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Abstract: 

This thesis aims to develop a deep learning model that uses the Fast.ai library and transfer 

learning to create a convolutional neural network model. The model will identify dog breeds 

in digital images and evaluate the developed model’s performance with regards to loss and 

accuracy. The thesis also aims to explain the underlying technological specifications of a deep 

learning model. The model has been trained on dog breed images from the Stanford Dogs 

dataset and tested against similar dog breed identification models and apps. Open source is a 

cornerstone of the thesis, and the code of the developed model will be hosted publicly on the 

GitHub platform under an open-source license for further expansion by others. The motivation 

for this research comes from the lack of accurate open-source dog breed identification tools 

alongside the growing popularity of dogs, as well as the author's passion for deep learning and 

computer vision. The research questions include the development of an accurate CNN model, 

the suitability of Fast.ai for image classification tasks, the selection of a pre-trained model to 

use with transfer learning, and the comparison of the developed model against similar models 

and apps. Overall, this thesis aims to create a well-functioning, well-documented and modern 

model that accurately identifies dog breeds, and the thesis and developed code are meant to 

inspire others to learn and work in the fields of computer science such as artificial intelligence, 

and deep learning. 
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Sammandrag: 

Detta examensarbete fokuserar på utvecklingen och utvärderingen av en djupinlärningsmodell 

byggd med överföringsinlärning som använder sig av programmeringsbiblioteket Fast.ai för 

att utveckla ett faltningsnätverk. Modellen ska identifiera hundraser från digitala bilder. 

Examensarbetet har också som mål att förklara de underliggande teknologiska 

specifikationerna av en djupinlärningsmodell. Modellen har tränats med bilder från Standford 

Dogs datasetet, och testats mot likartade utvecklade modeller och appar. Öppen källkod är en 

nyckeldel av arbetet, koden för den utvecklade modellen finns offentligt tillgänglig på tjänsten 

GitHub licenserad med en öppen källkodslicens, så att andra kan ta del av och modifiera koden. 

Bakgrunden till arbetet kom från bristen av träffsäkra öppna källkodsverktyg för att identifiera 

hundraser, den ökande populariteten av hundar, samt skribentens passion för djupinlärning och 

datorseende. Forskningsfrågorna sammanfattar utvecklingen av en noggrann CNN modell, 

Fast.ais förmåga att lösa bildklassificering problem, valet av en färdig tränad modell för att 

möjliggöra överföringsinlärning, och jämförelsen av den utvecklade modellen gentemot 

likartade modeller och appar. Detta arbete fokuserar på att skapa en välfungerade, 

väldokumenterad och modern modell för att så noggrant som möjligt identifiera hundraser. 

Detta arbete och dess kod kunde förhoppningsvis inspirera andra till att lära om och arbeta med 

ämnen relaterade till datorseende så som artificiell intelligens och djupinlärning. 

 

Nyckelord: 
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AI – Artificial Intelligence  
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ANN – Artificial Neural Network  

API – Application Programming Interface  

App – Software application  

BS – Batch Size  

CL - Convolutional Layer 

CNN – Convolutional Neural Networks 

CPI - Central Processing Unit  

CV – Computer Vision  

DL – Deep Learning  

DNN – Deep Neural Network  

EP – Epoch 

FCL - Fully Connected Layer 

JSON – JavaScript Object Notation  

LR – Learning Rate  

LSTM - Long Short-Term Memory  

ML – Machine Learning  

NLP – Natural language processing 

PC – Personal Computer 

PL – Pooling Layer 

RNN – Recurrent Neural Network 

ReLU - Rectified Linear Unit 

SGD - Stochastic Gradient Descent 

SQL – Structured Query Language 

TPU – Tensor Processing Unit 

UI – User Interface 

Explanations 

API – The way for one piece of software to access another piece of software.  

Bounding box – A computer-drawn box that encapsulates different types of objects in an 

image or video.  

Convergence – A state during training in machine learning when the loss reaches a 

minimum, additional training won’t improve the current model.  
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Dataset – A structured collection of data, often containing a multitude of data.  

Fast.ai – A software library that allows the development and training of DL models. 

Framework – Software that contains tools and components designed to aid in the 

development of new software.  

Git – A version control system used to manage and keep track of developed software. 

GitHub – A web platform using the Git version control system to store current and past 

versions of code, also called repositories, either publicly or privately.  

Google Play Store – An app platform for downloading apps to an Android-based 

smartphone.  

Hardware – Physical and tangible components such as computers and servers.  

Hyperparameter – A value set before the training of a ML model, that controls the 

learning process. 

JSON – A file format to store information in a pair structure, called key-value, JSON is 

easily read by both humans and computers.  

Kaggle – A website aimed towards data and computer science, it hosts educational 

content and competitions.  

Metadata – Any additional information about data, but not the actual content of the data. 

Model – The outcome of training a ML algorithm, used to make predictions on new data.  

Notebook – A web app or software to ease the development and shareability of primary 

computer and data science code.  

Paywall – Content that is restricted by the need to pay. 

Programming library, dependency and/or package – An addition to a programming 

language to extend the programming languages features and capabilities. 

Open-source – Types of work that can be viewed, shared, and modified due to it 

intentionally being publicly available, often used in software development. 

Python – A high-level interpreted programming language. 

PyTorch – A Python framework for working with ML. 

Transfer learning – The use of pre-trained models as the starting point for new training. 

UI – The visuals used by a user to interact with some form of software. 

Web app – A website made to look like a traditional software application or mobile app. 

Zip file – A type of file where the original content has been compressed. 
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1 Introduction 

1.1 Aim of the study 

This thesis aims to explain the development and underlying technological specifications 

of a DL model that uses the Fast.ai library to develop a CNN to solve an image 

classification problem by identifying dog breeds in images.  

 

This thesis will also explain and evaluate the performance of the developed model 

concerning loss and accuracy. The developed model will be tested against similar dog 

breed identification models and apps. The trained model will also be assessed on how 

well it predicts, and how confident it is with its predictions, against single dog images 

and entire datasets of images unseen by the trained model. 

1.2 Goals 

The end goal of the thesis is to have a well-functioning, well-documented and modern 

model that accurately identifies dog breeds. 

 

When working with classification problems there are two values, we focus on evaluating 

the performance of our trained model, these values are loss and accuracy. Loss measures 

the error of a model's predictions against the actual values, while accuracy is a percentage 

value that measures the model's ability to correctly classify inputs. The overall goal is to 

minimize the loss and achieve high accuracy. (Paperspace, 2020-a) 

 

The model will be trained on a dataset containing dog breed images with corresponding 

dog breed names as labels. The dataset in question is the Stanford Dogs Dataset (Khosla 

et al. n.d.). The images in the Stanford dataset are taken from the much larger ImageNet 

dataset (ImageNet, 2021). The use of additional images outside the Stanford dataset will 

be used to evaluate the trained model. 

 

The research is also meant to be further expanded upon by others, therefore open source 

is a cornerstone of the thesis. The code of the developed model, and all its past revisions, 

will be hosted publicly on GitHub under an open-source license. 



 7 

The code has been meticulously documented throughout its development process, using 

the open-source notebook software called Anaconda notebooks. Notebooks utilizes the 

easy-to-read structure of cells that aids in the readability and documentation of the code. 

The combination of the well documented code, the technical specifications explained in 

this thesis, and the results gathered creates a unified understandable solution to the tasks 

of accurately identify dog breeds in digital images. 

1.3 Background 

The idea to develop a dog breed identification model came along as my fiancée and I 

brought home our first dog. I downloaded a lot of apps to easily scan and identify dogs 

that we saw. But the apps that I tried to use were slow, contained paywalls, gave 

inaccurate results, were filled with ads, and did not work as intended. 

 

Figure 1. An ad covering an app on launch. 
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During the covid-19 pandemic, a great deal of people bought and adopted dogs. “From 

2015 to 2020, the worldwide relative search volume (RSV) for dog adoption and cat 

adoption peaked in April 2020, the early epidemic phase of the COVID-19 pandemic.” 

(Ho et al., 2021) 

 

Figure 2. The relative search volume of pet, dog, and cat adoptions between 2018 – 2020, 

culmination of search results when WHO declared the COVID-19 pandemic. (Ho et al., 

2021) 

Computer science subjects regarding neural networks and CV can be quite difficult to 

navigate and learn. The idea to create a unified solution by combining the well-

documented code and this thesis was formed. This was done to teach and inspire others 

based on my work. 

 

During my university studies, I was taught AI, ML, and DL among other subjects. So the 

combined lack of accurate dog breed identification tools, the growing popularity of dogs, 

my passion to help others, and my continued interest in the subjects of DL gave me the 

idea to further hone my skills and develop a model of my own.  
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1.3.1 Motivations 

ML grows in popularity and usage every year, with an annual growth forecast of 39.4% 

between 2021 – 2026 (BCC Research, 2022). Based on the statistics the need to 

understand and utilize ML is important for both corporations and individuals alike. 

 

DL and especially CV is for me a fascinating subject. The idea that with just a few lines 

of code, and a relatively small dataset, be able to train and run all the code on a cloud-

hosted computer and achieve state-of-the-art results seems almost too good to be true. To 

also be able to take part in large communities of like-minded individuals, share my work, 

and have the support from my previous studies aids and motivates me to keep on 

developing, learning, and writing. 

1.4 Research Questions 

• How does one develop an accurate CNN model? 

• Is Fast.ai well suited for image classification tasks? 

• What pre-trained models are most suitable for dog breed identification? 

• How well does my developed model compare to similar models and apps? 

1.5 Hypothesis 

I hypothesize that the model will outperform existing dog breed identification models and 

apps.  

 

The final model will have an accuracy of ≥ 90%. The Related Work chapter goes into 

more detail about the performance of similar developed models and research. 

1.6 Limitations 

The thesis will focus on only one area of ML, which is image classification when it comes 

to identifying dog breeds from digital images. AI, ML and DL are vast areas to study, and 

they contain many algorithms, frameworks, libraries, and different ways to develop. 
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The comparison against similar models and apps will only be against models and apps 

that identify dog breeds. 

 

One programming language will be used to develop the model, Python. Python is one of 

the most used programming languages when it comes to computer science and all the 

subfields of AI. (Raschka & Mirjalili, 2019, p. xiv) 

 

I will also only use a set amount of additional programming libraries, packages, and 

dependencies to manage the creation of the model and any additional functionality.  

 

The model will be developed and trained on my personal computer’s hardware, and by 

using the Google Colab platform. The training of a ML/DL model is computationally 

intensive and thus the use of external software and or products can be beneficial to 

achieve the desired results. (Neil et.al., 2020). Google Colab enables users to leverage the 

computing power of Google's hardware, making it effortless to perform computer science 

tasks through a web-based interface. (Google, n.d.) 

1.7 Related Work 

A participant from the Kaggle challenge created a Dog Breed identifier with Fast.ai. The 

code is quite old, but the accuracy on the validation dataset is ~89%. (Langenbach, 2019) 

 

Another participant in the Kaggle challenge, with a newer submission, achieves an 

accuracy of ~80% during the training. The developer states that “This couple of lines of 

codes is still capable of achieving ~0.64 score on the leaderboard (~80% of accuracy). 

The model is far from being state-of-the art but it is perfect to use as a baseline to which 

further improvements could be compared.” (Angyalfold, n.d.) 

 

Another developer built a web app combined with a trained model to enable the use of a 

web browser to predict dog breeds images. The model was trained on the same Stanford 

dataset, and also add images of dog breeds not present in the Stanford dataset. (Willjobs, 

n.d.) 
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The use of a CNN and transfer learning was applied to the data of a type of brain cancer, 

in the paper by Deepak & Ameer. (2022). The authors show that the use of a CNN model 

results in better performance compared to the traditional ML model when it comes to the 

detection and classification of brain tumours. 

2 Technical Specifications 

This chapter will go over the technical specifications of the thesis. It will cover the 

necessary parts needed to understand CV, and any relevant fields related to CNNs. The 

development of the CNN will be explained in detail in the methods chapter. 

2.1 Computer Vision 

CV is a field within AI and computer science that focuses on the ability of computers to 

be able to use and analyze images and videos like humans. The main goal is for computers 

to be able to view, interpret and understand the world as human eyes do. One part of CV 

is to find features and patterns in images. (IBM, n.d.). The following chapters outline the 

CV tasks most important to this thesis. 

2.1.1 Object Localization 

Localization will locate an object in an image and create a rectangle box around the 

object, called a bounding box. Localization is a bit lacklustre in what it can output, as it 

only handles the metadata, or metrics of an object in an image like width, height, and 

position. “Here, an object proposal comprises an object category (e.g., “dog”), 

coordinates of a bounding box centre, and the bounding box’s width and height.” 

(Brownlee, 2017) 

2.1.2 Object Recognition 

Recognition is the broad term that encompasses all the different tasks linked to identifying 

objects, patterns, or relationships within an image. Such as object detection, image 

segmentation and image classification among others. So, recognition is the process and 

broad term of analyzing an image to find patterns and other meaningful information. 

(Brownlee, 2017) 
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2.1.3 Image Classification 

Image classification is a sub-set and specific task of image recognition. Image 

classification takes an image as an input and outputs a classification of an object in the 

image. For example, the input is an image of a dog, and the classification model labels 

the object as a dog. The output will contain certain additional properties such as the: 

probability and accuracy that the object in the image is what it is labelled as. This thesis 

will fall under the image classification task as its goal is to classify dog breeds in images. 

(Brownlee, 2017)  

 

 
Figure 3. Machine Learning is a type of Artificial Intelligence. Deep learning is an 

especially complex part of Machine Learning. (Wolfewicz, 2023) 

2.2 Artificial Intelligence 

AI is the term used for machines, or more commonly computer programs being able to 

simulate human intelligence. AI focuses on human tasks such as understanding 

languages, object detection, and predictions among others. (McCarthy, 2007) 

The integration of AI is prevalent across various industries, as it has the potential to 

improve the quality and effectiveness of products and services. AI is utilized by both 

individuals and corporations. Corporations can use AI to e.g., Enhance their products and 
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services, take Google’s parent company Alphabet for example: “Alphabet understands 

the potential of AI and is set to use it across its businesses, from improving internet 

searches, to self-driving cars, automated homes, intelligent virtual assistants, language 

translation and life-saving medical science.” (Marr, 2019) 

 

AI is the broader concept of several sub-sets and fields that focus on solving specific 

problems related to human intelligence. (Raschka & Mirjalili, 2019, p. 1) The following 

chapters will outline certain fields of ML, CV, and DL. 

2.3 Machine Learning 

ML is a subfield of AI, that focuses on the ability of computers to learn from data and 

apply that knowledge to make predictions or decisions on new unseen data, without the 

need for explicit programming. ML is a way for computers to learn from experience, on 

their own. It differs from AI in the sense that ML focuses on learning patterns, features, 

and relationships in data, whereas AI is the broader field that encompasses a range of 

techniques and computer science fields including ML. (Raschka & Mirjalili, 2019, p. 1-

2) 

 

ML can work with both structured and unstructured data. Structured data can be thought 

of as data that has been correctly formatted and labelled based on its content. Think of 

structured data as an image of a dog, and the label is the breed of the dog, or as the data 

in a SQL database or spreadsheet with rows and columns correctly labelled, structured, 

and formatted. Unstructured data refers to data that is unlabeled and has no predefined 

structure or schema such as videos, images, and text. (IBM, 2023) 

2.4 ML Algorithms, Frameworks & Models 

2.4.1 Algorithms 

When we want to use ML, we need to use an ML algorithm. In ML, algorithms get fed 

input data, process the input, and arrive at a desired output, in this thesis case a prediction 

of a dog breed. (Alpaydin, 2010, p. 1) There are plenty of ML algorithms such as decision 
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trees, k-nearest neighbor, and neural networks. They are all suited towards solving 

different types of problems. 

2.4.2 Artificial Neural Networks 

A neural network or ANN is a type of ML algorithm and is often used in DL. Its structure 

is often inspired by biological neural networks like the human brain. (IBM, 2023) ANNs 

consist of an input layer, one or more hidden layers, and finally one output layer. The 

layers are interconnected nodes, or "neurons", that process and transform input data to 

produce output data. ANNs can be used for a variety of ML tasks, such as classification, 

regression, and clustering. (Alpaydin, 2010, p. 273) 

2.4.3 Models 

When we feed an ML algorithm data as input, and the algorithm processes the input data 

we often say that the algorithm is learning or training on the data. When the algorithm 

has processed all the data we are left with trained data in a file called a model. The 

patterns, features, relationships, and settings of the trained data are stored in the file. We 

can use this model on similar, but new and unseen data. (Microsoft, 2023) 

 

In ML, when we refer to the process of training a model to recognize features or patterns 

in data, we often refer to it as learning. There are three main learning methods: supervised, 

unsupervised and reinforcement learning, differentiated by where they are used and how 

they process input and output data. (Raschka & Mirjalili, 2019, p. 2) A core part of these 

methods is that they either use labelled or unlabeled data. Labelled data just means that 

the object in the data is named, categorized, or tagged after what it contains. E.g., We 

have an image of a dog, if the label says dog, then we have a correctly labelled image. 

(IBM, 2023) 

 

All three methods have their unique advantages and are used in various applications. The 

methods can be applied to various areas of data in AI and ML including speech 

recognition, NLP, and most importantly regarding this thesis, CV.  
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“In the 1990s, computer speech recognition reached a practical level for limited purposes. 

Thus United Airlines has replaced its keyboard tree for flight information by a system 

using speech recognition of flight numbers and city names” (McCarthy, 2007) 

2.4.4 Supervised Learning 

With supervised learning, we train the model using labelled data as input and get labelled 

data as output. We find the relationship between the input data and the output label. The 

models are then tuned to as accurately as possible predict the labels of new unseen data. 

This type of learning requires the most amount of human interaction since we need to 

label the data before training it. Classifications tasks, such as image classifications fall 

under supervised learning. We use supervised learning in spam detection, dog breed 

identification, and weather forecasting among others. (Raschka & Mirjalili, 2019, p. 3) 

2.4.5 Unsupervised Learning 

With unsupervised learning, we use unlabeled data as input, but the output data will be 

analyzed data either grouped, clustered and/or characterized. We use unsupervised 

learning to find patterns, hidden structures, and trends in a dataset, or to cluster similar 

data together. Recommender systems use this type of learning in for example e-commerce 

websites, and movie recommendations on popular streaming services. (Raschka & 

Mirjalili, 2019, p. 7) 

2.4.6 Reinforcement Learning 

Reinforcement learning is different from supervised and unsupervised learning as its 

approach to learning is based on a reward structure. It uses an agent, and its goal is to 

maximize its reward in an environment. If the agent makes wrong actions, it loses points, 

and if it makes good decisions, it is rewarded points. Reinforcement learning is applied 

in areas such as self-driving cars, robotics, gaming, and other areas where the agent must 

learn to make decisions in a dynamic environment. (Raschka & Mirjalili, 2019, p. 671-

674) 
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Figure 4. Shows the three main learning methods, the data they use, and in what areas 

they are applied. (Raschka & Mirjalili, 2019) 

2.4.7 Frameworks 

We often use ML and DL frameworks or libraries such as Fast.ai, PyTorch, Keras, or 

TensorFlow among others, to aid the development of models. A DL framework is a 

platform or software that lets us develop, train, and deploy ML models by providing pre-

built tools, methods, and APIs to load process and output data. These tools ease the 

development by letting us utilize the special APIs built to interact with the underlying 

hardware we run the framework on. This makes the development and training of an ML 

algorithm far easier than doing all the programming, calculations, and development 

manually from scratch. (Nvidia Developer, n.d.-a) 

2.5 Transfer Learning 

Transfer learning is a technique in ML and DL where we leverage a pre-trained model as 

the starting point for a new model. Instead of training our model completely from scratch, 

learning all the features and patterns of each image, we are building upon the knowledge 

gained by an already trained model. The pre-trained model can have been trained on 

several types of objects such as cats, clothes, cars, or even more detailed objects or 

features such as mouths, flower types, and brands among others. We use transfer learning 

to heighten accuracy, lower loss, reduce the amount of input data, and lower the 

computational resources and time needed to train a model. (Yosinski et.al., 2014, p. 1-2?) 
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2.6 Deep Learning 

DL is a subset of ML that uses a multi-layered ANN structure known as a DNN, used to 

solve complex problems. The use of multiple hidden layers creates complexity, lets the 

network learn detailed features, and improves the accuracy of the final output. (Raschka 

& Mirjalili, 2019, p. 383-388) 

 

Figure 5. Visualization of a traditional neural network and a deep neural network. (Vogel 

& Bowers, 2019) Image credit: Lucy Reading-Ikkanda (artist). 

DL is particularly useful for tasks that involve large amounts of data, such as NLP, 

autonomous driving, speech recognition, and image classification. DL algorithms can 

perform tasks that other ML algorithms cannot, such as learning from and making 

accurate predictions on previously unseen data. DL often requires more training data, to 

begin with, and that requires larger computational resources. But DL requires less human 

intervention compared to traditional ML algorithms. (Paperspace, 2020-b) 

 

“Popular examples of the products in our everyday life that are powered 

by deep learning are Google's image search and Google Translate—an application for 

smartphones that can automatically recognize text in images for real-time translation 

into more than 20 languages.” (Raschka & Mirjalili, 2019) 
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2.7 Fast.ai 

This thesis uses the open-source DL library Fast.ai, which is built on top of the PyTorch 

framework. Fast.ai utilizes a high-level API that connects with the PyTorch framework 

to develop and train ANNs. (Fastai, n.d.)  

 

Fast.ai follows best practices and uses a clear syntax, making it more efficient to use and 

allowing users to train models more quickly compared to similar frameworks and 

libraries. Fast.ai takes advantage of PyTorch's many well-written functions, methods, and 

capabilities. Many of Fast.ai’s functions and classes are PyTorch’s with additional 

functionality or tweaks. Being built upon PyTorch also means that Fast.ai can leverage 

many of the underlying functions and methods found in PyTorch. (Howard, J., & Gugger, 

S. 2020) 

2.7.1 Hyperparameters 

When we are using a DL to create a model, we often have certain hyperparameters 

available to tweak. This lets us change the processing data and the subsequent training of 

our model. The values we change can impact our trained model’s accuracy and loss, but 

they also affect the speed and efficiency of our training. (Chollet, 2021, p. 263) 

 

Some common hyperparameters found in DL algorithms are EPs and LRs. An EP refers 

to one full pass of the entire dataset during training. (Raschka & Mirjalili, 2019 p. 25). 

LR is the step size used for a model to reach the minimum loss function during the 

optimization of the model during training. (Chollet, 2021, p. 49) 

 

We often find other tweakable hyperparameters such as batch size BS. BS is a set amount 

of training examples/images used during one iteration of the training of the model. 

(Paperspace, 2020-c) 

2.8 Pre-Processing & Data Augmentation 

Pre-processing and data augmentation are common techniques used to prepare data for 

use in ML and other fields related to data processing. Pre-processing is used to transform 

raw data into a format that is more suitable for algorithms to handle. This can involve 
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resizing images and converting data among others. The goal of pre-processing is to 

generalize and normalize the data to make it easier to analyze and work with. (Raschka 

& Mirjalili, 2019, p. 12-13) 

 

Data augmentation is a technique used to artificially enlarge a dataset by creating new, 

versions of existing data. This is done to make the dataset more diverse and varied, which 

in turn can improve the performance of a trained model. Data augmentation techniques 

include random cropping, zooming, rotation, flipping, and changes to colour channels 

among others. (Raschka & Mirjalili, 2019, p. 552) 

 

Regarding image classifications with CNNs, we want to resize or downsample images 

before feeding them to an algorithm. This is done to reduce the number of pixels that the 

algorithm needs to handle, which may improve the efficiency and speed of the training. 

It is also done since most CNNs require a fixed image size of all the images it works with. 

(Rosebrock, 2019, p. 37, 69) 

 

When we use a DL framework or library like Fast.ai we split the entire dataset into three 

different datasets, train, test, and validation. We often use an 80/20% split on the entire 

dataset, so the training becomes 80% of the entire dataset, and 20% is left for the testing 

dataset, but other common split ratios are available. (Raschka & Mirjalili, 2019, p. 124) 

We additionally use a subset, often 20%, of the training dataset for a validation dataset. 

This way we get one dataset to train the model on by feeding it labelled images. One 

validation dataset to assess the performance of the model during training. Finally, we 

have a testing dataset that is used to test the trained model on unseen images. (Raschka 

& Mirjalili, 2019, p. 196) 

 

There are different types of DNNs aimed towards solving different types of problems, 

these following chapter will go into more detail about RNNs. 

2.9 Recurrent Neural Networks 

RNNs are used for tasks that involve sequential data, i.e., data that has a specific order or 

sequence, such as speech recognition and language translation. RNNs process inputs of 
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different lengths and use a sort of memory and so-called feedback loop to retain the 

information about previous inputs. (Raschka & Mirjalili, 2019, p. 567-569) 

2.9.1 Long Short-Term Memory 

LSTMs are a sub-type of RNNs that are designed to better handle the vanishing gradient 

found in RNNs. LSTMs can handle long-term dependencies in the same type of data as 

RNNs, sequential data, i.e., LSTMs remember things better than normal RNNs. (Raschka 

& Mirjalili, 2019 p. 581-584) 

 

The type of DL network that this thesis revolves around and will be going into more depth 

are CNNs. CNNs are commonly used in CV tasks, such as image, recognition, and 

classification. They are designed to identify patterns and features in images by analyzing 

and finding features in regions of an input image. (Raschka & Mirjalili, 2019, p. 515-519) 

3 Methods 

3.1 Convolutional Neural Network 

 

Figure 6. The structure of a Convolutional Neural Network. (Swapna, n.d.) 

CNNs are a type of DNN, CNNs are currently one of the most effective ways for 

computers to perform image classifications. (Raschka & Mirjalili, 2019, p. 518) CNNs 

can work with other data than specifically image data such as speech recognition, and 

NLP among others. (Nvidia, n.d.-b) Moving forward this thesis will focus on image data. 
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CNNs view images as matrices of numbers, also called colour channels. These numbers 

refer to the image’s pixel data/information. Pixel data tells us the colour intensity of a 

pixel. CNNs can work with both greyscale and RGB images. Each channel in an image 

gets one matrix. Therefore, an RGB image will have three matrices for each colour 

channel red, green, and blue. When moving further down in the layers of a CNN the RGB 

matrices get combined into one unified matrix. (Raschka & Mirjalili, 2019, p. 532-533) 

 

Figure 7. Visualization of an image’s colour values forms a pixel matrix.  

3.2 CNN Architecture 

“Typically, CNNs are composed of several convolutional and subsampling layers that 

are followed by one or more fully connected layers at the end.” (Raschka & Mirjalili, 

2019) This process is called forward pass or forward propagation, and it’s used to pass 

each input image through the network to find its features. The final prediction is made by 

the FCL, and then backpropagation is used to tweak the learnable parameters to try to 

reduce the loss. (Rosebrock, 2019, p. 137-140) 

 

CNNs are composed of several layers that work together to extract features from an input 

image. First, there is the feature extraction stage, which contains CL which uses multiple 

convolutional operations to process the image and extract features. The output of a CL is 

a feature map. Activation functions are then applied to introduce non-linearity, followed 

by pooling operations to reduce the spatial dimensionality of the feature maps. After the 

feature extraction stage is complete, the feature maps are flattened and passed on to a 

FCL, which is a regular ANN. (Nvidia Developer, n.d.-b) 
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3.2.1 Feature Extraction 

The first layer in a CNN is a CL and it is the process that differentiates a CNN from a 

traditional neural network, or multilayer perceptron. CLs perform the computational 

heavy lifting, using convolutional operations or more commonly referred to as kernel 

convolutions. (Rosebrock, 2019, p. 181) Kernel convolutions use a kernel, i.e., a small 

matrix of numbers, called weights, to extract features from an input. The weights inside 

the kernel are one of two learnable parameters that get optimized during the training of 

the model. Bias is the second learnable parameter that gets added to the output of the CLs. 

This is done to help the network recognize features even if they are not centred around 

zero. It also adds flexibility and makes the model more expressive. (Chollet, 2021, p. 46) 

 

Figure 8. The structure of convolution operation using a kernel convolution on an image. 

(Zafra, 2012) 

During the kernel convolution, the kernel moves over the data in a sliding window 

motion, and at each position, it performs multiplication of the kernel weights and the input 

pixel values and adds them together. This process is repeated for every position in the 

input data, producing an output matrix known as a feature map. (Chollet, 2021, p. 124) 

 

The kernel has a set of hyperparameters that determines the behaviour of the convolution 

operation, these parameters can affect the performance of the CNN. Larger kernels may 
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capture complex features, but they require more computational power. Smaller kernels 

have the opposite effect. The hyperparameters of a kernel include its size, stride, and 

padding. The size of the kernel determines the shape of the window that is moved across 

the input data, it is a matrix, for example, 3x3. The stride determines the number of steps 

that the matrix window moves over the input data. The padding determines the number 

of zeros that are added to the borders of the input data to make sure that the kernel can be 

used at the edges of the input data. (Rosebrock, 2019, p. 181-185) 

 

When working with a CNN it uses shared weights and biases across all kernels in the 

hidden layers, this is often called parameter-sharing. This means that the layers can detect 

features wherever it is in an image, even if the image gets warped, changed and/or 

transformed. This also reduces the total number of parameters that need to be learned by 

each kernel. (Raschka & Mirjalili, 2019, p. 519) 

3.2.2 Overfitting & Underfitting 

Generalization refers to the ability of models being able to perform well on both the 

training data and new unseen data. (Paperspace, 2020.-d) There are two main issues when 

training a model that disrupts the generalization abilities of a model. Overfitting occurs 

when a model does too well on the training data i.e., it learns the noise of the data as well 

as the features it’s meant to extract. It becomes too complex hence it struggles to perform 

accurately on new unseen data. Underfitting is the opposite, meaning that the model is 

too simple and can’t find the complex patterns in the training data, and due to that it 

performs poorly on new data as well. Techniques such as regularization and data 

augmentation are often used to mitigate overfitting. These methods can help improve the 

generalization ability of the model. (Raschka & Mirjalili, 2019, p. 75-77) 

 

Fast.ai incorporates several built-in regularization methods and functions. Dropout is a 

technique that randomly drops neurons in a neural network, it works well to avoid 

overfitting. By doing this the remaining neurons are forced to learn new features and not 

focus solely on a couple of neurons. Another technique to reduce the risk of overfitting is 

a form of L2 regularization often called weight decay. It works by reducing the impact of 

large weights in a neural network. During training the weight decay penalty gets added 
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to the loss, which results in the shrinking of the weight parameters. This is done using an 

optimization algorithm like Adam or SGD. (Raschka & Mirjalili, 2019, p. 75-58) 

 

“Small networks, or networks with a relatively small number of parameters, have a low 

capacity and are therefore likely to underfit, resulting in poor performance, since they 

cannot learn the underlying structure of complex datasets. However, very large networks 

may result in overfitting, where the network will memorize the training data and do 

extremely well on the training dataset while achieving a poor performance on the held-

out test dataset.” (Raschka & Mirjalili, 2019) 

 

Based on the explanations above we can assume that if both the training and validation 

loss is decreasing during our training, then we can assume that the model can fit the data 

and make accurate predictions. If the training loss is decreasing, and the validations are 

increasing or plateauing, then we can assume that the model is overfitting. Underfitting 

can be assumed if both the training and validation losses are high, and the accuracy is 

low. 

 

Figure 9. Fast.ai’s training statistics show decreasing train and validation loss, whilst 

accuracy increases. 

3.2.3 Activation Functions 

A non-linear function is applied to the output of a CL, using an activation function. This 

is done to add non-linearity to the data and allow the model to learn more complex 
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features. Some activation functions are Sigmoid, Tanh and ReLU. ReLU is a common 

and favorable non-linear activation function 𝑓(𝑥) = max(0, 𝑥). The ReLU function 

effectively sets all negative values to zero, and all positive values stay as they were. Bias 

helps to shift the activation function towards the positive or negative side. (Raschka & 

Mirjalili, 2019 p. 468-469) 

 

Figure 10. Activation functions (Yosinski et.al., 2014) 

Activation functions, such as ReLU, have larger derivatives than Sigmoid and other 

activation functions, and it is a non-saturating activation function. Therefore, ReLU can 

help mitigate the problem of vanishing gradient, which can arise during the training of 

DNNs. It makes it difficult to update the weights in the lower layers during training. 

During each iteration of the training process, backpropagation is used to update the 

learnable parameters from higher to lower layers. However, the gradient used with the 

optimization algorithm becomes progressively smaller for each layer, making it difficult 

to update the weights in the lower layers. This can cause convergence problems where 

the lower layers may not be updated effectively and may fail to converge to a satisfactory 

solution. Other solutions such as batch normalization can also aid in counteracting the 

vanishing gradient. (Lzubaidi et.al., 2021) 
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Batch normalization is used to improve convergence (Raschka & Mirjalili, 2019 p. 397), 

and the stability of an ANN by normalizing the input of each layer. This is done by 

subtracting the mean and dividing the standard deviation of the activations within each 

batch. (Lzubaidi et.al., 2021) 

3.2.4 Pooling 

 

Figure 11. Visualization of both max pooling and average pooling operations. (Yani 

et.al., 2019) 

Lastly, PL helps us reduce the computational stress of the image on the network, by 

reducing the spatial dimensions of the image, without losing any meaningful data. We do 

this by downsampling the feature maps of the CLs. There are many different types of PL 

functions, such as weighted average, L2-norm, and the most common max pooling 

function. Max pooling takes the highest value from a region covered by the pool size on 

the feature map. Pooling layers have no learnable parameters. (Raschka & Mirjalili, 2019, 

p. 520-530) 
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3.2.5 Fully Connected Layer 

The final part of a CNN is the FCL, also called a Multi-Layer Perceptron, which is just a 

normal DNN, but the provided input of the FCL is not an image but the final output data 

of the feature extraction stage of the CNN. (Raschka & Mirjalili, 2019, p. 519) 

 

In the FCL we begin by taking the last feature extraction layer values and flattening them, 

creating a one-dimensional vector. This means arranging the values in a vertical row, each 

value on top of one another. (Raschka & Mirjalili, 2019, p. 546) 

 

Each layer in the FCL applies its weights and biases to the data and tries to predict the 

correct class of the input data. (Raschka & Mirjalili, 2019, p. 520) 

The final layer of the FCL is a Softmax or Sigmoid activation function which calculates 

the probability distribution on the processed input image. Softmax is often used for multi-

class classifications and Sigmoid for single/binary class classifications. After the 

probability distribution, we can run different types of loss calculations to find error rates 

and loss functions. (Raschka & Mirjalili, 2019, p. 539) 

3.3 Backpropagation 

When the FCL has made its prediction, we use a loss function such as Cross-Entropy 

Loss (Raschka & Mirjalili, 2019, p. 539), Mean Squared Error among others (Raschka & 

Mirjalili, 2019, p. 488), to calculate the loss between the actual label and the predicted 

one. (Alpaydin, 2010, p. 41) 

 

After computing the loss, it is propagated in reverse through the network i.e., 

backpropagation. The gradient of the loss error updates the learnable parameters i.e., the 

weights and biases, (Raschka & Mirjalili, 2019, p. 391), with an optimization algorithm 

such as Adam, or SGD. The optimization algorithm calculates the gradient of the loss 

concerning the current weights and biases, this allows the model to update its parameters 

to reduce the loss. (Raschka & Mirjalili, 2019, p. 483) 

 

The updated learnable parameters are then used as the starting point for the next feature 

extracting loop i.e., the next forward propagation. This is done until the loss reaches a 
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minimum or the set number of epochs has been reached. (Raschka & Mirjalili, 2019, p. 

391) 

 

Two popular optimization algorithms are the SGD and Adam optimizers. SGD computes 

the gradients of the model’s parameters concerning the loss function for a small subset of 

the training data, called a mini-batch, and uses these gradients to update the parameters. 

Adam uses adaptive learning rates for each parameter, this aids in faster convergence and 

functions well when training especially in deep networks. (Kingma & Ba, 2015) 

 

DNNs on their own are usually less efficient than CNNs when it comes to image 

classification. This is due to many reasons. CNNs use feature hierarchy, meaning that 

CNNs combine lower-level detected features to form complexity in the later layers. CNNs 

also use parameter-sharing, meaning that the same weights are used for different areas of 

the input image. (Raschka & Mirjalili, 2019, p. 519). 

3.4 Open Source 

Open-source software refers to code or software that has been made public for other 

people to work, alter and/or view. The importance of open-source code and software 

cannot be overstated in today's world. Open source enables the development and 

distribution of stable and well-maintained solutions, and it challenges us to collaborate 

and work towards a unified goal. Open-source projects can spark ideas and bring people 

together to work towards a common objective. (Red Hat, 2019) 

3.5 Development Process 

This chapter will go over the development process of the final model, split up into 

development chapters. The entire codebase can be easily viewed on GitHub (Krullmizter, 

n.d.). 

3.5.1 Setup 

The initial setup consists of importing required Python packages, this is all done in. These 

packages expand the usability of the Python language such as packages to interact with 
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the underlying OS, perform HTTP requests and most importantly enable the use of the 

Fast.ai library. 

 

We also check that the notebook utilizes the GPU instead of the CPU. When it comes to 

the development and training of Fast.ai, and other DL models, the preference for using a 

GPU vs. a CPU boils down to the calculations that the algorithm performs on large 

datasets. These operations are large-scale matrix operations. These calculations can be 

done in parallel on a GPU, so it is much more efficient, and it will speed up both the 

development and training time of the model. 

 

We can also use TPUs, they were developed by Google and are used for DL applications. 

TPUs are well suited towards ANNs, and often use fewer resources than GPUs. However, 

during this development, the choice of using GPUs came down to availability and 

usability. (Openmetal, n.d.) 

 

One cell is dedicated to holding: settings and global variables such as direct file paths to 

frequently used files and directories. This is done to easily and efficiently be able to tweak 

each setting and variable in the entire notebook. 

 

The loading of the dataset is handled in one cell. It will check if the dataset path exists in 

the root folder of the project. If it doesn’t exist, it will use the gdown package to download 

a public .zip file containing the entire Stanford dataset, and then unzip the package to be 

used later. This is done to easily supply the entire dataset to any development 

environment. Using a .zip file will also save a lot of time when download the dataset. 

There is also an option in the settings cell that lets you change the public Google Drive 

file URL to another custom URL, this way another dataset can be used. 

3.5.2 Exploratory Data Analysis 

EDA lets us explore the relationships, and statistics and analyze the dataset overall. The 

use of the Pandas package aids in this task. We can for example view the dog breeds with 

the most and least amount images per breed. EDA lets us more easily understand and 

visualize the data that we work with. 

 



 30 

A cell is used to view the distribution of the width and heights of the unprocessed images 

in the dataset in two scatter plots. The plots are handled by the Matplotlib package. This 

is done to easily view the spread of the resolutions of each image and find the average 

image resolution to be used later in the hyperparameters. 

3.5.3 Hyperparameters & Data Augmentation 

Fast.ai and other DL libraries, algorithms and frameworks let us define and tweak certain 

hyperparameters: EP, BS, SZ and LR among others. The functionality of these 

hyperparameters has been gone over earlier in this thesis. The tweaking of these 

parameters will affect both the computational load, output, and the speed of training, but 

they are the main factors, aside from the dataset, that affect the outcome of the trained 

model. 

 

I tried to mix the hyperparameters a bit, trying to heighten the EP whilst lowering the BS 

and vice versa. Using 224x244px as the SZ/image resolution was used since a lot of the 

images in the dataset were centred around that resolution. I also tried to change up the 

pre-trained model, also called arch in Fast.ai, trying out both the well know ResNet, but 

also other models like EfficientNet, and GoogLeNet among others. 

 

LR is one of the more important hyperparameters we can change. Using Fast.ai’s 

lr_find() methods lets us easily find the best starting LR. During the different training 

runs different types of LRs were calculated. 

 

The functionality of data augmentation was gone over before. Developing the model, the 

use of Fast.ai’s item_tfms, and batch_tfms are methods available to add data 

augmentation to the training dataset images such as: resize, rotate, normalize, blur and so 

on. This is done to create variation of the original dataset images, and artificially enlarge 

the training dataset. This in turn improves the accuracy of the developed model. 

3.5.4 Data Loading 

Fast.ai provides a DataLoaders class, which aids in loading and applying data 

augmentation and pre-processing of the data. The DataLoaders class can load data from 
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CSV files, data frames, and directories. We assign a variable to the created DataLoaders 

object, dls, to be used later in the Learner object. 

 

The Learner object combines the dls object, our chosen pre-trained model/arch, and 

any additional metrics we want to receive during the training process. The Learner 

object is later used to fine-tune or fit i.e., train the model. 

3.5.5 Training 

Fast.ai provides an easy-to-use method when using transfer learning, called 

fine_tune(). The fine_tune() method allows us to use transfer learning to train or 

fine-tune our model based on a pre-trained model with new data. fine_tune() only 

works with the last layer of the pre-trained model, as the rest of the pre-trained layers are 

frozen. One could use the fit_one_cycle() method, but it is more suited for training 

a model from scratch.  

 

The trained model can then be used to make predictions on new data using the 

get_preds() method. We can view the performance of the model during the training 

with the validate() method. 

3.5.6 Post Training Analysis 

The use of the ClassificationInterpretation object allows us to view and 

analyze the results of the trained model. Based on its output, we can determine what needs 

to be tweaked. The use of methods such as plot_confusion() and 

most_confused() allows us to easily view which classes were the worst and most 

frequently misclassified.  

 

Another useful statistic for analysis of the trained model is the F1-score. Fast.ai 

incorporates this metric using the method print_classification_report(). We 

use the F1-score to measure the model's accuracy for both binary/single or multi-class 

classifications. It uses a weighted average on the precision and recall of a trained model, 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =  2 ∗  (𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗  𝑟𝑒𝑐𝑎𝑙𝑙) / (𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +  𝑟𝑒𝑐𝑎𝑙𝑙). F1-scores range 
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between 0 – 1. 1 meaning perfect precision and recall, and 0 meaning that the model is 

performing worse than random chance. 

3.5.7 Export 

The Learner class has an easy-to-use export method to export the trained model as a 

.pkl file. This lets anyone use the final trained model with its weights and 

hyperparameters set. The exported model file can’t be further developed, just used for 

predictions. We can also save the state of the Learner object by using the 

Learner.save() method. It lets us easily use the used parameters, optimizations, and 

state of the last Learner object. The save is often used to continue the training, 

whereas the export method is used for a finalized trained model. The notebook code 

also incorporates a cell which explains the process of importing a trained model and 

using that model to predict an image. 

4 Results 

This chapter goes over the results of working with the developed code. The final model, 

with the best performance, will be gone over. 

 

The model with the best performance returned an accuracy of 96.33% on the validation 

dataset. This is a good percentage, and it ties in with the hypothesis goal of ≥ 90% 

accuracy overall. This model has been exported as a .pkl file and can be used on new 

unseen data to make predictions. This model is also the base on which the following 

results and analysis are based on. 
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Figure 12. The optimally trained model is shown in the .json stats file. 

4.1 Training Stats 

One of the cells in the notebook is a function that handles the logging of the metrics taken 

from the validate() method. The logging cell also incorporates the hyperparameters 

and some additional statistics such as GPU, and the pre-trained model used, as well as the 

date and time of the training into the complete log file. The combined training metrics, 

hyperparameters and additional statistics are then exported to a .json file in a trained 

directory for easy-to-view post-training analysis of the most important metrics and used 

parameters, and for longer-term statistical storage. To avoid any duplicates of data in the 

.json file, a hash function is used to create a unique id for each training stat. It combines 

some of the used hyperparameters, and training metrics to achieve this uniqueness. 

4.2 Trained Model Performance 

Various tests have been used to evaluate the performance i.e., the loss and accuracy of 

the trained model. Using Pytorch’s and Fast.ai’s F1-score, validate(), predict(), 

and get_preds() methods. They will be gone into more depth following this chapter. 
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The validate() method’s outputs are the main form we will measure the performance 

of the trained model. Validate is a method of the Learner class. The method calculates 

the average loss and other metrics, such as the accuracy of the trained model against the 

validation dataset. The validation dataset is a sub-set of the entire dataset that gets used 

during the training to evaluate the performance. 

 

To the research question: Is Fast.ai well suited towards image classification tasks? We 

can conclude with the achieved accuracy of 96% that Fast.ai do function well for image 

classification tasks. We can also look at the number of submissions that uses Fast.ai for 

dog breed identification by Kaggle (n.d.) 

 

The training was tweaked and changed to find out which hyperparameters, and settings 

worked based on Fast.ai and the smaller Stanford dataset. All the past training statistics 

and metrics are stored in the stats file, this made it easier to look over what 

hyperparameters worked with what arch, and hardware setup. 

 

The initial training statistics were gathered without any data augmentation, transforms, 

or ludicrously large BSs and LRs. This was done to create a baseline to know how well 

the training did on the most basic of hyperparameters and just the normal dataset. The 

results from the baseline training were quite a high accuracy with a low loss. The accuracy 

was around the 85% mark, with a loss of approx. 50. 

 

After creating some baseline statistics, I moved on and trained the model with the EPs, 

BSs and LRs, which gave the best results from the baseline training. I also added more 

transformations and data augmentations to the data. 

 

Both during the baseline and optimized training I tweaked by using different types of pre-

trained models, called archs in Fast.ai. Using the same amount of hyperparameters and 

just changing the arch gave me results that pointed towards larger networks like ResNet-

101 and ConvNeXt Large. They proved to not be too small nor too big of a network to 

train on. With these larger networks, we have more parameters to train, allowing for more 

details, and aiding in regularization, preventing overfitting. The smaller networks, like 

the ResNet-18 and ResNet-34 gave suboptimal results, even with tweaked 
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hyperparameters to both test against smaller and larger hyperparameter values. The larger 

arches were often too big to run, I used up all the GPU memory available even before the 

training had run one EP, even with a small dataset. 

 

The training time using the ConvNeXt network was quite a lot longer than the previously 

used networks like ResNet, and GoogLeNet among others. The tweaking of the 

additional hyperparameters such as EP, BS and LR yielded smaller boosts in the 

performance and output of the trained mode, this can be viewed in the stats file 

(Krullmizter, n.d.) We can with that conclude that the biggest factor during my training 

was the choice of pre-trained models. 

 

To answer the research question: What pre-trained models are most suitable for dog 

breed identification? We can look at the accuracy received from training several different 

pre-trained models, to get a clearer pictures of which ones were better look at the stats 

file. One table by Liu et al. (2022) shows us that ConvNeXt is one of the top performers 

when it comes to image classifications on similar-sized images as the Stanford dataset. 
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Figure 13. A table created by Liu et al. (2022) shows the stats of several pre-trained 

models tested against two popular image datasets.  

During the training, it was found that the training time increased substantially when 

changing from ResNet to ConvNeXt. The local training was not possible using the 

ConvNeXt network as the GPU memory limit was met long before the training was 

completed. The purchase of additional compute units on Google Colab was necessary to 

test and train the final model, with the more advanced, and deeper networks. Only one 

training run was possible using the lower tier of Google Colab with lower 

hyperparameters and with pure luck. The later additions to the stats file using ConvNeXt 

were able to run with a shorter training time thanks to the additional Google Colab 

compute units that were purchased. 
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4.3 Analysis 

This chapter goes over the analysis of my final developed model, against similar models 

and apps that identify dog breeds. This way we can evaluate how well the predictions of 

my developed model, and similar developed models compare. The performance of each 

model is measured in two key values: correctly predicted class and confidence percentage 

of the predicted class. 

 

Before we move on towards the single image predictions using a pre-defined set of dog 

images I want to bring up one cell/method in the notebook that offers the testing of dog 

images retrieved from a random Google search, against the trained model. The method 

downloads a random dog breed image retrieved from a Google search, with the search 

phrase: dog. The prediction method then predicts the class and confidence of the 

prediction of the retrieved dog image. This way one can easily and quickly evaluate the 

trained model against new unseen images without the need to manually download each 

image. 

 

During the evaluation of similar single image predictions and/or dog breed identification 

apps, I used two images. One image of my dog Laban, who is a Labrador retriever, and 

an image of a Bernese Mountain dog. This way each single image prediction, whether 

being a trained model, app, or other dog breed identification program, has been evaluated 

on the same set of images. The single image predictions have been tested using the 

Learner.predict() method in Fast.ai. It takes an image path and returns a tuple, the 

first value is the predicted class, and the second is the confidence of the predicted class. 

(Warner, 2021) 

 

My final developed model successfully predicted the breeds for both Laban and the 

Bernese Mountain dog. Not only were the predictions accurate, but they also carried a 

high level of confidence. Laban's prediction had a confidence level of 94.34%, while the 

Bernese Mountain dog's prediction boasted an impressive 99.33% confidence level. 
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Figure 14. Screenshot showing the final trained models’ confidence on two dog images. 

4.3.1 Similar Models 

The evaluation of similar models has been done using the same predict() method 

used in the evaluation of my own developed model. The chosen similar models have all 

been trained using CNNs, and some sort of transfer learning. I’ve selected a few 

developed models, run their training, and evaluated their predictive abilities on the 

images of Laban and the Bernese Mountain dog. 

 

As mentioned earlier in the previous research chapter one individual created a web app 

that incorporates a UI with their developed model. (Willjobs, n.d.) Their developed model 

is like mine; it uses Fast.ai, the same dataset and techniques. It, however, uses the mid-

sized pre-trained model: ResNet-50. The developed model by Willjobs, n.d., can’t 

accurately identify Laban as a Labrador retriever, with the confidence of Labrador at 

58.45%. The model is, however, 99.38% confident that the image of the Bernese 

Mountain dog is a Bernese Mountain dog. 
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Figure 15. Screenshot of the prediction made on one image on a dog breed identification 

web app. 

The Stanford dataset, which this thesis is built upon, has been used in many competitions 

and challenges. One of these challenges can be found on the Kaggle website and was the 

inspiration for this thesis. It holds the submission of other developers' models and code. 
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(Kaggle, n.d.) The next evaluation will be a submission taken from the challenge from 

Kaggle. 

 

The developed model by Angyalfold, 2021, correctly identifies the breeds of both Laban 

and the Bernese Mountain dog. The model is 99.26% confident in the image of Laban, 

and 99.25%. They used the ResNet-34 pre-trained model for their transfer learning.  

4.3.2 Apps 

I used three different apps gathered from the Google Play store to evaluate their 

predictions and confidence percentage. 

  

Figure 16. Three screenshots from three different dog breed identification apps and their 

accuracy predicted on one image. 

When using the apps on the image of Laban, they all predict his breed correctly, and the 

average confidence is 90,6%.  

 

Using the same apps, with the image of the Bernese Mountain dog the average confidence 

of the apps is 75%. 
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We can see that even with my limited training dataset the accuracy of my model is up to 

par with published dog breed identification apps. However, since the apps I’ve evaluated 

are not open-source, I cannot find out what type of training they have used to build their 

models. 

4.3.3 Test Dataset 

The Stanford dataset contains two predefined split datasets, train, and test. The test dataset 

contains images of dog breeds not seen by the model during training. We can predict these 

images. Using the Fast.ai get_preds() method we can perform so-called batch 

predictions on the entire dataset. We begin by creating a dataloader based on the test 

dataset and adding it to the get_preds() method. It returns a tuple containing 

predictions and targets/labels. Our test dataset images have no labels, so we will ignore 

the second output of the get_preds() method. The output we are left with is the 

predictions that the trained model has done without the aid of any labels. The predictions 

are in the shape of a matrix or tensor. Each value in the matrix represents the model’s 

confidence in an image predicted class, but instead of predicting one image at a time, we 

predict an entire dataset. (Warner, 2021) 

 

This prediction matrix data is useful for us as we can view how confident the model is in 

its predictions without relying on the correct labels for verification. This can also be seen 

as the process of predicting multiple unseen images like the similar predict() method 

explained previously on single image predictions. The predict() method uses the 

get_preds() method for single image predictions. (Fastai, n.d.) 

 

The developed notebook also contains a cell that adds the label from the labels.csv file to 

the best value/breed for each image that the get_preds() method outputs. We get the 

best breed for each image outputted from the get_preds() method using the argmax() 

method, it finds the highest value aka. The highest predictions, in this case in a matrix. 
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Figure 17. Shows the fast.ai source code where the predict method uses the get_preds 

method to make predictions. 

5 Discussion & Conclusions 

The Fast.ai library has proven itself capable of performing dog breed identifications by 

using transfer learning and implementing CNNs. The smaller dataset of the Stanford 

dataset has not made the developed model any worse than any of the other models, and 

apps that it has been tested against. The following chapters discuss the developed model 

and thesis. 

5.1 Hardware & Software Limitations 

One big problem that emerged when training the model was the problem of the amount 

of computational resources required to train the model efficiently. (Neil et.al., 2020) My 

PC could train some models but whenever the pre-trained model was too large, the BS or 

EP was set too high my PC couldn’t handle the computations and ran out of GPU 

memory.  

 

The Google Colab platform was a great way to take the computational load of my PC. It 

also made it possible for me to work on other tasks alongside the training of the model 

since the training was done in the cloud, and training on my PC consumed most of my 

PC’s resources. However, the Colab instances often timed out and didn’t save, and when 

I upgraded to a Colab Pro account (11€/month), the computational hours I were granted 

were consumed in less than two days of training and testing. Google offers several levels 

of Colab plans to suit one's needs. The Colab Pro offers 100 compute units, pay as you 

go, and Colab Pro+ with 500 compute units. (Google, n.d.). The need to purchase 
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additional compute units was required to train with the larger pre-trained models, and 

finally achieve a good accuracy and low loss. 

 

When training with larger EPs, and especially larger BSs a common error encounter both 

on my PC and the free Colab version was a GPU memory error. OutOfMemoryError: 

CUDA out of memory. A self-explanatory error that points to the fact that the GPU has 

run out of memory. Several fixes can be applied. Upgrade the GPU in question, lower the 

BS, and free up non-essential allocated memory using torch.cuda.empty_cache(), 

and/or split the images into smaller, less memory-intensive chunks, by setting a max split 

size using the max_split_size_mb in the data loader. 

5.1.1 Python 

Python, and other high-level programming languages, i.e., languages that are designed to 

be more readable and understandable, are often considered slower compared to compiled 

languages like C or Swift since Python is an interpreted language. This means that each 

time a Python program is run, the interpreter needs to translate the Python code into 

machine code. This often requires more computational time compared to compiled 

languages where the code is translated only once and executed directly on the computer. 

Additionally, Python is dynamically typed, which means that data types are determined 

at runtime. Dynamically typed languages offer more flexibility and ease of use but come 

at a cost of performance, as the interpreter needs to spend extra time verifying and 

converting data types. 

 

Jeremy Howard, the creator of Fast.ai says that Python is one of the bottlenecks of the 

Fast.ai library, and that “Python is not the future of machine learning” (Weights & Biases, 

2022). 

5.2 Stanford Dataset 

The Stanford dataset is quite small, it holds only 120 different dog breeds, ~150 images 

per dog breed, with a total of 20,580 images. This limited amount of data can be a reason 

for suboptimal results when training a model on this dataset. 
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A common issue with smaller datasets is the issue of overfitting. When the model has less 

data to train with overfitting can occur. This means that the trained model may perform 

well on its trained data but perform poorly on new unseen data. 

 

Additionally, smaller datasets may perform poorly when trying to optimize the models’ 

parameters, as the amount of available data may not be sufficient to train the model 

effectively.  

 

The choice of model architecture when dealing with smaller datasets is also good to key. 

More complex models may overfit the training data, while simpler models may underfit 

and fail to capture important patterns and features in the data. Therefore, choosing a 

suitable model architecture that balances both complexity and performance is key, 

especially when working with smaller datasets. In my case the larger models did perform 

better than the smaller ones. A key part of larger pre-trained models are their capabilities 

of capturing many more different features and patterns due to larger number of parameters 

they can take, tweak and train. 

5.3 Architectures 

Thanks to PyTorch Fast.ai lets us easily import and utilize various popular architectures 

or pre-trained models such as ResNet, VGG, and EfficientNet among others. It 

was a challenging decision to select the most suitable pre-trained model for conducting 

the transfer learning. The choice of using ConvNeXt came down to the fact that it 

performed best when I tweaked all the hyperparameters during the training. However, in 

the results chapter, one can see that my notebook and code enable the use of different 

types of pre-trained models. One can easily view the difference in performance based on 

the chosen pre-trained model using the stats file.  

 

The use of transfer learning was a good choice, and it improved the development 

experience, cut down on the computational resources and time to train. To train a 
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complete model from scratch is most likely a rewarding experience.

 

Figure 18. Google Trends search results on common pre-trained models. Google Trends 

(n.d.) 

5.4 Open source 

The entire codebase is hosted publicly on the GitHub platform, along with the stats file. 

The repo also holds the past versions of the developed code. This makes it easy for anyone 

to clone/download the base files needed to run and train a model of their own. The hope 

is that other developers would use my code as a baseline to further improve their work 

and results. 

5.4.1 License 

The code is licensed under the open-source Gnu Public License v3 (GPL3). It was chosen 

to make the project available to others, be further developed upon, but to also guarantee 

the reference of the original author. (Fossa, 2019) 

 

There exist various open-source licenses, each with specific goals and guidelines for how 

the licensed assets should be used and distributed. The choice between the GPL3 and the 

Mozilla Public License 2 (MPL2) came down to the fact that MPL2 is a weak copyleft 

license and GPL3 is a strong copyleft license. Using GPL3 means that the subsequent 
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code derived from my development also falls under the GPL3 license, this way the code 

and the project remain open source. (Choose a License, n.d.) 

 

The addition of the GPL3 license to the code was done quite late in the development. This 

could raise issues regarding the code of the git commits that were added to the GitHub 

repository before the addition of the license. 

5.5 Readability 

The development and documentation of the code for this thesis were done with Anaconda 

Notebooks. The use of a notebook is ideal when working with computer and data science 

as they allow for an interactive environment to both collaborate, share, and visualize data. 

Anaconda notebooks additionally utilize a virtual environment, and pre-installed 

packages and libraries to ease the development in areas such as data, and computer 

science. All notebook software utilizes cells, they hold either text or code. When using a 

notebook, we run these cells one after another. The developed notebook utilizes plenty of 

text cells to enhance the documentation and readability of the code. This is also done to 

complement the written thesis to create a unified and informative solution. 

5.6 Shareability 

Shareability and readability are important parts of both the code and this thesis. The code 

of this project has been developed in such a manner to make it as readable and 

understandable as possible, as well as supporting shareability. 

 

A key part of this thesis was the aspect of shareability and further development by others. 

The code and this thesis are meant to function as a base for further development, and 

hopefully inspire others to develop new ideas. The code was from the beginning 

developed in such a way as for others to easily read and grasp. The use of comments, 

descriptions and the joint functionality of this thesis creates a unified understandable 

solution. The idea is to publish this thesis and code to several forums and platforms that 

hold like-minded individuals in areas such as AI, ML and DL. The choice of open-source 

code will aid in the aspects of shareability. 
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5.7 The Thesis 

This thesis and the subsequent development process have been a rewarding and 

interesting experience. A way for me to further explore relevant subjects in AI, ML and 

DL. When I reflect on the choice of this thesis and its subject, I can honestly say that a 

thesis subject by the request of a company or individual would have been a more optimal 

choice. I am proud of the developed code and this thesis, but the workload and the need 

for self-discipline have been tough.  

5.8 Future Goals 

One way of predicting dog breeds from images is to export the developed model and use 

the predict method or any other similar method to predict images from the code editor, 

like the predict method I used during the development and testing. This is however a 

tiresome task and can be improved. A future goal of mine would be to create an open-

source mobile app that incorporates my open-source developed model to identify dog 

breeds easily and accurately. It would also be a goal to further extend the developed model 

to train it on more images, add more breeds, and even try to train the model from scratch. 
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7 Appendices 

7.1 Appendix 1: Summary in Swedish 

Mitt examensarbete handlar om djupinlärning med fokus på datorseende, 

bildklassificering och faltningsnätverk. Arbetet har sin grund i att när jag och min 

sambo skaffade vår första hund så laddade jag ner diverse mobilapplikationer för att lätt 

och enkelt kunna fotografera och se vad för olika hundraser vi träffade på i hundparken 

och när vi var ute på promenad. Jag tyckte att de appar jag laddade ner var dåliga, gav 

felaktiga resultat, inga av dom hade öppen källkod, och applikationerna innehöll mycket 

annonser. Jag tyckte att det behövde finnas ett alternativ till att lätt och enkelt kunna 

identifiera hundraser från ett digitalt fotografi. Då fick jag idén att utveckla ett eget 

program som kunde identifiera hundraser på ett lätt och träffsäkert sätt. Jag 

sammankopplade mina erfarenheter från mina studier, tillsammans med mitt intresse för 

djupinlärning, programutveckling, och hundar.  

 

Mitt arbete kan ses som uppdelat i två delar, en del berättar om den tekniska 

bakgrunden till just faltningsnätverk, djupinlärning och datorseende, den andra delen 

beskriver utvecklingen av min modell och analysen av dess resultat. 

 

Datorseende är en form av datorvetenskap som fokuserar på datorers egenskap att 

använda sig av visuella data, antingen för att analysera, vidareutveckla eller i mitt fall 

klassificera. Bildklassificering är ett ämne som syftar på att kunna klassificera vad en 

bild innehåller för objekt. 

 

Artificiell intelligens är huvudkategorin som både maskininlärning och djupinlärning 

faller under. Artificiell intelligens är huvudämnet som sammansluter alla underliggande 

kategorier av datorvetenskap kopplat till datorers förmåga att kognitivt fungera samt att 

ta beslut och lära sig som den mänskliga hjärnan. Artificiell intelligens är ett modernt 

ämne som oftast används för att syfta på alla de underliggande kategorierna som diverse 

teknologier kopplat till mänsklig intelligens. Artificiell intelligens används i spel, 

sociala nätverk, appar, självkörande bilar med mera. Maskininlärning är en 

underkategori till artificiell intelligens som syftar på förmågan av en dator att kunna 
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lösa problem med så lite mänsklig inbladning som möjligt. Dessa problem är oftast 

problem kopplat till att lära mönster i olika data. Mitt arbete faller under djupinlärning, 

som är en underkategori till maskininlärning. Djupinlärning fokuserar på att arbeta med 

så kallade neurala nätverk. Dessa nätverk replikerar den mänskliga hjärnan. Neurala 

nätverk kan arbeta med mycket data på en gång, och kan hitta mönster i flera olika 

datatyper, så som bilder, ljud, text med mera. Detta gör djupinlärning och neurala 

nätverk en bra lösning för bildklassificering. Faltningsnätverk är en version av neurala 

nätverk som fungerar utmärkt för att hitta mönster i just visuella data så som bilder. 

 

Faltningsnätverk fungerar utmärkt till problem som har med bildklassificering att göra. 

Faltningsnätverk är en typ av neurala nätverk, men fungerar djupare än simpla neurala 

nätverk. Vi sammankopplar diverse lager av noder som har som uppgift att hitta 

mönster i bilderna vi för in. Dessa mönster sammankopplas för att kunna identifiera, 

eller klassificera vad en bild representerar eller innehåller. Dom första lagren av ett 

faltningsnätverk lär sig dom mest grundläggande kännetecknen så som kanter, texturer, 

och former. Dessa kännetecken byggs vidare på desto djupare, eller längre, vi förflyttar 

oss framåt i nätverket. Till sist har vi hela objekt så som, hundar, kläder, personer med 

mera som vi kan urskilja.  

 

En bild byggs upp av pixlar, dessa pixlar har värden som syftar på färgvärdet i en pixel, 

pixel värdet kan vara mellan 0 – 255, värdet är styrkan av färgen i pixeln. Vi kan ha 

svartvita bilder då bara en färgkanal, eller RGB bilder som syftar på färglagda bilder 

som då har tre färgkanaler med värden mellan 0 – 255, alltså tre kanaler, för varje bas 

färg: röd, grön och blå.  

 

Den grundläggande teknologin som särskiljer faltningsnätverk gentemot normala 

neurala nätverk är faltningslagren. Faltningslagren består av så kallade faltningskärnor, 

eller filter. Dessa kärnor är matriser med siffror, siffrorna kallas för vikter, som vi för 

över bilden som vi vill klassificera. Vi multiplicerar ihop pixelvärdena, med matrisens 

tal, och sedan summerar vi dessa värden och det siffervärdet vi får applicerar vi på ett 

nytt lager, som heter särdragskarta. Genom att justera matrisens värden, vikterna, så kan 

vi hitta olika mönster, eller kännetecken i bilderna. Vi kan då välja att föra 

särdragskartorna vidare i nätverket för att hitta mera avancerande kännetecken i bilden, 
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eller så använder vi oss av ett aktiverings lager, eller ett pooling lager. Ett aktiverings 

lager är ett lager, eller egentligen en matematisk formel som skiftar särdragskartans 

värden mot antingen 0 eller 1. Vi har också diverse pooling lager som minskar på 

storleken av bilden som vi skickar vidare i nätverket, detta gör vi för att minska på 

bilden, och i så fall ökar prestandarden av nätverket. Det sista lagret i ett 

faltningsnätverk är ett vanligt neuronnät. Här så använder vi oss av ett vanligt neuralt 

nätverk för att försöka klassificera bilden vi förde in i nätverket på basen av de mönster 

som hittats. Det vi vill få ut av det sista neuronnätet är en klassificering, och en 

probabilitet av hur säker den klassificeringen är.  

 

Då vi tränar en faltningsnätverk att lära sig kännetecken så behöver vi mata in massvis 

med bilder till den för att den skall lära sig att urskilja olika objekt, eller klasser. Då vi 

har skickat en bild framåt i nätverket och kommit fram till en klassificering så mäter vi 

hur bra modellen var att klassificera bilden korrekt. Detta görs genom att se vilken 

klassificering som var bäst i neuronnätet, och jämför den klassificeringen gentemot den 

äkta klassificeringen av bilden som fördes in. Sen flyttar vi oss bakåt i nätverket och 

uppdaterar vikterna och diverse andra parametrar för att få en bättre klassificering. Detta 

gör genom att använda oss av diverse matematiska formler för att mäta nätverkets 

felaktighet och uppdaterar då nätverkets parametrar för att nästa gång klara av att göra 

en bättre klassificering. Dessa parametrar är vikterna i kärnorna som används för att 

hitta mönster. 

 

Datasetet jag valde att träna min modell med är Stanford dogs datasetet. Det är ett 

dataset fyllt med bilder av hundar. Datasetet innehåller ca. 20 500st bilder av olika 

hundar, och raserna för varje hundras finns lagrade i en .csv fil. På detta sätt kan vi föra 

in bilderna under träningen, och modellen kan göra sin klassificering, sedan mäter vi 

hur bra klassificeringen blev gentemot det faktiska värdet av hundbilden. Standford 

datasetet är ganska litet, gentemot likartade dataset som används inom faltningsnätverk 

och djupinlärning. Mina resultat visade att man kan skapa en träffsäkermodell utan 

enormt stora tränings dataset. 

 

Detta arbete tar också upp utvecklingen av ett faltningsnätverk med hjälp av 

överföringsinlärning. Detta betyder att vi bygger ett faltningsnätverk på basen av en 
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färdig tränad modell. Dessa färdig tränade modeller har tränats att hitta diverse 

allmänna former, objekt, mönster med mera. Detta gör vi för att öka träffsäkerheten av 

vår modell, minska på träningstiden, samt att teoretiskt uppnå bättre resultat. 

 

Fast.ai biblioteket valdes p.g.a. dess popularitet, och förmåga att lätt kunna arbeta med 

bildklassificering. Diverse andra bibliotek och program har ganska svår syntax, eller 

kod för att utveckla djupinlärnings modeller. Jag anser att Fast.ai är ett lättare alternativ 

då det kommer till utvecklingen och dess syntax. Utveckling av en modell med Fast.ai 

visade sig vara mycket givande. Fast.ai bygger på PyTorch ramverket, man kan därför 

helt och hållet använda sig av PyTorch metoder, funktioner och kod. Fast.ai sitter 

ovanpå PyTorch, och kan utnyttja PyTorch med en lättanvänd API. Python är också det 

programmeringsspråk som används för utvecklingen. 

 

All kod har skrivits med ett så kallat jupyter notebook programvara. Det är en form av 

utveckling lämpat för datorvetenskap. En kombination av diverse celler spjälkar upp 

koden i ett enstaka dokument med både text och kodceller för att göra det lätt 

tillgängligt. Anaconda notebooks är tjänsten jag valde att utveckla med. Anaconda 

använder sig av Python, och diverse färdiginstallerade programmeringsbibliotek och 

verktyg för att göra utvecklingen lätt då det kommer till datorvetenskap. Min utveckling 

berörde inte bara utvecklingen av bildklassificeringsmodellen, utan också diverse andra 

metoder och uträkningar som visar hur bra modellen presterar, hur data är strukturerad 

och andra visualiseringar för att göra det lättare att förstå och greppa min kod. 

 

Mina mål var att utveckla en så träffsäker modell som möjligt, detta uppnåddes med 

min slutgiltiga modell som hade en allmän träffsäkerhet på ca. 96%. Min hypotes i 

början var att ha en modell med ca. 90% träffsäkerhet. Den allmänna träffsäkerheten 

kalkylerades genom att mäta prestandan av en färdigtränad modell mot en del av hela 

hund datasetet. Jag testade min modell mot diverse appar och modeller som identifierar 

hundraser, samt som liknar min utvecklade modell och jag fick där resultat som var 

likartade och på flera ställen bättre än de modeller och appar jag testade mot. Jag valde 

att testa min modells träffsäkerhet genom att ge den två bilder, en på min hund Laban, 

som är en Labrador retriever, och en bild på en Berner sennenhund. När jag testade min 

modell på dessa bilder så klassificerade min modell bilderna rätt, med en träffsäkerhet 
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på ~94% och ~99%. De olika apparna jag testade emot fick en allmän träffsäkerhet på 

ca. 90% på Laban, och på bilden av Berner sennenhund 99%. På detta sätt så fick jag 

bevisat att min modell, som använder sig av ett relativt litet dataset av hundbilder kunde 

effektivt och träffsäkert klassificera hundraser lika bra som publicerade applikationer. 

Diverse andra modeller testade jag, och min modell fungerade lika bra, och i många fall 

bättre än de andra modellerna. 

 

Öppen källkod var ett mål med mitt arbete. All kod jag utvecklat finns offentligt 

publicerat på tjänsten GitHub. GitHub är en av många tjänster som tillhandahåller 

lagring av kod för både privat och offentligt bruk. Man kan också se revisioner av 

koden sen den första uppladdningen. Då jag laddade ner diverse mobilapplikationer för 

att identifiera hundraser så hittade jag inte några populära som föll under öppen källkod. 

Jag ville skapa ett alternativ för hundrasidentifiering med öppen källkod. Jag ville också 

att andra kunde ta del av mitt arbete, modifiera det och arbeta vidare med det. Jag 

licenserade hela mitt arbete under GPL3, som kräver att all diverse kod som utvecklas 

på basen av min kod faller under samma licens, alltså så stannar alltid min kod under 

öppen källkod. 

 

Läslighet och delbarhet var två viktiga mål då jag valde att påbörja skriv- och 

utvecklingsprocessen. Jag fokuserade på att utveckla min kod och skriva mitt 

examensarbete på att så läsligt sätt som möjligt. Jag ville skapa en enhetlig lösning som 

personer kunde använda sig av för att lätt förstå sig på bildklassificering, 

hundrasidentifiering, faltningsnätverk och Fast.ai. Den slutgiltiga koden var en 

fungerade helhet tillsammans med det skrivna examensarbetet. Det var viktigt för mig 

att koden lätt kunde appliceras på nya ändamål, personer skall lätt kunna byta ut 

Stanford datasetet mot något annat dataset, men kunna använda min kod för att göra 

samma bildklassificeringar. 

 

Slutligen så vill jag reflektera över mitt examensarbete som en helhet. Det har varit en 

intressant upplevelse, och jag har lärt mig mycket. Det har varit intressant att få arbeta 

med de ämnen och saker vi lärt oss under studierna vid Arcada. Arbetet har också väckt 

ett vidare intresse för bildklassificering och djupinlärning hos mig, som jag vill 

vidareutveckla. Jag har som mål att vidareutveckla min modell genom att träna 
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modellen med flera bilder, flera raser och få lika bra eller bättre resultat. Jag vill också 

utveckla en mobilapplikation med öppen källkod för att sammankoppla min utvecklade 

modell och publicera den så att andra kan ta del av en träffsäker och effektiv öppen 

källkodslösning för att identifiera hundraser med en mobilapplikation. 
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