

Aivo Pütsep

Programmable Boost Controller

Metropolia University of Applied Sciences

Bachelor of Engineering

Electronics Degree Programme

Bachelor’s Thesis

21 May 2023

Abstract

Author: Aivo Pütsep

Title: Programmable Boost Controller

Number of Pages: 55 pages + 1 appendix

Date: 21 May 2023

Degree: Bachelor of Engineering

Degree Programme: Electronics

Professional Major:

Supervisor: Janne Mäntykoski, Senior Lecturer

This research centers on the development of a programmable boost controller,
a device to effectively regulate the intake air pressure within a turbocharged
internal combustion engine. The purpose of this study was to engineer a system
with the possibility to choose from different power levels the engine is producing
by adjusting the boost output of the turbocharger. A device like that is of
significant interest to automotive enthusiasts, who continuously seek ways to
enhance their vehicle's performance.

The programmable boost controller was designed using a combination of
different components and control algorithms. One vehicle with a turbocharged
internal combustion engine served as a testing platform. The integration and
following testing of the boost controller took place within this car, a 1992 Audi
S4, allowing for an in-depth analysis of its performance and impact on the
engine's overall power output.

The results of this study showed effective boost control and interface
performance, although minor issues were identified. These findings emphasize
the need for further enhancements in future iterations.

This research contributes to the ongoing research within automotive
performance tuning. The creation and successful implementation of this
programmable boost controller provides a promising path for further
advancements in engine performance optimization.

Keywords: ESP32, PID, Wastegate, Pressure, Controller

Contents

List of Abbreviations

1 Introduction

2 Theory and Components

2.1 ESP32 Microcontroller

2.2 Pressure Sensors

2.3 Mac Solenoid

2.4 Pulse Width Modulation

2.5 OLED Screen and LEDs

2.6 PID Controller

2.7 Mosfet

2.8 Can Bus

3 Design and Implementation

3.1 Coding

3.2 Electronics

3.2.1. Schematics

3.2.2. Assembling on a Breadboard

3.2.3. PCB

3.3 Case Design

3.3.1. 3D Modelling and Printing

3.4 Assembling the First Prototype

3.5 Assembling the Second Prototype

4 Measurements and Testing

4.1 Testing on a Bench

4.2 Testing on a Car

5 Results and Discussion

5.1 Results

5.2 Discussion

References

Appendices

Appendix 1: Design of a printed circuit board

1

3

7

9

12

13

15

18

20

21

24

25

31

31

35

36

37

37

38

40

43

44

48

53

53

54

List of Abbreviations

CAD: Computer-aided design

CRC: Cyclic redundancy check

DAQ: Data acquisition

ECU: Engine control unit

GPIO: General purpose input/output

LED: Light-emitting diode.

MAC: Modern air control

MAF: Mass Air Flow

OLED: Organic light-emitting diode

OTA: Over-the-air

PCB: Printed circuit board

PID: A proportional–integral–derivative controller

PWM: Pulse-width modulation

WG: Wastegate

1

1 Introduction

A Programmable Boost Controller is a device that allows for the regulation of

pressure generated by the turbocharger. This enables to effectively manage the

power output of the engine.

The Programmable Boost Controller was created as an alternative to buying an

electronic boost controller which can result in a significant expense and yet be

limited in functionality and features. These limitations can be avoided, by

researching and developing a device by oneself.

The system's development involved making an easy-to-use human interface

with a screen, addressable LEDs, and buttons. The goal was to have a boost

pressure control system that was controlled by a PID algorithm. The Boost

Controller directly controls a solenoid with works with the wastegate system.

Subsequently, it was thought that the device should establish communication

with an onboard Engine Control Unit (ECU) using the CAN Bus protocol.

The development began with researching the required components and

determining if any components that had bed acquired before can be re-utilized.

Some components that were initially considered suitable for the project were

revised later in the process. The first microcontroller was an Arduino Nano,

which seemed appropriate, yet gave complications with the OLED screen

refresh rate. This was resolved by incorporating a more powerful development

board (ESP32), which also gives further development opportunities in the

future. Moreover, as ESP32 features built-in wireless communication features

such as Bluetooth and Wi-Fi. It was decided that an ESP32 microcontroller

should be used as the main processing unit.

Once the main idea was clear, the prototyping started by laying out the

components on a breadboard. Simultaneously the development began on the

wiring schematics. Firmware development also began and the initial prototype

of the device was created.

2

 A pneumatic test bench was built to test the Boost Controller in a controlled

environment. Suitable plastic enclosures were designed, and 3D printed.

The first working prototype was installed on a turbocharged car, which gave the

capability to gather vital data early in development. Although due to evident

limitations encountered on the constructed test bench, the collected data

yielded artificial results to some degree. The data acquisition was done with an

oscilloscope, Excel, and Arduino IDE.

The initial prototype proved to be successful and became a functioning boost

controller, with minor limitations. During the continued development, a second

prototype incorporated some additional features such as CAN Bus compatibility

and an overall reduction in the dimensions by implementing printed circuit

boards (PCBs).

3

2 Theory and Components

The aim of the project was to have a working device that helps regulate a

turbocharged internal combustion engine’s intake air pressure level. The power

output of the engine is almost proportional to the amount of air forced into the

engine. Conversely the intake pressure can be used to restrict the power output

of the engine.

This programmable boost controller is designed for vehicles with high-

performance engines that have been upgraded for additional output.

The electronic boost controller works by operating a MAC Solenoid via a 12V

PWM [12.] signal that controls the wastegate linear actuator of the turbocharger.

The wastegate has a mechanical built-in spring that acts as a passive boost

regulator which is related to the spring stiffness. The higher the stiffness of the

spring, the more pressure can be accumulated in the intake compressor before

the wastegate valve is pushed open by the intake pressure.

The car in which the boost controller was mounted has a spring stiffness that

limits the boost pressure up to 0.6 Bar (gauge pressure), after which the

wastegates valve is pushed open by the engine's intake pressure. In this case,

the turbocharger's wastegate regulates the pressure only up to 0.6 Bar(g). By

incorporating an electronic boost controller, this limitation can be avoided, and

higher inlet pressures can be achieved.

The MAC solenoid was programmed to open at 0.6 Bar (PWM 100%), thereby

opening the negative pressure line and keeping the wastegate valve closed

after 0.6 Bar no matter the spring pressure. Then before reaching the desired

pressure (Setpoint), the PID Controller steps in and gradually decreases and

increases the PWM signal to get a controlled and steady pressure output

without oscillations and reducing the overshoot to a minimum.

4

On the car the Boost Controller was installed the MAC Solenoid is connected as

follows

• Port 1: To the turbo compressor inlet hose

• Port 2: To the Wastegate lower chamber

• Port 3: To the turbo compressor outlet hose

When the MAC Solenoid is in the OFF position or disconnected from the Boost

Controller (Figure 1) the air path is from Port 3 to Port 2, this means that the

boost pressure is only being controlled by the mechanical spring which in our

case is 0.6 Bar (g) pressure.

Figure 1. Mac Solenoid OFF position [1].

When the MAC solenoid is in the active or "ON position (Figure 2), it also

provides an air path from Port 2 to Port 1. In this scenario then ambient air

pressure is presented to the lower wastegate chamber and so the mechanical

spring continues to keep the wastegate closed. Another way to think of this is

5

that Port 1 provides the path of least resistance for air to travel out of the lower

wastegate chamber. [1.]

Figure 2. Mac Solenoid ON position [1].

When the MAC solenoid changes into a closed state during the inlet pressures

above 0.6 Bar(g), the wastegate valve opens as in normal operation, diverting

the exhaust gasses from the turbine of the turbocharger, reducing the boost

pressure. By adjusting the wastegate actuator, the electronic boost controller

can increase or decrease the boost pressure past 0,6 Bar (Figure 3), depending

on the user's needs.

6

Figure 3. Overview of the Pressure control system [2].

Theoretically, the electronic boost controllers can efficiently optimize the boost

pressure for different engine operating conditions. For example, during the first

and second gear, the boost pressure can be reduced to improve traction.

Conversely, during higher gears and high-load conditions, the boost pressure

can be increased to improve power output and performance. This option can be

added in future iterations.

 An electronic boost controller can help prevent engine damage by preventing

over-boosting, which can cause the engine gaskets to fail or in the worst case to

‘’lean out’’ the engine causing detonation in the engine. By controlling the boost

pressure more precisely, the electronic boost controller can help ensure that the

turbocharger operates within safe limits, reducing the risk of damage or failure.

[1.]

7

2.1 ESP32 Microcontroller

As stated above the ESP32 Chip (Figure 4) was chosen to be the main control

unit of the device. The ESP32 was chosen over the preliminary choice of

Arduino Nano, as it did not provide the desired refresh rate on the OLED

screen. Various solutions were tried to resolve the problem. But none really

worked. Switching to the ESP32 however, instantly fixed the problem.

The ESP32 has many more advantages over the Arduino Nano like faster

processing power (dual-core processor with clock speeds up to 240 MHz), more

memory (able to run more complex programs and store extra data on

EEPROM), and more GPIO pins, making it a preferred choice for this project.

The ESP32 features built-in Bluetooth and WIFI, which offers more possibilities

for future development, for example the developed firmware supports Over-The-

Air (OTA) firmware updates. [3.]

The ESP32 Specifications [3, p. 1-4.]:

• Microcontroller: Tensilica Xtensa LX6 dual-core 32-bit processor, running
at up to 240 MHz

• Operating Voltage: 2.2V to 3.6V

• Wi-Fi: 802.11b/g/n/e/i, with support for WPA/WPA2/WPA3 and WPS
encryption

• Bluetooth: Bluetooth Low Energy (BLE) and Classic Bluetooth with
support for BLE Mesh networking

• RAM: 520 KB SRAM

• Flash Memory: 4MB or 8MB

• GPIO: thirty-four programmable pins, with support for digital input/output,
PWM, and interrupt handling

• ADC: 12-bit SAR ADC up to 18 channels

• DAC: 8-bit resolution with two channels

• Peripherals: I2C, SPI, UART, I2S, and SDIO interfaces

• Operating Temperature: -40°C to +125°C

8

Figure 4. Pinout of an ESP32 Microcontroller chip [4].

While the ESP32 chip is used in many development boards, a Wemos D1S

(Figure 5) development board was chosen due to its compact size. The design

of the boost controller enclosure was mainly based on the dimensions of the

instrument cluster and the development board. Consequently, smaller

dimensions were favoured in the development process. The Wemos D1S board

is only slightly larger than the microcontroller itself making it ideal for this

project. In Figure 6 we can see that the case circumference of the boost

controller is not much larger than the D1S development board.

Figure 5. Wemos D1S ESP32 Development board [5].

9

Figure 6. The Wemos D1S ESP32 inside of the plastic enclosure.

2.2 Pressure Sensors

A pressure sensor is a device that senses fluid or gas pressure and converts it

into an electrical Analog signal. First, it was chosen to use a 0-3.3 Bar(g) sensor

as seen in Figure 7, but later when testing on a car, it proved not to be the best

choice. It did not show the negative pressure, therefore it was decided to use

another sensor from a previous project, which can be seen in Figure 8.

The accuracy of a pressure sensor depends on many factors, like the design of

the diaphragm, the quality of the sensing element, wiring and connector, and

also the calibration of the sensor is a important factor. [6.]

The pressure sensor that was used, its specifications are [7]:

• Pressure Range: -1…3 Bar(g)

• Material: Plastic

• Output: 0.1 V… 4.0 V linear voltage output.

• Working Temperature: -40 … +125 ºC

• Works for oil, fuel, water, or air pressure.

• Accuracy: ±1%

10

Figure 7. Initially chosen pressure sensor, later revised [6].

Figure 8. The chosen pressure sensor for the project [7].

The pressure sensor that was chosen had a more or less linear output, as it

simplifies the interpretation of its readings. Table 1 depicts the corresponding

output voltage (V) for the given pressure levels (Bar(g)). Figure 9 provides a

visual representation of the data presented in Table 1. A linear trend can be seen

which confirms that the pressure sensor's output is indeed linear. This means that

as pressure increases or decreases, the voltage output changes accordingly.

11

Table 1. The pressure sensors voltage vs pressure [7].

Figure 9. The pressure sensor pressure over voltage relationship [7].

12

2.3 MAC Solenoid

A MAC (Modern Air Control) Solenoid (Figure 10) is a type of valve commonly

used in various industrial applications. The main use of this kind of valve is to

control the flow of different gases.

The name MAC Solenoid comes from a company that first developed the valve

in the 1940s.

Those solenoids are can be made using different materials like steel, brass or

stainless steel. They are available in many sizes and configurations for various

applications and requirements.

The working of a MAC solenoid is simple. When an electrical current is applied

to the coil, the valve is pulled opens, and when no current is induced, the valve

is pushed to a closed position with the built-in spring.

The specific solenoid that was used has an internal 25.4 Ω coil that provides air

control up to 10 Bar, which is more than required, as for current purposes more

than 3 Bar(g) pressure levels are not expected.

The electronic solenoid works with a 30Hz 14.2V PWM signal. PWM can be used

to accurately control the speed and position of the actuator. The following section

outlines Pulse-Width Modulation (PWM). [8.]

13

Figure 10. MAC Solenoid [8].

2.4 Pulse Width Modulation

PWM (Pulse Width Modulation) is a technique used in Electronics. With a PWM

signal, the amount of power delivered to a component or device can be

controlled by switching the state ON (HIGH) and OFF (LOW) at a specific

frequency, and the average power output can be determined by the ratio of ON

time to OFF time, which is known as the Duty Cycle.

Duty cycle refers to the percentage of time when the signal state is in the ON

state compared to the total time of one complete cycle. When a signal is

switched from HIGH to LOW with a specific frequency and duty cycle a square

wave is formed.

A square wave is one of the common forms of PWM signals. A duty cycle of

50% would mean the signal is half the time HIGH and half the time LOW in one

complete cycle. A duty cycle of 25% would mean that the signal is a quarter of

the time HIGH and three-quarters of the time LOW in one cycle.

14

A further explanation can be seen in Figure 11, where the analog signal value is

mapped from 0 to 255. That means that the digital representation of the analog

signal ranges from 0 to 255. Each increment in the digital value corresponds to

an increment of approximately 0.39% of the total analog range. This mapping

allows for the conversion between analog and digital signals, enabling the

microcontroller to interpret and process analog data using its 8-bit binary

system.

Figure 11. Duty Cycle vs Percentage vs Analog value [9].

When the duty cycle of the square wave is adjusted, the amount of power

delivered can be easily controlled without changing the frequency or amplitude

of the signal. The frequency determines how fast the signal is switched ON and

OFF (HIGH and LOW). Along with the frequency and duty cycle, the timing,

intensity, and duration of the signal can be established. In the current

implementation, when the duty cycle of the signal is adjusted, the MAC solenoid

can be easily controlled, allowing for precise control of the actuator position and

movement. [9.]

15

2.5 OLED Screen and Addressable LEDs

2.5.1 OLED Screen

A large emphasis was set to find a good quality screen, as it is the main

component users would interact with. Good-quality small OLED screens have

emerged in recent years. In the search for a screen that met the size

requirements, a small OLED screen with dimensions of 96x64 pixels (Figure 12)

was used. This screen utilizes RGB OLED technology, which theoretically

supports up to 65,000 colors. The display is built on SSD1331 technology.

OLED displays, including this color OLED screen, are known for their low power

consumption (only 25 mA when all pixels are white) and good brightness levels

compared to LCD screens. The communication protocol employed by this display

is SPI, which means that, in addition to the VCC and GND connections, it requires

five additional GPIO pins. Fortunately, there are multiple libraries available to

facilitate the usage of this screen. A library called <SSD_13XX.h> was

successfully implemented and performed well. [10.]

Specifications of the screen [10].

• Driver Chip SSD1331

• Interface: SPI

• Resolution: 96×64

• Display Size: 0.95inch

• Colours: Over 65 000

• Viewing Angle: 120°

• Operating Temp: -20~70

• Operating Voltage: 5V

16

Figure 12. The OLED Screen used in this project [10].

2.5.2 Addressable LEDs

For getting a more interactive user experience addressable LEDs called

Neopixels were used in the project (Figure 13). The WS2812 Integrated Light

Source, also known as the NeoPixel by Adafruit, represents a significant

breakthrough in the pursuit of a straightforward, expandable, and cost-effective

full-colour LED solution. Within a compact surface-mount package, red, green,

and blue LEDs are seamlessly integrated with a driver chip, all controlled

through a single wire. These LEDs offer versatility, allowing them to be used

independently, linked together in extended sequences, or combined into

captivating and innovative configurations.

17

Figure 13. Close-up of an addressable LED [11].

The versatility of addressable LEDs enables the creation of captivating lighting

effects and animations. With the ability to control each LED individually, you can

achieve dynamic and interactive lighting shows. These LEDs are available in

various form factors, including strips, rings, and matrices, providing flexibility for

different applications. [11.]

In this specific application, a 16 LED ring with WS2812 LEDs was utilized

(Figure 14).

18

Figure 14. Neopixel Led ring that was used in the project [12].

It was wanted that the LEDs and screen also display the current boost pressure

and the negative pressure, with LEDs lighting up accordingly. Also, a small

startup animation was implemented to enhance the visual experience.

Additionally, flashing LEDs were incorporated to indicate when the maximum

selected pressure level has been reached. Furthermore, the LED ring offers

additional functionality within the menu system, allowing the user to engage in

more immersive interaction.

Later in further iterations, smaller addressable LEDs should be used, called

APA102s, which would even further enhance the experience and look much

better to the eye. Their footprint is much smaller, so the lighting would be gapless.

The connection only has an extra clock pin but uses the same FastLed Library.

2.6 PID Controller

A Proportional Integral Derivative (PID) controller is a precise and automatically

optimized control system utilized to regulate various parameters such as

19

temperature, pressure, and speed to desired setpoints. The fundamental

mechanism employed by PID controllers revolves around control loop feedback.

The PID controller calculates the error by determining the difference between the

actual value and the desired value and adjusting the controlling parameters

accordingly. This error is continuously evaluated until the process comes to a

halt.

A practical example that highlights the effectiveness of PID controllers is

Industrial Batch Temperature Control. In closed systems where maintaining

constant heat is challenging, PID controllers are employed to regulate the heat

supply, ensuring the overall operations are commercially viable and cost-

effective.

The proportional component measures the error between the desired value and

the actual value, playing a key role in generating corrective responses. The

integral component calculates the accumulated sum of past error values and

integrates them to determine the integral term. Once the error is eliminated from

the system, the integral component ceases to increase. The derivative

component anticipates future error values based on current values and is

particularly useful in systems with rapid rate changes. The collective operation of

these three components gives rise to the name Proportional Integral Derivative

(PID) controller.

To implement a stable Pulse Width Modulation (PWM) output, a PID controller

was incorporated into the code, using the library " PID_v1.h".

PID calculation (Figure 15) involves three key components: proportional (P),

integral (I), and derivative (D). The goal of a PID controller is to compute an output

value that minimizes the difference between the desired setpoint and the

measured value.

The PID formula:

20

Figure 15. PID Formula [13].

Output = Kp *(error + (1/Ti) * ∫(error)dt + Td * d(error)/dt) [13].

Proportional (P): The proportional term is directly proportional to the current

error. It calculates the correction value by multiplying the error by a proportional

gain constant (Kp).

Integral (I): The integral term accumulates past errors over time and addresses

steady-state errors. It integrates the error over time (∫(error)dt) and scales it by

the inverse of the integral time constant (Ti).

Derivative (D): The derivative term predicts the future trend of the error based

on its current rate of change. It calculates the rate of change of the error

(d(error)/dt) and multiplies it by the derivative time constant (Td).

The controller output is the sum of these three components, and the gains Kp,

Ti, and Td need to be appropriately tuned for optimal control performance. [13.]

2.7 Mosfet

A range of MOSFETs and transistors were suitable for this project. The initially

chosen Power Transistor functioned satisfactorily. But it disappeared during the

testbench phase. Subsequently, a small pre-assembled MOSFET PCB (Figure

21

16) was chosen, Its Schematic we can see on Figure 23. These PCBs have

been found to be convenient for use and have proved to be excellent for

prototyping purposes.

The MOSFET board featured two MOSFETs connected in parallel to boost the

capacity for handling current. Specifically, it utilized two AOD4184A MOSFETs,

which proved to be effective for this project. The specs [14]. for the compact

MOSFET PCB provided specifications stating a maximum current capacity of 15

A, which surpassed the requirements. It was interesting to note that when

inspecting the datasheet [15.] each MOSFET individually could handle 12 A,

leading to a belief that together they should be capable of handling up to 24 A.

Nevertheless, both were sufficient for this purpose regarding their current

handling. [14.]

Figure 16. PCB with 2 MOSFETs [14].

2.8 CAN Bus

CAN bus was added to have communication between the car's ECU and the

boost controller, enabling communication between the Programmable Boost

22

Controller and a car’s ECU. This would allow the boost controller to read

various data directly from the ECU, such as intake pressure, intake air

temperature, voltage, etc. With that eliminates the need for an extra pressure

sensor. The Programmable Boost Controller can also send information to the

ECU through the CAN bus interface. [17.]

The theory behind CAN bus is based on the principle of distributed control,

where each ECU has its own intelligence and can make decisions based on the

data it receives from other ECUs on the network, this means that adding a

boost controller to the existing network should cause no problems (Figure 17).

Figure 17. CAN Bus network model [16].

In a CAN bus system, data is transmitted in packets, each containing an

identifier, a data field, and a few control bits (Figure 18). The identifier tells the

receiving ECU what type of data is being sent, while the data field contains the

actual information being transmitted. The control bits provide error checking and

other functions.

23

Figure 18. Complete CAN Bus frame [17].

To ensure that the CAN bus network operates correctly, the resistance of the

wiring and connectors must be within the specified range. The CAN bus

protocol specifies a maximum resistance of 60 Ω for the entire network,

including the wiring and connectors. This resistance is achieved by using two

120 Ω termination resistors, one at each end of the network, which effectively

creates a 60 Ω resistance between the two ends. [17.]

In this project a MCP2515 CAN Bus module was used (Figure 19), this is a

simple module that supports CAN protocol version 2.0B and can be used for

communication speeds up to 1Mbps. Its schematic we can see in figure 22. The

controller has an integrated SPI interface for communication with the ESP32.

[18.]

24

Figure 19. A small CAN bus PCB that was used [18].

3 Design and Implementation

The menu of the device should be user-friendly and easy to navigate. To

achieve this a simple diagram was created (Figure 18). Each submenu is

identified by an Event number, which corresponds to the code's build structure.

Although there are libraries available with templates for creating menus but

using those would probably require a longer learning curve than simply writing

the code oneself. Therefore, it was decided to keep code writing as simple as

possible and mostly rely on the existing code-writing knowledge.

The menu system depicted in Figure 20 serves as a reference, illustrating its

initial structure. It should be noted that numerous updates have been

implemented since then, resulting in some differences in the current

appearance of the actual menu system.

25

Figure 20. First diagram of the device’s menu

3.1 Coding

The Code language that was written was C++, and the interface was Arduino

IDE. The writing began by researching what libraries to use and how to manage

to get them interacting all together. The libraries that were used can be seen in

Listing 1.

Listing 1. Libraries that were used in the code

Next, the GPIOs were defined (General Purpose Input/Output, GPIO refers to a

set of pins or connectors on a microcontroller) that were used can be seen in

Listing 2.

26

Listing 2. GPIOs that were used on the microcontroller

Following that, timers were added as non-blocking delays. Additionally, the 'millis'

function was utilized in certain cases. Timers were added with a Timer library to

simplify and enhance code readability. After that functions were developed to

enhance the understanding and clarity of the existing functions (Listing 3).

Although not all of them are utilized in the latest version, these functions have

been prepared and are available for implementation per requirement.

27

Listing 3. Timers and Functions in the Code

Subsequently, in Setup, the input and output pins were assigned, EEPROM

addresses were allocated, and serial communication was initiated. Additionally,

the PID controller was initialized, and the execution of the initial functions

commenced, including the starting animation (seen in Listing 4).

28

Listing 4. Setup part of the code

Next, the loop was initiated (Listing 5). Here it can be seen how the menu was

constructed. The menu was primarily constructed using events and conditional

statements (if and if-else). This method of implementation proved to work well.

Still, it is possible that a better alternative can be developed in the future. During

the intial testing the code was performing as required, therefore this method

was kept as is.

29

The loop starts by using a timer, every time a button is pressed a 30-second

timer starts and when the time runs out it automatically switches back to the

main screen, in this case, the main screen is ’’Event 1’’.

Listing 5, Beginning part of the ‘’Loop’’

Afterward, the creation of various functions was initiated, one of which involves

the computation of sensor inputs. An averaging formula was included which will

be further discussed in the following paragraphs relating to Measurements and

Testing. Additionally, to aid future debugging, the distinct voltages of 3.3 V, 5 V,

and 14.2 V could be observed. Subsequently, a straightforward equation was

formulated to calibrate the sensor output. For this task, an online calculator [19]

was utilized. This webpage offers a convenient tool to determine the equation of

30

a line based on two points, presented in slope-intercept and parametric forms.

The sensor was calibrated with analog reading and corresponding pressure

levels in a used range against another sensor. As a result, the calibration

process was completed effortlessly. All of that can be seen in Listing 6. The

whole code can be seen on a shared Dropbox link. [20.]

Listing 6. Sensor input calculations

31

3.2 Electronics

Most of the elements required were already present on smaller printed circuit

boards (PCBs). The initial step involved linking these components, which were

initially carried out on a breadboard. After ensuring the successful functioning of

all parts, everything was assembled using a perf board. The connection was

established using jumper wires and various other components. Though, this first

version lacked compatibility with the Controller Area Network (CAN) Bus.

Therefore, it was decided to create another prototype that would incorporate the

CAN Bus functionality and a light sensor. Pair of round PCBs were designed

(Figure 24) (Some headers already soldered) to connect all the components.

These PCBs were ordered from a website called JLCPCB.com. The PCBs came

unassembled and were built after arrival. Data logging was initiated, and all the

data was collected for later review.

3.2.1 Schematics

The online and freely accessible PCB design tool called Easy EDA was used to

create the schematic [21.]. The user interface of this online tool is quite similar

to other PCB design softwares that are available. As I am familiar with various

PCB Design tools, I found this online tool to be easy to use and navigate.

Additionally, the saved data is conveniently stored in a cloud, making it

accessible from various devices. This feature was particularly beneficial as I

often switch between different computers while working on different projects.

Within the tool, numerous components were readily available for immediate

use, although a few were absent. Fortunately, custom pinouts and footprints for

those missing components were easily created. EasyEDA was seamlessly

integrated with the PCB printing website, facilitating the direct placement of

orders for the PCBs without any issues.

32

In the main schematic (Figure 21), various components are present. The R1

120 Ohm resistor is for the CAN Bus Network to terminate the communication

bus. R6 is associated with the light sensor to enable the lowering of the screen

and LEDs brightness in low-light conditions. Also, the main schematic includes

four resistors (R2, R3, R4, R5) that are utilized for voltage measurements for

later debugging purposes.

As they are used for measuring voltages of 5V and 14.2V (The car's operating

voltage). These resistors function as voltage dividers, allowing the voltage to be

scaled down to levels between 0V and 3.3V. As the microcontroller’s analog

inputs maximum voltage is 3.3 volts and that corresponds to a 4095 digital

reading.

Figure 21. Main Schematic

A flyback diode was used in parallel with the solenoid, it provides a path for the

inductive current to circulate when the power is switched off. The diode allows

the energy stored in the magnetic field to dissipate gradually and prevents

voltage spikes from occurring. This protection ensures the smooth operation of

the solenoid and protects other components in the circuit.

33

And for added safety, it was decided to incorporate an optocoupler into the

circuit, which provides electrical isolation between the MOSFETs and the

microcontroller output pin. By using this component, noise can be further

reduced and gain protection against high voltages or transients can be

implemented.

In the initial first version of the prototype, the optocoupler was not included, and

the circuit still functioned. Yet now that it has been implemented in the second

prototype, the effects can be observed in real-life, and the benefits of using the

optocoupler in terms of improved noise reduction and enhanced protection

against voltage spikes or transients can be assessed.

The theoretical voltage spike or swing in a 12V DC car system can vary

depending on the specific circumstances and the nature of the transient event.

Voltage spikes or transients in automotive systems can typically range from a

few volts to several tens of volts.

Transient voltage spikes can be caused by inductive kickback from ignition

systems, alternator field collapse, or sudden changes in electrical loads such as

switching on or off high-powered devices. These spikes can potentially damage

sensitive electronic components if they are not properly protected.

The final component is a voltage regulator called the Traco TSR-1. [22, p. 2] Its

purpose is to convert the input voltage of 14.2V DC to a stable 5V voltage.

Initially, an LM7805 was considered, but it became hot even without reaching

the maximum load. Upon calculating the current draw of the components, it was

realized that especially when the Neopixels would be at full brightness and

displaying white, the current draw approaches the 1A threshold where the LM35

would require a heatsink. Given the limited available space, it was decided to

use the Traco TSR-1 voltage regulator instead. It is far more efficient and does

not require additional external components such as capacitors.

34

Figure 22. CAN Bus schematic

Figure 23. MAC Solenoid Driver schematic

35

3.2.2 Assembling on a Breadboard

The assembling of the breadboard was mostly straightforward, the initial version

was actually done with another ESP32 development board called an ESP32

DEVKIT v1. Later when the smaller development board was received, it was

switched to that one, it worked almost the same, only some GPIOs needed to

be rearranged. The breadboard connections can be seen in Figure 24. In this

picture, the light sensor and the CAN Bus PCB are not connected.

Several components can be seen, including the microcontroller, MOSFET

board, two buttons, and a screen surrounded by Neopixels.

Figure 24. Most of the components connected to a breadboard

36

3.2.3 PCB

The printed circuit board (PCB) was created with the online PCB design tool in

EasyEDA [21.] and it was ordered through a webpage (Figure 25) called

JLCPCB.

Figure 25. The overview of the PCB Design in EasyEda

After making the order it took some time and the PCBs arrived by post (Figure

26). The quality of those boards was particularly good, and an order will be

placed there again in the future.

Figure 26. PCBs that were received from JLCPCB.com

37

3.3 Case design

3.3.1 3D Modelling and Printing

To ensure that all components were housed securely a case was required for

the project (Figure 27 and Figure 28). The goal was to create a case that the

front of the device would also look decent in the instrument cluster and its

appearance would not make it feel out of place. The first prototype was mainly

soldered together using small wires and a perf board connecting all the

components. This meant that the first case dimensions had to be bigger than

using a regular PCB design.

Figure 27. The 3D model of the front face of the boost controller

The initial case prototype was created using CAD software and printed using a

plastic called PLA, with has a maximum temperature threshold of 60-65°C

before it begins to soften and deform. In future iterations, as the device is

mounted to a car, witch cabin temperature in summer can get past those

38

thresholds, the case should be printed with ABS or PETG to provide higher

temperature resistance.

Figure 28. Another view of the casing with dimensions in mm.

3.4 Assembling the first prototype

Like said above, the first prototype was connected using a perf board and wires

(Figure 29). Here a Traco TSR1 and a BD907 power transistor can be seen.

The DB907 eventually was not used.

39

Figure 29. The first prototype with some components soldered

For the microcontroller and the screen connectors 2.45mm headers were used

to easily switch components when needed (Figure 29 and Figure 30),

connecting everything like that took some time but, in the end, the first working

was managed to be produced, was later installed on a car (Figure 31).

Figure 30. The first prototypes side-view

After everything was soldered together the components were installed inside of

the casing.

40

Figure 31. Printed casing with the components installed.

3.5 Assembling the second prototype

As the first prototype was a little bigger in its dimensions and lacked the

optocoupler, light sensor and CAN Bus Feature it was decided that a second

prototype should be made. The assembled device can be seen in Figures 32,

33, and 34.

41

Figure 32. Top view of the second prototype

Regular 2.54mm female/male headers were again utilized to connect the two

PCBs and the microcontroller, enabling an easy swap when required later. In

this prototype, the wrong footprints for the resistors were mistakenly used, but it

did not matter significantly because regular thru-hole resistors could now be

used and soldered directly to the pads.

42

Figure 33. Side view of the second prototype

Figure 34. Bottom view of the second prototype

43

4 Measurements and Testing

The testing was conducted using two different approaches. Initially, bench

testing was carried out to assess the performance of the system under

controlled conditions. Subsequently, the system was tested in the actual vehicle

it was intended for. In this section, the two testing approaches will be discussed.

For data acquisition Excel Data Streamer plugin, Arduino IDE Serial Plotter and

an Oscilloscope was used. For bench testing the Oscilloscope was used to see

what the controller is doing, how does it modulate the PWM signal and is

everything calibrated correctly.

In the code a separate serial output function was written to have four channel

output, CH1 for Boost pressure, CH2 for Analog output values, CH3 for PWM

and CH4 was set to Setpoint. The code itself is straight forward, worked the

same way when wanting to use the Arduino IDE Serial plotter, the values only

needed to be separated by commas and they should be written in one line as it

can be seen from Listing 7.

After some experimentation, it was found that Excel worked best with a baud

rate of 9600 bits/s. Higher bitrates gave some unusable readings.

Listing 7. Serial output code for data logging with Excel

44

4.1 Testing on a Bench

The testing bench included a compressor for imitating the turbocharger, the

Microcontroller and other components were assembled to a breadboard, a

pressure sensor and a MAC solenoid were added. And for good measure, also

an Analog pressure sensor was added Figure 35.

Figure 35. An overview of the bench testing setup

Upon testing, it became obvious rather quickly that in order to properly test the

system, a wastegate valve would be needed, similar to what a car has. As a

workaround, to manually test the output PWM the pressure sensor was

replaced with a potentiometer to simulate the boost pressure. This allowed to

observe the PWM signal and get a rough idea of how the PID controller was

functioning. But this approach had limitations. For instance, the pressure could

not be released quickly enough to accurately determine the extent of the

pressure overshoot and how the PID controller was functioning to minimize it.

Despite these limitations, the test would still be considered successful as new

data were able to be gathered and it was confirmed that the PID was

45

functioning and sending a proper signal to the MAC solenoid through the

MOSFET. In order to monitor the system, an oscilloscope probe was connected

to the MAC solenoid's output pin, another probe was connected to the pressure

sensor, and an additional line was set up to monitor the setpoint pressure. It can

be seen in Figure 36. As the Purple line represents the setpoint, the green line

represents the intake pressure, and the cyan line represents us the duty cycle.

From the graph, when the pressure reaches 0.6 bar the duty cycle goes to

100%, as it should, and when it reaches the setpoint it tries to counteract by

lowering the PWM and eventually going to 0% PWM signal, after with the

pressure decreases and the PWM signal increases again till it stabilizes the

boost pressure.

Figure 36. Oscilloscope output

When the Arduino serial plotter output was observed, it was noticed that the

pressure that the controller was reading was fluctuating more than expected,

indicating potential noise issues. It appeared that improved grounding might

have been beneficial for removing unnecessary noise from the analog input.

The primary issue was that the analog reading itself was fluctuating, which

implied a need for the implementation of an averaging function to the sensor's

input pin would be beneficial.

46

Taking all of those results into consideration an averaging function was added

to the code in Listing 8.

Listing 8: Part of the code where the averaging is done to minimize the input

oscillations.

This part of the code creates an array to hold the last 6 sensor values and then

it calculates the average of those 6 values before the pressure value is

calculated. The sensor_index variable monitors the current position in the array,

and the % operator is used to go back in fto the beginning of the array once the

end is reached.

Figure 37, Data before averaging function

47

In Figure 37, the input without the averaging function can be observed, and in

Figure 38, the implemented averaging is displayed. It is noticeable that the

pressure line is much smoother, and on the device’s screen, the numbers no

longer fluctuate. Adding this averaging function both in acquiring and displaying

the data proved to be a good iteration.

Figure 38, Data after averaging function

48

4.2 Testing on a car

In order to test the Boost Controller on a car, it was first necessary to hardwire

the boost controller’s connector to the car. Some wires had to be connected to

the car's wiring harness, while others were connected to the engine control unit.

We needed to have +12V when the ignition is turned on, Ground, Output wires

for the MAC solenoid, stage wires for the ECU, CAN Bus wires for the ECU

which were twisted to eliminate any interference, pressure sensor wires and the

buttons were to be connected.

In Figure 39 a quick sketch can be seen that was made for connecting the pins

to a connector to have a fast and a clear overview on what pin is what. In Figure

40 the connector itself can be seen, the male connector part is connected to the

car, and the female connector part is connected to the boost controller.

Figure 39. Boost controller’s connector pinout with wire colors (front view)

49

Figure 40. This is the connector that was used in the project

In Figure 41 and Figure 42 we can see the instrument cluster where the

controller was mounted, the boost controller replaced the Clock that was

mounted in there before.

50

Figure 41. The cars instrument cluster the first prototype was installed

The boost controller was a direct fit as precise measurements were taken

before.

51

Figure 42. The boost controller and the space in the instrument cluster it was

mounted

Three buttons, SELECT, DOWN, and a third one, UP, were added for future

iterations. The wiper Lever had Three buttons so why not use all of them,

initially the boost controller was coded to have two buttons.

All the necessary wires were located behind the instrument cluster wiring

harness, making the connection straightforward.

Once the device was installed in a car, the real testing began. A functioning

turbocharger with observable boost levels was at our disposal, which could

now, hopefully, be altered on the fly using the Boost Controller.

In the image displayed below (Figure 43), we can observe the operation of the

controller in a car. The duty cycle is depicted by the grey line in the graph.

However, difficulty was encountered in representing it as "HIGH" and "LOW" as

duty cycle in 30Hz. Instead, it was presented as a percentage scale, where

100% equals 1 and 50% equals 0.5 and 0% equals 0. This approach allows for

the convenient observation of our graph. The orange line represents the

setpoint (Stage) of the boost pressure. And lastly, the blue line represents the

Intake boost pressure.

52

Figure 43. The graph we got from the boost controller.

As evident from the graph, when the pressure is low, the duty cycle is at 0%.

After it reaches 0.6 bar the PWM goes to 100% as it should. As the pressure

approaches the setpoint, the duty cycle should gradually decrease eventually

stabilizing at the desired pressure level. But we did observe a noticeable

overshoot and after that, the boost pressure gradually decreased much more

than it should. It was only when the pressure hit 1 bar it began to achieve

stability. This outcome was undesirable, indicating a need for further tuning to

the PID controller.

The code has been prepared for changing the PID values directly from the

menu, but this feature is intended for future iterations. So, the PID values were

changed in the code, as it allowed us to tune how the boost controller was

controlling the boost pressure.

PID Tuning:

To get the best performance out of the PID controller, tuning was needed. The

tuning process began by increasing the Proportional and Integral values (Using

the same values) until the output became slightly unstable. To counteract the

unstable behavior, the Derivative value was increased until steadiness was

more or less achieved. After that, fine-tuning of those values started, mostly by

reducing the P value and increasing the I. The overall goal was to use as high

values as possible while still having a stable response. Then all values were

decreased to have a safety margin to prevent oscillation and overshoot.

Following the PID tuning, a much better outcome was achieved, which can be

observed in Figure 44. The Blue line represents the Boost pressure as the red

line is the PWM signal in percentage and the green line is the setpoint.

53

Figure 44. Pressure control after the PID Adjustments

5 Results and Discussion

5.1 Results

First, the results of the first prototype are going to be discussed.

The results were surprisingly good, even with the first PID values the Controller

did a semi-decent job on controlling the boost levels. The interface worked right

away. The Controller itself was a direct fit to the instrument cluster. But we also

encountered some problems and made a couple of observations. Firstly, a

recalibration of the pressure sensor was still needed somehow, as the

calibration was slightly off, which was amusing because it functioned on the

bench. Secondly, the screen brightness was not enough when viewing the

screen in direct sunlight. The LEDs brightness was too much in certain

situations, especially when the desired pressure was reached the white light

blinking was a little too much. On the display, some of the text was excessively

small and some modifications had to be made in the code. Both the LEDs issue

and the text size can be easily adjusted in the code. But, to improve the screen

brightness, the best solution would be obtaining a higher-quality display.

54

Now, let us discuss the results of the second prototype. Sadly, these results

were not as satisfactory. Upon initially connecting all the components and

powering on the device, we encountered a few issues. The screen displayed a

partially fragmented image, and the LEDs failed to turn on. Shortly after, the

screen shut down completely. Although resetting the device allowed it to start

again, the screen once again disappeared after a few seconds. Disappointment

was felt as the implemented CAN Bus feature was eagerly awaited to be tested.

To troubleshoot the problem, we disassembled everything and only connected

the screen to ensure there was no interference between the components.

However, the outcome remained unchanged. While testing the connections,

they appeared to be fine. The belief held is that when the screen was integrated

into the PCB, the pin holes did not align perfectly, necessitating a slight bend.

Unfortunately, during the bending process, probably too much pressure was

exerted on the screen, potentially causing damage.

5.2 Discussion

For the third prototype, all the components should be incorporated into a single

PCB. This would result in a much smaller footprint, consequently reducing the

overall size of the device and of course, making it resemble a proper PCB.

As for the PCB I made, I missed out on including test points and a ground loop.

These errors slowed down the troubleshooting process. Also, the track width on

the PCB should have been bigger on certain places. Maybe even those

mistakes added to the fact that the second prototype did not work correctly.

When the device was first powered on, a fragmented image was displayed on

the screen, and the LED ring was not lit up. The absence of test points made it

difficult to identify the exact cause of the issue promptly. It seemed that damage

may have been sustained by the screen cable or the screen itself when the pins

55

were bent to achieve a correct 90-degree angle. As said before the bending

was done because the holes for the screen did not align perfectly, contributing

to the problem. But this experience provided valuable insights into component

placement and PCB design for upcoming iterations.

For the next PCB, we gained knowledge like:

• Component placement: Strategically placing the components to minimize

signal interference and optimize thermal dissipation. And making sure later

everything lines up.

• Routing: Separating high-speed signals from noisy signals to minimize

interference.

• Power distribution: Plan and implement a proper power distribution network,

ensuring sufficient current-carrying capacity and low impedance paths for a

stable voltage supply.

• Grounding: Implement a solid ground plane and connect it effectively to

avoid ground loops and minimize noise

• Design for testability: Include test points and access to critical signals for

easy debugging and testing during the prototype phase.

Future Plans:

In the future, the Screen and LEDs should be changed. Datalogging should be

accessible through Bluetooth. The screen should be much brighter so that it

would also be visible on a sunny day. And LEDs should be small APA102s. The

casing material should be ABS or PETG plastic. And the device itself should look

aesthetically good.

References

1 Quattroword, Audi S2 Wastegate Frequency Valve (WGFV) – N75, 2009.

[Online]. https://forums.quattroworld.com/s4s6/msgs/20987.phtml [cited

May 20th, 2023]

2 S4NoMore, Bimmerpost. Thread 959674, Post #2, 2014. [Online Forum].

https://f30.bimmerpost.com/forums/showthread.php?t=959674 [cited May

20th, 2023]

3 Espressif Systems, ESP32 Datasheet, [Page 1-4], 2016. [Online].

https://www.esp32.dk/esp32_datasheet_en.pdf [cited May 20th, 2023]

4 Achim Pieters, ESP32 – Pinout, 2020. [Online].

https://www.studiopieters.nl/esp32-pinout/ [cited May 21st, 2023]

5 Maker Portal, Shop, Esp32 D1 Mini, 2021. [Online].

https://makersportal.com/shop/esp32-d1-mini-bluetoothwifi-board [cited

Feb 21st, 2023]

6 Dataq Instruments, Pressure sensor, 2020, [Online Datasheet].

https://www.dataq.com/resources/pdfs/datasheets/pressure-sensor-

ds.pdf [cited May 21st, 2023]

7 Dyno Racing, Pressure sensor, 2023, [Online].

https://tinyurl.com/ysrcevbv [cited May 27th, 2023]

8 Ultraperformance, MAC Boost Control Solenoid (3 Port), 2023. [Online].

https://www.ultraperformance.co.uk/mac-boost-control-solenoid-3-port

[cited May 27th, 2023]

https://forums.quattroworld.com/s4s6/msgs/20987.phtml
https://f30.bimmerpost.com/forums/showthread.php?t=959674
https://www.esp32.dk/esp32_datasheet_en.pdf
https://www.studiopieters.nl/esp32-pinout/
https://makersportal.com/shop/esp32-d1-mini-bluetoothwifi-board
https://www.dataq.com/resources/pdfs/datasheets/pressure-sensor-ds.pdf
https://www.dataq.com/resources/pdfs/datasheets/pressure-sensor-ds.pdf
https://tinyurl.com/ysrcevbv
https://www.ultraperformance.co.uk/mac-boost-control-solenoid-3-port

9 Circuitgeeks, Basics of Arduino PWM, 2022. [Online].

https://www.circuitgeeks.com/arduino-pwm/ [cited May 27th, 2023]

10 Elecrow, 0.95-inch RGB OLED Screen, 2023. [Online].

https://www.elecrow.com/0-95-inch-oled-module-96-64-rgb-display-7pin-

oled-module-with-ssd1331-spi-port.html [cited May 27th, 2023]

11 Adafruit, Neopixels Insights, 2017. [Online].

https://learn.adafruit.com/sipping-power-with-neopixels/insights [cited

May 27th, 2023]

12 Esp-Tech, Neopixel Ring 16x WS2812 5050 RGB LED, 2023. [Online].

https://www.exp-tech.de/en/modules/led-controller/5066/neopixel-ring-

16-x-ws2812-5050-rgb-led [cited May 27th, 2023]

13 Vance Vandoren, Understanding PID Control and loop tuning

fundamentals, 2016. [Online].

https://www.controleng.com/articles/understanding-pid-control-and-loop-

tuning-fundamentals/ [cited May 27th, 2023]

14 Elecrow, High-power Mosfet module, 2023. [Online].

https://www.elecrow.com/high-power-mosfet-trigger-switch-drive-

module.html [cited May 28th, 2023]

15 Alpha & Omega Semiconductor, AOD4184A, 2009. [Online Datasheet].

https://alltransistors.com/adv/pdfdatasheet_aosemi/aod4184a.pdf [cited

May 28th, 2023]

16 Wilfried Voss, CAN Bus and SAE j1939 Bus Voltage, 2019. [Online].

https://copperhilltech.com/blog/can-bus-and-sae-j1939-bus-voltage/

[cited May 28th, 2023]

https://www.circuitgeeks.com/arduino-pwm/
https://www.elecrow.com/0-95-inch-oled-module-96-64-rgb-display-7pin-oled-module-with-ssd1331-spi-port.html
https://www.elecrow.com/0-95-inch-oled-module-96-64-rgb-display-7pin-oled-module-with-ssd1331-spi-port.html
https://learn.adafruit.com/sipping-power-with-neopixels/insights
https://www.exp-tech.de/en/modules/led-controller/5066/neopixel-ring-16-x-ws2812-5050-rgb-led
https://www.exp-tech.de/en/modules/led-controller/5066/neopixel-ring-16-x-ws2812-5050-rgb-led
https://www.controleng.com/articles/understanding-pid-control-and-loop-tuning-fundamentals/
https://www.controleng.com/articles/understanding-pid-control-and-loop-tuning-fundamentals/
https://www.elecrow.com/high-power-mosfet-trigger-switch-drive-module.html
https://www.elecrow.com/high-power-mosfet-trigger-switch-drive-module.html
https://alltransistors.com/adv/pdfdatasheet_aosemi/aod4184a.pdf
https://copperhilltech.com/blog/can-bus-and-sae-j1939-bus-voltage/

17 Wikipedia, CAN Bus, 2023 [Online].

https://en.wikipedia.org/wiki/CAN_bus [cited May 28th, 2023]

18 How2electronics, Arduino CAN Bus Tutorial | Interfacing MCP2515 CAN

Module with Arduino, 2023. [Online].

https://how2electronics.com/interfacing-mcp2515-can-bus-module-with-

arduino/ [cited May 28th, 2023]

19 Timur, How to find the parametric equation, 2021. [Online].

https://planetcalc.com/8110/ [cited May 28th, 2023]

20 Dropbox, Programmable Boost Controller code, 2023. [Online].

https://www.dropbox.com/s/l5bcdn1ly0tedaa/DPBC.txt?dl=0 [cited May

28th, 2023]

21 EasyEDA, PCB Design tool, 2023. [Online]. https://easyeda.com/editor

[cited May 31st, 2023]

22 Traco Power, TSR 1, Series 1A, 2022. [Online].

https://www.tracopower.com/int/tsr1-datasheet [cited May 31st, 2023]

https://en.wikipedia.org/wiki/CAN_bus
https://how2electronics.com/interfacing-mcp2515-can-bus-module-with-arduino/
https://how2electronics.com/interfacing-mcp2515-can-bus-module-with-arduino/
https://planetcalc.com/8110/
https://www.dropbox.com/s/l5bcdn1ly0tedaa/DPBC.txt?dl=0
https://easyeda.com/editor
https://www.tracopower.com/int/tsr1-datasheet

Appendix 1

Design of a printed circuit board

Figure 45. Top Layer

Figure 46. Bottom layer

