

Analysis of Modern Malware

Obfuscation techniques

Mika Luoma-aho

Master’s thesis

May 2023

Master’s Degree Programme in Information Technology, Cyber Security

 Description

Luoma-aho, Mika

Analysis of Modern Malware – obfuscation techniques

Jyväskylä: JAMK University of Applied Sciences, May 2023, 102 pages.

Master’s Degree Programme in Information Technology, Cyber Security (YAMK). Master’s thesis.

Permission for open access publication: Yes

Language of publication: English

Abstract

Threat actors use malware to damage individuals and companies. Due to its adaptability, malware is the
most prevalent form of cyber-attack. For example, a cyber-attack can range from a simple virus to a com-
plex ransomware operation. In this never-ending cat-and-mouse game, malware authors devise ever-more
complex strategies for bypassing system defences, while cyber security professionals, defence system de-
signers, and endpoint protection developers devise improved methods for identifying these new strategies.

The purpose of the thesis was to assist individuals and businesses in comprehending how malware is cur-
rently and will be in the future, evading system protection measures and concealing itself from the analy-
sis.

Since obfuscation techniques are one of the important ways to evade and hide from analysis, the theoreti-
cal research looked at various obfuscation techniques, the ability of systems to defend against these tech-
niques, and the possibilities of future innovations.

The findings of the thesis emphasised the need to comprehend the implementation methods of existing
malware techniques to comprehend the limitations of current security measures as well as the challenges
of researching malware code and anticipating its future advancements.

Because malware authors are always one step ahead of security developers, achieving total protection and
anticipating new threats is challenging, if not impossible.

Keywords/tags (subjects)

Malware, obfuscation, detection, mitigation, cyber security, cybersecurity

Miscellaneous (Confidential information)

n/a

 Kuvailulehti

Luoma-aho, Mika

Modernien haittaohjelmien analysointi – suojautumistekniikat

Jyväskylä: Jyväskylän ammattikorkeakoulu. Toukokuu 2023, 102 sivua.

Master’s Degree Programme in Information Technology, Cyber Security. Opinnäytetyö YAMK.

Verkkojulkaisulupa myönnetty: Kyllä

Julkaisun kieli: Englanti

Tiivistelmä

Uhkatoimijat käyttävät haittaohjelmia yksilöiden ja yritysten vahingoittamiseen. Haittaohjelmat ovat suo-
situin kyberhyökkäysmuoto monipuolisuutensa ansiosta. Kyberhyökkäys voi vaihdella yksinkertaisesta vi-
ruksesta kehittyneeseen kiristysohjelmaan. Haittaohjelmien tekijät kehittävät jatkuvasti kehittyneempiä
tekniikoita järjestelmän suojauksien kiertämiseksi ja samalla kyberturva ammattilaiset sekä virustorjunta-
ohjelmien sovelluskehittäjät kehittävät parempia keinoja havaita nämä uudet lähestymistavat tässä loput-
tomassa kissa-hiiri-pelissä.

Koska obfuskointitekniikat ovat yksi tärkeimmistä haittaohjelmien käyttämistä keinoista vältellä ja piilou-
tua analysoinnilta tässä opinnäytetyössä on tutkittu mahdollisimman kattavasti erilaisia obfuskointiteknii-
koita ja samalla analysoitu järjestelmien mahdollisuuksia suojautua näitä tekniikoita vastaan, sekä arvioitu
minkälaisia mahdollisia uusia kehityssuuntia voi olla tulossa. Työn tavoitteena oli auttaa yrityksiä ja yksityis-
henkilöitä ymmärtämään haittaohjelmien nykyisiä ja tulevia tapoja vältellä järjestelmien suojautumiskei-
noja sekä piiloutua analysoinnilta.

Opinnäytetyön tulos korosti, että on tärkeää ymmärtää nykyisten haittaohjelmien käyttämien tekniikoiden
toteutustapoja, jotta voidaan ymmärtää nykyisten suojautumiskeinojen vajaavaisuudet sekä haasteet tutkia
haittaohjelmien koodia ja vaikeutta ennakoida niiden tulevia kehityssuuntia.

Koska haittaohjelmien tekijät ovat aina askeleen edellä suojauksien kehittäjiä, on erittäin vaikeaa tai jopa
mahdotonta saavuttaa täydellistä suojausta ja ennakointia tulevia uhkia varten.

Avainsanat (asiasanat)

Haittaohjelma, obfuskointi, havaitseminen, torjunta, kyberturvallisuus

Muut tiedot (salassa pidettävät liitteet)

n/a

4

Contents

Abbreviations ... 7

1 Introduction .. 8

1.1 Objectives .. 9

1.2 Ethics ... 11

2 Malware .. 11

2.1 History ... 11

2.2 Theory ... 20

2.2.1 Malware and technique classification ... 24

2.2.2 Detecting and protecting from malware ... 26

2.2.3 Malware analysis ... 29

2.2.4 Script-based and native malware .. 30

3 Obfuscation ... 33

3.1 Code transposition .. 42

3.2 Compression .. 47

3.3 Dead-code ... 50

3.4 Encoding .. 53

3.5 Encryption ... 58

3.6 Indirect method call .. 60

3.7 Instruction substitution ... 63

3.8 Non-alphanumeric code .. 67

3.9 Polymorphism ... 70

3.10 Randomization .. 75

3.11 Register randomisation ... 77

3.12 Return-Oriented Programming ... 79

3.13 Self-modifying code ... 81

3.14 String splitting ... 84

3.15 Whitespace decoding .. 86

3.16 Whitespace randomisation ... 89

4 Conclusion ... 90

References .. 95

Appendices .. 103

Appendix 1. Obfuscation techniques in MITRE ATT&CK MATRIX .. 103

5

Figures

Figure 1. Evolution of evasion techniques employed in malware .. 24

Figure 2. Code reordering by shuffling instructions ... 44

Figure 3. Example of subroutines (1-10) reordered to create distinct variation. 45

Figure 4. Example of shuffled code blocks. ... 46

Figure 5. Compressed executable ... 48

Figure 6. Dead code injection in JavaScript .. 51

Figure 7. Original program without obfuscation .. 52

Figure 8. Obfuscated code with dead code (code lines marked by arrows) 52

Figure 9. Example code without obfuscation ... 56

Figure 10. Example code with hexadecimal escapes .. 56

Figure 11. Encrypted malware .. 59

Figure 12. Indirect method call graph ... 61

Figure 13. Example of obfuscated method calling .. 62

Figure 14. Instruction substitution technique .. 64

Figure 15. Non obfuscated version ... 65

Figure 16. MOVfuscated version ... 65

Figure 17. Non-alphanumeric JavaScript code example ... 68

Figure 18. Metamorphic changes between generations .. 72

Figure 19. Multiple obfuscations applied in imaginary metamorphic malware 73

Figure 20. Randomized variable and function names .. 76

Figure 21. Original assembly code .. 78

Figure 22. Register-randomised assembly code ... 78

Figure 23. Self modifying code seen with static analysis .. 82

Figure 24. Self-modifying code during execution ... 83

Figure 25. String splitting .. 85

Figure 26. Whitespace encoded malicious code payload ... 87

Tables

Table 1. Summary of obfuscation technique classifications ... 26

Table 2. Mitre ATT&CK information about Obfuscated Files or Information 36

Table 3. Code transposition classification .. 42

Table 4. Compression technique classification ... 47

Table 5. Dead-code technique classification .. 50

6

Table 6. Encoding technique classification ... 53

Table 7. Example of escaping characters using hexadecimal, Unicode and octal escape types 56

Table 8. Encryption technique classification .. 58

Table 9. Indirect method call technique classification ... 60

Table 10. Instruction substitution technique classification .. 63

Table 11. Non-alphanumeric code technique classification ... 67

Table 12. Polymorphism technique classification .. 70

Table 13. Randomization technique classification ... 75

Table 14. Register randomization technique classification .. 77

Table 15. Return-Oriented Programming technique classification .. 79

Table 16. Self-modifying code technique classification .. 81

Table 17. String splitting technique classification .. 84

Table 18. Whitespace decoding technique classification ... 86

Table 19. Whitespace randomisation technique classification .. 89

7

Abbreviations

AV Anti-virus

BUG A fault in a program

CIA Confidentiality, integrity, and availability

DDoS Distributed Denial of Service (attack)

EDR End-point Detection and Response

HIPS Host Intrusion Prevention System

IDS Intrusion Detection

IDP Intrusion Detection and Prevention

IoT Internet of Things

MBR Master Boot Record

SMB Server Message Protocol

SMC Self-modifying Code

STO Security Through Obscurity

VM Virtual Machine

0-day A vulnerability that is not currently publicly known (also known as Zero-day)

8

1 Introduction

“In an age of dynamic malware obfuscation through operations such as mutating
hash, a hyper-evolving threat landscape, and technologically next-generation adver-
saries, offensive campaigns have an overwhelming advantage over defensive strate-
gies.” (James Scott, Senior Fellow, Institute for Critical Infrastructure Technology)

This thesis was motivated by the escalating threat environment comprising malware as the most

severe security threat on the Internet today. Threat actors commonly use malware as their pre-

ferred cyber security weapon to target individuals and companies in attack campaigns. Therefore,

conducting a comprehensive technical analysis is crucial to gain insights into malware’s origins and

future trajectory. The research utilized a qualitative research method with an integrative literature

review. The research delved into the complex concepts of modern, advanced malware, focusing

on how it employs obfuscation as an evasion strategy to avoid detection by various defensive

measures used on PCs and cloud-based services.

Malware, an umbrella term for various types of malicious software, applies to any software or

code that performs unauthorised operations and compromises the Confidentiality, Integrity, or

Availability of a computer system (CIA). Malware, also known as harmful code or logic, can be vi-

ruses, worms, trojan horses, and other malicious software that can undermine a targeted system’s

security and stability (European Union Agency for Cybersecurity, 2022). Malicious software also

includes spyware and various forms of adware. A virus is a software replicating itself and infecting

other files on a computer, allowing it to spread from host to host. A worm, like a virus, spreads in-

dependently over a network, usually causing significant harm. A trojan horse is a malware that dis-

guises itself as legitimate software, deceiving users into installing it. Spyware, on the other hand,

covertly tracks and collects personal information without the user’s consent. Finally, adware is un-

wanted software that triggers pop-up ads and banners on a computer (Malwarebytes, 2022b).

Malicious actors, throughout their campaigns, frequently utilise malware to obtain and maintain

asset control, evade and deceive defenders, and carry out post-compromise operations. Malware

authors choose from various malware types to gain control of target systems. The kind of malware

they select depends on their specific goals and the vulnerabilities they are trying to exploit. Tech-

nically, the malware consists of different components, such as payloads, droppers, post-compro-

mise tools, backdoors, and packers which differ in their functionalities. Attackers determine and

9

combine the most efficient malware components based on their objectives, from gaining control

of systems or networks and stealing data to disrupting operations. (European Union Agency for

Cybersecurity, 2022)

Malware authors frequently employ obfuscation as a means of evading antivirus scanners. This

technique encompasses a range of tactics, including the use of encrypted, oligomorphic, polymor-

phic, and metamorphic malware. The primary goal of obfuscation is to make malware code as

complex and challenging to comprehend for humans and automated analysis tools as possible.

The considerable prevalence of effective obfuscation techniques presents a significant threat to

individuals who depend on antivirus software as their principal safeguard against malicious soft-

ware attacks on the internet. Given the impact of obfuscation on the efficiency of malware detec-

tion and analysis, it has become an important research topic in computer security. Utilising ad-

vanced analysis techniques and machine learning algorithms, researchers are actively investigating

methods to improve the detection of obfuscated malware.

This thesis explores the numerous techniques harmful programmes use to function effectively in

the face of more advanced system security measures and heightened worldwide awareness. Mal-

ware developers utilise various techniques that are constantly developing to accomplish their ob-

jectives. However, obfuscation is most often the first method malware developers use to avoid de-

tection and evade system defences, enabling malware to execute uninterrupted. Therefore,

examining this technique is essential for gaining a deeper comprehension of how the malware op-

erates, and the challenges system security engineers confront in developing more efficient detec-

tion and countermeasure tactics, and the continued difficulty of keeping ahead of malware au-

thors.

1.1 Objectives

The objective of this thesis is to provide a foundation for understanding what security measures

and, more specifically, what obfuscation techniques malware employs to avoid detection and anal-

ysis. Furthermore, to acquire good context information, this thesis researches the current state of

advanced malware, its implications for existing security solutions, and their ability to detect and

defend against rapidly moving malware threat actors and evolving malware threats.

10

Based on the set objective, this thesis's primary research question was determined to be:

• What kind of obfuscation techniques does malware employ to avoid system

security measures?

These secondary research questions were created to answer the main research question:

• How has malware evolved?

• How does malware accomplish its goals?

• How have detection and defending techniques evolved?

The research employed a qualitative research methodology with an integrative literature review to

accomplish the set objective. A literature review encompassed a systematic and critical evaluation

of technical documents published by security researchers, books and e-books, reports published

by various organisations and other relevant sources about the research topic. An integrative litera-

ture review aimed to identify, evaluate, and synthesize existing knowledge and research findings

to establish a foundation for the present study. In addition, the objective was to collect the most

recent knowledge on the researched topic.

The thesis focuses on recent advancements in malware development, particularly obfuscation

techniques and their relationship with modern technology. Due to the vast amount of information

available on the topic, the scope has been restricted to the most relevant and up-to-date infor-

mation. The thesis assumes that the reader has some technical expertise. However, the goal is to

present the research findings clearly so they can be comprehended without prior knowledge. In

addition, the scope of this study does not include a comprehensive analysis of the technical com-

plexities of malware. Instead, the study will focus on analysing current and past obfuscation tech-

niques and exploring potential mitigation strategies. The thesis begins by discussing the history

and theory of malware, summarizing how it has become the favourite cybercrime weapon and

part of a billion-dollar business model for cybercriminals. Next, different obfuscation techniques

were researched in detail. Moreover, the conclusion discusses emerging trends, provides valuable

malware protection guidelines and gives a good understanding of future threats.

11

1.2 Ethics

This thesis adheres to the ethical guidelines set by JAMK University of Applied Sciences (JAMK Uni-

versity of Applied Sciences, 2018). The research and the resulting content in this thesis were ob-

tained from publicly available sources and did not infringe on any copyrights or reveal confidential

information. Because malware technologies are continually developing, material in this thesis for

some of the researched techniques may be outdated or otherwise obsolete but are represented to

give historical background and to demonstrate the type of evolution that has occurred. This re-

search’s content, tools, and examples are presented solely for educational and research purposes.

Abuse and unlawful behaviour involving this information is forbidden and may result in penalties,

fines, and legal action. All information and sources are cited following JAMK’s reporting guidelines

(JAMK, 2022).

2 Malware

2.1 History

1970s to 1990s

Viruses emerged as computer use increased due to the popularity of the IBM PC and MS-DOS.

Compared to today’s malware, computer viruses are tiny in size. They often performed activities

such as destroying data or altering the PC’s BIOS to prevent the computer from starting. Viruses

typically propagate further by copying themselves to every floppy disk pushed into the machine

(Bettany & Halsey, 2017). A computer virus is a well-known phenomenon that often elicits nega-

tive emotions. A computer virus, like the flu, can swiftly transmit from one host to another, creat-

ing minor to catastrophic consequences.

The development of malicious or intrusive software is not recent, as demonstrated by the creation

of a proof-of-concept virus in 1971 to study viral transmission over ARPANET, the precursor to the

current Internet, before its widespread availability. The objective of the test was not to cause

harm but to ascertain whether the virus could spread between machines via ARPANET, and it was

successful. (Saengphaibul, 2022)

12

Initially, viruses were relatively harmless and not designed to cause harm or be a catalyst for a nu-

clear attack. Many viruses and maliciously acting software started as scientific experiments in

classrooms or computer labs, intended as simple pranks for their peers. However, by the end of

the ’80s, viruses became a worldwide phenom and threat to computer users. (Mercante, 2018)

The Morris Worm, discovered at the end of 1988, is one of the oldest and first viruses to gain sig-

nificant mainstream media attention. A graduate student at Cornell University (Ithaca, New York)

launched Morris Worm from the Massachusetts Institute of Technology computers. Although the

virus only intended to assess the size of the Internet for its developer, an error in its programming

transformed it from a harmless worm into an infectious denial-of-service tool that required a long

time to remove from the thousands of machines it infected. (Bettany & Halsey, 2017)

It did not take long for malicious actors to exploit the concept of malicious software. The world’s

first ransomware, the AIDS Trojan, also known as the PC Cyborg Virus, was discovered in 1989. The

late Dr Joseph Popp developed the relatively simple virus and spread it via floppy disks sent world-

wide by post to AIDS researchers. Unfortunately, when the recipient installed the benign-looking

software intended to help AIDS researchers, the installer contained invisible malware that infected

the user’s system. Initially, the malware sat dormant until the system booted up for the 90th time,

at which point it locked the system and demanded victims pay $189 to a P.O. Box in Panama for

access to their system. According to Dr Joseph, the ransomware was to collect funds for AIDS re-

search. However, other reports state that he made it out of frustration with the World Health Or-

ganization after being rejected for a job. (Cohen, 2021)

In the 1990s, computer viruses became more advanced and harmful, causing significant damage to

the systems they infected. As a new twist, certain viruses were designed to be activated at specific

times or in particular circumstances. In 1992, the Michelangelo virus was discovered, which spread

via floppy disks. This virus was set to be activated on March 6th, Michelangelo’s birthday, resulting

in significant media coverage across TV and print platforms. Consequently, authorities recom-

mended that computer owners either turn off their computers or change their computer’s date to

prevent the virus from causing damage. (Saengphaibul, 2022)

13

As the 90s came to a close, the frequency and severity of virus attacks continued to rise. The main

goal of these early viruses was to cause harm to the victim’s computer system by either destroying

files, preventing the system from booting up or displaying entertaining texts or graphics on the vic-

tim’s screen. The rise of attacks attributes to the growing number of PC users and the increasing

connectivity of the world. (Mercante, 2018)

2000s-2010s

With the arrival of the new century (also known as Y2K), fast-expanding and widely available Inter-

net access connected individuals all over the world, resulting in a dramatic increase in the number

of attacks as the number of possible victims increased. Also, the malware and the threat actors be-

hind the attacks shifted from simply damaging victims’ systems to profiting from them (Mercante,

2018). Introducing digital currency (also known as cryptocurrency) helped facilitate this shift. One

of the pioneers of this technology was Bitcoin, founded in 2008 by an unknown individual or group

under the alias Satoshi Nakamoto. Bitcoin is a digital currency that does not have intermediaries

such as banks or governments. Instead, transactions are verified via cryptography by network

nodes and stored in a public ledger known as a blockchain (Frankenfield, 2022). Cryptocurrency

has many legitimate applications, such as facilitating quick and safe cross-border transactions

without intermediaries like banks. However, the features that make cryptocurrencies appealing

for lawful applications, like decentralisation, anonymity, and lack of regulation, also make them

very appealing for criminal activity. Initially, cryptocurrency transactions were largely untraceable.

However, in recent times, law enforcement officers have traced some of the transactions back to

the threat actors (Ostroff & Vigna, 2020).

In 2010, a state-sponsored Chinese hacking group APT10 launched the Aurora malware attack

campaign, widely regarded as one of history’s most major cyber espionage efforts. Its objective

was to steal intellectual property from large American corporations such as Google, Adobe, and

Dow Chemical. The attackers utilised spear-phishing to trick employees into clicking on malicious

links or files. Once they had access, they used various techniques, including proprietary malware

and backdoors, to maintain persistence and access sensitive information. The success of the attack

campaign serves as a stark reminder of the importance of implementing strong cyber security

measures and the ongoing need to remain vigilant in the face of constantly evolving cyber threats.

(Ali, 2022)

14

Also, in 2010, the infamous Stuxnet computer worm was discovered, meant to disable a critical

component of Iran’s nuclear programme. The creators of the Stuxnet malware remain a topic of

contention and speculation. However, it is widely accepted that Stuxnet was a joint effort involv-

ing US and Israeli intelligence organisations. Stuxnet was a sophisticated malware that used many

zero-day vulnerabilities in the Windows operating system. Once infected, it searched for a connec-

tion to the software controlling the target device, such as a nuclear centrifuge. Upon finding a tar-

get, it transmitted commands to the equipment, leading it to malfunction and finally fail. Interna-

tional Atomic Energy Agency (IAEA) inspectors, who were permitted to access one of the facilities

targeted by the attack, noticed an unusually high number of damaged centrifuges, subsequently

confirming that the attack had succeeded in its goal, possibly setting back their nuclear program

by years. (Fruhlinger, 2022b)

In 2013, a group of hackers known as Carbanak stole almost $1 billion from banks worldwide using

custom malware. The attackers began with spear phishing email campaigns, luring people to open

the malicious email and infecting PCs with malware. The custom malware provided a backdoor for

the attack group to gain a footing on the bank’s intranet and travel laterally through the network

to discover other PCs to extract funds. (Kaspersky, 2015)

In the same year, a hacker infiltrated Target Corporation’s (Target), a general merchandise retailer,

security and payment systems, resulting in one of the most significant security breaches. The at-

tack was made possible through a phishing email campaign using Citadel, a variation of the Zeus

banking trojan virus. The attacker stole 40 million credit card records and 70 million customer rec-

ords. Target paid $18.5 million to settle claims, with an overall cost estimate of more than $200

million, including losses incurred due to fewer households purchasing at Target following the data

breach. Interestingly the attackers breached the target systems through a third-party portal, which

allowed them to jump into the target’s network. Proper network segmentation and tight access

control could have prevented the target’s breach. (Jones, 2021)

Ransomware began to appear more frequently in 2013, as seen by Cryptolocker’s disastrous ran-

somware campaign. Because of its powerful encryption technique, Cryptolocker was one of the

first ransomware attacks to gain widespread attention. It employed military-grade 2048-bit RSA

15

encryption, making it nearly impossible to decode victims’ files without paying the ransom. (Buck-

bee, 2015)

In 2014, one of the largest banks in the United States, JP Morgan Chase, suffered a massive data

breach. The attackers accessed the bank’s systems by installing malware on its servers, stealing

personal information from over 76 million homes and 7 million small enterprises. JP Morgan Chase

suffered a massive setback due to the data breach, which harmed the bank’s brand and resulted in

considerable financial losses. The stolen data included names, addresses, phone numbers, email

addresses, and other sensitive information, making it a goldmine for cybercriminals. The incident

emphasises the significance of adequate access control mechanisms and multifactor authentica-

tion. The bank could have avoided the data breach if it had adopted effective access control mech-

anisms and multifactor authentication. (Kurane, 2014)

In the same year, the Emotet Trojan was first identified by security researchers. The Emotet Trojan

is a highly complex malware that infects and compromises systems via various tactics. Emotet’s

most effective strategy is to send convincing phishing emails to unsuspecting victims, which can

deceive users into downloading and installing malware onto their systems. Emotet can steal criti-

cal information such as login credentials, banking information, and personal data after it has

gained access to a computer. It can also exploit the infected computer to send spam emails, prop-

agate to other network-connected devices, and distribute further infections like banking Trojans.

Despite cyber security professionals’ efforts to defeat the Emotet Trojan, the malware remains a

severe threat to individuals and enterprises. (Malwarebytes, 2023)

In 2015, a cyber-attack was directed towards the Ukrainian power grid, resulting in a power out-

age that impacted up to 230,000 individuals living in the Ivano-Frankivsk region, home to approxi-

mately 1.4 million people. The attackers thought to be a Russian organization known as Sand-

worm, used a combination of malware, spear-phishing emails, and remote access tools to obtain

access to three power distribution companies’ control systems. They could then remotely disable

circuit breakers at 30 substations, causing a blackout that lasted several hours. This attack was the

first known instance of a successful cyber-attack on a power grid, highlighting the vulnerability of

critical infrastructure to cyber threats. The incident led to increased international cooperation on

cyber security issues and prompted a renewed focus on cyber security and collaboration between

16

governments and industry organizations worldwide to develop best practices and share threat in-

telligence. The Ukrainian government established a dedicated cyber security centre to improve the

country’s cyber defences, and the attack remains a watershed moment in the history of cyber se-

curity. (Krigman, 2022)

In 2016, a devastating ransomware attack called Petya emerged for the first time. It spread quickly

through infected email attachments, and once it had infiltrated a system, it encrypted the victim’s

files and demanded payment in exchange for the decryption key. However, unlike other ransom-

ware attacks, Petya had a twist: it encrypted the victim’s files and overwrote the master boot rec-

ord (MBR) of the infected system, rendering it unusable. Even if victims paid the ransom, there

was no guarantee that they would be able to recover their data or regain access to their systems.

As a result, the Petya attack caused widespread panic and chaos, with many businesses and organ-

izations scrambling to protect themselves from the threat. The Petya attack was particularly insidi-

ous because it was able to spread so quickly and easily. In addition, it exploited a vulnerability in

the Windows operating system, which meant it could infect entire networks by using stolen cre-

dentials to move laterally from machine to machine. The attack was initially targeted at Ukrainian

businesses and government organizations, but it quickly spread to other countries, affecting com-

panies and individuals worldwide. The Petya attack was a wake-up call for the cyber security in-

dustry, highlighting the need for better network hygiene and more robust backup and recovery

processes. While subsequent attacks have been even more devastating than Petya, it remains a

potent reminder of the power and danger of ransomware. (Malwarebytes, 2022a)

In 2017, WannaCry (also known as WannaCrypt or WannaCrypt0r), a ransomware worm, spread

rapidly across many computer networks. After infecting a computer, WannaCry encrypted the

user’s files and demanded a ransom in exchange for the decryption key. The first ransom de-

manded was $300 in bitcoin, with the threat of increasing the amount if the ransom was not paid

within a set date. WannaCry exploited an EternalBlue vulnerability in Microsoft Windows, allowing

it to propagate without user input or consent. Interestingly, the WannaCry infection had a built-in

kill switch, which cyber security researchers discovered during the outbreak. The researchers

found that if a particular URL were registered on the Internet, WannaCry would shut off. The re-

searchers triggered this kill switch shortly after it was discovered, which aided in containing

WannaCry infections. The EternalBlue exploit is also notable in the WannaCry attack because it

17

was allegedly found by the United States National Security Agency (NSA), who built code to exploit

the weakness instead of disclosing it. The Shadow Brokers, a hacker outfit, later stole this vulnera-

bility. Following the incident, Microsoft criticized the US government for failing to disclose its

knowledge of the issue sooner. (Fruhlinger, 2022)

Also, in 2017, the NotPetya cyber-attack, disguised as a ransomware epidemic, swept through

worldwide businesses, inflicting severe harm and costing billions of dollars. The malware origi-

nated in Ukraine and exploited a vulnerability in Microsoft’s Server Message Block protocol (SMB)

to infect multiple countries and critical systems of major corporations and government agencies.

Unlike traditional ransomware, NotPetya overwrote the master boot record (MBR) of infected sys-

tems, rendering them unusable and forcing affected organizations to rebuild their IT infrastructure

from scratch. The attack was believed to be a deliberate act of cyber sabotage and highlights the

growing threat of cyber-attacks to global businesses and critical infrastructure. The NotPetya at-

tack underscores the need for organizations to take proactive steps to improve their cyber security

posture. Implementing robust backup and recovery procedures, regularly patching software vul-

nerabilities, and investing in employee training and awareness programs can help mitigate the risk

of cyber-attacks. In the wake of the NotPetya attack, many organizations have taken steps to im-

prove their cyber security practices and better prepare for future threats. However, as cybercrimi-

nals evolve their tactics and capabilities, the threat of another devastating attack remains real.

Therefore, organisations must remain vigilant and adaptable in this ever-evolving threat land-

scape. (Capano, 2021)

The COVID-19 pandemic had an expected impact also on the cyber security threat landscape. The

pandemic forced many people to work from home in a new hybrid office model, impacting how

and where people worked. In addition, companies were required to establish connectivity be-

tween employees and the company for remote working due to the rapid development of remote

work and transfer some critical functions to cloud services for better accessibility. However, this

also increased the playground for threat actors and the need to employ and develop more robust

defences and educate personnel on cyber security dangers and how to protect devices and net-

work connections in remote environments.

18

Recent History

According to an annual report released in 2022 by Malware Bytes (an American Internet security-

centred company and end-point protection detection software developer), in 2020, there was a

significant 24 per cent decrease in malware detections on Windows business machines and also in

cybercrime activity due to the Covid-19 pandemic hitting the global economy hard. However, as

coronavirus restrictions were gradually lifted globally in 2021, malware returned with unprece-

dented force, with 77 per cent more malicious software observed than in 2020. (Malwarebytes

Threat Review, 2022)

In 2020, the SolarWinds cyber-attack, also known as the SUNBURST attack, was the first supply

chain type of attack. The hackers were believed to be of Russian origin and gained access to Solar-

Winds’ network by compromising its software build system. The hackers inserted malicious code

into a software update distributed to SolarWinds’ customers, including numerous government

agencies and major corporations. The code remained hidden and allowed the hackers to access

the networks of affected organisations, steal sensitive information, and monitor communications.

The attack was revealed when cyber security firm FireEye found the malicious code on its network,

which led to a broader investigation and eventually told the extent of the SolarWinds attack. The

SolarWinds cyber-attack had significant impacts on the affected organisations. The attack resulted

in data theft, network monitoring, reputational damage, regulatory compliance concerns, and fi-

nancial costs. The breach damaged these organisations’ trust in their stakeholders and raised con-

cerns about compliance with regulatory requirements, particularly in heavily regulated industries

such as finance and healthcare. The attack was costly for the affected organisations, who had to

devote significant resources to investigating and remediating the breach. The attack highlighted

the need for increased vigilance and robust cyber security measures to protect against future at-

tacks. (Paganini, 2021)

Remote work also meant that mobile device usage raised, and mobile devices increased the attack

surface for cybercriminals. Verizon 2022 Mobile Security Index (MSI) report (a report gathered

from 632 security professionals around the world) revealed that the new world of hybrid work

that has resulted from the transition to remote work had presented security teams with an uphill

struggle as the number of devices and remote employees grows. According to the report, 79 per

cent of companies have identified that remote working adversely affected their cyber security and

19

increased the burden on security teams. Also, an alarming 45 per cent of the companies have en-

countered mobile device breaches, which is twice what was observed in the 2021 survey. The re-

port also indicates a lack of security training (44 per cent of companies do not give adequate secu-

rity training regularly, and 51 per cent do not provide security-related training when employees,

for example, are switching to remote working). Also, lack of remote working guidance is seen as

one major problem where only 65 per cent of the companies have guidelines for remote work.

(Verizon, 2022)

In 2021, the two most essential themes were adaptability and persistence, according to a report

released by CrowdStrike (an American Internet security-centred company). Despite the uncertain

future, businesses adjusted to the new post-Covid environment with innovative technical solu-

tions. However, while these measures were to enhance and strengthen the situation in the future,

they also increased risks and created new vulnerabilities for cybercriminals to exploit. Even though

law enforcement provided new methods to thwart illegal activities, cybercriminals continuously

responded to changes in the target landscape and successfully operated ransomware. CrowdStrike

saw an 82 per cent rise in ransomware-related attacks in 2021 over the previous year. The

CrowdStrike report emphasises that adversaries are not resting but rather intensifying attacks

which will be more devastating and inflict more comprehensive destruction, affecting employees,

small businesses, and large corporations. (CrowdStrike, 2022)

Given the reported numbers, it would be easy to conclude that covid-19 was the reason for the

significant malware drop in 2020. However, an annual report released in 2021 by ENISA (European

Union Agency for Cybersecurity) found that the decline in detections in 2020 can partly contribute

to the transition to remote work, which reduced visibility into malware typically found on corpo-

rate infrastructure as employees used personal internet connections and devices. (European Un-

ion Agency for Cybersecurity, 2022)

In 2022, a conflict between Russia and Ukraine prompted cybercriminal activities by Russian and

Ukrainian threat actor organisations. The Russian government pushed cybercriminals to dissemi-

nate disinformation and destabilise Ukraine’s president, but their efforts were ineffective in sway-

ing world opinion in their favour. Meanwhile, Ukrainian threat actor organisations have begun dis-

closing crucial information about how ransomware groups work, perhaps resulting in a permanent

20

break between Russian and Ukrainian rivals. At the same time, China-based threat actor organisa-

tions have been assaulting hardware security solutions in the cyber security and infrastructure in-

dustries. (Sophos, 2022)

2.2 Theory

The term “Malware” is a combination of “malicious” and “software” (Kaspersky, 2021). Malware

refers to any programme (software) intended to harm or exploit computer systems. Malware is

invasive software purposefully developed to damage a system, steal data, or obtain illegal access.

Unlike inadvertent software bugs, malware is intended to undermine a computer system’s Confi-

dentiality, Integrity, and Availability or more commonly referred to as CIA Triad (Malwarebytes,

2022b). Information security depends on these three factors to protect data and information from

illegal access, alteration, or destruction. The CIA Triad presents confidentiality, integrity, and avail-

ability as a framework for developing, implementing, and maintaining the security of computer

systems (Fortinet, 2022).

Malware has become more common today than viruses, and malware developers are continually

devising new malware types and variants. Today, malware includes trojans, spyware, worms, vi-

ruses, adware and rootkits. Following is a list of the most common types of malware, each with a

brief description:

Adware is a form of malware that displays unwanted advertisements to users, typically as pop-ups

or banners. It is frequently distributed as part of free software downloads, but it can also be ob-

tained through a cyberattack or vulnerability. Adware aims to generate revenue for its developers

by displaying advertisements to consumers. However, it can cause significant harm to an infected

computer by degrading its performance, reducing its availability, and breaking the user's privacy

by collecting information about their browsing activities. (What Is Adware?, 2022)

Fileless malware is a type of malware that infects a system without using files in the traditional

sense. Instead, it utilises legitimate applications or tools already installed on the system. Malware

that operates entirely in memory does not require the installation of any files on the victim's com-

puter to infect and harm it. Fileless malware exploits vulnerabilities in software programs, operat-

ing systems, or even hardware to gain access to a victim's system. Once inside, the malware

21

employs various techniques to avoid detection and remain in memory, including injecting itself

into other legitimate processes, utilising rootkits, and employing code obfuscation techniques.

(Arntz, 2021)

Ransomware is a type of malware that cybercriminals use to encrypt data, typically business criti-

cal and valuable information, and demand payment in exchange for a decryption key. Although it

has existed since the 1980s, it has become a significant threat since the early 2010s, with attackers

using it for financial gain or espionage. With ransomware, the goal of the attackers is to make

money. Since victims are often willing to pay a ransom to regain access to their data, it is a viable

business strategy for cybercriminals. Defending against ransomware requires a multi-layered ap-

proach, including keeping systems and software up-to-date with the latest security patches, per-

forming regular backups, training employees to identify phishing scams and other social engineer-

ing techniques, and having a well-defined incident response plan (What Is Ransomware?, n.d.). In

addition, because attackers may exfiltrate data during a ransomware attack, they may employ a

double extortion scheme by threatening to expose the data or sell it to other criminals. Some at-

tackers have evolved the double extortion strategy into a triple extortion scheme by demanding

payment from additional individuals who could be harmed if the company's data is leaked (Pasko-

ski, 2022).

Rootkits are malware that can run close to or within the kernel of an operating system, allowing

hackers to seize control of the system. They can infect any device with an operating system, in-

cluding Internet of Things (IoT)-connected appliances such as refrigerators and thermostats. Root-

kits can be used to conceal keyloggers, allowing cybercriminals to steal sensitive information such

as credit card numbers and online banking credentials. In addition, they can launch DDoS attacks,

send spam emails, and disable or remove security software. Some rootkits are used for legitimate

purposes, but most are used maliciously to transmit malware that modifies the operating system

and grants remote users administrative privileges. Rootkits are challenging to detect and elimi-

nate, making them a serious threat to computer security. (How to Detect & Prevent Rootkits, n.d.)

Spyware is malicious software that secretly collects and transmits information about users' de-

vices and online activities. There may also be legal spyware software that monitors data for adver-

tising or commercial purposes. However, malicious spyware is expressly designed to profit from

22

stolen data. Whether legitimate or fraudulent, spyware surveillance activities expose sensitive

data to abuse and data breaches. In addition, spyware can degrade the speed of devices and net-

works, slowing down everyday activities. Therefore, it is essential to be aware of the potential

threats of spyware and take precautions to protect privacy and security. (What Is Spyware?, 2022)

Trojans are malicious software that disguises as legitimate programmes or files and can take con-

trol of a computer to execute malicious operations such as stealing data, damaging the system, or

opening backdoors for other viruses. The term "Trojan" derives from the Greek legend of the Tro-

jan horse, a deceitful tactic used to conquer Troy. In the digital realm, Trojans are hostile digital

parasites capable of reading passwords, recording keystrokes, and spreading other viruses. Social

engineering techniques, such as phishing emails or malicious downloads, are used to spread them.

Unlike computer viruses and worms, Trojans cannot replicate and must be installed or executed by

users. (What Is a Trojan Horse and What Damage Can It Do?, 2023)

Viruses are malicious software that spreads from computer to computer, intending to cause dam-

age by interfering with systems, causing operational difficulties, and causing data loss or leakage.

Computer viruses attach themselves to executable host files and spread through networks, files,

file-sharing applications, and infected email attachments. Common computer virus symptoms in-

clude a slow system, uninvited pop-up windows, self-executing programs, logged-out accounts,

and system crashes. (What Are Computer Viruses?, n.d.)

Worms are a type of malware that can spread across networks without the intervention of a host

programme or a human. They are malicious trojan horses that can replicate themselves and

spread from one computer to another. Worms infect their hosts through deception and clever-

ness, and they can cause severe damage to compromised computers by consuming bandwidth,

overloading systems, deleting or modifying files, and installing additional viruses. In addition, vul-

nerabilities in software, email attachments, network connections, and portable devices can facili-

tate their propagation. They are especially harmful due to their tendency for self-replication and

network propagation. (What Is a Computer Worm?, n.d.)

Threat actors are driven by a variety of motivations to create malware. They may seek to earn

money, disrupt operations, make a political statement, or display their abilities. Even though

23

malware does not typically cause physical damage to devices, it can still steal, encrypt, or destroy

victims' data and take control, lock, or modify the compromised device's functions, causing signifi-

cant harm. Cybercriminals frequently employ malware to monitor computer activities, collect

data, and prepare for future attacks. (Malwarebytes, 2022b)

Developing malware and its components requires specialized expertise. As detection and counter-

measures improve, attackers constantly evolve their malicious code to adapt to their victims’

changing environment. Furthermore, threat actors engage in activities such as trading, selling,

stealing, improving, and reusing malware, making it difficult for researchers and law enforcement

to track them. The emergence of numerous malicious programs, new malware variants, and

strains makes it a continuous and unequal struggle to defend against attacks and discourage

threat actors. (European Union Agency for Cybersecurity, 2022)

Virus creation was initially viewed as a way for computer specialists to demonstrate their technical

and programming skills. As time passed, however, it became a tool used for more malicious pur-

poses, such as the theft of sensitive information such as credit card numbers, passwords, and bank

account information, or for personal revenge. At the onset of the evolution of viruses, no tech-

niques to evade detection by code analyzers or specialists attempting to identify malicious code

existed. Despite this, computer programmers were thrilled to discover new ways to create viruses

and test the limits of their programming skills. As viruses became more complex, programmers

were able to create techniques to make them more challenging to detect and analyze, resulting in

the development of four generations of stealth techniques (also known as obfuscation tech-

niques). These techniques were Encryption, Oligomorphism, Polymorphism, and Metamorphism

(see Figure 1). The gradual evolution of these obfuscation techniques enabled virus authors to

evade detection and continue to create increasingly sophisticated viruses. (Bashari Rad et al.,

2012)

24

Figure 1. Evolution of evasion techniques employed in malware

In cyber security, a never-ending conflict exists between the individuals responsible for creating

malware and those striving to defend against it. Unfortunately, those who make malware often

have the upper hand in this constant struggle. Despite the concerted efforts of the cyber security

industry to combat this issue, the frequency and complexity of malware attacks persistently in-

crease, indicating that malware creators have been consistently beating security defenders in their

pursuit of malicious objectives.

2.2.1 Malware and technique classification

Malware and its functionalities differ depending on the phase or situation in which the malware is

used in a cyber-attack. Therefore, several ways for classifying malware have been developed. Mal-

ware, for example, may be classified using taxonomy, a technique for detecting and categorising

malware based on characteristics such as origin, kind, structure, behaviour, and target platform

(Tripathy et al., 2018). Malware can also be classified using static and dynamic analysis, where

static analysis examines the malware features without executing the malicious code, and dynamic

analysis examines the behaviour of active malware in a simulated environment. Another way to

classify malware is to use machine learning (Mahajan et al., 2019).

No evasive
techniques
(1970s)

Encrypted
malware
payload
(1987)

Oligomorphic
malware (1990)

Polymorphic
malware (1990)

Metamorphic
(1998)

25

Malware can also be classified as traditional malware and advanced malware. In the past, tradi-

tional malware was commonly found everywhere and did not focus on specific targets. It typically

exploited known vulnerabilities and was not designed to remain hidden for extended periods. Ad-

ditionally, these attacks were often short-lived and did not significantly threaten the affected sys-

tem. However, with the evolution of technology, malware has become much more sophisticated.

Advanced malware tends to be precisely targeted, often created with a specific target in mind and

is very persistent. Advanced malware can also take advantage of previously unknown vulnerabili-

ties, known as “zero-day” (0-day) vulnerabilities and very complex methods to evade detection.

Therefore, advanced malware is a more dangerous and challenging threat to deal with than its

counterpart. (Siṅgh & Siṅgh, 2018)

Additionally, obfuscation techniques can be classified according to their potency, resilience, and

cost, where potency measures the difficulty for humans to comprehend the obfuscated code, re-

silience measures the difficulty of reverting the code to its original form, and cost indicates the im-

pact on execution time and application size (Collberg et al., 1997). Finally, obfuscation techniques

can also be classified based on their sophistication, detection difficulty, and impact, where sophis-

tication measures the technical level of obfuscation, detection difficulty measures the difficulty in

detecting obfuscated code, and impact measures the effort required by vendors to enhance their

systems to counter the threat (Marpaung et al., 2012).

Classifying and organising the various techniques and methods used when conducting research or

experiments is essential. Classifying (or categorising) facilitates analysis and comparison of the var-

ious techniques and identifies patterns and trends. This study acknowledges the significance of

classification and, where applicable, lists the various types of classifications for each technique. By

providing classification, it enables readers to have a better understanding of the various tech-

niques used and their interrelationships, making it easier to draw meaningful conclusions from the

study's findings and, in addition, facilitating the potential replication of the techniques by other

researchers or their application in a variety of contexts. Table 1 summarises obfuscation technique

classifications as potency, resilience, cost, sophistication, detection difficulty and impact on a scale

from Low to High.

26

Table 1. Summary of obfuscation technique classifications

Technique Potency Resilience Cost Sophisti-
cation

Detection
difficulty

Impact

Code transposition High Low Low High Low Low

Compression High Medium Low High High Medium

Dead-code Low Medium Low Medium Medium Low

Encoding Medium Medium Low Low Medium Low

Encryption High High Medium High High Medium

Indirect method call High High Low High High Medium

Instruction substitution Varies Varies Varies Varies Varies Varies

Non-alphanumeric code High Medium High High Low Low

Polymorphism High High Medium High High High

Randomization Low Medium Low Low Medium Low

Register randomisation Low Low Low Low Low Low

Return-Oriented Program-
ming

High Medium Low High High High

Self-modifying code High Medium Low High High High

String splitting Medium Low Medium Low Medium Low

Whitespace decoding High High High High High High

Whitespace randomisa-
tion

Low Low Low Low Low Low

2.2.2 Detecting and protecting from malware

Today, signature-based methods are one of the most common ways antivirus software detects

malware. This method compares the source code of potentially malicious files against a database

of known malicious signatures. Nonetheless, cybercriminals frequently employ code obfuscation

techniques to change the malicious signature, conceal the true nature of their malware and avoid

27

detection by these antivirus tools, which means relying solely on signature-based antivirus soft-

ware to detect and prevent malware infections may not be sufficient. (Mumtaz et al., 2021)

In order to mitigate the potential damage caused by malware attacks, the detection and preven-

tion of malware is paramount. Anti-virus scanners, anti-malware scanners, and endpoint protec-

tion systems are among the solutions developed for this purpose. These tools employ diverse

techniques such as static analysis, behavioural analysis, sandboxing, and heuristics to detect and

prevent malware from executing on a system. Combined with routine software updates and user

training, these tools offer valuable assistance in safeguarding computer systems against malware

threats.

Anti-virus scanners identify and classify potentially harmful files, programmes, and processes using

static, dynamic, and heuristic methods. Static identification is based on previously known identifi-

ers that match malware material or parts of malware content, whereas dynamic identification is

based on recognising previously known malicious behaviours and activity. Both of these methods

rely on previously collected information on existing malware, and therefore a heuristic detection

was developed to attempt to find previously undiscovered and known malware using patterns and

small code blocks of existing known malware or techniques. (Abraham, 2017)

Endpoint protection systems were designed to work in combination with traditional anti-virus

software to strengthen cyber security protocols in business environments. These systems are de-

signed to protect against cyber threats on various digital devices, including but not limited to per-

sonal computers, laptops, mobile phones, and tablets. The endpoint protection solutions include a

software application that actively monitors and blocks any security incidents on the device. The

program then reports the incidents to a centralised management console. Managing and monitor-

ing numerous devices from a centralised location enables IT administrators to streamline security

operations and enhance their oversight and regulation. In addition, implementing these solutions

reduces the probability of extensive security breaches, as cyber security risks can be promptly de-

tected and addressed efficiently.

Despite the existence of sophisticated anti-virus and endpoint security systems, malware develop-

ers maintain an unfair advantage. By putting their newly developed malware through continuous

28

testing against existing anti-virus, anti-malware and other protection tools, the malware develop-

ers create distinctive versions for the malware not detectable by current detection technologies.

Thus allowing new malware variants to breach computer systems before detection mechanisms

are updated, providing malicious actors with a window of opportunity to execute effective cam-

paigns.

Malware developers have a further advantage of using newly discovered zero-day (0-day) vulnera-

bilities, which they either purchase on the dark web or discover themselves. By exploiting previ-

ously unknown security vulnerabilities in software and operating systems, they can create mal-

ware that exploits these vulnerabilities. These vulnerabilities are called zero-day because the

software developer has not discovered or patched them yet, giving attackers a window of oppor-

tunity. Using zero-day vulnerabilities, malware developers can create malicious software that can

infect systems, steal data, or gain unauthorised access (also known as privilege escalation) without

being detected by security software or antivirus programmes. Employing zero-day vulnerabilities

enables them to outpace security measures, avoid detection, and cause significant harm to indi-

viduals and organisations. Consequently, detecting and patching zero-day vulnerabilities is essen-

tial for preventing cyber-attacks and protecting sensitive data.

Due to the unequal competition between those who create malicious software and those who

protect against it, the field of information security faces a significant challenge. Attackers continu-

ously modify their techniques, approaches, and protocols, whereas security personnel must adapt

to prevent intrusions. Even though security measures may assist in reducing risks, they are not en-

tirely adequate, and security personnel must maintain constant vigilance to counteract new

threats. To maintain a level of agility comparable to that of their adversaries, security profession-

als must be vigilant and prepared for any unforeseen security issues that may arise.

Researchers have developed new Artificial Intelligence-based methods to combat the seemingly

impossible task of identifying previously unidentified new malware. Artificial Intelligence (AI) is a

fascinating technological phenomenon that almost all businesses would like to take advantage of

because it allows for cost savings, such as replacing humans with artificial intelligence in jobs that

could previously only be performed by humans. Artificial Intelligence can classify, detect, and pre-

vent computer viruses and malware using Machine Learning techniques. (Faruk et al., 2021)

29

Deep learning is an innovative technique recently used to overcome the limitations of existing

malware identification and categorization techniques. Because it can analyse large data sets and

recognise patterns and characteristics that may not be readily apparent to human analysts or con-

ventional machine learning algorithms, deep learning is a powerful technique for identifying mal-

ware. Deep learning models use artificial neural networks to acquire knowledge from vast da-

tasets, allowing them to identify sophisticated deviations in code or behaviour that may indicate

the presence of malicious software. In addition, unlike conventional techniques that rely on rule-

based methodologies or signature matching, deep learning can adapt to innovative and evolving

forms of malware. This feature makes it an effective tool for identifying previously unknown

threats and maintaining an advantage over malicious actors who continually develop new evasion

techniques. As a result, deep learning techniques offer a more advanced and effective technique

for identifying and mitigating malware. (Aslan & Yilmaz, 2021)

2.2.3 Malware analysis

Static and dynamic are the two main categories of malware analysis. By scanning, the virus signa-

ture, programme structure, and executable form are extracted during static analysis. The executa-

ble binary is then converted into machine code using reverse engineering to analyse and identify

known malicious code usages, patterns, and structures. On the other hand, in dynamic analysis,

malware is executed in a controlled virtualized environment while its interactions are monitored.

Observations during the analysis process include creating, modifying or deleting protected files

and processes and initiating data transfers. Based on these findings, analysts can determine the

behaviour and intentions of the malware, identify its network communication patterns, and ulti-

mately develop countermeasures to prevent its spread and neutralize its effects.

Identifying and mitigating the threat posed by malware requires static and dynamic analysis tech-

niques. Static analysis helps identify patterns and structures of known malicious code, whereas dy-

namic analysis can detect new and unknown malware. The combination of these techniques pro-

vides a comprehensive understanding of the behaviour and intent of the malware, which is

required to develop effective mitigation measures. Malware analysts, therefore, frequently em-

ploy a combination of these techniques to identify and analyse malware, thereby protecting sys-

tems and data from harm caused by malicious software. (Siṅgh & Siṅgh, 2018)

30

Malware that employs sophisticated obfuscation techniques can be extremely challenging to ana-

lyse through static analysis alone. In such cases, dynamic analysis can be a valuable method to un-

cover the ultimate intentions of the malware by studying its behaviour. While the static analysis

may provide valuable details about the structure and pattern of malicious activity, the dynamic

analysis offers crucial information on the actual conduct of malware within a controlled environ-

ment. By utilising dynamic analysis, experts can learn how the malware interacts with the environ-

ment, the system calls it makes, the files it modifies, and the network traffic it generates. This in-

formation can be critical for developing effective strategies to counteract the threat posed by

malware. (Siṅgh & Siṅgh, 2018)

Malware authors and attackers aim to create obstacles for analysts by using armouring and eva-

sion techniques to make detecting and analyzing malware difficult. Armouring techniques hinder

malware analysis, while evasion techniques evade anti-malware tools. Although there is no clear

distinction between the two, these techniques are commonly used to identify artefacts that sug-

gest the presence of an analysis environment or tool.

Malware identifies these artefacts using different methods and alters their behaviour, making

them challenging to detect and analyze. One such method involves analysing the system to detect

virtualization software such as VirtualBox or VMware and adjusting its behaviour accordingly. Ad-

ditionally, malicious software may look for particular files or registry entries that indicate the exist-

ence of a virtualized system. In addition, some malware might detect virtualization by analysing

the system's operational efficiency or network communication for anomalies. If the malware de-

tects that it is operating in a virtualized environment, it can either cease execution or demonstrate

harmless behaviour to evade detection, making it difficult for analysts to identify and neutralise

the threat. (Mohanta & Saldanha, 2020)

2.2.4 Script-based and native malware

Historically, viruses were distributed in the form of native machine code, meaning that they were

directly compiled into executable files that could be run on specific computer systems. Typically,

these viruses were spread via infected floppy discs, email attachments or online downloads. How-

ever, in recent years, JavaScript and other script-based malware have become more widespread

due to the growing popularity of the Internet and web-based applications.

31

JavaScript, a script-based programming language, has rapidly become the most popular language

on the web. JavaScript is the backbone of practically every website on the Internet, and its popu-

larity has steadily increased over the last decade. It is now supported by all contemporary web

browsers and is implemented on 95 per cent of all websites (2020). In addition, it is consistently

listed in the top 10 most popular programming languages, and hundreds of libraries and frame-

works have been created around it. JavaScript is now compatible with all processor architectures,

allowing the creation of a new platform for malware. In addition, JavaScript is robust enough to

operate on mobile devices and desktop programmes that use the same JavaScript code base as

their web-based counterparts. (Herrera, 2020)

JavaScript is a high-level programming language widely used to create interactive web pages and is

currently present on nearly every website on the internet. Unfortunately, malicious actors employ

JavaScript to launch malware attacks against unsuspecting users by inserting malicious JavaScript

code into web pages using various methods. These methods may include exploiting security flaws

in the website, injecting malicious code into third-party plugins, or even employing social engi-

neering techniques to convince users to execute the code. Once the malicious code is executed, it

may steal sensitive information, redirect users to malicious websites, or download additional mal-

ware onto the victim's computer. To make matters worse, by utilizing JavaScript, malicious actors

can also exploit zero-day vulnerabilities, which are undiscovered software security flaws, or target

users with obsolete web browsers to ensure the successful execution of their malware.

JavaScript-based attacks have been identified as the greatest threats to Internet security. Attack-

ers can conduct various attacks by exploiting multiple vulnerabilities in various Web applications,

such as cross-site scripting (XSS), cross-site request forgery (CSRF), and drive-by downloads. Most

Internet users rely on anti-virus software to guard against malicious JavaScript code. Unfortu-

nately, obfuscation techniques frequently compromise the effectiveness of anti-virus software.

Malicious JavaScript code increasingly employs obfuscation techniques to evade anti-virus soft-

ware detection and conceal its malicious intent. (Xu et al., 2012)

During the initial attack phase, malicious actors typically utilise multiple scripting languages best

suited for the attack phase and its goals. One such scripting language is Power Shell, initially de-

signed to automate tasks for Windows system administrators. Due to its efficiency, accessibility,

32

simplicity of obfuscation, and ease of access to system resources, have become an attractive tool

for malware developers. Power shell scripts are frequently used in the initial phase of an attack to

download additional malware onto a system and are occasionally combined with macro scripts

within Word documents. (Liu et al., 2018)

In addition to Powershell, several other scripting languages are known to be used for malicious

goals. For example, python is a popular choice for malware development due to its user-friendli-

ness, robust libraries, and cross-platform compatibility. Other popular choices are Ruby, Perl, and

Bash scripting languages capable of developing malware, as they offer a variety of features for ma-

licious activities such as keylogging, data theft, and network scanning. However, it is essential to

note that these languages are commonly used for legitimate purposes and are not inherently mali-

cious.

WebAssembly is another language that is extensively supported by browsers. WebAssembly was

initially announced in 2015, and by 2017, it was already supported by all major browsers. As of

September 2022, WebAssembly was present in 96% of all browser installs. WebAssembly is an effi-

cient compilation target for computation-intensive libraries written in languages like C and C++. In

addition to its suitable applications, WebAssembly provides malware developers with additional

means of evading detection (Romano et al., 2022). While converting JavaScript to WebAssembly is

practically impossible, which is why WebAssembly has never been intended as a substitute for Ja-

vaScript but rather as a supplement (Haas et al., 2017). Recent research into this topic shows that

replacing carefully selected pieces of JavaScript functionality with WebAssembly counterparts is

feasible, which helps avoid malware detectors without compromising code correctness. Malware

authors could, for example, use WebAssembly to obfuscate string literals, control-flow state-

ments, and array initialisations (Romano et al., 2022).

Script-based malware is written in a high-level language (such as JavaScript, VBScript, or Pow-

erShell script), distributed in script form, and can operate on multiple platforms without code

changes. Depending on the scripting language and the environment, script-based malware might

be interpreted on the fly or compiled into machine code before its execution (also known as on-

demand compilation). This compilation step is usually optional and transparent and does not

change how the malicious code operates but is used to speed up the execution close to its native

33

counterpart. Two popular browsers, Microsoft Edge and Google Chrome, use the ahead-of-time

(AOTC) and just-in-time (JITC) compilation methods to speed up the web page javascript execution

speed. (Park et al., 2015)

Even though script-based malware has been seen very commonly in attack campaigns, native mal-

ware is still frequently applied after the initial attack phase. Native malware refers to malware

written in a low-level programming language (such as C and C++) that is transformed (using a com-

piler tool) into machine code before distribution. Native malware can only execute on the plat-

form for which it was compiled, so a different version of malware must be compiled to attack dif-

ferent architectures, such as PC, Mac, or mobile platforms. Native malware excels in execution

speed, has direct access to system resources, can be concealed using sophisticated obfuscation

techniques and does not need additional software such as a web browser to be executed.

It is essential to note that most of the researched techniques apply to native and script-based mal-

ware. All the researched native code (also known as machine code) examples, assembler source

code, and disassembly of executable code are shown using the Intel assembly instruction set.

There are currently two mainstream processor architectures: Intel/AMD, which uses the Intel x86

instruction set and is a Complex Instruction Set Computer (CISC) processor, and Apple, which uses

ARM architecture and is a Reduced Instruction Set Computer (RISC) processor. Both architectures

are susceptible to malicious attacks, although different processor architectures can make creating

and analysing malware more difficult.

3 Obfuscation

Obfuscation is a method that transforms or modifies plain, easy-to-read and understandable code,

script or text into a new version that is purposefully difficult to understand and reverse-engineer

for researchers and automated analysis. Legitimate software developers typically use obfuscation

to protect their intellectual property, making it harder for others to copy or modify their code, pre-

vent reverse engineering of the software, or infringe on copyright licenses. However, malware de-

velopers commonly use obfuscation to make their code more difficult to detect and evade security

measures. Using obfuscation techniques, malware authors can disguise their malicious code, mak-

ing it more difficult for researchers to analyze, detect, and mitigate. (O’Kane et al., 2011)

34

Reverse engineering is a process of disassembling something to understand how it works to repli-

cate, improve, or learn (Schwartz, 2001). However, reverse-engineering malware code is challeng-

ing and time-consuming, especially with hardened or designed to resist analysis. These strategies

make it difficult for analysts to comprehend the behaviour and functioning of the code, hence hin-

dering reverse engineering attempts. Such program-hardening approaches fall under the broad

category of obfuscation (Dang et al., 2014).

Software developers use obfuscation techniques as one of the most effective methods against ma-

licious reverse engineering, making it more challenging to interpret and reverse engineer by hack-

ers and pirates. Obfuscation can play a role in security through obscurity (STO) by making it more

difficult for attackers to understand the inner workings of a system and more challenging for at-

tackers to find vulnerabilities or weaknesses to exploit. However, relying solely on obfuscation

techniques for security can be dangerous, as it can create a false sense of security and is not a

complete solution for preventing software piracy. More robust solutions that implement a combi-

nation of technical and legal measures, such as digital rights management (DRM) and licence keys,

are available. These techniques make it more difficult for a pirate to understand and construct a

working copy of the code. With enough time and resources, determined and talented pirates will

discover a method to reverse engineer the code. (Lee et al., 2012)

Malware authors use obfuscation techniques to generate new malware variants from the same

malicious code and to evade antivirus and antimalware detections. The availability of various eva-

sion techniques to malware attackers increases the challenge of preventing source code piracy

and malicious attacks while struggling to decompile the malware application packages for further

analysis. In addition, the fear of encountering difficulties in malware reverse engineering moti-

vates researchers to use evasion techniques to secure the code of benign applications. (Elsersy et

al., 2022)

Generally, commercial anti-virus and anti-malware solutions are based on signature-based scan-

ning and heuristic analysis. In signature-based scanning, the signature generated from files is com-

pared to an extensive database where all previously found signature identifiers are stored. The ef-

fectiveness of using signatures to detect malware is limited to previously known malware, but it is

fast and has a low false positive rate compared to heuristic analysis techniques. This limitation

35

prompted the development of heuristic analysis to discover potentially harmful programme com-

ponents. Heuristic analysis is a technique for detecting computer viruses, including new virus vari-

ations, by executing suspicious applications in a virtual environment and monitoring them for in-

fectious activity. Heuristic analysis can also decompile and analyse the code for frequent malicious

instructions. While heuristic analysis is improving its capacity to detect new viruses, its usefulness

is restricted due to the number of false positives, and it may overlook new infections with previ-

ously unseen code. (Lin & Stamp, 2011)

Multiple different obfuscation techniques exist, and mixing and layering various techniques to-

gether is possible. This research investigated numerous obfuscation techniques from as many dif-

ferent categories as feasible. The following sub-chapters cover the following types of obfuscation

categories:

• Behavioural Obfuscation Techniques

• Code Modification Techniques

• Code Transformation Techniques

• Compression Techniques

• Control Flow Obfuscation Techniques

• Data Obfuscation Techniques

• Encoding and Encryption Techniques

• Function Obfuscation Techniques

• Whitespace Obfuscation Techniques

Unfortunately, there is not currently a standard vocabulary that could be employed to categorise

various obfuscation techniques, although different techniques can be classified, for example, ac-

cording to the purposes for which each obfuscation method is employed. Security researchers, in-

trusion responders, and threat intelligence analysts frequently use the ATT&CK framework main-

tained by MITER Corporation in the cyber security sector to understand the tactics and techniques

used by threat actors and create efficient defences against them (MITRE ATT&CK Framework,

2022).

The MITRE ATT&CK is a framework that helps to categorize and comprehend the cyber adver-

saries' tactics and techniques based on real-world observations. It provides a standardised

36

taxonomy for building efficient cyber security defences and developing specific threat models and

methodologies in various industries. The Matrix categorises the methods and techniques of threat

actors into tactics, techniques, and mitigation measures, making it easier for organisations to de-

tect and prevent attacks. It guides how organisations can implement countermeasures to prevent

or detect attacks against each tactic and technique. The MITRE ATT&CK Matrix continues to be a

valuable resource for organisations seeking to improve their security posture and protect them-

selves from a wide variety of cyber threats. (The Mitre Corporation, 2023)

The MITRE ATT&CK framework focuses on high-level information and, as such, does not provide

an extensive amount of specifics about various obfuscation techniques. However, obfuscation

strategies and techniques have been grouped under three primary tactics: T1140 Deobfuscate/De-

code Files or Information, T1027 Obfuscated Files or Information, and T1001 Data Obfuscation.

See Appendix 1 on page 103 for a graph illustrating the Mitre ATT&CK matrix, highlighting the ob-

fuscation techniques and the sub-techniques.

In the framework, each technique, tactic, and mitigation is described in detail; for instance, the

T1027 Obfuscated Files or Information is located in the Defence Evasion category and contains the

following (condensed for easier reading) and is shown in Table 2.

Table 2. Mitre ATT&CK information about Obfuscated Files or Information

Mitre ATT&CK information about Obfuscated Files or Information

Main category Defence Evasion [TA0005]

Sub category Obfuscated Files or Information [T1027]

Sub techniques T1027.001 Binary Padding

T1027.002 Software Packing

T1027.003 Steganography

T1027.004 Compile After Delivery

T1027.005 Indicator Removal from Tools

T1027.006 HTML Smuggling

https://attack.mitre.org/tactics/TA0005/
https://attack.mitre.org/techniques/T1027/

37

Mitre ATT&CK information about Obfuscated Files or Information

T1027.007 Dynamic API resolution

T1027.008 Stripped Payloads

T1027.009 Embedded Payload

Tactic Defence Evasion

Platforms Linux, Windows, macOS

Defense Bypassed Application Control, Host Forensic Analysis, Host Intrusion

Prevention Systems, Log Analysis, Signature-based Detection

CAPEC ID CAPEC-267

Contributors Christiaan Beek, @ChristiaanBeek; Red Canary

Version 1.3

Created 31 May 2017

Last Modified 30 September 2022

Mitigations (4) M1049 Anti-virus/Antimalware

M1040 Behavior Prevention on End-point

Detection (5) DS0017 Command Command Execution

DS0022 File File Creation & Metadata

DS0011 Module Module Load

DS0009 Process OS API Execution & Process Crea-

tion

https://capec.mitre.org/data/definitions/267.html

38

Mitre ATT&CK information about Obfuscated Files or Information

Summary “Adversaries utilise numerous approaches, such as encrypt-

ing, encoding, or obfuscating the contents of executables or

files, to make them hard to identify and analyse. To evade de-

tection, payloads may also be compressed, archived, or en-

crypted and may require user action or passwords to open.

Adversaries may disguise plain-text strings by using com-

pressed or archived scripts and encoding sections of files.

They may also break payloads into seemingly harmless files

that, when reassembled, disclose malicious activity. To avoid

detection, adversaries may use platform-specific semantics to

disguise instructions run from payloads or command and

scripting interpreters.” (The Mitre Corporation, 2023)

Procedure Examples ID Name Description

S1028 Action RAT “Action RAT’s commands, strings, and

domains can be Base64 encoded

within the payload”

S0045 ADVSTORESHELL “Most of the strings in

ADVSTORESHELL are encrypted with

an XOR-based algorithm; some strings

are also encrypted with 3DES and re-

versed. API function names are also re-

versed, presumably to avoid detection

in memory.”

…

Mitigations ID Mitigation Description

39

Mitre ATT&CK information about Obfuscated Files or Information

M1049 Antivirus/Anti-

malware

Anti-virus can be used to automatically

detect and quarantine suspicious files.

Consider utilizing the Antimalware

Scan Interface (AMSI) on Windows 10

to analyze commands after being pro-

cessed/interpreted.

M1040 Behavior Pre-

vention on End-

point

“On Windows 10, enable Attack Sur-

face Reduction (ASR) rules to prevent

execution of potentially obfuscated

payloads.”

Detection ID Data Source /

Component

Detects

DS0017 Command Exe-

cution

“Monitor executed commands and ar-

guments containing indicators of ob-

fuscation and known suspicious syntax

such as uninterpreted escape charac-

ters like ^ and '. Deobfuscation tools

can be used to detect these indicators

in files/payloads.”

 DS0022 File Creation /

File Metadata

“Detection of file obfuscation is diffi-

cult unless artefacts are left behind by

the obfuscation process that are

uniquely detectable with a signature. If

detection of the obfuscation itself is

not possible, it may be possible to de-

tect the malicious activity that caused

the obfuscated file (for example, the

method that was used to write, read,

or modify the file on the file system).”

40

Mitre ATT&CK information about Obfuscated Files or Information

“Monitor for contextual data about a

file, which may include information

such as name, the content (ex: signa-

ture, headers, or data/media),

user/ower, permissions, etc.”

“File-based signatures may be capable

of detecting code obfuscation depend-

ing on the methods used.”

 DS0011 Module Load “Monitoring module loads, especially

those not explicitly included in import

tables, may highlight obfuscated code

functionality. Dynamic malware analy-

sis may also expose signs of code ob-

fuscation.”

 DS0009 API Execution /

Process Creation

“Monitor and analyze calls to functions

such as GetProcAddress() associated

with malicious code obfuscation.”

“Monitor for newly executed pro-

cesses that may attempt to make an

executable or file difficult to discover

or analyze by encrypting, encoding, or

otherwise obfuscating its contents on

the system or in transit.”

Although the framework essentially only provides high-level information about various obfusca-

tion techniques, it can still be used to discover additional information, such as procedure examples

which list a high number of known malware instances known to be using obfuscation in some way.

The framework also describes tactics, techniques and possible mitigations associated with obfus-

cation techniques. For example, T1027 Obfuscated Files or Information, at the time of research,

listed over 300 procedure examples, nine sub-techniques, two main mitigation strategies and four

different detection strategies.

41

Overall, the Mitre ATT&CK framework is a valuable tool for cyber security researchers and ana-

lysts. It provides a comprehensive and structured approach to comprehending and classifying the

various tactics, techniques, and procedures employed by attackers, making it easier to identify po-

tential threats and develop effective defence strategies. In addition, the framework is regularly up-

dated with new information and insights based on the most recent threat intelligence, ensuring

that it remains relevant and valuable in a threat landscape that is constantly evolving.

The following chapters of the research delve into obfuscation techniques utilized in malware pro-

grams to conceal their intended purpose and functionality. First, the study conducts a comprehen-

sive analysis of the different obfuscation techniques, which includes evaluating their purpose,

mechanism, robustness, and potential weaknesses. Next, the study presents a detailed explana-

tion of each method and practical examples to help readers understand how each technique oper-

ates. Additionally, the study focuses on detecting and mitigating obfuscation techniques employed

by malware programs. Finally, the study identifies possible countermeasures to these techniques

and examines future developments in malware obfuscation. Overall, the study provides a deeper

understanding of malware programs’ obfuscation techniques and provides readers with the

knowledge to identify and mitigate such threats in the future.

42

3.1 Code transposition

Code transposition (also known as code reordering, code restructuring, and subroutine reordering)

is an obfuscation technique initially used to improve the performance and efficiency of software

programs. Table 3 displays classification information for the technique. Code-reordering involves

rearranging the order of instructions in a program's code to make it more challenging to analyse

and understand while retaining functionality. Code reordering has legitimate uses in software de-

velopment, such as optimising and protecting software from other attackers and hiding sensitive

information. Unfortunately, malware authors frequently employ this method to avoid detection

and analysis by antivirus, antimalware, and security experts. (Cimitile et al., 2017)

Table 3. Code transposition classification

Technique Code transposition

Aliases Code reordering, code restructuring, subroutine reordering

Categories Code Transformation Techniques

Control Flow Obfuscation Techniques

Potency, resilience and cost

Potency High

Resilience Low

Cost Low

Sophistication, detection difficulty and impact

Sophistication High

Detection difficulty Low

Impact Low

In legitimate software development, code-reordering is a valuable optimization technique that en-

ables processors to execute software more efficiently. This optimization occurs during the compi-

lation phase when the compiler transforms the program code into machine code. The compiler

employs various optimization techniques, including code reordering, to ensure the most efficient

43

execution of the program. By predicting the most common execution sequence of the program,

the compiler rearranges the code accordingly, allowing the processor to operate the most effi-

ciently (Brais, 2015)

Malware authors use manual and automatic code reordering techniques since they make analysis

harder and generates numerous unique signatures for the same malware. However, at the same

time reordering code technique is also used to generate numerous malware variants, each with a

unique signature, making it more difficult for antivirus and antimalware software to detect and

block the malicious code. (Elsersy et al., 2022)

Multiple code-reordering techniques exist, including; Instruction reordering: Shuffling around in-

structions or groups of instructions without changing the program functionality, and Subroutines

reordering: Changing the order of the execution of subroutines. Known malware employs at least

two distinct ways. The first approach randomly shuffles the instructions and then inserts jumps be-

tween now-shuffled instructions to maintain the correct program flow (See Figure 2).

44

Figure 2. Code reordering by shuffling instructions

The second technique shuffles independent instructions, code blocks or subroutines (meaning

they do not influence one another). Programs often call several subroutines in a specific order. As

a result, generating an enormous (n!) number of distinct variations of the same malware is possi-

ble by shifting these subroutines around. Figure 3 shows an example of shuffling ten different sub-

routines. In this example, the execution starts from the first (1) subroutine. (You & Yim, 2010)

A1

A2

A3

A2

A5

A1

JMP

JMP

a.) Original
malware

b.) Shuffled
instructions

JMPA4

A5 A3

JMP

A4

JMP

Entry point

Entry point

45

Figure 3. Example of subroutines (1-10) reordered to create distinct variation.

It is also possible to reorder independent code blocks, as seen in Figure 4. These two similar tech-

niques can also be combined. For example, one known malware employing subroutine shuffling is

Ghost Backdoor, which has ten separate subroutines and produces a maximum of 10! = 3628800

distinct versions.

1

2

3

4

5

6

7

8

9

10

8

4

6

2

9

7

3

1

10

5

46

Figure 4. Example of shuffled code blocks.

Static analysis of native code can uncover malicious intent by examining the use of various API

calls. Because code reordering does not modify the contents of the Import Directory Table, which

contains entries for every Dynamic Link Library loaded by the executable, it may be analysed to

determine if the program is malicious. For example, specific imports such as cryptography, file

reading and writing, file searching, and so on might indicate a malicious program. Likewise, static

analysis of script-based code can uncover malicious intent by examining the use of various key-

words. Code reordering does not affect dynamic analysis, so it is possible to mitigate with stand-

ard dynamic execution prevention techniques used by anti-virus and anti-malware software. How-

ever, these methods may result in difficulty in grasping and comprehending code. (You & Yim,

2010)

A

B

C

a.) Original
Malware

Independent
code

blocks

b.) Shuffled
independent

code
blocks

D

E A

B

D

E

C

Entry point

47

3.2 Compression

Compression (also known as packing) is an obfuscation method initially developed to minimise

memory and bandwidth for storing and transmitting data and is now frequently used in the digital

business world. Table 4 displays classification information for the technique. However, due to the

nature of the compression process, even a minor change in the source file's contents substantially

affects the compressed file and its signature. Malware authors exploit this characteristic by em-

ploying various algorithms to compress malicious code, thereby reducing its size and making it eas-

ier and quicker to distribute, but making it more difficult for security researchers and antivirus or

antimalware software to identify and analyse the malware. (O’Kane et al., 2011)

Table 4. Compression technique classification

Technique Compression

Aliases Packing

Categories Compression Techniques

Data Obfuscation Techniques

Potency, resilience and cost

Potency High

Resilience Medium

Cost Low

Sophistication, detection difficulty and impact

Sophistication High

Detection difficulty High

Impact Medium

Malware developers frequently use compression techniques to evade antivirus software detection

and security measures. Compression obfuscates the malware's true nature and enables it to infil-

trate computers undetected. Given this, compression is an essential technique for these malicious

actors, and a comprehensive understanding of compression algorithms is crucial for preventing

and identifying malware infections. Furthermore, without this information, it would be challenging

48

to create effective countermeasures to protect computer systems from these types of threats.

Thus, recognising the importance of compression in creating malware and implementing counter-

measures against it are essential steps in protecting computer systems from malicious attacks.

Compressed (packed) malware was one of the first methods for evading signature-based anti-virus

scanners. Figure 5 shows compressed malware that typically consists of the unpacker (also known

as a stub) programme and the packed payload (the malware in compressed form). When the com-

pressed malware is executed, the unpacker obtains the harmful payload, decompresses it, and ex-

ecutes it in memory. (Packed Malware, 2020)

In this technique, the malware is first compressed and then prepended with a decompressor pro-

gram (Unpacker in Figure 5). The malware author may use standard compression, modified com-

pression, a proprietary compression method, or a mix of different methods. Some compression

algorithms additionally allow using a password to encrypt the payload while compressing the pay-

load.

Figure 5. Compressed executable

The fundamental shortcoming of this method is that the unpacker remains constant from genera-

tion to generation. As a result, anti-virus scanners may detect this type of malware based on the

unpacker’s coding pattern. In most cases, a compressed payload makes automatic static analysis

of the payload impossible unless the compression is one of the known compression schemes and

no encryption is used. Using dynamic analysis, it is possible to analyse the unpacked contents of

the packed payload while it is uncompressed in memory. Also, malware researchers can

 ayload
(Packedexecutable)

 ri inal e e a le o ressor

 n a er
(stub)

49

potentially manually unpack the malicious payload using the known unpacker and, optionally, by

utilising the password key stored with the unpacker or brute-forcing compression with different

standard algorithms. Unpacking the payload this way avoids the need to execute the malicious

payload code, which could be dangerous.

While it is possible to use compression in script-based malware, it is not that commonly used and

would be inefficient because of the slower execution speed of the script-based implementation.

More commonly, an uncompressed (but obfuscated) script downloads the payload, usually a mal-

ware native code executable that is compressed and obfuscated.

50

3.3 Dead-code

Dead code (also known as garbage code) is an obfuscation technique used to enhance software

security by making it challenging for attackers to comprehend how a proprietary software system

works. Table 5 displays classification information for the technique. Dead code is code that does

not affect the execution of the program and is inserted between regular code, making it harder for

reverse engineers to analyze the source code and understand the program flow. Dead code has

many legitimate uses, such as protecting software from piracy. However, malware writers often

use dead code to make it difficult for reverse engineers to understand malicious code, increasing

the overhead of reverse analysis. (Wang et al., 2017)

Table 5. Dead-code technique classification

Technique Dead-code

Aliases Garbage code, Junk code, Zombie code

Categories Behavioural Obfuscation Techniques

Code Transformation Techniques

Control Flow Obfuscation Techniques

Potency, resilience and cost

Potency Low

Resilience Medium

Cost Low

Sophistication, detection difficulty and impact

Sophistication Medium

Detection difficulty Medium

Impact Low

In native malware, authors use the dead-code technique to modify program signatures while

keeping the original functionality intact. The NOP (No Operation) instruction, which does not per-

form any operations and does not affect how the malicious programme behaves, is a typical

51

example of a dead-code instruction in native code. A malicious attacker can alter the programme's

signature without impacting its functioning by injecting NOP instructions between lines of existing

code. This method is frequently employed since the modified programme can seem to differ from

its original signature, which makes antivirus software less likely to pick it up. Although dead-code

instructions may help conceal malicious code, they are easily recognised by skilled analysts, mak-

ing them less reliable for evading security measures. (You & Yim, 2010)

In script-based malware, using dead code is an effective and easy way to create variations of the

same malware without causing any disruption to the malware's original execution algorithm. In

most cases, this is accomplished by adding code blocks that are never executed because of false

circumstances or by introducing short anonymous function blocks known as lambda instruction

blocks. These lambda instruction blocks may be provided as input to other functions or preserved

in variables. An adversary might add code to malicious software using these approaches, although

the added code may not directly influence the software's functionality. These methods might dis-

guise the true purpose of malware and make it more challenging for security researchers to iden-

tify and analyse. (Xu et al., 2012)

An example of javascript code in Figure 6 shows how the original javascript code (a) could be mod-

ified by inserting dead code blocks (functions and lambda instruction blocks) between javascript

instructions (b), making the resulting code more challenging to understand and analyse while also

providing a different and possibly previously undetected signature for the malware.

Figure 6. Dead code injection in JavaScript

function show_alert(text) {
alert(text);

}
var hello = ‘This could be malicious';
show_alert(hello);

// Dead code
function a() { b(); }
function b() { a(); }
function show_alert(text) {

alert(text);
}
// Garbage code
function c(f) { f(); }
() => {var p = 'Checked by Antivirus'};
var hello = ‘This could be malicious';
// Garbage code
c(() => {var p = 'Checked by Antivirus'});
show_alert(hello);

(a)

(b)

52

Similarly, native malware might be obfuscated by inserting dead code instructions (such as NOP

instruction that does not perform anything) between machine code instructions. Figure 7 shows

the original assembly code, and Figure 8 shows the code after it has been modified.

Figure 7. Original program without obfuscation

Figure 8. Obfuscated code with dead code (code lines marked by arrows)

Simple script instructions or native instructions that perform nothing are easy to identify, whereas

identifying code blocks irrelevant to the malware is considerably more difficult. Furthermore, even

though the malicious functionality of the programme remains the same across different versions,

the resulting signatures are different; therefore, static signature-based detection is insufficient.

Instead, dynamic analysis is required for accurate malware identification by executing the executa-

ble within an emulation environment so that malicious components of the executable code can be

detected and by determining which malware is involved and how to protect the system from its

harmful effects.

 ublic s a
s a oc ea
 ush b
mo b s
sub s h
call sub
lea c a ello o ld ello o ld
call sub
 o a a
call i ocess
s a e d

 ublic s a
s a oc ea
 ush b

mo b s

sub s h

call sub

lea c a ello o ld ello o ld

call sub

 o a a
call i ocess
s a e d

53

3.4 Encoding

Encoding is an important method for preventing data corruption during transport by changing it to

a new format. Table 6 displays classification information for the technique. Different systems may

employ different character sets, leading to misinterpretation and data corruption during pro-

cessing. Encoding is often used in computer communications to avoid this issue by ensuring data

transfer in a format that the receiving device can accurately process. Encoding allows for safe and

exact data transmission between devices, assuring its integrity and dependability. Encoding has

numerous practical applications, but the malware also uses it to disguise data or malicious code.

Malware often uses encoding to obfuscate data or code since it is simple and quick but difficult to

detect or decode automatically. (Kiliç et al., 2019)

Table 6. Encoding technique classification

Technique Encoding

Categories Data Obfuscation Techniques

Encoding and Encryption Techniques

Potency, resilience and cost

Potency Medium

Resilience Medium

Cost Low

Sophistication, detection difficulty and impact

Sophistication Low

Detection difficulty Medium

Impact Low

Encoding has far-reaching roots. Julius Ceasar, for example, used primitive encoding around 100

BC to hide crucial communications from those who were not supposed to comprehend the mes-

sage’s content, such as when transmitting a message from one person to another. This encoding

(or simple encryption) was known as “Ceasar cypher”, which functioned by rotating each letter of

54

the alphabet forward three positions, such that A became D, B became E, and X became A. (Sikor-

ski & Honig, 2012)

Today, encoding acts similarly to how it did in the past, but with more complexity and combining

different encoding strategies is possible. Attackers choose encoding techniques that best match

their goals. For example, they may use simple cyphers or basic encoding functions, which are

straightforward to implement and provide enough protection. Alternatively, they may use com-

plex cryptographic cyphers or specialised encryption to make identifying and reverse engineering

more difficult. (Sikorski & Honig, 2012)

Encoding plays a crucial role in Internet communication by ensuring data is transmitted and inter-

preted correctly across various devices, platforms, and languages. Encoding enables the smooth

transfer of text, images, videos, and other digital content by transforming data into a standardised

format, like Unicode or ASCII. It enables various systems, regardless of the user's location or pre-

ferred language, to comprehend and process data consistently. Additionally, encoding makes it

easier for people, companies, and organisations to exchange information globally, fostering effec-

tive communication, teamwork, and the free exchange of ideas online.

Characters can be represented in various ways in JavaScript and other script-based languages and

resource files. Character escaping is a common technique that involves representing a character in

a manner other than simply typing it into the code. This technique was initially intended for non-

ASCII characters, but it can also be used to escape conventional characters, allowing the obfusca-

tion of any text or code. JavaScript supports a variety of character escapes, including Hexadecimal,

Unicode, and Octal. Hexadecimal escapes represent a character using a backslash followed by two

hexadecimal digits, whereas Unicode escapes use the “u” prefix followed by four hexadecimal dig-

its. Octal escapes, on the other hand, represent a character with a backslash followed by up to

three octal digits. Overall, character escaping provides programmers with an effective means for

representing characters in various contexts and can be used to ensure that various systems and

platforms correctly interpret text and code. (Heiderich, 2011)

Base64 encoding is a popular method for transforming binary data into ASCII string format. It is

especially beneficial when sending binary data over channels that only support text-based data,

55

such as email or HTTP. Base64 encoding transforms every three bytes of input data into four bytes

of output data consisting of characters from a predefined set of 64 characters. These 64 characters

consist of the uppercase and lowercase letters A through Z, the numerals 0 through 9, and the

symbols “+”' and “/”. In addition, a padding character “=” is utilised to ensure that the output data

length is a multiple of four characters. Commonly, Base64 encoding is used to encode binary data

such as images, audio, and video files, as well as executable malware that cannot be transported

or stored in binary format. The encoded data may be transmitted or embedded wherever ASCII

strings are permitted, including script files and data URLs. Base64 encoding is a trustworthy and

effective method for transmitting binary data over text-based channels. (Heiderich, 2011)

Cybercriminals frequently use the XOR operation to obfuscate malware code and evade detection

by security software. XOR is a straightforward and effective algorithm for converting binary data,

such as strings and executable files, into an unrecognisable format. In turn, static analysis tools

cannot identify the malicious code, allowing the malware to circumvent security measures that

rely on detecting specific patterns. Recently, attackers have added encryption techniques to their

XOR obfuscation strategies. For example, Locky ransomware employs JavaScript XOR obfuscation

to decrypt the downloaded payload, making it more difficult to detect and analyse. A second in-

stance of attackers employing XOR encryption was observed in the payload of the “backdoor.Steg-

map” malware concealed within a Microsoft Windows logo image file on a public GitHub server.

The payload was encrypted with XOR and then exploited exchange server vulnerabilities. As cyber-

criminals continue to adapt their methods, security researchers and software developers must

maintain vigilance and adapt to the most recent techniques and strategies to detect and prevent

malicious attacks effectively. (Heiderich, 2011)

To escape a character in JavaScript, the value in hexadecimal, Unicode or octal must be prefixed by

a specific character or characters. Hexadecimal escaping starts with the characters “\x” followed

by a two-digit hexadecimal value, Unicode escaping starts with the characters “\u” followed by a

four-digit hexadecimal value, and octal escaping starts with the character “\” followed by one to

three digit value. Examples of different hexadecimal, Unicode and octal values for regularly used

characters can be seen in Table 7.

56

Table 7. Example of escaping characters using hexadecimal, Unicode and octal escape types

Character Hexadecimal Unicode Octal

a \x61 \u0061 \141

(\x28 \u0028 \50

) \x29 \u0029 \51

(space) \x20 \u0020 \40

(tab) \x09 \u0009 \11

(non-breaking-

space)

\xa0 \u00a0 \240

It is permitted to mix different escape types within the same JavaScript code, even within a single

line, which complicates the analysis of malicious scripts. In this example, a simple JavaScript code

calls the alert function with a “This could be malicious” text string. The original code without ob-

fuscation can be seen in Figure 9, and the same script obfuscated using the hexadecimal escaping

is seen in Figure 10. As seen from the escaped version, the script needs to use helper functions to

complete: First, unescape is used to deobfuscate the string, and then the resulting string is exe-

cuted with the eval command making both the non-obfuscated script and the obfuscated script

behaviorally the same.

Figure 9. Example code without obfuscation

Figure 10. Example code with hexadecimal escapes

In the world of cyber security, identifying various known encodings is a fundamental task. This pro-

cess involves decoding different types of encodings to detect malicious activities carried out by cy-

bercriminals. Generally, malware developers rarely invent new encoding techniques; instead, they

alert('This could be malicious');

eval(unescape('%61%6c%65%72%74%28%27%54%68%69%73%20%63%6f%...%27%29'));

alert (' This could be malicious ');

57

rely on existing ones to conceal their actions. However, decoding multi-level encodings with auto-

mated approaches can be challenging, especially when combining several distinct encoding meth-

ods. In such cases, a more sophisticated and customized approach may be required to decode the

encodings accurately. Standard signature-based mitigation is an effective way to detect known en-

codings as it relies on pre-existing signatures to detect malicious activities. However, it may not be

as effective against new and unknown encodings, making it necessary to develop new techniques

to counteract emerging threats. Overall, identifying known encodings and decoding them accu-

rately is crucial in the fight against cybercrime and in ensuring the safety and security of online sys-

tems and networks.

58

3.5 Encryption

Encryption (also known as cryptography) is an obfuscation technique that leverages the same

powerful technique used, among other things, to protect internet traffic and personal information

from eavesdroppers or software from piracy and hackers. Table 8 displays classification infor-

mation for the technique. Cryptography plays a central role in the wide range of daily transactions

we carry out with the devices we use. Safe internet communication or phone calls would not be

possible without cryptography. This is especially critical for sensitive activities such as online bank-

ing and shopping, where consumers must securely send personal and financial data. (Cobb, 2004)

Table 8. Encryption technique classification

Technique Encryption

Aliases Cryptography

Categories Data Obfuscation Techniques

Encoding and Encryption Techniques

Potency, resilience and cost

Potency High

Resilience High

Cost Medium

Sophistication, detection difficulty and impact

Sophistication High

Detection difficulty High

Impact Medium

Encrypted malware was one of the first techniques to avoid signature-based anti-virus scanners.

Similarly to the compression technique, any change in the source code will substantially affect the

encrypted output and the signature. An encrypted malware generally consists of the decryptor

program (often referred to as a stub) and the encrypted payload (the malware in an encrypted

form), as seen in Figure 11. When the encrypted malware executes, the decryptor retrieves the

59

malicious payload, performs decryption and executes the resulting executable code. (You & Yim,

2010)

Figure 11. Encrypted malware

The malware author might encrypt the payload with a new key every time to avoid signature-

based detections. However, the fundamental shortcoming of this method is that the decryptor re-

mains constant from generation to generation. As a result, anti-virus scanners may detect this

type of malware based on the decryptor’s coding pattern. To overcome this limitation, malware

authors have started using polymorphic techniques that generate new decryptors for each genera-

tion of malware. This makes it much harder for antivirus software to identify and block the mal-

ware. (You & Yim, 2010)

In most cases, an encrypted payload makes automatic static analysis of the payload impossible.

However, malware researchers can manually decrypt the malicious payload using the known de-

cryptor and a found decryption key. The decryption key is typically stored within the decryptor,

but it is possible to brute-force decryption using different standard algorithms if it is not found.

Decrypting the payload this way avoids the need to execute the malicious code, which is danger-

ous.

Static analysis can discover the decryptor (the stub) and the decryptor’s lengthy binary payload.

Static analysis may also examine the import table to see whether standard cryptography APIs are

utilised. Dynamic analysis can identify the encrypted payload in memory before or after it is in-

jected into the memory of another process.

 ayload
(ncrypted executable)

 ri inal e e a le n ry or

 e ry or
(stub)

60

3.6 Indirect method call

The indirect method call is an obfuscation technique that exploits a programming technique that

enables attackers to execute arbitrary code through a function pointer. Table 9 displays classifica-

tion information for the technique. A security researcher Matt Kolisar, a DEFCON 16 speaker, un-

veiled this approach by describing how JavaScript code might use this technique to call any func-

tion indirectly bypassing standard detection methods employed by antivirus and antimalware

scanners. It includes altering the function pointer to refer to an arbitrary function in memory and

then calling it via the function pointer, allowing them to take control of the program and poten-

tially execute arbitrary code on the target system. This approach circumvents several security pro-

tections and highlights the need to safeguard and adequately verify function pointers in software

applications. (Kolisar, 2008)

Table 9. Indirect method call technique classification

Technique Indirect method call

Categories Behavioural Obfuscation Techniques

Control Flow Obfuscation Techniques

Function Obfuscation Techniques

Potency, resilience and cost

Potency High

Resilience High

Cost Low

Sophistication, detection difficulty and impact

Sophistication High

Detection difficulty High

Impact Medium

In programming languages like C and C++, indirect method calls are often employed to provide dy-

namic and flexible programme behaviour. This was the first time, however, that this approach was

61

implemented in a Script-based programming language. After the code has been de-obfuscated

manually or automatically, JavaScript is usually expected to have visible function names. Using this

strategy in Script-based programming languages, however, entirely conceals function names until

they are called, and even then, only the interpreter or browser knows the name of the called func-

tion. Calling a method indirectly complicates the detection required to identify these sorts of at-

tacks.

In JavaScript, it is possible to write text to the current document using the write method of the

current document context. For example, calling “document.write('This could be malicious');”

would add “This could be malicious” text into the current document. However, malicious code that

might not want to reveal that it is using a document and its write method could employ an indirect

call technique.

In the example in Figure 13, the program first searches for the document element (there are eight

characters in the “document”, and the fifth character is m (In programming, the index starts from

0, so the fifth character is found at index 4). Then when the document element is found, the pro-

gram continues by searching for a write method whose length is five characters, the third charac-

ter is “i”, and the fifth character is “e”. Finally, after the write method has been located, the code

indirectly calls the “write” method with the “This could be malicious” parameter, effectively hiding

any indication that it is using the document’s write method. The full call graph is shown in Figure

12.

Figure 12. Indirect method call graph

this
document
(collection)

write (method)
Call the found method with
”This could be malicious”

62

Figure 13. Example of obfuscated method calling

This technique is challenging to mitigate because the code does not appear to perform any mali-

cious actions until the final command initiated by the code executes. In order to determine the ac-

tual command that the code will execute, dynamic analysis with different techniques is required.

One such technique is to use behaviour-based detection methods that analyze the code's behav-

iour during execution and look for suspicious actions or sequences of actions. Another approach is

to use machine learning algorithms to identify patterns in code that are indicative of indirect

method calls. Additionally, implementing security measures such as sandboxing and virtualization

can help isolate the malware and prevent it from causing harm to the system.

for (o in this) {
if (o.length == 8 && o.charAt(4) == 'm') {

for (m in this[o]) {
if (m.length == 5 && m.charAt(2) == 'i' && m.charAt(4) == 'e') {

this[o][m]('This could be malicious')
}

}
}

}

63

3.7 Instruction substitution

Instruction substitution is an obfuscation technique used in software development to hide the pur-

pose and logic of code from attackers and to protect software from piracy. Table 10 displays classi-

fication information for the technique. This approach involves substituting original instructions

with semantically comparable ones that produce the same outcomes. The central processing unit

(CPU) processor includes various instructions that may be substituted to provide the same output

but with a different signature. One of these instructions is the XOR, which the SUB instruction may

replace, and the MOV instruction, which a combination of the PUSH and POP instructions can re-

place. Two instruction substitution strategies are commonly known. The first approach shuffles

instructions and adds unconditional branches or jumps. The second technique creates new copies

of the code by reordering separate instructions that do not influence one another. It is challenging

to implement these strategies, but once applied, it may make it more challenging to discover and

reverse-engineer the original programme code. (You & Yim, 2010)

Table 10. Instruction substitution technique classification

Technique Instruction substitution

Categories Code Modification Techniques

Potency, resilience and cost

Potency Varies by method (potentially very high)

Resilience Varies by method (potentially very high)

Cost Varies by method (potentially very high)

Sophistication, detection difficulty and impact

Sophistication Varies by method (potentially very high)

Detection difficulty Varies by method (potentially very high)

Impact Varies by method (potentially very high)

In this technique, the malware creator exchanges instructions and then creates a new malware

based on the newly altered malware code, which is then subsequently deployed. The example

shown in Figure 14 uses the instruction substitution technique to modify the original machine

64

code (a) by replacing the mov instruction with push and pop, the lea instruction with mov and the

sub instruction with add (b). These replaced instructions perform the same function but change

the resulting code signature.

Figure 14. Instruction substitution technique

A more advanced version of instruction substitution was introduced in a research conducted by

Stephen Dolan in 2013. The research showed that it is possible to replace every instruction

(demonstrated using x86 machine language) with only MOV instructions (Dolan, 2013). This ap-

proach was eventually called “MOVfuscator”, and tools to automate the process were made avail-

able. Since the resulting code is very tough to analyse, this approach offers high potency, resili-

ence, and cost.

To perform MOVfuscation, a special version of the C-language compiler called MOVfuscator is re-

quired. It is not currently possible to convert existing compiled (binary) programs into MOVfus-

cated versions. However, it is possible to compile other languages like C++ into MOVfuscated ver-

sions by first compiling them into bytecode, which can then be converted back to C language. The

MOVfuscator compiler compiles source C code into Object-code, an intermediate representation

which can then be linked generally to an executable.

The following code example is a simple program that only displays the text string ”This could be

malicious”. The non-obfuscated compiled version is 15960 bytes (~16 Kbytes), but the obfuscated

version is 10,221,284 bytes (~10 Mbytes) which is over 640 times larger. The original non-

a.) Original code

push ebp

mov ebp, esp

lea ecx, [ebx + 42h]

sub ecx, 64

mov edx, 0

pop ebp

ret

b.) Original code obfuscated
through instruction substitution

push ebp

push esp

pop ebp

mov ecx, [ebx + 42h]

add ecx, -64

xor edx, edx

pop ebp

ret

65

obfuscated version can be seen in Figure 15, and the resulting obfuscated program contains only

MOV instructions in Figure 16.

 Figure 15. Non obfuscated version

Figure 16. MOVfuscated version

Understanding the program flow using static analysis for the MOVfuscated version is nearly impos-

sible because every line in the program appears to transfer data using mov instructions, and the

program flow is not visible. The resulting code is so massive that manual inspection is unrealistic,

even for a small example program.

Although researchers and anti-virus system developers seem to confront an impossible task in an-

alysing or deobfuscating MOVfuscated malware, it was demonstrated that creating tools that al-

low decoding the original program’s control flow is possible, which may be enough to determine if

the software is harmful at a high level. One such attempt was made by Julian Kirsch and Clemens

Jonischkeit when they presented the deMOVfuscator tool. In their presentation at Recon 2016 (a

computer security conference held annually in Montreal, Canada), they describe a method for re-

covering the original programme's control flow from movfuscated binaries without assuming

Regular non obfuscated version

0001149 <main>:
0001149: endbr64
000114d: push rbp
000114e: mov rbp,rsp
0001151: lea rax,[rip+0xeac]
0001158: mov rdi,rax
000115b: mov eax,0x0
0001160: call 1050 <printf@plt>
0001165: mov eax,0x0
000116a: pop rbp
000116b: ret

regular
compiler

#include <stdio.h>

int main() {
printf("This could be malicious");
return 0;

}

Executable
(~16 Kbytes)

MOVfuscated version

…
80495ca: mov eax,ds:0x83f5168
80495cf: mov edx,0x880495ca
80495d4: mov ds:0x81f4ff0,eax
80495d9: mov DWORD PTR ds:0x81f4ff4,edx
80495df: mov eax,0x0
80495e4: mov ecx,0x0
80495e9: mov edx,0x0
80495ee: mov al,ds:0x81f4ff0
80495f3: mov ecx,DWORD PTR [eax*4+0x804f600]
80495fa: mov dl,BYTE PTR ds:0x81f4ff4
8049600: mov dl,BYTE PTR [ecx+edx*1]
8049603: mov DWORD PTR ds:0x81f4fe0,edx

…

MOVfuscation
compiler

#include <stdio.h>

int main() {
printf("This could be malicious");
return 0;

}

Executable
(~10 Mbytes)

66

register allocations or a specific instruction order. This method adheres to the high-level invariants

that every movfuscated binary must satisfy and is unaffected by proposed hardening techniques

such as register renaming and instruction reordering. This is accomplished using a combination of

static taint analysis and a satisfiable modulo theory (SMT) solver on the movfuscated code. Multi-

ple movfuscated binaries have been successfully decrypted with the demovfuscator, demonstrat-

ing its ability to decrypt real-world binaries. The authors are actively advancing the demovfuscator

and working towards the next objective of eliminating instruction substitution and producing a

more compact and readable output. They intend to share their perspectives on this subject as

well.

67

3.8 Non-alphanumeric code

Non-alphanumeric code is an obfuscation technique used to convert code into a form containing

only non-alphanumeric characters. Table 11 displays classification information for the technique.

Non-alphanumeric refers to a string of characters that is not made up of letters, numbers, or punc-

tuation marks, which are the most frequent types of characters used in programming languages.

The resulting non-alphanumeric code has little resemblance to conventional code, making static

analysis very difficult. The origins of non-alphanumeric coding are assumed to be the Obfuscated C

and Obfuscated Perl contests, in which competitors strive to write the most obfuscated code pos-

sible. These challenges were created to demonstrate how inventive programmers might be in con-

cealing typical source code using generic syntax. (Heiderich, 2011)

Table 11. Non-alphanumeric code technique classification

Technique Non-alphanumeric code

Categories Code Modification Techniques

Potency, resilience and cost

Potency High

Resilience Medium

Cost High

Sophistication, detection difficulty and impact

Sophistication High

Detection difficulty Low

Impact Low

Malware developers often use this method to make it more difficult for antivirus software to iden-

tify and analyse their programmes. By using non-alphanumeric programming, they might obfus-

cate the intent of their code and make it harder for static analysis and signature-based detection

techniques to identify and prevent malicious software. In addition, non-alphanumeric code is ef-

fective against automated systems that depend on recognized patterns to detect potential threats.

As a result, non-alphanumeric code has become a popular weapon in the arsenal of malware

68

developers, enabling them to design more complex and elusive threats that may elude detection

and continue to wreak havoc on computer systems without being discovered.

Creating non-alphanumeric code by hand or creating tools for automating the process is challeng-

ing, so the malware authors use or modify existing tools to perform this technique. One such tool

is a Non-Alphanumeric JS obfuscator which converts any JavaScript code into a code that contains

only these characters:

_ - , ; : ! . () [

] { } * / + = ~ $

In Figure 17, a simple JavaScript example code is converted to non-alphanumeric JavaScript code

while keeping the same functionality. The generated non-alphanumeric code appears to be impos-

sible to reverse engineer. However, automated reverse-engineering methods can be used to ob-

tain the original code immediately.

This kind of obfuscation has high potency, meaning that it is difficult for a human to understand,

but it has low resilience since it is easy to revert and moderate cost since generated source code is

much larger than the original, which also means that the code is slower to execute.

Figure 17. Non-alphanumeric JavaScript code example

alert("this could be malicious")

=~[];={_:{_:!![]+[],$_:![]+[],$:[]+{},__:[][_]+[]},_$:++_,$_:++_,$$:-~_++,$:-~_,__:-
~++_},_._.$$_=_._.$[_.__+_.$_]+_._.$[_.$_]+_._.__[_.$_]+_._.$_[_.$]+_._._[_._$]+_._._[_.$_]+_._.__[_._
$]+_._.$[_.__+_.$_]+_._._[_._$]+_._.$[_.$_]+_._._[_.$_],_.$$_=[][_._.$$_][_._.$$_],_._.___=[]+/[]/[_._
.$$_],_._.$$=[]+([]+[])[_._.$$_],_._.__$=_._._[_._$]+_._.$[_.$_]+_._.$$[_.$_+_.__+_.__]+_._._[_._$]+_.
.[_.$_]+_._.__[_.$_+_.__]+_._.__[_.$_]+_._.$$[[]+_.$_+_.__];_._.$__=_._._[_._.$_[_.$$]+_._.__[_.$_+_
.__]+_._.__[_.$_]+((_.$$+_.$)*_.__)[_._.__$](_.$*(_.$+_.__))](),_._.$$$=_._._[_.$_]+_._._[_.$]+_._._[_
._$]+_._._[_.$$]+_._._[_.$_]+_._.__[_.$_];_._._$$=[]+_.$$_(_._.$$$+_._.$[_.$+_.__]+([]+~_._$)[_._$]+_.
$_+_._.$__[[]+_.$$+(_.$$+_.$)]+_.$$)(),_.$$$=_.$$_(_._.$$$+_._.$[_.$+_.__]+_._._[_.$]+_._.$_[_.$]+_._.
$[_.__+_.$_]+_._.$_[_.$_]+_._.___[[]+_.$_+_.__]+_._._[_.$])(),_.$__=_.$$_(_._.$$$+_._.$[_.$+_.__]+_._.
[.$$]+_._.__[_.$_]+_._._[_.$]+_._.$_[_.$]+_._.$[_.__+_.$_]+_._.$_[_.$_]+_._.___[[]+_.$_+_.__]+_._._[
.$])();._._$=[]+_.$$$(_._.$[_.$+_.__])[_._$];$={$_:_._.$_[_.$_],_:_._.$_[_.$$],$$:_._._[_.$],__$:_._
._[_.$_],_$:_._._[_._$],$_$:_._.$$[_.$*(_.$$+_.$)],___:_._.$__[_.__+_.__],_$_:_.$__(_._._$+(_.$+_.$)+(
_.__+_.__)),$:_._.__[_.$_+_.__],$__:_._.$_[_.$],__:_._.$[_.$+_.__],$$_:_._.$[_.__+_.$_],$$$:_._.$[_.$_
],_$$:_._._[_.$$],____:_._.__[_.$$],$___:_._.$[_.$$],$$__:_.$__(_._._$+(_.$+_.$)+_._.__[_.$$]),$$$_:_.
.$$[.__*_.__]};_.$$_($.$_+$._+$.$$+$.__$+$._$+$.$_$+$.___+$._$+$._$_+$.$+$.$__+$.__+$.$$_+$.$$$+$._$
$+$._+$.____+$.__+$.$___+$.$$+$.__+$.$$__+$.$_+$._+$.$+$.$$_+$.$+$.$$$+$._$$+$.$__+$.___+$.$$$_)()

transformation

69

Static analysis is challenging but not impossible since it is possible to detect long blocks of mean-

ingless code (with none or a low amount of recognized instructions) that might indicate obfus-

cated code. However, secure programmes often use obfuscated code for security concerns, which

might lead to false positives. By analysing the code structure, variable names, function calls, and

other grammar features, static analysis tools may discover obfuscation and reveal trends for fur-

ther research, such as substituting letters with symbols or numbers.

Dynamic analysis techniques may identify non-alphanumeric obfuscation by observing the execu-

tion of the code and searching for anomalous behaviour or activity patterns that may suggest ob-

fuscation. For instance, a dynamic analysis tool may identify that a programme is creating strange

or unexpected strings during execution, which might suggest obfuscation.

70

3.9 Polymorphism

Polymorphism is a widely used term in cyber security to describe the ability of malware to alter its

characteristics and evade security measures. Table 12 displays classification information for the

technique. The fact that the term "polymorphism" means "many forms" suggests that the mal-

ware is capable of assuming various shapes or characteristics. By masquerading as a legitimate

system process or service, polymorphic malware is designed to evade detection systems. Accord-

ing to Ann Johnson, 96 per cent of Windows Defender's detections in 2017 were polymorphic mal-

ware. The use of polymorphic malware by cybercriminals is on the rise. However, polymorphism is

not exclusive to cyber security and is an essential programming concept. Polymorphism is the

foundation of Object-Oriented Programming in programming. (OOP). It provides a single interface

to multiple entity classes, allowing multiple entities to be represented by a single symbol. Without

polymorphism, communication between applications would be unthinkable. Polymorphism is,

therefore, a foundational concept in computer science, and its applications are not limited to

cyber security. (Unterfingher, 2021)

Table 12. Polymorphism technique classification

Technique Polymorphism

Aliases Oligomorphic, polimorphic and metamorphic obfuscation

Categories Behavioural Obfuscation Techniques

Code Modification Techniques

Code Transformation Techniques

Control Flow Obfuscation Techniques

Encoding and Encryption Techniques

Potency, resilience and cost

Potency High

Resilience High

Cost Medium

71

Sophistication, detection difficulty and impact

Sophistication High

Detection difficulty High

Impact High

Most commercial antiviruses are signature-based and use existing database signatures to detect

the malware. Malware authors use code obfuscation techniques in their variety of malware with

the aim of bypassing detection by antiviruses. Metamorphic malware changes its internal struc-

ture hence evading signature-based detection. To address the shortcomings of simple encrypted

malware, the malware authors devised technologies to change the decryptor signature from one

generation to the next to make it undetectable by traditional techniques. (Lin & Stamp, 2011)

The first effort was with oligomorphic malware, which uses a new decryption routine for each in-

fection, allowing a single source malware to generate hundreds of new strains by cycling through

decryption routines. As no two infections are identical, this clever mechanism makes it difficult for

anti-malware software to detect and eliminate the threat. However, this method is not foolproof,

as the permutations will eventually run out and are detectable using signatures-based detection.

(Unterfingher, 2021)

To overcome this limitation, malware authors developed polymorphic malware. This type of mal-

ware can generate unique code signatures by employing techniques such as randomly inserting

dead code (see Figure 8 on page 52), reassigning registers (see Figure 22 on page 78), and shifting

and modifying data unnecessarily. In addition, malware authors can modify their malicious code

and generate undetectable code signatures using tools like “The Mutation Engine” to simplify the

process. Polymorphic malware goes beyond simply cycling through decryption procedures, as it

uses a mutation engine to fuse the decryption routine with the encrypted malware's body, result-

ing in a new strain of malware that can evade the majority of signature-based detection tech-

niques. (Unterfingher, 2021)

The first example of advanced polymorphic malware called Win95/Zmist surfaced in 1999. This

malware was a game-changer, as it could modify its code and evade detection by antivirus

72

programs. Unlike traditional malware that security systems would detect by its signature or behav-

iour, Zmist used advanced code integration technology to infiltrate the target software. It did this

by breaking the target program into small, manageable blocks and infecting each block with its

code. Once each block had been infected, Zmist would reassemble the original program and the

malware into a single executable file. This made it incredibly difficult for antivirus programs to de-

tect malicious code and stop the malware from spreading. The discovery of Zmist was a wake-up

call for the security industry, highlighting the need for better detection and prevention systems to

combat the increasingly sophisticated methods of cyber criminals. (Lin & Stamp, 2011)

Metamorphic malware is the next level up from polimorphic malware. Each generation of meta-

morphic malware modifies its signature by identifying, parsing, and altering its own body, as seen

in Figure 18. As a result, metamorphic malware never reveals its final composition, and constantly

changing code signatures make it difficult for anti-virus scanners to detect malicious code. Meta-

morphic malware decompiles its code into meta code (a representation of the original code) and

then writes a new executable code based on the meta code. Written code is ensured to be unique

using methods like code reordering, instruction and register substitution. (You & Yim, 2010)

Figure 18. Metamorphic changes between generations

Unlike previous methods employing encrypted code, metamorphic malware does not require de-

cryption. Instead, it employs a mutation engine that modifies the malware's entire source code to

generate self-modifying programmes. This mutation engine applies code transformation rules iter-

atively to modify the syntax of the code, making it difficult for signature-based detection systems

to identify. The primary components of the metamorphic malware are a disassembler, a code

1

2

3
4

5

6

1

2

3
4

5

6

generation

1

2

3

4

5

6

generation

73

transformer (obfuscator), and an assembler. First, the disassembler converts the code into assem-

bly instructions. Next, malware's binary sequence undergoes modifications by the code trans-

former, which employs semantic-preserving rewriting techniques like Dead-code insertion (a),

code transposition (b), and register substitution (c) as shown in Figure 19. Finally, the assembler

converts the modified assembly code back into machine code. The result is a syntactically distinct

but semantically equivalent programme, which we refer to as metamorphic variants. (Campion et

al., 2021)

Figure 19. Multiple obfuscations applied in imaginary metamorphic malware

Polimorphic malware was a significant issue until anti-virus scanners began to use methods other

than signature-based detection, such as executing possible malware within an emulator (known as

a “Sandbox”). When the malware was permitted to run in an emulator, the anti-virus could utilise

more traditional detection methods, such as signature-based detection, to identify the now de-

crypted payload in memory. Alas, polimorphic malware evolved again and started detecting and

defeating such emulation environments. However, in the end, as the anti-virus scanners advanced

and matured, the polimorphic malware was eventually defeated and prevented. Malware that has

metamorphosed is more challenging to identify and defeat. It may be feasible to detect a mutation

engine employed by metamorphic malware, but after the virus has migrated into a target process,

it may be hard to distinguish it from normal, benign process behaviour.

a.) Original code

call 0h

pop ebx

lea ecx, [ebx + 42h]

push ecx

push eax

push eax

sidt [esp – 02h]

pop ebx

add ebx, 1Ch

cli

mov ebp, [ebx]

b.) Original code obfuscated
through dead-code insertion

call 0h

pop ebx

lea ecx, [ebx + 42h]

nop

nop

push ecx

push eax

inc eax

push eax

dec [esp – 0h]

dec eax

sidt [esp – 02h]

pop ebx

add ebx, 1Ch

cli

mov ebp, [ebx]

c.) Previous code obfuscated
through code transposition

call 0h

pop ebx

jmp J2

pop ebxJ5:

add ebx, 1Ch

cli

jmp J6

push eaxJ4:

dec [esp – 0h]

dec eax

sidt [esp – 02h]

jmp J5

nopJ3:

nop

push ecx

push eax

inc eax

jmp J4

lea ecx, [ebx + 42h]J2:

jmp J3

mov ebp, [ebx]J6:

d.) Previous code obfuscated
through register substitution

call 0h

pop edx

jmp J2

pop edxJ5:

add edx, 1Ch

cli

jmp J6

push ecxJ4:

dec [esp – 0h]

dec ecx

sidt [esp – 02h]

jmp J5

nopJ3:

nop

push ebx

push ecx

inc ecx

jmp J4

lea ebx, [edx + 42h]J2:

jmp J3

mov ebp, [edx]J6:

74

Polymorphic viruses are challenging to detect due to their ability to alter their code in various

ways to evade detection. Antivirus software must employ heuristic analyses to check specific areas

of the programme and emulate the programme in a sandbox to identify and capture the virus in

action. During the emulation process, the virus body appears decrypted in the main memory, mak-

ing it easier for the software to detect and eliminate it. A virus that undergoes metamorphosis is

even more challenging to detect. The complex obfuscation techniques employed by these viruses,

such as code transposition, the substitution of equivalent instruction sequences, and register reas-

signment, make it difficult for heuristic detection techniques to identify them. In addition, they

can embed the virus code within the host program, concealing the virus's entry point and render-

ing detection nearly impossible. A more comprehensive analysis of malicious code based on ad-

vanced static-analysis techniques is required to overcome this difficulty. It requires inspecting the

code to detect malicious patterns using structures closer to the code's semantics, as purely syntac-

tic techniques, such as regular expression matching, is no longer adequate. (Christodorescu & Jha,

2004)

75

3.10 Randomization

Randomization (also referred to as randomized variable and function) is an obfuscation technique

employed by JavaScript and other script-based malware to make it more difficult for security re-

searchers to analyse the code and identify malicious behaviour. Table 13 displays classification in-

formation for the technique. This technique involves replacing meaningful names with randomly

generated strings, which can be generated using a variety of random string name generators or

hexadecimal encoding. Multiple randomization and other methods are frequently combined to in-

crease the code's complexity and make it more challenging to analyse. However, while obfuscated

variable and function names can make it more difficult for researchers to identify malicious behav-

iour, they do not provide complete protection, as sophisticated analysis techniques can bypass

them. (Xu et al., 2012)

Table 13. Randomization technique classification

Technique Randomization

Aliases Randomized variable and function names

Categories Code Modification Techniques

Potency, resilience and cost

Potency Low

Resilience Medium

Cost Low

Sophistication, detection difficulty and impact

Sophistication Low

Detection difficulty Medium

Impact Low

In order to apply this technique, the code goes through a manual or automatic randomization

phase where all of the variable and function names in the script are randomized. For instance, in-

stead of naming variables in a way that identifies their purpose, such as maliciousUrl, a random

name could be generated, such as v43f8d9cde9a9c. The random name is unintelligible to humans,

76

but it still serves a purpose within the code and does not affect how the code operates. This tech-

nique is illustrated in Figure 20, where the original JavaScript code (a) is obscured by randomising

variable and function names (b).

Figure 20. Randomized variable and function names

Static or dynamic analysis is mostly unaffected by this technique since the malicious code is visible

and detectable. However, to defend against static signature-based detections, malicious actors

can easily create multiple versions of the same malicious code by randomly renaming variables

and functions. Additionally, this technique makes it more difficult for research analysts to compre-

hend what the code does, as they must first determine the meaning of each variable and function.

This process is time-consuming but can be sped up by using automated AI and ML-powered tools.

Other ways of mitigating this technique include for example pattern recognition technique that

compares the code against malicious patterns of malicious JavaScript keywords (which cannot be

obfuscated by this technique) and dynamic analysis using behavioural analysis.

function show_alert(text) {
alert(text);

}
var hello = ‘This could be malicious';
show_alert(hello);

function v29fa90d9a0(v8323a39) {
alert(v8323a39);

}
var v093ac981f = ‘This could be malicious';
v29fa90d9a0(v093ac981f);

(a) (b)

77

3.11 Register randomisation

Register randomisation (or assignment) is another straightforward approach for changing program

signature while maintaining functionality. Table 14 displays classification information for the tech-

nique. Registers are high-speed storage units contained within the CPU (Computer Processing Unit

or Processor). Registers are visible only at the machine language level after the program is com-

piled into executable form. When a processor executes machine language instructions, it uses in-

put and output registers set by the programmer to fetch and store data. In this technique, previ-

ously utilised registers are switched to other available registers while keeping the program

functionality unaffected. CPU typically contains at least eight general-purpose registers that are

free to be selected as input and output targets.

Table 14. Register randomization technique classification

Technique Register randomisation

Aliases Register assignment

Categories Code Modification Techniques

Potency, resilience and cost

Potency Low

Resilience Low

Cost Low

Sophistication, detection difficulty and impact

Sophistication Low

Detection difficulty Low

Impact Low

Malware developers utilize this technique by randomizing the registers used during the program

execution, consequently changing the malware's signature. By randomizing registers that are used

in malicious programs, it is possible to generate an almost infinite amount of different signatures

for the same malware.

78

The original non-obfuscated example code is shown in Figure 21, and the version using the register

randomisation technique is in Figure 22. In the example, the new version uses EDX register to

compute the same total as the EBX registers in the previous generation. Using different registers

means the CPU uses slightly different instructions to perform the function. (You & Yim, 2010)

Figure 21. Original assembly code

Figure 22. Register-randomised assembly code

There are several methods for detecting and mitigating register randomization, but the static anal-

ysis is ineffective against register randomization. Using virtualization or sandboxing techniques to

analyse the behaviour of malware is a practical approach. Regardless of whether register randomi-

zation is employed, it is possible to monitor malware's actions and detect any malicious ones using

behaviour-based analysis. In addition, security software can use machine learning algorithms to

analyse the behaviour of known malware and develop models that can detect and identify new

malware variants, including those that use register randomization.

 e
 ush b
 e mo b s
 ec sub s
 b a mo ea a
 d bb a mo eb a
 d sub ea eb
 bb mo eb
 d sub ea eb
 b e call

 e
 ush b
 e mo b s
 ec sub s
 b a mo ea a
 d ba a mo ed a
 d sub ea ed
 ba mo ed
 d sub ea ed
 b e call

79

3.12 Return-Oriented Programming

Return-oriented Programming (ROP) is a technique adversaries uses to create malicious pro-

grammes that utilise pre-existing sequences of machine code, known as "gadgets," extracted from

a target programme or system. Table 15 displays classification information for the technique. By

interconnecting these gadgets, adversaries can execute unauthorised operations and seize control

of the system. This technique is especially effective at circumventing security measures such as

Data Execution Prevention (DEP) and Address Space Layout Randomization (ASLR), designed to

prevent conventional code injection attacks. Unfortunately, ROP attacks are challenging to detect

and prevent, making them a popular tool among cybercriminals with advanced skills and state-

sponsored hackers.

Table 15. Return-Oriented Programming technique classification

Technique Return-Oriented Programming

Categories Behavioural Obfuscation Techniques

Control Flow Obfuscation Techniques

Potency, resilience and cost

Potency High

Resilience Medium

Cost Low

Sophistication, detection difficulty and impact

Sophistication High

Detection difficulty High

Impact High

In recent years, buffer overflows have been one of the most prevalent sources of software vulner-

abilities. For example, a newly found vulnerability in the OpenSSL library was caused by the user’s

input not being validated for length. When a buffer overflow happens, the original program’s op-

eration may be altered to begin running the code provided by the attacker.

80

Because buffer overflow is a common source of vulnerabilities, an operating system-level security

measure was introduced known as Data Execution Prevention (DEP). This security measure allows

specifying memory ranges (data blocks) critical to the application so that those memory ranges

cannot be accidentally or intentionally overwritten and used for executing possibly malicious code.

Even so, this security measure does not entirely solve the issue, and cybercriminals have found

ways to circumvent it. (Prandini & Ramilli, 2012)

Hovav Shacham presented a technique, later named as Return-Oriented Programming approach,

in 2007 when he demonstrated how to exploit concise pieces of the target program’s existing code

(called gadgets) effectively to run code suited for an attacker. (Shacham, 2007). Return-Oriented

Programming got its name from the RETN assembly instruction, which returns the program control

flow back to the address that was called the execute program block previously.

With this technique, a malicious actor or malware exploits a previously identified buffer overflow

vulnerability to write malicious return addresses that point to some suitable existing short code

piece (called a gadget) addresses to memory locations slavishly utilised by the original program

flow. Overwriting the address that the RETN instruction utilises, the program flow effectively

changes and gives complete control of the target program. By chaining multiple short pieces of

code, the attacker can execute complex exploits. (Prandini & Ramilli, 2012)

Malware actors employ this technique frequently to attempt to create a reverse shell connection

between the attacker and the target server. Using this method, the attacker can also elevate their

privileges on the target system, as the application under exploitation may have elevated privileges,

allowing the attacker to execute commands of his choosing with this new level of authority. Alt-

hough operating systems are constantly improved to prevent the execution of such techniques,

they are ineffective since attackers always find new ways to overcome these protections. The

most effective strategy to avoid this sort of technology is for application developers to take re-

sponsibility because the primary enabler of these techniques is irresponsible programming mis-

takes connected to buffer overflows. It is also important to keep software and operating system

constantly updated to minimize attack surface for malware attacks and configure restricted ac-

count privileges allowing only the minimum privileges necessary for the applications to perform

their functions.

81

3.13 Self-modifying code

Self-modifying code (SMC) is an obfuscation technique that involves adding, modifying and remov-

ing instructions during execution. Table 16 displays classification information for the technique.

Self-modifying code can be used in legitimate software to optimize performance, reduce the size

of the code and protect software from hackers or piracy. However, self-modifying code can also

introduce security vulnerabilities if not implemented correctly, making the code unpredictable and

challenging to analyze. Consequently, malware and other harmful software often use this tech-

nique to conceal their true intents and evade detection by antivirus and antimalware software.

Self-modifying code is also a practical approach for evading signature-based detection, in which

security software looks for specific code patterns to identify malware. However, malware may cir-

cumvent detection by these signature-based approaches by continually modifying its underlying

code. (Banescu & Pretschner, 2018)

Table 16. Self-modifying code technique classification

Technique Self-modifying code

Categories Behavioural Obfuscation Techniques

Code Modification Techniques

Code Transformation Techniques

Control Flow Obfuscation Techniques

Potency, resilience and cost

Potency High

Resilience Medium

Cost Low

Sophistication, detection difficulty and impact

Sophistication High

Detection difficulty High

Impact High

82

To defend against self-modifying code, operating systems have introduced a memory protection

feature called Data Execution Protection (DEP), commonly known as W-xor-X. DEP is a memory se-

curity feature that divides memory as either writable or executable, but not both, to guard against

self-modifying code. This helps against self-modifying code and other memory-based attacks since

executable code cannot be inserted into data areas or executed from data regions. In addition,

DEP generates an access violation exception whenever an attempt is made to run code from

memory locations that have been marked as non-executable using hardware support. Along with

other security measures, such as Address Space Layout Randomization (ASLR), DEP is extensively

employed in Windows and Linux operating systems to offer a complete defence against memory-

based attacks. (Marpaung et al., 2012)

Static analysis is not an effective technique for detecting malware that uses self-modifying code.

As seen in Figure 23, when self-modifying code is analysed with static analysis, commonly per-

formed by anti-virus scanners, the malicious code is not visible since the static analysis is not exe-

cuting the code and thus does not see that the code is actually changing to malicious.

Figure 23. Self modifying code seen with static analysis

However, by using dynamic analysis to monitor the programme's behaviour as it executes, it is

possible to detect the new malicious code that was added or modified by the self-modifying code.

An example of code that has been changed by self-modifying code is seen in Figure 24.

X = Z
Y = FF FF 8A 00 + 10000

0001

I20002

END0003

Garbage code0004

Garbage code0005

End of
application

WRITE DATA Y TO
MEMORY ADDR. X

Memory address Instructions

83

Figure 24. Self-modifying code during execution

To detect self-modifying code, dynamic analysis is required. Static analysis is ineffective since the

final code is not detectable until it is written to memory during the execution of the malware.

Therefore, dynamic analysis combined with behavioural-based analysis is the most effective way

of detecting self-modifying code. Regular programs rarely need self-modifying code, so detecting

self-modifying code is a good indication of a possibly malicious program. Also, Data Execution Pro-

tection (DEP) and Address Space Layout Randomization (ASLR) technologies are good at mitigating

self-modifying code from executing.

X = Z
Y = FF FF 8A 00 + 10000

WRITE DATA Y TO
MEMORY ADDR. X0001

I20002

JMP 01010003

Garbage code0004

Garbage code0005

0101

0102

Malicious code

Malicious code

0103 Malicious code

Modifieds code at
memory location

Memory address Instructions

Memory address Instructions

84

3.14 String splitting

String splitting is a technique malware authors use to obfuscate their code and make it harder to

understand and analyze. Table 17 displays classification information for the technique. This

method involves separating a string or function name into multiple smaller fragments and then

reassembling them at runtime. This technique is intended to make it more difficult for security re-

searchers and antivirus software to detect and analyse malware. In addition, by separating strings

and function names, the code becomes less readable and more complicated, making it more diffi-

cult to identify malicious actions and functions.

Table 17. String splitting technique classification

Technique String splitting

Aliases String reconstruction

Categories Code Transformation Techniques

Data Obfuscation Techniques

Potency, resilience and cost

Potency Medium

Resilience Low

Cost Medium

Sophistication, detection difficulty and impact

Sophistication Low

Detection difficulty Medium

Impact Low

A frequent application of string splitting is to obscure the names of functions that perform mali-

cious actions, such as stealing sensitive data or seizing control of a system. By separating the func-

tion name into smaller pieces and reassembling them at runtime, malware can make it difficult for

security researchers to identify and block the function. String splitting can also be used to obscure

text strings containing sensitive information, such as URLs or login credentials. Again, by slicing the

85

string into smaller pieces and reassembling them at runtime, malware can make it more difficult

for security researchers to identify the precise data being transmitted or stored by the malware.

(Xu et al., 2012)

String splitting is a standard method employed by malware authors to make their code more diffi-

cult to understand and analyse. Therefore, security researchers and antivirus software developers

must be aware of this technique and develop methods to detect and analyse string-splitting mal-

ware.

Figure 25 shows an example of using the string-splitting technique. The original JavaScript code (a)

is obfuscated using string splitting technique (b), making the resulting obfuscated version hard to

read, and it is impossible to instantly see what is going on.

Figure 25. String splitting

Static analysis using signature-based detection is ineffective against this technique since malicious

actors can easily generate (with automation tools) multiple versions of the same malicious code by

randomizing how the strings are split in the code. However, dynamic analysis is unaffected by this

technique since the resulting strings are visible and detectable after they have been combined and

are ready to be executed.

alert('This could be malicious'); var jj = 's\')';
var by = 'rt(\'';
var dh = 's c';
var gf = ' ma';
var eu = 'oul';
var ii = 'iou';
var fg = 'd be';
var cg = 'Thi';
var ax = 'ale';
var hh = 'lic';
eval(ax + by + cg + dh + eu + fg +

gf + hh + ii + jj);

(a) (b)

86

3.15 Whitespace decoding

Whitespace decoding is an obfuscation method used to conceal code in plain sight. It includes add-

ing invisible characters such as spaces, tabs, and line breaks to a piece of code, making it more dif-

ficult to read and understand. Table 18 displays classification information for the technique. A se-

curity researcher Matt Kolisar, a DEFCON 16 speaker, unveiled this approach by describing how

whitespace decoding can be used to hide JavaScript code inside benign-looking javascript code.

The approach may be used for various objectives, including making it more difficult for reverse en-

gineers to comprehend the code and concealing dangerous code in plain sight. (Kolisar, 2008)

Table 18. Whitespace decoding technique classification

Technique Whitespace decoding

Categories Whitespace Obfuscation Techniques

Potency, resilience and cost

Potency High

Resilience High

Cost High

Sophistication, detection difficulty and impact

Sophistication High

Detection difficulty High

Impact High

Steganography is the practice of concealing something in plain sight. On the most basic level, ste-

ganography is a method of concealing writing, whether made of invisible ink or microdots (Hamil-

ton, 2003). Previously similar demonstrations were made for other programming languages in var-

ious programming competitions. There is even a Whitespace programming language using only

whitespace characters (space, tab, and linefeed) as an instruction.

Malware code may be hidden in plain sight using only whitespace characters. It is possible to use,

for example, a binary encoding by inserting a specific amount of whitespace characters like space

87

and tab, for example, at the end of javascript lines or in javascript comments, where space indi-

cates a binary value of 0 and tab indicates a binary value of 1. The binary numbers 0 and 1 are

then easily decoded into ASCII characters (for example, binary code for “a” character is 10011110),

which may be used to build eventually malicious code. (Kolisar, 2008)

Example code in Figure 26 shows how malicious payload hides in plain sight on a being-looking ja-

vascript file. The code in the example performs three steps to decode the final payload. First, it

reads the hidden payload from the end of the script lines and decodes the payload by interpreting

tab characters as a binary value of 1 and space characters as a binary value of 0, resulting in a bi-

nary stream. Finally, it converts the resulting binary stream into malicious executable code using

binary to ASCII conversion.

Figure 26. Whitespace encoded malicious code payload

JavaScript's whitespace encoding technique has the advantage of concealing the typical indicators

of code obfuscation. Traditional methods of obfuscation result in large blocks of meaningless text

using document.write method or differently encoded characters which are easily identifiable indi-

cators of obfuscation. However, whitespace encoding conceals these indicators, making it more

challenging for attackers to decipher the code. This technique creates a difficult-to-reverse-

<script id='p'>
d=1;
e=49;
h = this; 11000011 = '<'
for (i in h) 10001100 = 's'
{ 10011100 = 'c'

if(i.length == 8) 10001101 = 'r'
{ 10010110 = 'i'

if(i.charCodeAt(0) == 100) 10001111 = 'p'
{ 10001011 = 't'

if(i.charCodeAt(7) == 116) 11000001 = '>'
{ 10011110 = 'a'

break; 10010011 = 'l'
} 10011010 = 'e'

} 10001101 = 'r'
} 10001011 = 't'

} 11010111 = '('
for (j in h[i]) 11011000 = '''
{ 10101011 = 'T'

if(j.length == 5) 10010111 = 'h'

Malicious payload encoded using (invisible) tab and
space characters at the end of each line.

In this example tab is highlighted in dark gray and
space in light grey color. Normally these characters

are invisible to reader.

Decoded binary code
(tab=1 and space=0)

Decoded final character

88

engineer code and is an effective means of preventing unauthorised access to or theft of sensitive

code or data.

Detecting this technique is challenging, but static analysis can detect the presence of known mali-

cious patterns, even when encoded using this technique. Dynamic analysis is mostly unaffected by

this technique, but how the code is generated and executed might present challenges. Behav-

ioural-based detection is entirely unaffected by this technique, and malicious code is detectable as

soon as it is executed.

89

3.16 Whitespace randomisation

Whitespace randomization is a technique used to disguise script-based malware, specifically Java-

Script, by injecting random whitespace or comments. Table 19 displays classification information

for the technique. These non-functional code elements do not affect the program's functionality,

but they alter the code signature, making it more difficult for automatic code analysis tools, antivi-

rus, and antimalware programmes to recognise it as known malicious code.

Table 19. Whitespace randomisation technique classification

Technique Whitespace decoding

Categories Whitespace Obfuscation Techniques

Potency, resilience and cost

Potency Low

Resilience Low

Cost Low

Sophistication, detection difficulty and impact

Sophistication Low

Detection difficulty Low

Impact Low

The method involves inserting non-functional code elements such as whitespace, comments, and

semicolons. These elements are added to the code randomly while maintaining the functionality

of the original code. As a result, this technique generates unique code signatures each time it is

implemented, allowing malware developers to generate numerous variants of their malicious

code.

In order to counteract this technique, security researchers and antivirus software developers can

remove all whitespace and comment elements from the file, effectively deobfuscating the code,

and then perform a signature check against known malware.

90

4 Conclusion

Advanced malware has become the primary weapon for cybercriminals and other cyber threat ac-

tors. The sophistication and complexity of malware attacks have increased, making them more

challenging to detect and counteract. This pattern will likely continue as cybercriminals become

more skilled and better equipped with cutting-edge technologies and tools. Therefore, cyber secu-

rity defenders must stay ahead of this ever-changing threat landscape and adopt new and innova-

tive methods to detect and combat advanced malware.

In recent years, ransomware attacks have become increasingly prevalent and are expected to con-

tinue to rise. In ransomware attacks, a hacker gains access to the victim's computer system and

encrypts their files, effectively holding them hostage until a ransom is paid. Advanced malware,

including complex viruses and spyware, is another significant threat that will increasingly cause

system damage and steal sensitive data enabling threat actors to continue their attack with other

attack campaigns. In the future, social engineering threats will also be a significant concern. In

these attacks, individuals are tricked into providing access or information to a hacker. In addition,

an attack may involve phishing or pretexting, in which the hacker poses as someone else to gain

access and trust. Data or internet availability threats are also on the rise. DDoS attacks can over-

whelm a system, rendering it inaccessible to users, and destruction of infrastructure can result in

widespread outages and interfere with essential internet services. Misinformation and disinfor-

mation campaigns are also used to manipulate public opinion and create disorder.

As recently demonstrated by some of the most destructive malware campaigns, supply-chain at-

tacks are becoming more sophisticated and widespread. The attacks consist of multiple phases,

with the initial phase targeting a third-party vendor to compromise software or services the pri-

mary target uses. Next, intruders insert malicious code or backdoors into the vendor's software or

service, which are then distributed as a legitimate software update or patch. When the compro-

mised update is installed on the target systems, attackers can gain unauthorised access and estab-

lish a foothold within the targeted systems. The attackers then move laterally, obtaining elevated

privileges and exfiltrating sensitive data, resulting in monetary losses and reputational damage for

the target and its customers. This attack exemplifies the growing threat and complexity of such at-

tacks and highlights the need for robust security measures throughout the software supply chain.

Furthermore, it emphasised the importance of vigilant screening and monitoring of third-party

91

vendors, secure coding practices, multi-factor authentication, routine security audits, and timely

patch management.

Understanding the nature and characteristics of sophisticated malware is the first step in combat-

ing it. Typically, sophisticated malware is created to evade detection by conventional antivirus and

intrusion detection systems. In addition, it is frequently distributed through sophisticated social

engineering techniques, including phishing emails and other forms of social engineering. Advanced

malware, once installed on a target system, can steal sensitive data, spy on the victim, and even

use the infected system as a launching pad for further attacks.

During the research phase of this study, it became evident that obfuscation techniques have be-

come a persistent issue for the cyber security industry, as they make it more difficult for analysts

to identify and mitigate threats. This study demonstrated that obfuscation could take many forms,

including using packers or crypters to conceal the true purpose of malicious code and incorporat-

ing anti-analysis techniques that make it challenging for researchers to analyse malware samples

in a secure environment. In addition, research showed that obfuscation can be used to conceal

network traffic patterns, making it more challenging for defenders to detect and block malicious

communications. Even though there are various tools and techniques to assist researchers and de-

fenders in identifying and analysing obfuscated code, the ongoing arms race between attackers

and defenders means that obfuscation remains a significant challenge for those working to secure

our digital infrastructure.

As learned in this research, anti-virus products rely heavily on file signatures to identify malware,

though most also employ heuristic detection to help identify suspicious behaviour. Malware devel-

opers continually develop new evasion techniques, making it challenging to stay ahead of them.

AI-based tools have come into play, and with the assistance of AI, security researchers can analyse

vast quantities of data to identify patterns and predict future attacks. Many different ongoing re-

search projects aim to help in this task. MetaSign, for instance, can analyse a set of metamorphic

variants and generate a set of transformation rules that may have been used to create those vari-

ants. In addition, identifying patterns in their obfuscation techniques allows security researchers

to stay ahead of malware developers.

92

A significant amount of time and resources are devoted to investigating new techniques and tech-

nologies to enhance cyber security. Unfortunately, malicious actors also use techniques invented

by researchers to develop new malware variants and attacks, providing malware developers with a

significant advantage.

The most crucial stage for malware is to remain undetected until the malicious execution can

begin. Once malware is active on a device or network, it can begin to carry out its intended func-

tion, such as stealing sensitive data, corrupting files, or remotely controlling the victim's device.

However, if the malware is detected during the transfer phase or just before it is executed, it can

be quarantined and stopped by antivirus, antimalware or other end-point protections before it can

cause damage.

An operating system (OS) employs multiple levels of protection, such as user access levels, which

play a crucial role in preventing malware by restricting malicious software's access to specific sys-

tem resources and functions. The operating system also defines rules for access levels and permis-

sions granted to various users and processes. Cyber security experts can adjust the rules further to

be more efficient in preventing malware from executing commands or accessing files beyond their

granted permissions, making it difficult for malware to infiltrate the system and cause damage.

However, malware developers are constantly searching for ways to circumvent these safeguards.

One way they do this is by exploiting vulnerabilities in the operating system or applications to gain

elevated privileges, thereby granting them the ability to perform actions outside the scope of their

authorised access. In addition, by disguising malware as a legitimate application or sending phish-

ing emails to convince users to install malware, social engineering can trick users into granting the

malware elevated privileges.

Utilizing artificial intelligence (AI) and machine learning (ML) techniques is one of the most promis-

ing strategies for detecting and mitigating advanced malware. Cyber security solutions powered by

AI can analyse vast amounts of data in real time, identify anomalies, and detect previously un-

known threats. Likewise, ML algorithms can learn from historical attack data to recognise patterns

and predict future attacks, allowing cyber security defenders to remain one step ahead of threat

actors.

93

However, malware developers can also employ artificial intelligence (AI) and machine learning

(ML) to create more sophisticated attacks that can evade traditional security measures. In addi-

tion, malware that employs AI and ML can adapt and evolve to evade detection, making it more

difficult for cyber security professionals to detect and prevent attacks. Overall, malware develop-

ers have a significant advantage when they can utilise techniques created by researchers to create

new, more sophisticated attacks.

A proactive approach to threat intelligence gathering and sharing is another essential element of a

successful cyber security defence strategy. Cyber security defenders must be aware of the most

recent threats and trends in the malware landscape, including new variants and attack techniques.

This necessitates collaboration and information sharing between diverse organisations and indus-

try sectors to stay abreast of the most recent threats and develop effective countermeasures.

Cyber security defenders must also implement robust security controls, best practices, AI and ML

techniques, and proactive threat intelligence gathering. This includes employing robust passwords,

implementing two-factor authentication, and ensuring that software and operating systems have

the most recent security patches. Additionally, organisations must provide their employees with

regular security training to increase their awareness of cyber security threats and how to avoid

falling victim to them

Lastly, cyber security defenders must have an effective incident response plan in place. For exam-

ple, if a malware attack is successful, organisations must be able to quickly detect and respond to

the attack, limit the damage, and restore affected systems and data. This necessitates a coordi-

nated, well-executed response plan involving all relevant parties, including IT, security, legal, and

management teams.

In conclusion, the arms race between malware and security developers will continue. While the

ultimate victor is uncertain, cutting-edge technologies such as artificial intelligence and machine

learning provide new tools to combat malware and stay ahead of the curve. Developing AI-based

security tools and adopting proactive security measures can assist cyber security defenders in de-

tecting and mitigating sophisticated malware attacks. Utilizing AI-based tools can also aid in creat-

ing more effective security measures, allowing security researchers to stay one step ahead of

94

threat actors. However, individuals must be proactive in their cyber security practices. This in-

cludes using robust passwords, updating software and security protocols frequently, and exercis-

ing caution when sharing personal information online. Additionally, to defend against upcoming

threats, it is essential to remain current on the most recent cyber security threats and trends and

seek credible resources and advice.

95

References

Abraham, S. (2017). How Antivirus Software Works (Detection Science and Mechanism). Malware-

Fox. https://www.malwarefox.com/how-antivirus-works/

Ali, F. (2022). Everything You Need to Know About Operation Aurora. MUO.

https://www.makeuseof.com/operation-aurora/

Arntz, P. (2021, October 28). What is fileless malware? Malwarebytes Labs. https://blog.malware-

bytes.com/explained/2021/10/what-is-fileless-malware/

Aslan, Ö., & Yilmaz, A. A. (2021). A New Malware Classification Framework Based on Deep Learn-

ing Algorithms. IEEE Access, 9, 87936–87951. https://doi.org/10.1109/ACCESS.2021.3089586

Banescu, S., & Pretschner, A. (2018). Self-Modifying Code. https://www.sciencedirect.com/top-

ics/computer-science/self-modifying-code

Bashari Rad, B., Masrom, M., & Ibrahim, S. (2012). Camouflage In Malware: From Encryption To

Metamorphism. International Journal of Computer Science And Network Security (IJCSNS), 12, 74–

83.

Bettany, A., & Halsey, M. (2017). Windows Virus and Malware Troubleshooting. Apress.

Brais, H. (2015, June 17). Compilers - What Every Programmer Should Know About Compiler Opti-

mizations. https://learn.microsoft.com/en-us/archive/msdn-magazine/2015/february/compilers-

what-every-programmer-should-know-about-compiler-optimizations

Buckbee, M. (2015). CryptoLocker: Everything You Need to Know. https://www.varo-

nis.com/blog/cryptolocker

Campion, M., Dalla Preda, M., & Giacobazzi, R. (2021). Learning metamorphic malware signatures

from samples. Journal of Computer Virology and Hacking Techniques, 17(3), 167–183.

https://doi.org/10.1007/s11416-021-00377-z

96

Capano, D. E. (2021). Throwback Attack: How NotPetya accidentally took down global shipping gi-

ant Maersk. Industrial Cybersecurity Pulse. https://www.industrialcybersecuri-

typulse.com/threats-vulnerabilities/throwback-attack-how-notpetya-accidentally-took-down-

global-shipping-giant-maersk/

Christodorescu, M., & Jha, S. (2004). Static Analysis of Executables to Detect Malicious Patterns.

12.

Cimitile, A., Martinelli, F., Mercaldo, F., Nardone, V., & Santone, A. (2017). Formal Methods Meet

Mobile Code Obfuscation Identification of Code Reordering Technique. 2017 IEEE 26th Interna-

tional Conference on Enabling Technologies: Infrastructure for Collaborative Enterprises (WETICE),

263–268. https://doi.org/10.1109/WETICE.2017.23

Cobb, C. (2004). Cryptography for dummies [Electronic resource]. Wiley Pub.

Cohen, G. (2021). Throwback Attack: The AIDS Trojan unleashes ransomware on the world in 1989.

Industrial Cybersecurity Pulse. https://www.industrialcybersecuritypulse.com/facilities/throw-

back-attack-the-aids-trojan-unleashes-ransomware-on-the-world-in-1989/

Collberg, C., Thomborson, C., & Low, D. (1997). A Taxonomy of Obfuscating Transformations.

Http://Www.Cs.Auckland.Ac.Nz/Staff-Cgi-Bin/Mjd/CsTRcgi.Pl?Serial.

CrowdStrike Global Threat Report | CrowdStrike. (2022). Crowdstrike.Com.

https://www.crowdstrike.com/resources/reports/global-threat-report/

Dang, B., Gazet, A., Bachaalany, E., & Josse, S. (2014). Practical Reverse Engineering: X86, X64,

ARM, Windows Kernel, Reversing Tools, and Obfuscation. John Wiley & Sons, Incorporated.

http://ebookcentral.proquest.com/lib/jypoly-ebooks/detail.action?docID=1629173

Dolan, S. (2013). mov is Turing-complete. Computer Laboratory, University of Cambridge.

https://drwho.virtadpt.net/files/mov.pdf

Elsersy, W. F., Feizollah, A., & Anuar, N. B. (2022). The rise of obfuscated Android malware and im-

pacts on detection methods. PeerJ Computer Science. https://doi.org/10.7717/peerj-cs.907

97

Emotet | What is Emotet Malware & How to protect yourself. (2023). Malwarebytes.

https://www.malwarebytes.com/emotet

European Union Agency for Cybersecurity. (2022). ENISA threat landscape 2022: July 2021 to July

2022. Publications Office. https://data.europa.eu/doi/10.2824/764318

Faruk, M. J. H., Shahriar, H., Valero, M., Barsha, F. L., Sobhan, S., Khan, M. A., Whitman, M., Cuzzo-

creak, A., Lo, D., Rahman, A., & Wu, F. (2021). Malware Detection and Prevention using Artificial

Intelligence Techniques. 2021 IEEE International Conference on Big Data (Big Data), 5369–5377.

https://doi.org/10.1109/BigData52589.2021.9671434

Frankenfield, J. (2022). What Is Bitcoin? How to Mine, Buy, and Use It. Investopedia.

https://www.investopedia.com/terms/b/bitcoin.asp

Fruhlinger, J. (2022a). WannaCry explained: A perfect ransomware storm | CSO Online.

https://www.csoonline.com/article/3227906/wannacry-explained-a-perfect-ransomware-

storm.html

Fruhlinger, J. (2022b, August 31). Stuxnet explained: The first known cyberweapon. CSO Online.

https://www.csoonline.com/article/3218104/stuxnet-explained-the-first-known-

cyberweapon.html

Haas, A., Rossberg, A., Schuff, D., Titzer, B., Holman, M., Gohman, D., Wagner, L., Zakai, A., & Bas-

tien, J. (2017). Bringing the web up to speed with WebAssembly (p. 200).

https://doi.org/10.1145/3062341.3062363

Hamilton, D. (2003). Spies like us. Searcher, 11(9), 14–19.

Heiderich, M. (2011). Web application obfuscation (1st edition) [Electronic resource]. Else-

vier/Syngress.

Herrera, A. (2020). Optimizing Away JavaScript Obfuscation. 2020 IEEE 20th International Working

Conference on Source Code Analysis and Manipulation (SCAM), 215–220.

https://doi.org/10.1109/SCAM51674.2020.00029

98

How to detect & prevent rootkits. (n.d.). Retrieved 11 March 2023, from

https://www.kaspersky.com/resource-center/definitions/what-is-rootkit

JAMK University of Applied Sciences. (2018).

Jones, C. (2021). Warnings (& Lessons) of the 2013 Target Data Breach. Red River | Technology De-

cisions Aren’t Black and White. Think Red. https://redriver.com/security/target-data-breach

Kiliç, H., Katal, N. S., & Selçuk, A. A. (2019). vasion Techniques fficiency Over The IPS/IDS Tech-

nology. 2019 4th International Conference on Computer Science and Engineering (UBMK), 542–

547. https://doi.org/10.1109/UBMK.2019.8907177

Kolisar. (2008). WhiteSpace: A Different Approach to JavaScript Obfuscation. https://def-

con.org/html/links/dc-archives/dc-16-archive.html

Krigman, A. (2022). Ukrainian Power Grid Attack - Blog. GlobalSign. https://www.glob-

alsign.com/en/blog/cyber-autopsy-series-ukranian-power-grid-attack-makes-history

Kurane, S. (2014). JPMorgan data breach entry point identified: NYT. Reuters. https://www.reu-

ters.com/article/us-jpmorgan-cybersecurity-idUSKBN0K105R20141223

Lee, J., Chang, H., Cho, S.-J., Kim, S. B., Park, Y., & Choi, W. (2012). Integration of Software Protec-

tion Mechanisms against Reverse Engineering Attacks. International Information Institute (Tokyo).

Information, 15(4), 1569–1578.

Lin, D., & Stamp, M. (2011). Hunting for undetectable metamorphic viruses. Journal in Computer

Virology, 7(3), 201–214. https://doi.org/10.1007/s11416-010-0148-y

Liu, C., Xia, B., Yu, M., & Liu, Y. (2018). PSDEM: A Feasible De-Obfuscation Method for Malicious

PowerShell Detection. 2018 IEEE Symposium on Computers and Communications (ISCC), 825–831.

https://doi.org/10.1109/ISCC.2018.8538691

99

Mahajan, G., Saini, B., & Anand, S. (2019). Malware Classification Using Machine Learning Algo-

rithms and Tools. 2019 Second International Conference on Advanced Computational and Commu-

nication Paradigms (ICACCP), 1–8. https://doi.org/10.1109/ICACCP.2019.8882965

Malwarebytes 2022 Threat Review. (2022). https://www.malwarebytes.com/resources/malware-

bytes-threat-review-2022/index.html

Marpaung, J. A. P., Sain, M., & Lee, H.-J. (2012). Survey on malware evasion techniques: State of

the art and challenges. 2012 14th International Conference on Advanced Communication Technol-

ogy (ICACT), 744–749.

Mercante, A. (2018). A Brief History of Computer Viruses from Mischief to Ransomware. Ceros In-

spire: Create, Share, Inspire. https://www.ceros.com/inspire/originals/computer-virus-history/

MITRE ATT&CK®. (2023). https://attack.mitre.org/

MITRE ATT&CK Framework: All You Ever Wanted To Know. (2022, February 28).

https://www.threatintelligence.com/blog/mitre-attack-framework

Mobile Security Index | Verizon. (2022). https://www.verizon.com/business/resources/re-

ports/mobile-security-index/

Mohanta, A., & Saldanha, A. (2020). Malware analysis and detection engineering: a comprehensive

approach to detect and analyze modern malware (1st ed). Apress.

Mumtaz, Z., Afzal, M., Iqbal, W., Aman, W., & Iltaf, N. (2021). Enhanced Metamorphic Techniques-

A Case Study Against Havex Malware. IEEE Access, 9, 112069–112080. https://doi.org/10.1109/AC-

CESS.2021.3102073

O’Kane, P., Sezer, S., & McLaughlin, K. (2011). Obfuscation: The Hidden Malware. IEEE Security &

Privacy, 9(5), 41–47. https://doi.org/10.1109/MSP.2011.98

100

Ostroff, C., & Vigna, P. (2020). Why Hackers Use Bitcoin and Why It Is So Difficult to Trace. WSJ.

https://www.wsj.com/articles/why-hackers-use-bitcoin-and-why-it-is-so-difficult-to-trace-

11594931595

Packed Malware. (2020, August 1). https://www.arridae.com/blogs/Packed-Malware.php

Paganini, P. (2021). SolarWinds hack: the mystery of one of the biggest cyberattacks ever. Cyber-

news. https://cybernews.com/security/solarwinds-hack-the-mystery-of-one-of-the-biggest-

cyberattacks-ever/

Park, H., Jung, W., & Moon, S.-M. (2015). Javascript ahead-of-time compilation for embedded web

platform. 2015 13th IEEE Symposium on Embedded Systems For Real-Time Multimedia (ES-

TIMedia), 1–9. https://doi.org/10.1109/ESTIMedia.2015.7351768

Paskoski, N. (2022, February 16). What are Double and Triple Extortion Ransomware Attacks. RH-

ISAC. https://rhisac.org/ransomware/ransomware-double-and-triple-extortion/

Prandini, M., & Ramilli, M. (2012). Return-Oriented Programming. IEEE Security & Privacy, 10(6),

84–87. https://doi.org/10.1109/MSP.2012.152

Project Reporting Instructions. (2022). https://oppimateriaalit.jamk.fi/projectreportinginstruc-

tions/

Romano, A., Lehmann, D., Pradel, M., & Wang, W. (2022). Wobfuscator: Obfuscating JavaScript

Malware via Opportunistic Translation to WebAssembly. 2022 IEEE Symposium on Security and Pri-

vacy (SP), 1574–1589. https://doi.org/10.1109/SP46214.2022.9833626

Saengphaibul, V. (2022, March 15). A Brief History of The Evolution of Malware | FortiGuard Labs.

Fortinet Blog. https://www.fortinet.com/blog/threat-research/evolution-of-malware

Schwartz, M. (2001). Reverse-Engineering | Computerworld. https://www.computerworld.com/ar-

ticle/2585652/reverse-engineering.html

101

Shacham, H. (2007). The geometry of innocent flesh on the bone: return-into-libc without function

calls (on the x86). Proceedings of the 14th ACM Conference on Computer and Communications Se-

curity, 552–561. https://doi.org/10.1145/1315245.1315313

Sikorski, M., & Honig, A. (2012). Practical malware analysis: the hands-on guide to dissecting mali-

cious software. No Starch Press.

Siṅgh, J., & Siṅgh, J. (2018). Challenge of Malware Analysis: Malware obfuscation Techniques. In-

ternational Journal of Information Security Science, 7(3), Article 3.

Sophos Threat Report. (2022). SOPHOS. https://www.sophos.com/en-us/labs/security-threat-re-

port

The Carbanak hacker group stole $1 billion USD. (2015). https://www.kaspersky.com/blog/billion-

dollar-apt-carbanak/7519/

Tripathy, S. N., Das, S. K., Mishra, B. K., & Samantray, O. P. (2018). A Study on Malware Taxonomy

and Malware Detection Techniques. International Journal of Engineering Research & Technology,

3(16). https://doi.org/10.17577/IJERTCONV3IS16130

Unterfingher, V. (2021, June 25). Malware Polymorphism. Polymorphic vs. Oligomorphic vs. Meta-

morphic Malware. Heimdal Security Blog. https://heimdalsecurity.com/blog/polymorphic-mal-

ware/

Wang, X., Zhang, Y., Zhao, L., & Chen, X. (2017). Dead Code Detection Method Based on Program

Slicing. 2017 International Conference on Cyber-Enabled Distributed Computing and Knowledge

Discovery (CyberC), 155–158. https://doi.org/10.1109/CyberC.2017.69

What are Computer Viruses? | Definition & Types of Viruses. (n.d.). Fortinet. Retrieved 11 March

2023, from https://www.fortinet.com/resources/cyberglossary/computer-virus

What are Petya and NotPetya Ransomware? (2022a). Malwarebytes. https://www.malware-

bytes.com/petya-and-notpetya

102

What are the different types of malware? (2021). Www.Kaspersky.Com.

https://www.kaspersky.com/resource-center/threats/types-of-malware

What is a Computer Worm? (n.d.). Malwarebytes. Retrieved 11 March 2023, from

https://www.malwarebytes.com/computer-worm

What is a Trojan horse and what damage can it do? (2023, March 3). Www.Kaspersky.Com.

https://www.kaspersky.com/resource-center/threats/trojans

What is Adware? – Definition and Explanation. (2022, May 11). Www.Kaspersky.Com.

https://www.kaspersky.com/resource-center/threats/adware

What is malware? Definition and how to tell if you’re infected. (2022b). Malwarebytes.

https://www.malwarebytes.com/malware

What Is Ransomware? | Trellix. (n.d.). Retrieved 8 March 2023, from https://www.trellix.com/en-

us/security-awareness/ransomware/what-is-ransomware.html

What is Spyware? (2022, May 4). Www.Kaspersky.Com. https://www.kaspersky.com/resource-

center/threats/spyware

What is the CIA Triad and Why is it important? (2022). Fortinet. https://www.fortinet.com/re-

sources/cyberglossary/cia-triad

Xu, W., Zhang, F., & Zhu, S. (2012). The power of obfuscation techniques in malicious JavaScript

code: A measurement study (p. 16). https://doi.org/10.1109/MALWARE.2012.6461002

You, I., & Yim, K. (2010). Malware Obfuscation Techniques: A Brief Survey. 2010 International Con-

ference on Broadband, Wireless Computing, Communication and Applications, 297–300.

https://doi.org/10.1109/BWCCA.2010.85

103

Appendices

Appendix 1. Obfuscation techniques in MITRE ATT&CK MATRIX

	Abbreviations
	1 Introduction
	1.1 Objectives
	1.2 Ethics

	2 Malware
	2.1 History
	1970s to 1990s
	2000s-2010s
	Recent History

	2.2 Theory
	2.2.1 Malware and technique classification
	2.2.2 Detecting and protecting from malware
	2.2.3 Malware analysis
	2.2.4 Script-based and native malware

	3 Obfuscation
	3.1 Code transposition
	3.2 Compression
	3.3 Dead-code
	3.4 Encoding
	3.5 Encryption
	3.6 Indirect method call
	3.7 Instruction substitution
	3.8 Non-alphanumeric code
	3.9 Polymorphism
	3.10 Randomization
	3.11 Register randomisation
	3.12 Return-Oriented Programming
	3.13 Self-modifying code
	3.14 String splitting
	3.15 Whitespace decoding
	3.16 Whitespace randomisation

	4 Conclusion
	References
	Appendices
	Appendix 1. Obfuscation techniques in MITRE ATT&CK MATRIX

