification Tests to validate the

authenticity and integrity of the certificates generated in the preceding section.

This Verification is carried out by utilizing a command line instruction, namely:

$apps/openssl verify -CAfile <SIG>_CA.crt <SIG>_server.pem. This command line

execution performs a comprehensive examination of the certificates, comparing

them against the corresponding PEM or cert files. Upon successfully verifying the

certificates using the aforementioned command line and obtaining the "OK"

output, the subsequent step involves creating a revoke command to invalidate the

certificate. This is achieved by employing the revoke command line specified in the

implementation section. After a revocation, the verification command line is

executed once more, resulting in a "fail" outcome. This outcome validates the

effectiveness of the verification command line in accurately determining the

validity of certificates. Hence, the verification command line successfully passes

the test by effectively assessing the certificate's verifiability. Through this rigorous

verification procedure, the validity and trustworthiness of the certificates are

established, thereby ensuring the robustness and reliability of the Integration PKI

System.

The second phase of testing involves conducting Decoding Tests to assess the

certificate's ability to accurately decode and present the information provided by

the CA. For this purpose, a Python script is employed, which is included in the

Appendices section. The Python code leverages the pyasn1 and pyasn1-modules

libraries, which can be installed via the pip3 package manager. In Ubuntu 20.04,

the pip3 installation can be executed using the following command line: $sudo apt

install python-pip3. To ensure compatibility with the specific file requiring

decoding, the script is modified accordingly. The Python script is executed using

the command python3 filename.py to obtain the results. Upon conducting the

72

Decoding Test, the system successfully passes the assessment. The test verifies

that the system can correctly decode the certificate and extract essential

information such as valid time, invalid time, creation time, and the name of the

CA. The obtained results align accurately with the information provided in the

corresponding certificate file.

The final phase of testing involves conducting Time (Performance) Tests, focusing

on evaluating the speed and efficiency of specific algorithms without employing

quantum computers for algorithm cracking. The objective of this testing is to

measure the signing time and verification time for each algorithm selected in the

previous section. The Performance Testing is conducted using the built-in

command line functionality available in the repository. Specifically, the command

line structure is as follows: $apps/openssl speed <algorithms>. The results

obtained from the Performance Testing will be presented in a figure, providing a

visual representation of the performance characteristics of the tested algorithms.

This Performance Testing phase serves to assess and compare the signing and

verification times of the selected algorithms, providing valuable insights into their

efficiency and suitability for the Integration PKI System.

73

Algorithms Signing (s) Verification(s) Signing/s Verification/s

dilithium2 0.0001 < 0.0001 8561 22399

dilithium3 0.0002 0.0001 5895 15291

dilithium5 0.0002 0.0001 4424 8011

falcon512 0.0003 0.0001 2964 17198

falcon1024 0.0007 0.0001 1349 8841

sphincs-sha2 0.0099 0.0009 101 1131

sphincs-shake 0.0221 0.0016 45 611

Figure 12. Speed Testing.

74

5 DISCUSSION AND CONCLUSION

5.1 Discussion

This thesis aimed to explore the state-of-the-art post-quantum algorithms and

integrate them with the PKI to address the increasing threat posed by quantum

computers to conventional cryptographic systems. The objective of the study was

to pave the way for the next generation of spacecraft and satellite ground segment

systems, where secure communication is paramount.

To this end, the student conducted a comprehensive analysis of nine different PKIs

and the OpenSSL library, evaluating their compatibility and suitability for

integration with PQC. By comparing their features, performance, and security, the

study identified the recommended PKIs that can be effectively combined with PQC

for practical implementation. Furthermore, the thesis delved into the NIST

competition for post-quantum algorithms, offering a detailed examination of the

selected algorithms. Through extensive research, various implementations of

these algorithms in different programming languages were identified.

Additionally, a practical aspect of the thesis involved the implementation of a

simple PKI using the OQS library, serving as a proof-of-concept, demonstrating the

feasibility of integrating PQC with PKI.

The findings of this research have significant implications for the future of secure

communication systems, particularly in the context of spacecraft and satellite

ground segment operations. As quantum computers continue to advance in

computational power, the vulnerabilities of current cryptographic systems

become increasingly evident. The integration of PQC with PKI offers a promising

solution to mitigate these risks and ensure the confidentiality, integrity, and

authenticity of sensitive data. It is essential to acknowledge the limitations of this

research. While the selected PKIs and algorithms were thoroughly evaluated,

there may be other viable options that were not included in this study.

75

Additionally, the practical implementation was limited to a simplified version, and

further research is required to develop more comprehensive and robust systems.

In summary, by evaluating different PKIs, exploring the NIST competition

algorithms, and implementing a proof-of-concept PKI, this research has laid the

groundwork for the future development and implementation of secure

communication systems resilient against quantum threats. The findings and

recommendations of this study can guide organizations and researchers in

adopting suitable PKIs and effectively integrating them with PQC, ensuring secure

and quantum-resistant communication in the next generation of spacecraft and

satellite ground segment systems.

5.2 Future Challenges

As quantum computing continues to advance and garner substantial investments,

there is an impending threat posed by quantum computers to the so-called

"quantum-resistant" algorithms. It is only a matter of time before quantum

computers can potentially break these algorithms, making current cryptographic

systems vulnerable. To address this challenge, it is essential to allocate more

resources and investments to research and develop more robust post-quantum

algorithms shortly. The ongoing advancements in quantum computing necessitate

a proactive approach to stay ahead of potential cryptographic breaches.

Furthermore, the integration of post-quantum algorithms with intricate PKIs

presents another significant challenge. Many PKIs currently in use run and verify

numerous applications and web browsers, making them inherently complex

systems. While the thesis focused on the implementation of a simple PKI,

integrating post-quantum algorithms with such complex PKIs is essential for

ensuring their security in real-world applications, particularly in domains such as

spacecraft or satellite operations. The challenge lies in effectively integrating post-

quantum cryptography into these intricate PKIs without compromising their

functionality or introducing vulnerabilities.

76

To effectively address these challenges, it is important to adopt a forward-thinking

approach that anticipates future advancements in quantum computing and their

potential impact on cryptographic systems. By proactively investing in research

and development, fostering interdisciplinary collaborations, and continually

evaluating and updating PKIs, we can enhance the security and resilience of our

digital infrastructure in the face of emerging quantum threats.

To this end, it is necessary to allocate more resources and investments to research

and develop stronger algorithms to withstand quantum attacks and integration of

these algorithms into complex PKI frameworks. By addressing these challenges

head-on, we can pave the way for a secure and quantum-resistant digital future.

5.3 Conclusion

In conclusion, this thesis has revealed several key findings. Firstly, there is a wide

range of PKIs available on the internet, each with distinct features, reputation, and

complexity. When integrating post-quantum algorithms into a PKI, it is essential

to take into account the most suitable PKI and compatible post-quantum

algorithms for ensuring a secure and efficient integration. Secondly, the strength

of quantum computers will continue to increase shortly, thus posing a significant

risk to organizations relying on traditional cryptographic algorithms.

Consequently, it is recommended that organizations replace their existing PKIs and

transition to post-quantum algorithms to enhance their resilience and protect

their sensitive information against the imminent threat of quantum computing.

Lastly, the most effective approach to withstanding the challenges posed by

quantum computing lies in the integration of complex and sophisticated PKIs with

post-quantum algorithms. By adopting such a strategy, organizations can

significantly prolong the security and longevity of their cryptographic systems in

the quantum era.

77

Stakeholders must recognize the urgency of this transition and take appropriate

steps to protect their systems and data in the face of quantum computing

advancements.

78

APPENDICES

APPENDIX 1. Python Script for Decoding Testing

from pyasn1_modules import pem, rfc2459

from pyasn1.codec.der import decoder

substrate = pem.readPemFromFile(open('cert-file.pem'))

cert = decoder.decode(substrate,

asn1Spec=rfc2459.Certificate())[0]

print(cert.prettyPrint())

79

6 REFERENCES

/1/ Edgar, T. W. and Manz, D. O. 2017. Research Methods for Cyber Security -

Syngress.

/2/ Roper, L. D., Renn, K. A. and Biddix, J. 2018. Research Methods and

Applications for Student Affairs - Jossey-Bass.

/3/ Varantola, K., Launis, V., Helin, M., Spoof, S.-K. and Jappinen, S. 2012.

FINNISH ADVISORY BOARD ON RESEARCH INTEGRITY.

/4/ Suranjan, Choudhury; Kartik, Bhatnagar; Wasim, Haque. 2002. Public Key

Infrastructure Implementation and Design - United Kingdom - Wiley.

/5/ Carlisle, Adams; Steve, Lloyd. 1999. Understanding Public-Key

Infrastructure: Concepts, Standards, and Deployment Considerations -

Sams.

/6/ Buchmann, J. A., Karatsiolis, E. and Wiesmaier, A. 2013. Introduction to

Public Key Infrastructures - Darmstadt, Germany - Springer.

/7/ Andre, Karamanian; Srinivas, Tenneti; Francois, Dessart. 2011. PKI

Uncovered: Certificate-Based Security Solutions for Next-Generation

Networks - Cisco Press.

/8/ Weise, J. 2001. Public Key Infrastructure Overview - Sun BluePrints™

OnLine.

/9/ Boyles, T. 2010. CCNA® Security Study Guide - Canada - Sybex.

/10/ Pointcheval, D. 2023. Asymmetric Cryptography - Wiley-ISTE.

/11/ Greene, S. 2020. CompTIA Security+ SY0-601 – Pearson - IT Certification.

/12/ Windley, P. J. 2023. Learning Digital Identity - O'Reilly Media, Inc.

80

/13/ Hucaby, D. 2015. CCNA Wireless 200-355 Official Cert Guide - Cisco Press.

/14/ John, Viega; Matt, Messier; Pravir, Chandra. 2002. Network Security with

OpenSSL - O'Reilly Media, Inc.

/15/ Komar, B. 2008. Windows Server® 2008 PKI and Certificate Security -

Microsoft Press.

/16/ Michael, Watkins; Kevin, Wallace. 2008. CCNA Security Official Exam

Certification Guide (Exam 640-553) - Cisco Press.

/17/ Wong, D. 2021. Real-World Cryptography - Manning Publications.

/18/ Mitchell, C. 2000. PKI standards, Information Security Group, Royal

Holloway - University of London, United Kingdom.

/19/ Carlisle, Adams; Steve, Lloyd. 2002. Understanding PKI: Concepts,

Standards, and Deployment Considerations, Second Edition - Addison-

Wesley Professional.

/20/ Khlebnikov, Alexei; Adolfsen, Jarle. 2022. Demystifying Cryptography with

OpenSSL 3.0 - Packt Publishing.

/21/ Viggiano, Greg; Brin, David. 2023. Convergence: Artificial Intelligence and

Quantum Computing - Wiley.

/22/ Thompson, R. C. 2003. Physics with Trapped Charged Particles Lectures

from the Les Houches Winter School - World Scientific.

/23/ Kaiser, Sarah; Granade, Chris. 2021. Learn Quantum Computing with

Python and Q# - Manning Publications.

/24/ Mehta, N. 2020. Quantum Computing, Pragmatic - Bookshelf.

/25/ Kommadi, B. 2020. Quantum Computing Solutions: Solving Real-World

Problems Using Quantum Computing and Algorithms - Apress .

81

/26/ Grimes, R. A. 2019. Cryptography Apocalypse - Wiley.

/27/ Sharkey, Keeper L.; Chancé, Alain; Khan, Alex. 2022. Quantum Chemistry

and Computing for the Curious - Packt Publishing.

/28/ Johnston, Eric R.; Harrigan, Nic; Mercedes Gimeno-Segovia. 2019.

Programming Quantum Computers - O'Reilly Media, Inc.

/29/ Loredo, R. 2020. Learn Quantum Computing with Python and IBM

Quantum Experience - Packt Publishing.

/30/ Ganguly, Srinjoy; Cambier, Thomas. 2021. Quantum Computing with Silq

Programming - Packt Publishing.

/31/ Silva, V. 2018. Practical Quantum Computing for Developers: Programming

Quantum Rigs in the Cloud using Python, Quantum Assembly Language and

IBM QExperience - Apress.

/32/ Jiewen, Yao; Zimmer, Vincent. 2020. Building Secure Firmware: Armoring

the Foundation of the Platform - Apress.

/33/ Easttom, C. 2021. Quantum Computing Fundamentals - Addison-Wesley

Professional.

/34/ Ghonge, Mangesh M.; Pramanik, Sabyasachi; Mangrulkar, Ramchandra.

2022. Cyber Security and Digital Forensics - Wiley-Scrivener.

/35/ Imre, Sandor; Balazs, Ferenc. Quantum Computing and Communications:

An Engineering Approach.

/36/ Pfleeger, Charles; Pfleeger, Shari Lawrence; Coles-Kemp, Lizzie. 2023.

Security in Computing, 6th Edition - Addison-Wesley Professional.

82

/37/ Kaufman, Charlie; Perlman, Radia; Speciner, Mike. 2022. Network Security:

Private Communications in a Public World, 3rd Edition - Addison-Wesley

Professional.

/38/ Aumasson, J.-P. 2017. Serious Cryptography - No Starch Press.

/39/ Ciesla, R. 2020. Encryption for Organizations and Individuals: Basics of

Contemporary and Quantum Cryptography - Apress.

/40/ Kipnis, Aviad; Shamir, Adi. 2006. Cryptanalysis of the oil and vinegar

signature scheme - Springer - Berlin, Heidelberg.

/41/ Ferozpuri, Ahmed; Gaj, Kris. 2018. "High-speed FPGA Implementation of

the NIST Round 1 Rainbow Signature Scheme," 2018 International

Conference on ReConFigurable Computing and FPGAs (ReConFig).

/42/ OpenXPKI, OpenXPKI Main Page. http://www.openxpki.org/. Accessed 11

May 2023.

/43/ OpenXPKI, OpenXPKI Source Code.

https://github.com/openxpki/openxpki. Accessed 11 May 2023.

/44/ EJBCA, EJBCA Main Page. https://www.ejbca.org/. Accessed 6 May 2023.

/45/ EJBCA, EJBCA Source Code. https://github.com/Keyfactor/ejbca-ce.

Accessed 6 May 2023.

/46/ Dogtag, Dogtag PKI Main Page.

https://www.dogtagpki.org/wiki/PKI_Main_Page. Accessed 5 May 2023.

/47/ Dogtag, Dogtag PKI Source Code. https://github.com/dogtagpki/pki.

Accessed 5 May 2023.

/48/ OpenCA, OpenCA Main Page. https://www.openca.org/projects/openca/.

Accessed 10 May 2023.

83

/49/ OpenCA, OpenCA Source Code. https://github.com/openca/openca-base.

Accessed 10 May 2023.

/50/ Step-ca, Step-ca Main Page. https://smallstep.com/docs/step-ca/.

Accessed 14 May 2023.

/51/ Step-ca, Step-ca Source Code. https://github.com/smallstep/certificates.

Accessed 14 May 2023.

/52/ Cfssl, Cfssl Main Page. https://cfssl.org/. Accessed 1 May 2023.

/53/ Cfssl, Cfssl Source Code. https://github.com/cloudflare/cfssl. Accessed 1

May 2023.

/54/ XCA, XCA Main Page. https://hohnstaedt.de/xca/. Accessed 15 May 2023.

/55/ XCA, XCA Source Code. https://github.com/chris2511/xca/. Accessed 15

May 2023.

/56/ Easy-RSA, Easy-RSA Main Page. https://easy-

rsa.readthedocs.io/en/latest/. Accessed 7 May 2023.

/57/ Easy-RSA, Easy-RSA Source Code. https://github.com/OpenVPN/easy-rsa.

Accessed 7 May 2023.

/58/ Django-ca, Django-ca Main Page. https://django-

ca.readthedocs.io/en/latest/. Accessed 4 May 2023.

/59/ Django-ca, Django-ca Source Code.

https://github.com/mathiasertl/django-ca. Accessed 4 May 2023.

/60/ Open-Quantum-Safe, Open-Quantum-Safe Main Page.

https://openquantumsafe.org/. Accessed 23 May 2023.

/61/ National-Institute-of-Standards-and-Technology, NIST Post Quantum

Cryptography Round 3, 03 January 2017.

https://github.com/mathiasertl/django-ca.%20Accessed%204%20May%202023

84

https://csrc.nist.gov/Projects/post-quantum-cryptography/post-

quantum-cryptography-standardization/round-3-submissions. Accessed 9

May 2023.

/62/ Cloudflare, Sizing Up Post-Quantum Signatures, 08 November 2021.

https://blog.cloudflare.com/sizing-up-post-quantum-signatures/.

Accessed May 2023.

/63/ National-Institute-of-Standards-and-Technology, NIST Selected Algorithms

2022, 03 January 2017. https://csrc.nist.gov/Projects/post-quantum-

cryptography/selected-algorithms-2022. Accessed 9 May 2023.

/64/ Crystals-Kyber. Kyber Main Page. 2017. https://pq-

crystals.org/kyber/index.shtml. Accessed 3 May 2023.

/65/ Crystals-Kyber. Kyber Source Code. https://github.com/pq-crystals/kyber.

Accessed 3 May 2023.

/66/ Crystals-Dilithium. Dilithium Main Page. 2017. https://pq-

crystals.org/dilithium/index.shtml. Accessed 2 May 2023.

/67/ Crystals-Dilithium. Dilithium GitHub. https://github.com/pq-

crystals/dilithium. Accessed 2 May 2023.

/68/ Falcon. Falcon Main Page. 2017. https://falcon-sign.info/. Accessed 8 May

2023.

/69/ Falcon. Falcon Source Code. 2020. https://falcon-

sign.info/impl/README.txt.html. Accessed 8 May 2023.

/70/ SPHINCS+. SPHINCS+ Main Page. 2017. https://sphincs.org/index.html.

Accessed 12 May 2023.

/71/ SPHINCS+. SPHINCS+ Source Code.

https://github.com/sphincs/sphincsplus. Accessed 12 May 2023.

https://github.com/sphincs/sphincsplus

85

/72/ Open-Quantum-Safe, Open-Quantum-Safe Source Code.

https://openquantumsafe.org/openssl. Accessed 23 May 2023.

	1 INTRODUCTION
	2 purpose of the research
	2.1 Problem and Questions
	2.2 Method
	2.3 Assurance and Ethics

	3 Theoretical background
	3.1 Public Key Infrastructure
	3.1.1 Public Key Cryptography
	3.1.2 Digital Certificates
	3.1.3 Certificate Authorities
	3.1.4 Certificate Revocation
	3.1.5 PKI Standards
	3.1.6 X.509 Formats

	3.2 Quantum Computing
	3.2.1 Quantum Computers
	3.2.2 Quantum Algorithms
	3.2.2.1 Shor's Algorithm
	3.2.2.2 Grover’s Algorithm

	3.2.3 Algorithms Break

	3.3 Post Quantum Cryptography
	3.3.1 Hash-based Cryptography
	3.3.1.1 One-time Signature with Lamport
	3.3.1.2 Many Times Signature with XMSS

	3.3.2 Lattice-based Cryptography
	3.3.3 Code-based Cryptography
	3.3.4 Multivariate Cryptography

	4 Approach and implementation
	4.1 Review of Available PKI Software
	4.1.1 Candidates
	4.1.2 Selected PKI

	4.2 Possible Alternatives for Traditional Encryption Algorithms in PKI
	4.3 Review of Available Post-quantum Encryption Algorithms
	4.3.1 Public-key Encryption and Key-establishment Algorithms
	4.3.2 Digital Signature Algorithms

	4.4 Integration of Post-quantum Algorithms with PKI
	4.4.1 Planning
	4.4.2 Implementation
	4.4.3 Testing

	5 Discussion and CONCLUSION
	5.1 Discussion
	5.2 Future Challenges
	5.3 Conclusion

	6 references

