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The current 5G mobile networks are already utilizing all-IP networks, employing 
the TCP/IP protocol stack to transmit application data for each 5G user. Conse-
quently, investigating the efficiency of TCP over 5G radio connections becomes a 
significant and intriguing subject. Additionally, TCP has congestion control mech-
anisms to manage variations in network links, and numerous algorithms have been 
created to enhance communication performance. Thus, the goal of this thesis is 
to evaluate and compare the performance of various TCP congestion control algo-
rithms. 

To achieve this goal, the thesis will analyse the data collected from testing using 

software tool. The testing will be conducted in two primary phases, starting with 

the installation and configuration of the necessary tools and software. The second 

phase will involve the actual testing and data collection, which will provide in-

sight into the effectiveness of different congestion control algorithms. 

Through analysis and comparison of different TCP congestion control avoidance 

schemes, this thesis has identified a superior algorithm that outperforms others. 

This discovery holds significant value in the ongoing advancement and exploration 

of 5G networks. The insights gained from this study can assist network administra-

tors and researchers in making well-informed choices regarding the selection of the 

most suitable TCP congestion control algorithm for their specific requirements. 
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1 INTRODUCTION 

We commence by providing a brief overview of the various generations of cellular 

networks, encompassing comprehensive information on wireless networks. This 

chapter encompasses the essential characteristics of each cellular network in 

question. Additionally, this section incorporates the rationale behind undertaking 

this thesis and outlines the anticipated results of the project. Finally, a thorough 

description of the structure of the thesis will be presented.  

1.1 5G Cellular Networks  

The latest mobile network technology, Fifth Generation (5G), offers faster data 

transmission with the help of several technologies. One of the key technologies in 

5G is millimetre wave (mm Wave) spectrum, which provides faster data transmis-

sion than previous generations. However, this spectrum has a shorter range and 

can be easily blocked by obstacles such as buildings and trees. Therefore, 5G cov-

erage is limited to short distances, but it can achieve communication at a through-

put up to 10Gbps. Massive MIMO is another key technology in 5G, which uses 

many antennas to increase network capacity and improve data transfer speeds. 

Beamforming technology is also successfully employed to enhance signal strength, 

improving the quality and reliability of wireless connections. 5G also utilizes ad-

vanced modulation techniques, such as Orthogonal Frequency-Division Multiplex-

ing (OFDM) and Quadrature Amplitude Modulation (QAM) to increase data rates 

and spectral efficiency. These technologies allow simultaneous transmission of 

multiple data streams over the same frequency band, which enhances data capac-

ity and throughput. (Sadeeq, Aljahmany, Zebari, & Rizgar, 2020) (Rappaport, 2013) 

(Sun, 2020). 

1.2 Motivation of Approaching This Project 

Currently, the global wireless of 5G mobile telecommunication is on the rise due 

to its high-speed transmission capabilities, offering throughput of up to 10Gbps. 

This technology is specifically designed to cater to bandwidth-intensive applica-

tions such as Virtual Reality (VR) and Augmented Reality (AR), Internet of Things 
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(IoT), Big Data, and more. However, in the existing networks, high data transmis-

sion often faces challenges such as packet loss and burst packets, primarily caused 

by network congestion at intermediate points. To address this issue, Transmission 

Control Protocol (TCP) incorporates Congestion Control Algorithms (CCA) as a cru-

cial feature to ensure network stability during times of increased network load. 

The effective implementation of a suitable congestion control algorithm can sig-

nificantly enhance the performance of TCP in 5G communications. The choice of 

an appropriate TCP congestion control scheme plays a crucial role in determining 

the throughput of a network. Furthermore, selecting the suitable congestion con-

trol scheme for a particular network setting can enhance TCP performance by in-

creasing throughput, decreasing latency, and minimizing packet loss. In contrast, 

utilizing an unsuitable CCA can lead to suboptimal performance and inefficient use 

of network resources. Hence, choosing the right CCA can have a considerable im-

pact on the efficiency and effectiveness of TCP communication within a specific 

network context. Regrettably, the research on the performance of various TCP 

congestion avoidance schemes in 5G networks is limited. As a result, this thesis 

has tested the performance of 5 TCP CCAs in Technobothnia laboratory in Vaasa, 

Finland. 

1.3 Objective and Outcomes 

The primary objective of the thesis is to evaluate and compare the performance 

of different congestion control schemes in 5G New Radio (NR) networks. The the-

sis aims to conduct comprehensive experiments using realistic scenarios and 

measurements to assess the effectiveness of various congestion control algo-

rithms in 5G networks. The research focuses on studying how different congestion 

control algorithms perform in terms of throughput, latency, packet loss, and more.   

The research outcomes are anticipated to yield valuable insights into the perfor-

mance of congestion control algorithms in 5G networks, particularly in managing 

congestion and optimizing performance in 5G NR networks across different sce-

narios. The findings may also shed light on the trade-offs and limitations of various 



  

congestion control schemes and provide practical recommendations for their ap-

plication in specific use cases, such as VR, AR, IoT, and other applications in 5G 

networks. 

1.4 Thesis Structure 

The thesis follows the following structure. Chapter 1 provides a concise overview 

of 5G wireless cellular networks, highlighting their key features. Chapter 2 delves 

into the necessary theoretical background for this project. This chapter includes 

definitions of User Datagram Protocol (UDP), TCP, and CCAs, along with an expla-

nation of Linux commands for TCP congestion control avoidance schemes. Chapter 

3 focuses on the testing implementation, discussing the chosen testing approach, 

equipment utilized, and installation instructions. Chapter 4 is dedicated to pre-

senting and discussing the results obtained. Finally, the last chapter, the conclu-

sion, provides a brief summary of the project. 
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2 BACKGROUND KNOWLEDGE 

In this section, we will examine the explanations of UDP and TCP in the field of 

telecommunications. Following that, we will discuss five different CCAs that will 

be utilized in this thesis for testing objectives. Prior to delving into the testing pro-

cess, it would be beneficial to review the definitions to gain a thorough under-

standing. Additionally, this chapter includes information on the Linux command 

used to adjust the CCA in the operating system and instructions on its utilization. 

2.1 User Datagram Protocol (UDP)  

The User Datagram Protocol (UDP) is a network protocol that operates in a con-

nectionless protocol. UDP is commonly used in scenarios where real-time commu-

nication and low latency are crucial, such as multimedia streaming, online gaming, 

and voice over IP (VoIP) applications. Its connectionless nature allows for faster 

transmission speeds, as there is no need to establish and maintain a continuous 

connection between sender and receiver (Stevens, 1994). When testing network 

performance, the tool "iperf" is commonly used with UDP to measure packet loss 

ratio, jitter, and round-trip delay. These metrics provide insights into network 

quality and reliability. In this article, we will explore the capabilities of UDP and 

how iperf can be utilized to assess network performance. Understanding UDP and 

iperf helps optimize networks for enhanced efficiency and user experience.  

2.2 Transmission Control Protocol (TCP)  

The Transmission Control Protocol (TCP) is a widely used network protocol that 

operates in a connection-oriented protocol that provides a reliable, ordered, and 

error-checked connection between two network endpoints. TCP is designed to fa-

cilitate communication between applications running on different hosts, and it of-

fers several key characteristics that make it an ideal protocol for a wide range of 

network communication scenarios. Firstly, TCP is connection-oriented, which 

means that a reliable connection must be established between the two endpoints 

before any data can be transmitted. This connection is established using a three-



  

way handshake process, where the sending host initiates the connection, the re-

ceiving host acknowledges the connection, and the sending host confirms the ac-

knowledgment. Once the connection is established, TCP provides a virtual circuit 

between the two endpoints that enables reliable and ordered data transfer. Sec-

ondly, TCP offers end-to-end transmissions, which means that the data is trans-

mitted from the sender to the receiver without intermediate hops or modifica-

tions. This ensures that the data arrives at the receiver in the same order and state 

as it was sent by the sender. Subsequently, TCP provides reliable transmissions, 

which means that it uses error detection and recovery mechanisms to ensure that 

the data is transmitted accurately and efficiently. TCP detects and retransmits any 

lost or corrupted packets, and it also implements flow control mechanisms to pre-

vent network congestion and optimize data transfer rates. Finally, TCP supports 

inter-process communication, which means that it allows applications running on 

different hosts to exchange data and communicate with each other. TCP provides 

a socket interface that enables applications to establish a connection and ex-

change data over the network. This makes TCP an essential protocol for a wide 

range of applications, including web browsing, email, file transfers, and many oth-

ers. (Loshin, 2003) 

As TCP relies on a connection-oriented approach, two participants are necessary 

to establish the connection. Furthermore, since TCP ensures reliable data 

transport, all data transmissions must be acknowledged once they have been re-

ceived. Therefore, the following sequence of steps is required. Firstly, to establish 

a TCP circuit between two processes, the initiating process sends a request mes-

sage that does not contain an acknowledgement since it is requesting to start a 

circuit, which may not be approved. The message usually includes information 

such as the requesting process's socket and the intended recipient's socket. Sec-

ondly, if a process is willing to open the requested socket, it responds with an 

acknowledgement, signaling that the circuit is halfway complete. The final step in 

establishing the connection requires host(A) to send an acknowledgement to 

host(B). At this point, both ends of the circuit have sent and received data along 
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with their corresponding acknowledgements (Sarolahti, Koponen, Kompella, & 

Ylianttila, 2002).  

2.3 TCP Congestion Control Algorithm Schemes  

TCP is the most widely used transport protocol on the internet today and has been 

evolving for over four decades (Cerf & Kahn, 1974). One of its crucial features is 

its congestion control algorithms, which are vital in maintaining network stability 

during high traffic periods. When a packet loss is detected by a TCP sender, its 

transmission rate is reduced as per the congestion control principles, assuming 

that the packet was dropped due to congestion in the network (Pasi & Kuznetsov, 

2002). When the level of congestion in a network becomes very high, packets may 

be delayed or lost. As a result, TCP will retransmit the lost packets, potentially 

leading to even more congestion. Without proper congestion control algorithms, 

the network may become overloaded and eventually fail, leading to a significant 

decrease in performance known as congestion collapse (Kozierok, 2005).  

TCP congestion control mechanisms were created to address network congestion 

in wired networks. These methods come into play when congestion occurs, and 

their objective is to regulate the transmission rate to avoid network congestion. In 

the early TCP standard, RFC 793, there was little mention of TCP congestion con-

trol mechanisms due to implementation challenges in detecting congestion. How-

ever, subsequent upgrades, such as those described in (Loshin, 2003), elaborated 

on the mechanisms discussed in RFC 793. (Allman, 2009) introduced several new 

congestion control algorithms, including TCP Slow Start, Congestion Avoidance, 

Fast Retransmit, and Fast Recovery. 

For the TCP congestion control algorithm to effectively manage congestion, it is 

necessary to first detect or anticipate congestion through various methods. This is 

typically achieved by measuring network delays, using network-supported Explicit 

Congestion Notification (ECN), or identifying lost packets, which are acknowl-

edged through additional ACKs of previously transmitted packets (Stevens, 1994). 

Whenever the congestion or coming congestion is detected, sending speed will be 



  

slowed down under window control mechanism. To represent the estimated avail-

able capacity of the network, a new value is employed, referred to as the Conges-

tion Window value, or cwnd for short. The actual usable window size of the sender, 

denoted by W, is then calculated as the minimum value between the receiver's 

advertised window size (awnd) and cwnd (Stevens, 1994). 

W = min(cwnd, awnd) (1) 

Then, the discussion turns to two primary TCP algorithms: Slow Start and Conges-

tion Avoidance, which were initially introduced (Allman, 2009). 

2.3.1 Slow Start and Congestion Avoidance 

The slow start and congestion avoidance algorithms are established in situations 

where a fresh TCP connection is established, or a loss is identified because of a 

Retransmission Timeout (RTO). Additionally, it can be triggered when a transmit-

ting TCP becomes inactive for a period of time (Stevens, 1994). To regulate the 

quantity of data being sent into the network, a TCP sender must utilize Congestion 

Avoidance and Slow Start algorithms. These algorithms necessitate the addition of 

two variables to the TCP per-connection state (Allman, 2009). When a TCP con-

nection is initiated, it enters the slow start phase by transmitting a specific number 

of segments, known as the Initial Window (IW), after the SYN exchange (Stevens, 

1994). While the original value of IW was one Sender Maximum Segment Size 

(SMSS), according to RFC5681, a larger value is now permitted. The SMSS refers to 

the largest segment that the sender can send, exclusive of the TCP/IP headers and 

options (Allman, 2009).  

The congestion window size should remain unchanged by the SYN/ACK and its ac-

knowledgment, as specified in RFC3390. In addition, if either the SYN or SYN/ACK 

packet is lost, the sender must utilize an initial window of one segment that con-

tains no more than SMSS bytes after transmitting the SYN correctly (Stevens, 

1994). Slow Start Threshold (ssthresh) is a congestion control algorithm parame-

ter. It is the threshold limit on the size of the congestion window during the slow 
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start phase of TCP's congestion control algorithm. The slow start phase occurs 

when a new TCP connection is established or when TCP recovers from a loss event. 

When the value of cwnd is less than ssthresh, the slow start algorithm is utilized, 

whereas the congestion avoidance algorithm is utilized when cwnd is greater than 

ssthresh. If cwnd and ssthresh are equal, the sender may choose to employ either 

the slow start or the congestion avoidance algorithm. (Allman, 2009) 

During slow start, TCP increases the value of cwnd by a maximum of SMSS bytes 

for each received ACK that acknowledges new data. The slow start phase con-

cludes when either cwnd surpasses ssthresh or congestion is detected. (Allman, 

2009) 

On the other hand, while in congestion avoidance mode, cwnd is increased by ap-

proximately one full-sized segment for each Round-Trip Time (RTT). The conges-

tion avoidance mode persists until congestion is identified (Allman, 2009). This al-

gorithm is aimed at gaining more capacity by incrementing cwnd by nearly one 

segment for each window's worth of data that is transferred successfully from the 

sender to the receiver (Stevens, 1994).The fundamental rules for increasing cwnd 

during congestion avoidance are: It is allowable to increase cwnd by SMSS bytes,  

it is recommended to increase cwnd  per equation (3) at least once per RTT, cwnd 

should not be increased by more than SMSS bytes. (Allman, 2009) 

If a TCP sender detects segment loss through the retransmission timer and the 

concerned segment has not yet been resent through the retransmission timer, the 

value of ssthresh must be adjusted to no more than the value provided in equa-

tion. (Allman, 2009) 

2.3.2 Fast Retransmit and Fast Recovery 

Fast retransmit and fast recovery are algorithms used in TCP congestion control to 

improve network performance. Fast retransmit detects and recovers from lost 



  

packets by triggering retransmission based on the arrival of duplicate acknowledg-

ments. Fast recovery helps to avoid congestion collapse by allowing the sender to 

continue sending data after the loss of a packet without waiting for a timeout.  

Duplicate acknowledgments can result from either lost segments or out-of-order 

delivery. In the past, TCP implementations had to wait for a timer to expire before 

retransmitting the lost segment if it was indeed lost. However, if the segment was 

delivered out of order, it would eventually be acknowledged, and the sender 

would not have to retransmit it. (Loshin, 2003) 

To identify and recover from lost data, the TCP sender is advised to employ the 

"fast retransmit" algorithm, which utilizes duplicate acknowledgments to detect 

data loss. When three duplicate acknowledgments are received, the fast retrans-

mit algorithm infers the loss of a segment and triggers its retransmission without 

waiting for the retransmission timer to expire (Allman, 2009). Once the fast re-

transmit algorithm sends the presumed missing segment, the "fast recovery" al-

gorithm takes over the transmission of new data until a non-duplicate acknowl-

edgment is received. Instead of resetting cwnd only one segment size, it is reset 

to the last value of the ssthresh (Stevens, 1994). Slow start is not initiated because 

the receipt of duplicate acknowledgments not only signals the loss of a segment 

but also suggests that segments are still leaving the network. (Allman, 2009)  

During the recovery period, the fast recovery algorithm enables the congestion 

window to increase by one SMSS for every received acknowledgment (ACK). This 

temporary inflation of cwnd allows for the transmission of an additional new 

packet for each ACK received until a non-duplicate or "good" ACK is received. At 

that point, TCP exits recovery mode and reduces the congestion window back to 

its original size (Stevens, 1994). 

2.3.3 Reno  

Reno is a variant of the TCP congestion control algorithm that uses the Additive 

Increase Multiplicative Decrease (AIMD) approach. Reno TCP is the default con-

gestion control algorithm used in many operating systems, including Linux and 
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Windows. It has been widely studied and improved upon and is considered a cor-

nerstone of TCP congestion control. (Floyd, 2001) 

Reno consists of three main components: Slow Start, Congestion Avoidance, and 

Fast Retransmit. A disadvantage of the Tahoe algorithm is that every time a re-

transmission occurs, TCP reverts to the Slow Start phase. This results in underuti-

lization of the available bandwidth. (Stevens, 1994) 

When Reno receives three duplicate ACKs, it performs a fast retransmit and enters 

a phase called fast recovery. During this phase, the congestion window is halved 

instead of being set to 1 MSS, and the ssthresh is set to the new congestion win-

dow. The slow start phase is skipped in this case (Ross, Kurose, & Keith, 2012). 

 

Figure 1. Cwnd behaviour in TCP Reno 

2.3.4 Cubic  

CUBIC (Congestion Control for TCP) is a TCP congestion control algorithm that was 

introduced in 2006 (Ha, Rhee, & Lisong, CUBIC: A New TCP-Friendly High-Speed 

TCP Variant, 2008b). CUBIC uses a new congestion control approach based on the 

analysis of the cubic function that allows it to increase the congestion window size 

more aggressively and more fairly than other algorithms, while reducing the delay 



  

and maintaining high network utilization. CUBIC uses a cubic equation that con-

siders the time elapsed since the last congestion event. Additionally, CUBIC uses 

the concave and convex aspects of the cubic function to determine how much to 

increase the congestion window. Figure 2 shows the growth function of CUBIC (Ha, 

Rhee, & Lixia, CUBIC, 2008a). 

 

Figure 2. Growth function in CUBIC 

CUBIC employs the given mathematical function to determine the growth of its 

congestion window (Ha, Rhee, & Lixia, CUBIC, 2008a). 

Once receiving an ACK in congestion avoidance, CUBIC computes the window 

growth rate during the next RTT period using equation (4) and sets W (t+ RTT) as 

a target value of cwnd. CUBIC operates in three modes depending on the value of 

cwnd. When cwnd is smaller than the window size that TCP would achieve at time 

t after the last loss event, it is in the TCP mode. If cwnd is less than 𝑊𝑚𝑎𝑥 , it is in 

the concave region, while if cwnd is greater than 𝑊𝑚𝑎𝑥 , it is in the convex region. 

2.3.5 Westwood 

Westwood is a TCP congestion control algorithm designed to improve the perfor-

mance of TCP in high-speed and long-distance networks by addressing issues re-

lated to delayed acknowledgment and packet loss. It adjusts the sending rate of 

TCP based on the available network bandwidth and the round-trip time. TCP West-

wood utilizes information from the ACK stream to improve congestion control pa-

rameters such as ssthresh and cwnd. It estimates an "Eligible Rate" which is used 

to update these parameters during loss indication or its "Agile Probing" phase. It 
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also employs Persistent Non-Congestion Detection (PNCD) to detect prolonged 

lack of congestion and initiate the Agile Probing phase to quickly utilize dynamic 

bandwidth (Mascolo, Casetti, Gerla, Sanadidi, & Wang, 2001). The Westwood al-

gorithm adjusts the interval size based on the congestion level. If congestion is 

low, the interval will be small, and vice versa. When a packet is dropped, the West-

wood algorithm computes a new bandwidth delay product (BDP) and assigns it to 

cwnd rather than reducing it by half (Stevens, 1994). 

2.3.6 BBR  

In 2016, Google developed a congestion control algorithm called Bottleneck Band-

width and Round-trip propagation time (BBR) (Cardwell, Cheng, Gunn, Yeganeh, & 

Jacobson, 2017). BBR is designed for TCP and aims to achieve high throughput and 

low latency simultaneously. It achieves this by continuously estimating the availa-

ble bandwidth and RTT. BBR adjusts the sending rate of data packets based on 

continuous estimation of available bandwidth and RTT. It is highly effective in net-

works with high bandwidth and variable RTT, including data center and cellular 

networks. 

Unlike most congestion control algorithms that are based on packet loss to detect 

congestion and adjust transmission rates, BBR and TCP Vegas are model-based al-

gorithms. Instead of relying on packet loss, BBR estimates the maximum band-

width and round-trip time of the network to build a model. As packets are deliv-

ered, acknowledgments are received, which produce rate samples to record the 

amount of data delivered over time (Yi, 2022). With the increase in network inter-

face controller speed from megabit per second to gigabit per second, buffer bloat-

induced latency is becoming a more accurate indicator of maximum throughput 

than packet loss. As a result, model-based CCAs such as BBR, which offer higher 

throughput and lower latency, are becoming a more reliable alternative to popular 

loss-based algorithms like Cubic (Yi, 2022). 



  

 

Figure 3. Delivery rate and round-trip time 

The graph depicted in Figure 3 displays the changes in delivery rate and RTT ac-

cording to the amount of data that has been sent but not yet acknowledged. The 

constraints of RTprop are represented by blue lines, BtlBw constraints by green 

lines, and the bottleneck buffer by red lines. It is impossible to operate in the re-

gions that are shaded since they would violate at least one constraint. The transi-

tions between constraints result in three distinct regions, namely, app-limited, 

bandwidth-limited, and buffer-limited, each having different behavior (Cardwell, 

Cheng, Gunn, Yeganeh, & Jacobson, 2017). 

2.3.7 HTCP 

HTCP, or Hamiltonian TCP, is a congestion control algorithm used in TCP to opti-

mize network performance by balancing the transmission rate of data packets 

with the amount of data already in transit and the capacity of the network. It uses 

AIMD to control TCP's congestion window size (Armitage, Stewart, Welzl, & John, 

2008). HTCP's unique approach to congestion control is based on a mathematical 

model derived from Hamiltonian mechanics, which allows it to more accurately 

estimate the amount of data that can be safely transmitted without overwhelming 

the network. This results in improved network utilization and a more stable flow 

of data, leading to faster and more reliable communication. 
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In TCP research, it is a common approach to generalize Standard TCP2 by defining 

the growth and reduction of cwnd in terms of two constants: alpha (α) and beta 

(β). By knowing the SMSS of the sender, it is possible to determine that during the 

congestion avoidance phase, the cwnd will increase by no more than α × SMSS per 

RTT. After a congestion event, the cwnd will be reduced to β × cwnd. This method 

provides a more precise specification of the congestion control algorithm. H-TCP's 

initial reaction to a congestion event is like that of NewReno, where alpha (α) is 

set to 1 until the value of delta (𝛿) exceeds a specified threshold called 𝛿1. When 

𝛿 exceeds 𝛿1, alpha is calculated using a quadratic formula like equation (7). 

 𝛼 =   1 + 10 × (𝛿 −  𝛿1) +  (
𝛿−𝛿1

2
)2 (7) 

𝛿1 represents the time that must elapse after a congestion event before H-TCP’s 

own α increase function comes into (Armitage, Stewart, Welzl, & John, 2008).In H-

TCP, the recommended value for the threshold 𝛿1 is 1 second, as recommended 

by Hamilton. This means that after a congestion event, H-TCP behaves similarly to 

NewReno and sets the value of α to 1 for a duration of one second. After one 

second, H-TCP's cwnd grows more aggressively if no further congestion events oc-

cur. 

2.4 Linux Commands to Alternate TCP Congestion Control Schemes 

In the Linux operating system, numerous CCAs are available. Some CCAs are in-

cluded in the kernel by default, while others require compiling from the source 

code to be used. This flexibility allows users to choose and customize the appro-

priate CCA for their specific network needs. This implementation contains unique 

features that differentiate it from other TCP implementations, which may be of 

interest to protocol designers working with TCP (Pasi & Kuznetsov, 2002). 

The RPi4 was used in this project came with Raspbian Bullseye (kernel version 

number: 5.10). This OS supports TCP Reno and Cubic. If we want to display a cata-

logue of available CCA, we can execute a specific command (Jason, 2021): 

sysctl net.ipv4.tcp_available_congestion_control  



  

Alternatively, To the purpose is to verify which CCA is presently being utilized by 

the device, the following command can be executed (Jason, 2021): 

sysctl net.ipv4.tcp_congestion_control  

The CCA mentioned in this list can be readily implemented onto the operating sys-

tem. To choose and apply a different CCA in the kernel, we can employ this com-

mand (Jason, 2021): 

sudo sysctl -w net.ipv4.tcp_congestion_control=<CCA name> 

 

Figure 4. Apply new CCA for OS 

Within the Linux system, there is an abundance of Congestion Control Algorithms 

that are compatible with the operating system. However, not all of them have 

been loaded onto the kernel, which means that some may not appear in the avail-

able command check. In order to display a list of all the CCA that have been imple-

mented in the kernel but are not yet loaded, this command can be used (Jason, 

2021): 

 ls -al /lib/modules/`uname -r`/kernel/net/ipv4/tcp* 
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Figure 5. List all implemented CCA in the current OS. 

After obtaining a list of available but unloaded CCA, we can easily load the desired 

CCA sing the "modprobe" command: 

 sudo /sbin/modprobe <tcp_CCA> 

 

Figure 6. Loading new CCA to kernel. 

Figure 6 illustrates that our new CCA has been successfully implemented in our 

kernel, enabling us to conveniently utilize it for TCP communication objectives. 



  

3 TESTING IMPLEMENTATION 

In this section, the purpose is to present a comprehensive solution for effectively 

assessing and evaluating the performance of various TCP congestion control 

avoidance schemes. This involves proposing suitable methodologies and software 

tools that can be utilized specifically for the purpose of testing these schemes. 

Furthermore, this chapter encompasses an in-depth exploration of the essential 

equipment required for conducting the project, including detailed instructions on 

how to properly install and set up said equipment. Ultimately, the section will pro-

vide a detailed account of the step-by-step process involved in conducting the 

testing, ensuring a thorough understanding of the entire testing progress. 

3.1 Proposed Solution 

Our objective is to test different CCAs over a 5G link, which necessitates the instal-

lation of a 5G hat device. In this case, we are using a Raspberry Pi 4 as a 5G hat, 

and we can easily modify the CCA as required. The tests are carried out using a 

network performance measurement tool called “iperf3” which is available on any 

Linux system. To evaluate the TCP performance of different CCAs, we can analyze 

the transmission rates or speed rates to determine which algorithm performs op-

timally. Totally, 5 CCAs was used like discussed in section 2.3 TCP Congestion Con-

trol Algorithm Schemes. 

During the testing process, it is important to note that the throughput, delay, and 

other relevant parameters may vary significantly and may not remain stable. 

Moreover, there is a possibility of congestion or data loss occurring during the 

testing, which can lead to erroneous results. Therefore, it is imperative to ensure 

the reliability and accuracy of data collection. To achieve this, each CCA has been 

tested over 3 different durations, as 1, 5, and 10 minutes respectively, and each 

duration has been tested 10 times to eliminate temporal radio link fluctuations. 

In our project, our system is both Non-Standalone (NSA) our 5G system operates 

as a Time Division Duplex (TDD) system utilizing a 50MHz band ranging from 
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3.900GHz to 3.950GHz. The TDD technology enables the base station to dynami-

cally allocate time slots for both uplink and downlink transmission using a Radio 

Resource Management (RRM) algorithm. As a result, the uplink and downlink 

speeds experienced by each mobile terminal can vary considerably. Therefore, it 

is important to consider both directions when analyzing the data. 

The data was collected in the JSON format initially. However, organizing and ana-

lyzing data in this format can be challenging. Therefore, the data was converted 

from JSON to XLSX format, which can be easily handled by Excel for further analysis 

and interaction with the data. 

In summary, to compare the data, we will calculate the average throughput in the 

downlink and uplink for three different intervals and the overall average of all 

tests. Latency will be assessed using the same method for comparison. Addition-

ally, the behavior of throughput during the 10-minute testing period will be plot-

ted in a chart to illustrate its reaction over time. The congestion window values 

will also be analyzed using this method.  

3.2 Equipment and Installation  

3.2.1 Equipment 

For this project, The SIM8200EA-M2 was selected. The SIM8200EA-M2 is a 5G HAT 

module that could be attached to Raspberry Pi devices, providing them with 5G 

connectivity. The module is based on the Qualcomm Snapdragon X55 5G modem 

and supports both SA (Standalone) and NSA 5G modes. It is designed to enable 

developers to create 5G-powered IoT (Internet of Things) applications with ease. 

This modem is able to connect to any commercial 5G network with the operator’s 

SIM card. 



  

 

Figure 7. Sim8200ea-m2 5g device 

Hence, the 5G network used in this project is an experimental system from Ama-

risoft. The base station is called Callbox (as in Figure 8). Using such a network al-

lows us to test 5G link performance without involving other parts of the Internet. 

We setup an Iperf server as edge server right beside the Callbox and connected 

them with a 10Gbps Ethernet switch, hence the intervention of other. Amarisoft 

LTE Call box is a device designed for LTE testing and network emulation. It can 

simulate a complete LTE network with eNodeB (base station) and EPC (core net-

work) components, allowing for testing of LTE devices and applications in a con-

trolled environment. 
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Figure 8. Arimasoft 5G base station 

In this project, Iperf3 is utilized to evaluate the performance of different CCAs in 

the context of 5G communication. Iperf3 is a widely used network performance 

measurement tool that assesses the maximum achievable bandwidth on IP net-

works. It is commonly employed to analyse network performance, detect network 

issues, and resolve network bottlenecks. By using iperf3, we can easily and effec-

tively determine the optimal CCA performance during 5G communication. 

3.2.2 Installation 

To establish a connection between the 5G hat device and the 5G base station, 

manufacturer of the application can be utilized. The user guide provides instruc-

tions on how to install and use the application, which can be easily installed by 

following the designated commands: 



  

 

Figure 9. 5G hat driver installation on RPi4 

Next, it is necessary to use the minicom application that has been developed for 

AT command testing: 

 

Figure 10. AT testing command 

 

Figure 11. AT testing in minicom interface 

After a successful AT testing, a connection to the 5G network can be established 

using the following command (Waveshare, 2023): 

cd Goonline 

make 

sudo ./simcom-cm 
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Figure 12. Connect to 5G base station. 

Each time we need to connect to 5G, we can simply navigate to the "Goonline" 

directory and execute the application without having to create a new configura-

tion. 

 

Figure 12. 5G connecting application interface. 

 



  

 

Figure 13. “ifconfig” shows a “wwan0” interface with IP address 192.168.2.2 is 

added to the RPi4 Internet interface. 

The successful connection of the 5G hat to the edge server was confirmed by the 

establishment of a 5G link, and the hat was assigned the IP address 192.168.2.2 at 

interface wwan0, indicating a successful connection to the 5G base station. 

 

Figure 14. The network topology 
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Based on Figure 15, the IP address assigned to the edge server in this network 

topology is 192.168.69.65. The Raspberry Pi is linked to a 5G network and assigned 

the IP address 192.168.2.2. Communication between the edge server and Rasp-

berry Pi takes place at a frequency of 3.9 GHz. Additionally, the image presents 

the signal power for both transmission and reception signals. 

Our next step is to verify the connection between the edge server and the Rasp-

berry Pi by using the ping command to send a message to the IP address of the 

edges ever, which is 192.168.69.65:  

 

Figure 15. Ping to edge for connection testing 

Once the ping command confirms a successful connection between the edge 

server and the Raspberry Pi, testing can be initiated using the iperf3 tool. 

The current scenario involves the utilization of various parameters within the ip-

erf3 tool to carry out testing that is more precise and efficient: 

Table 1. The list of iperf options used in the tests. 

Parameter Utilizing 

-c <server IP address> To set host device as client 

-p <port number> Set port number for this connection 

-i <time (in second)>  a time interval between each test 

-t <time (in second)> to specify the duration of the test 

-s  to start the iperf3 tool in server mode 

-C <CCA> to set the congestion control algorithm 



  

-J  to specify that the output should be in JSON format 

-R to perform a reverse(downlink) test  

 

Initially, a server was established on the edge server using iperf3, with the port 

number designated as 7778, and the reporting interval was configured to be 1 

second to enable better monitoring of the data transfer: 

 iperf3 -s -i 1 -p 7778 

One the client side, which is RPi4, an iperf connection was established to the 

server. To begin with, I established a connection was established to the iperf3 

server, which was assigned the IP address of 192.168.69.65, using the same port 

number as the server, which is 7778. The reporting interval is also set as 1 second 

to ensure that dynamic changes can be observed during the tests. Additionally, 

the -J flag was utilized to save the collected data in the JSON file format which 

would be stored in the current working directory. This approach enables the uplink 

to be tested with minimal effort in default settings, while testing the downlink can 

be achieved by using the -R flag. The uplink refers to the transmission of data from 

the client to the server, while the downlink refers to the transmission of data from 

the server to the client.  Through this method, the client testing phase can be con-

ducted with relative ease and efficiency. Following by this command:  

iperf3 –c 192.168.69.65 -p 7778 -i 1 -t 600 -C cubic -J > 

test.json  (uplink) 

iperf3 –c 192.168.69.65 -p 7778 -i 1 -t 600 -C cubic -R -J > 

test.json (downlink) 

The provided iperf commands are utilized on the client device (RPi4). Each com-

mand designates a client (-c) connected to a server IP (192.168.69.65) with port 

7778 (-p). The reporting interval is set to 1 second (-i), the test duration is 600 

seconds (-t), and the cubic CCA algorithm (-C) is employed. The results of the test 

are saved in a JSON file (-J > test.json). The second command specifically focuses 
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on evaluating the downlink performance (-R). For a more comprehensive under-

standing of each iperf option, please refer to Table 1. 

3.3 Testing Progress 

“iperf” is able to save instantaneous results and many other details in a JSON-for-

matted file. Figure 17 shows a part of such a file. 

 

Figure 16. Data in JSON format 

The data during testing using iperf3 is available in two formats, namely the JSON 

file and the server output. Upon running the tests, the server interface displays 

the data in real-time, providing a continuous update of the intervals and through-

put (bit rate) every second. Additionally, the interface also shows the settings that 

were configured prior to running the tests. This real-time display of data allows for 

a thorough and precise assessment of the performance of the network during test-

ing. 



  

 

Figure 17. Server interface in Cubic uplink testing 

Figure 18 displays the server interface utilized during uplink testing, which exhibits 

fundamental data obtained during the test. However, in the case of downlink test-

ing, the server interface shows more extensive information, such as the retrans-

mission rate and congestion window values. This distinction in the type of data 

displayed is since the congestion window value and retransmission rate are set 

only at the sender, and the retransmission rate is sent from the sender rather than 

the receiver. Therefore, to examine these metrics, the JSON file obtained during 

the downlink testing phase is analysed. 
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Figure 18. Server interface in Cubic downlink testing 

The data collected will be divided into three intervals, which were previously dis-

cussed as 1 minute, 5 minutes, and 10 minutes. These data sets will be analysed 

using Microsoft Excel. By utilizing Excel, the collected data can be visually pre-

sented through charts, making it easier to compare the performance of different 

congestion control schemes. The overall performance of the schemes will be as-

sessed through the comparison of the data obtained from the various CCA config-

urations. 

 



  

4 RESULTS AND DISCUSSION 

This section will encompass various aspects, including the throughput perfor-

mance of five different schemes within a one-minute timeframe, as well as the 

latency, throughput, congestion window value, and retransmission rate. By care-

fully analyzing these factors, we can obtain more detailed and precise data to draw 

a conclusion. Additionally, this section will also incorporate tests conducted in al-

ternative wireless environments, specifically focusing on WiFi, to showcase our 

results. 

4.1 Throughput Behavior of Five Schemes 

Once the JSON files are examined, the information will be incorporated into a line 

graph to contrast five distinct plans. Figure 20, the throughput behavior during a 

one-minute uplink test is displayed. The graph illustrates that all five schemes ex-

hibit similar stability during the one-minute test period, with no noticeable differ-

ences. Furthermore, the graph demonstrates that there is little variation in the 

uplink test results among the five schemes. 

 

Figure 19. Throughput behaviour of 5 CCAs in uplink testing 
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Moving on to the next set of data, Figure 21 displays the comparison of the aver-

age throughput of the five different schemes tested in downlink. The results show 

that BBR outperformed the other schemes, with an average throughput of around 

80 Mbps, while the other schemes fluctuated around 30 Mbps and remained sta-

ble in that range. However, it is worth noting that BBR's performance also exhib-

ited significant fluctuations, ranging from 60 Mbps to 110 Mbps, indicating that 

although it achieved high performance, it also showed instability over the 5G net-

work. This instability could be considered a disadvantage when seeking to achieve 

the best possible performance.  

 

Figure 20. Throughput behaviour of 5 CCAs in downlink testing 

Nonetheless, these findings provide valuable insights into the performance of dif-

ferent schemes in 5G networks and can aid in the optimization of network perfor-

mance in the future. 

4.2 Average Latency of Five Schemes 

The objective of this section is to study how the performance of different TCP con-

gestion control avoidance schemes is affected by latency. To achieve this, we ex-

tracted the RTT data from the JSON files and presented it in a column chart for 

better visualization of the CCA's performance. The column chart provides a clear 
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summary of the RTT values for each of the tested schemes. The chart provides a 

summary of the data obtained from testing periods of 1 minute, 5 minutes, and 

10 minutes, allowing for easy comparison between the different schemes. Addi-

tionally, we calculated the total average latency for all testing periods to provide 

an overall view of the performance of each CCA. 

From a neutral standpoint, it can be observed that in the latency chart for one 

minute testing, the BBR still exhibits superior performance compared to other 

schemes, as shown in Figure 21. Conversely, the Westwood scheme shows the 

poorest performance in this regard. 

 

Figure 21. Average latency of 5 CCAs in 3 different intervals 

In contrast, Cubic, Reno, and HTCP exhibit a comparable level of latency, suggest-

ing that there is not much variation in their performance. This observation holds 

true for both the 5-minute and 10-minute testing periods, indicating the reliability 

and consistency of the results. 
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Figure 22. Average latency of 5 CCAs in all times 

The findings reveal that BBR outperforms other TCP congestion avoidance 

schemes in terms of latency. Additionally, BRR also shows good results, possibly 

due to its ability to handle burst traffic. On the other hand, the results also demon-

strate that the Westwood algorithm performs poorly in 5G networks, as indicated 

by its high latency. 

4.3 Average Throughput of Five Schemes 

The goal of this section is to assess the performance of five different schemes in 

5G link by comparing their throughput. To achieve this, we gathered the necessary 

data from a JSON file named "bits_per_second" and used it to create a chart that 

provides a clear visualization of the results. To conduct an effective comparison, 

we focused on two channels uplink and downlink. 
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Figure 23. Average throughput of 5 CCAs in 1 minute testing at both way 

In this section, the aim is to compare the performance of five different TCP con-

gestion control algorithms schemes in the 5G link, by examining their throughput. 

The data collected from the JSON files contain the bit-per-second variable, which 

is used to create a chart for better visualization and comparison. The chart covers 

two channels, namely the downlink and uplink channels. Figure 24 shows that 

there is no significant difference in the throughput of the five schemes in both 

uplink and downlink channels, except for the BBR scheme which outperforms oth-

ers in terms of throughput. The bitrate of the BBR scheme is significantly higher 

than the others. 
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Figure 24. Average throughput of 5 CCAs in 5-minute testing at both way 

 

Figure 25. Average throughput of 5 CCAs in 10-minute testing at both way 

Based on the data presented in figures 25 and 26, BBR still shows the best perfor-

mance in the downlink channel, while HTCP has improved in the uplink channel 

compared to the other schemes. On the other hand, the worst performer in both 

channels is Westwood, which demonstrates significantly slower performance 

compared to the other schemes.  
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Figure 26. Average throughput of 5 CCAs in total testing at both way 

In the concluding analysis of throughput, the results are further refined and 

demonstrate consistency with the previous testing. BBR continues to exhibit dom-

inant performance in this aspect, with HTCP also exhibiting a promising result. 

Conversely, Westwood emerges as the weakest performer in this comparison. It 

is possible that Westwood's design caters more towards a fairness network, rather 

than prioritizing performance in high-speed, 5G networks. Overall, the data pro-

vides a reliable and accurate comparison between the different TCP congestion 

avoidance schemes, allowing for informed decisions to be made in selecting the 

appropriate scheme for specific network needs. 

4.4 Congestion Window Behavior of Five Schemes 

The purpose of this section is to examine the behavior of cwnd and compare it 

between the five different schemes. To collect the cwnd data, we utilized the 

max_snd_cwnd parameter from the JSON files that we collected during the test-

ing. Regrettably, it was possible to gather only cwnd values from the uplink direc-

tion, as data collection was limited to the client side using the iperf3 tool. Conse-

quently, the collected cwnd values solely reflect the perspective from the client 

side, and no data from the server side was obtained.   
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 Our goal is to analyze and visualize the cwnd data to make meaningful compari-

sons between the schemes. 

 

Figure 27. Cwnd value behaviour of 5 CCA for 10 minutes 

From the analysis of Figure 28, it is observed that the behaviour of the congestion 

window value in the BBR scheme is quite interesting. The cwnd value is found to 

be unstable and fluctuates between 200 Kbytes to 400 Kbytes, with a sinusoidal-

like pattern in the graph. At times, the value even drops to 0, which could be a 

phase where congestion is being avoided by the schemes. 

In contrast to BBR, the cwnd values of other TCP schemes appear, according to 

Figure 28, to be more stable, with higher average values than BBR. This suggests 

that the other schemes may prioritize stability over throughput optimization, re-

sulting in more consistent and higher cwnd values. 

It is worth noting that BBR was specifically designed to optimize throughput and 

reduce latency for high-speed. As such, BBR dynamically adjusts its cwnd size to 

maintain a desired sending rate and minimize packet delay. This could explain the 

fluctuations in cwnd values observed in Figure 28, as BBR adjusts its cwnd in re-

sponse to changing network conditions. 
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However, the fluctuation of cwnd values in BBR does not necessarily mean that it 

is performing poorly. In fact, as shown in previous sections, BBR demonstrated 

outstanding performance in terms of throughput and latency. The fluctuations in 

cwnd values may be indicative of BBR's ability to dynamically adapt to changing 

network conditions, which is a key feature of its design. 

In comparison, the other TCP schemes may have a more static approach to con-

gestion control, resulting in more consistent cwnd values. However, this may come 

at the expense of throughput optimization and latency reduction. Overall, the 

choice of TCP congestion control scheme should be based on the specific network 

requirements and priorities, whether it is stability, throughput, or latency optimi-

zation. 

4.5 Retransmission Rate of Five Schemes  

The retransmission rate was obtained by extracting the "retransmits" parameter 

from the JSON file in uplink testing and subsequently converted to an Excel format 

for additional analysis. The average retransmission rate can be found in Table 2. 

Table 2. Retransmission rate of five schemes 

 

Retransmission 
rate 

Reno 4.63 
Cubic 3.64 
HTCP 2.64 
BBR 684.89 
Westwood 4 

After analyzing Table 2, it appears that BBR has a higher retransmission rate com-

pared to the other schemes. This may indicate that BBR is more sensitive to net-

work congestion and is more likely to experience packet losses, which can nega-

tively impact the performance of a TCP connection. Retransmission of lost packets 

leads to increased latency and reduced throughput. Therefore, it is important for 

a congestion control algorithm to balance between optimizing throughput and 

minimizing packet loss. While BBR prioritizes throughput, it may result in higher 
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retransmission rates. However, it is interesting to note that the latency of BBR 

testing is still low, indicating that it is compatible with 5G networks. 

4.6 Other Wireless Communication Testing of Five Schemes. 

 

Figure 28. WIFI testing throughput in downlink. 

To validate the superior performance of BBR, additional tests were conducted in 

a different wireless communication environment, specifically using Wi-Fi. In this 

scenario, a connection was established between the edge server and the same RPI 

by utilizing a TPLINK Wi-Fi module. The module was connected to the network, 

which is identical to the edge server, through the WAN interface. Subsequently, 

the RPI was connected to the module via Wi-Fi. 

The results of this test also showed that BBR still outperformed the other conges-

tion control schemes, although it was not as dominant as in the 5G network test-

ing. It is worth noting that different wireless communication environments can 

have varying characteristics and challenges, and congestion control algorithms 

may behave differently depending on the network conditions. Despite this, the 

fact that BBR consistently showed better results in both 5G and WIFI testing sug-

gests that it is a robust and effective congestion control algorithm. 
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Interestingly, the results also showed that Westwood, which performed poorly in 

the 5G network testing, demonstrated good results in the WIFI communication 

environment. This highlights the importance of testing congestion control algo-

rithms in different network conditions to better understand their behavior and 

performance. 

In addition, Figure 29 further supports the better performance of BBR in wireless 

communication environments. The graph demonstrates that BBR has higher 

throughput values compared to other congestion control algorithms in a WIFI en-

vironment, while the other algorithms exhibit lower throughput values and 

greater variability in their performance. 
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5 CONCLUSIONS 

This thesis has analyzed five different TCP congestion control algorithms, namely 

Reno, Cubic, HTCP, BBR, and Westwood over a 5G (NSA/SA) TDD link of 50MHz 

band. The tests were conducted in both the downlink and uplink cases, with data 

collected in three different intervals and stored in the JSON format for a subse-

quent analysis in Excel. 

Upon analyzing the results, it can be concluded that BBR outperforms the other 

algorithms in terms of latency and throughput in downlink. However, BBR does 

show a higher retransmission rate and more instability in cwnd in 5G networks. In 

contrast, Westwood performed poorly in all aspects covered in this paper but 

showed good performance in the downlink case. These results suggest that BBR 

may be better suited for server-based applications, such as edge servers, while 

HTCP may be more appropriate for client-based applications. Westwood may be 

a suitable option for achieving network fairness. Finally, the Cubic and Reno algo-

rithms demonstrated results in line with expectations. 

In conclusion, for 5G industries and applications, BBR is recommended for server-

based use cases such as edge servers, while HTCP is preferable for uplink cases. 

However, it is important to consider the trade-offs between performance and 

other factors such as retransmission rates and network stability. 
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