

Minh Nguyen

DEVELOPING AUTOMATED UI TESTING

Technology and Communication
2023

VAASAN AMMATTIKORKEAKOULU
UNIVERSITY OF APPLIED SCIENCES
Information and Technology

ABSTRACT

Author Minh Nguyen
Title Developing Automated UI testing
Year 2023
Language English
Pages 28 + 4 Appendices
Name of Supervisor Smail Menani

The primary objective of the thesis was to investigate and evaluate different
methodologies and strategies for automating the testing of user interfaces (UI) in
software systems.

The research methodology used was design science research. The thesis process
is divided into two main phases: Literature review and Development. A literature
review was conducted to investigate the best practices and appropriate tech-
niques for automating user interface testing. In the empirical case study, an au-
tomated system for user interface tests was developed as part of the new Wärt-
silä application development. The UI testing was then integrated into automating
regression testing. The feedback and suggestion during this phase were incorpo-
rated into the final product.

Along with test development, test reports can be generated. It is essential that
test reports are precise and provide sufficient information for evaluating the er-
ror’s cause.

As a result of the study, a new UI testing code was developed and implemented
on the actual software product at Wärtsilä. The test provided partly consistent
and reliable results with various scenarios and cases. The regression test was
done repeatedly to avoid unexpected errors during development.

Keywords: User interface testing, test automation, and testing

ACKNOWLEDGEMENTS

As an embedded software developer with minimal web development and testing

tools knowledge, I felt very proud of completing this thesis before the project

started. My coding style and expertise have also significantly developed while

working on the thesis, thanks to my teammates' reviews. The knowledge acquired

through this study will serve as a strong foundation for any future endeavors in

automation.

I want to express my special gratitude to my beloved team Walkie Talkie at Wärt-

silä, who helped me along this journey by providing the tools, valuable documents,

and code reviews. Special thanks to Markus, Staffan, Tommi, Antti, Jarkko, Tulika,

Thomas, Tobias, and Arek for your invaluable support. To all my colleagues at

Wärtsilä, thank you for your direct or indirect support towards my thesis.

Special thanks to my thesis supervisor Smail Menani for the priceless advice, di-

rection, and support. With your steering, I would gain while writing my thesis.

Thank you to all teachers in the Information Technology program at VAMK for

nourishing my knowledge during the study.

My deepest thanks go to my family. Thank you for always being by my side.

Vaasa, April 10, 2023

Minh Nguyen

CONTENTS

TABLE OF FIGURES

ABBREVIATIONS

1 INTRODUCTION .. 8

2 METHODOLOGY .. 9

2.1 Research Approach ... 9

2.2 Research Design .. 9

2.2.1 Identify problems and motivation. ... 10

2.2.2 Define the Objectives of a Solution .. 10

2.2.3 Design and Development .. 11

2.2.4 Evaluation .. 12

2.2.5 Communication ... 12

3 LITERATURE REVIEW ... 13

3.1 Capture & Replay Testing ... 14

3.2 Programmable Web Testing ... 14

3.2.1 Visual Localization ... 15

3.2.2 DOM-Based Localization ... 15

3.3 End-to-end testing .. 16

3.4 Summary ... 17

4 DEVELOPMENT ... 20

4.1 Overview of web application development .. 20

4.2 Development of an automated user interface testing system 20

4.2.1 Developing Cypress automated user interface testing 21

4.2.2 Integrating with CI/CD... 25

5 DISCUSSION AND CONCLUSION ... 26

5.1 Test evaluation .. 26

5.2 Future development ... 27

REFERENCES .. 29

TABLE OF FIGURES

Figure 1. The design science research process came from the DSRM Process Model

of Ken Peffers (2) .. 10

Figure 2. The categories based on Leotta [5] and Leivo [3] 13

Figure 3. The architecture of the test automation system. 21

Figure 4. Testing process of Activate action ... 23

Figure 5. Test reports .. 24

Figure 6. Videos of processed test .. 25

Figure 7. Pull request with a successful build ... 25

Figure 8. Simple C&R code snippet to test the login button 31

Figure 9. Testing login page using visual localization written in TypeScript 32

Figure 10. Test login page using Cypress .. 33

Figure 11. Test Specification ... 34

file:///C:/Work/MinhNguyen_thesis.docx%23_Toc135047922
file:///C:/Work/MinhNguyen_thesis.docx%23_Toc135047922
file:///C:/Work/MinhNguyen_thesis.docx%23_Toc135047929
file:///C:/Work/MinhNguyen_thesis.docx%23_Toc135047930

LIST OF APPENDICES

APPENDIX 1. Example of UI testing using Capture & Replay Testing

APPENDIX 2. Example of UI testing using Visual Localization

APPENDIX 3. Example of UI testing using DOM-Based Localization

APPENDIX 4. Activation test specification

ABBREVIATIONS

A&C Automation and Control

C&R Capture & Replay

CD Continuous Delivery

CI Continuous Integration

DOM Document Object Model

E2E End to End

GUI Graphical User Interface

HTTP Hypertext Transfer Protocol

PI Planning Increment

UI User Interface

1 INTRODUCTION

Regression testing often entails performing predefined test cases on each new

version to confirm that the product satisfies its requirements. [1] However, as an

extensive system in Wärtsilä, it seems impossible to execute regression tests man-

ually before each release. Therefore, by automating repetitive tasks, test automa-

tion may be beneficial for regression testing.

An impediment of the thesis is that automation UI testing has never been used in

any project at A&C development. Consultation from the UX/UI team gave unprom-

ising results. Automation UI testing for web applications was required due to the

importance of long-term benefits for the product after release and reduced time

and resources required for manual testing, allowing developers or manual testers

to focus on other tasks.

The thesis aims to build an automated UI testing system for the new web applica-

tion to improve the defect-finding ability. Test execution should be convenient

with clear test reports. On the author's part, the thesis helps widen his knowledge

about automation testing framework and fosters the author's personal and pro-

fessional growth in this area. Time management, evaluating processes, and devel-

oping coding logic are also obviously achieved after the study.

Firstly, conducted methodologies and their information are described. While con-

ducting empirical research is explored in more depth, a literature review is only

touched upon briefly. The literature review covers the definition of automation

testing with different testing classifications. The development explains in detail

the solution disclosed in the literature review in practice and proves its reasoning.

Finally, the conclusion gives a general view of the findings and presents possibili-

ties for future work.

2 METHODOLOGY

The chapter gives an overview of the thesis’s implementation. The selected re-

search approach and the reason it was chosen are explained in detail, along with

the project design.

The systematic review was actively used throughout the study. Google Scholar and

Theseus.fi were primarily used to look for appropriate papers. To gain more insight

into the problem, articles, and references at the end of searched research were

also read to find further details.

2.1 Research Approach

The proper research method for developing automation UI testing would depend

on several factors, including the specific goals of the testing, the resources availa-

ble, and the time constraints. After reviewing carefully, the author settled on de-

sign science research as the most suitable.

According to Ken Peffers and his colleagues [2], the design science research pro-

cess is divided into five parts: Identify the Problem & Motivate, Define the Objec-

tives of a Solution, Design and Development, Evaluation, and Communication. An

overview of the process and each part will be discussed next.

2.2 Research Design

The research design of this study is split into several parts mentioned above. Each

part of the design process will be discussed in Figure 1.

2.2.1 Identifying Problems and Motivation

Developers ‘capacities reserved for maintenance are quite limited. Then the time

for testing and addressing problems must be minimized as least as possible. In

addition, when the application is handed over to the customer, it is highly incon-

venient for developers to notice and solve the problem without an automated re-

gression test. Therefore, it was decided that regression testing should be auto-

mated so that manual testing resources may be dedicated to more exploratory

testing.

2.2.2 Define the Objectives of a Solution

The goal of the automation is to free up manual testing time and resources for use

on exploratory testing, maintenance, new features, and currently under-tested ar-

eas. The overarching goal is broken down into smaller, more specific goals that

would be easier to track. They are explained and discussed as follows.

Figure 1. The design science research process came from the DSRM Process Model of

Ken Peffers (2)

• Capability to detect errors: Capability to detect errors is a good indicator

of how practical the tests are in preventing defects from being deployed

in the product system. [3] Even if tests fail to detect bugs, they are still

helpful since they assure developers that their code will perform as ex-

pected.

• Reliability: All tests should behave in the same way, failing if anything goes

wrong and passing if the tested functionality behaves as anticipated. Flaky

tests can sometimes be avoided, but the testing system should behave as

accurately as possible.

• Maintenance and update: Even though software evolved continually with

new features, the test should be easy to maintain and update with little

effort.

• Integration: The test should be part of the extensive system and be able

to integrate with CI/CD.

• Short feedback loop: Feedback from the test (both positive and negative)

should be processed as fast as possible after changes by developers

• Report about the failed test: Clear report should indicate which one is

successful, which one failed, and why it failed. Test reports can be in-

cluded in the final report sent to the customer.

2.2.3 Design and Development

Our web application was written mainly with the TypeScript programming lan-

guage. Several programming options were added in the developing process. Some

proprietary tools, such as TestCafe Studio, Ranorex Studio, or TestComplete, are

robust and support cross-platform. However, their license prices are relatively mi-

nor compared to the cost of working hours spent on manual testing or developing

the test automation system. Since the author has been involved in the project de-

velopment from the early days and understands its structure and code, Cypress –

an open-source end-to-end testing tool designed for modern web test automation

was chosen as the primary tool for the study. It provides a quick, dependable, and

user-friendly method for testing web applications, making it easier to identify and

resolve errors before they affect end users. The Development part will mention a

deeper explanation of how to create the test with Cypress. The last part of Devel-

opment will describe CI integration and test reports.

2.2.4 Evaluation

The evaluation was conducted as part of the development process. Almost imme-

diately after the completion of the initial tests, automated user interface testing

was implemented, and these tests were continuously evaluated and enhanced.

The developer frequently examined and analyzed codes for cleanliness, maintain-

ability, and scalability during the development.

2.2.5 Communication

During the timeframe of this research, the development of automation UI testing

for the application has been finished. Feedback from team members, supervisors,

and manager has been gathered and incorporated into the system. Automation UI

testing has become an integral part of the testing process for new application de-

velopment.

3 LITERATURE REVIEW

Automated testing has been proposed as one solution to the problems with man-

ual regression testing since automated tests can run faster and more often, de-

creasing the need for test case selection, and thereby raising quality while reduc-

ing manual effort [4]. However, because of its higher upfront cost in building the

testing infrastructure and limitation of scope, automated user interface testing

cannot replace human efforts and become a silver bullet in the industry. This lit-

erature review will compare and study different testing methods to determine the

best approach and execute our case study's automated user interface test most

effectively.

The categories of testing methods for automated UI testing are given in Figure 2

below based on Leotta [5]. A further explanation of each method will be discussed

later, with examples in subsequent sections.

Figure 2. The categories based on Leotta [5] and Leivo [3]

In the next part, capture and reply testing will be discussed. Then Programmable

Web Testing and Visual Localization are analyzed deeply, followed by the end-to-

end testing description used in the case study. Lastly, the pros and cons of the

different testing methods are mentioned in the last part.

3.1 Capture & Replay Testing

Capture & Replay (C&R) test cases are accessible and need no specialized testing

expertise. C&R tools have been created to verify the accuracy of interactive appli-

cations (GUI or Web applications). The tool records the user's actions on explored

Web pages, such as key presses and mouse clicks, in a script, enabling a session to

be replayed automatically without further user input. Lastly, a test case is gener-

ated by including one or more assertions in the recorded script. By repeating a

specified script on a modified Web Application Under Test (WAUT), capture/replay

technologies provide automated regression testing [6]. Example of C&R Testing is

shown in Appendix 1.

Nevertheless, according to Leotta and his colleagues’ research, programmable

tests are initially more expensive than capture and replay tests due to automated

code development depending on user inputs. Unfortunately, a slight change in the

GUI might disrupt a previously recorded test case, and the inability to reuse code

in capture and replay tests leads to more extraordinary maintenance expenses,

making it challenging to adopt this technique in our case study. Furthermore, if a

programmable approach is adopted, the process of test suite evolution will be-

come more straightforward and require less effort after at least two software re-

leases, according to Leotta’s conclusion. [6]

3.2 Programmable Web Testing

Contrary to Capture & Replay, Programmable Web testing is based on the manual

development of a test script. Leotta [6] pointed out that UI elements such as but-

tons, input fields, or links can be automatically tested in different cases: Coordi-

nate-Based Localization, DOM-Based Localization, and Visual Localization. Coordi-

nate-Based Localization method is extremely obsolete because this method uses

a screen recorder to compare the web page element during test case replays,

which require precise application layout and screen resolution. If the layout or res-

olution changes, the UI element coordinates may also change, causing the tests to

fail. Therefore, only two other methods are discussed, which are more robust and

reliable for identifying UI elements.

3.2.1 Visual Localization

Visual localization is a method that locates and interacts with user interface ele-

ments by analyzing visual appearance. This method includes obtaining and analyz-

ing screenshots of the UI components and identifying them using image recogni-

tion techniques. Visual localization is more flexible than DOM-Based Localization

in some cases when UI elements are dynamic and challenging to obtain. In addi-

tion, because of using an image recognition algorithm, Visual localization can pro-

vide high accuracy in locating UI elements and is more reliable than traditional

Coordinate-Based Localization. [6]

However, visual localization also has some limitations. The test can be sensitive to

visual elements such as color, font size, or position, which are supposedly extra-

neous to the test case. Test performance using visual localization can be slower

than other techniques since it needs two phases to execute: image recognition

training and testing. Hence, spending significant capacity and resources on this

method could be more practical.

3.2.2 DOM-Based Localization

In web applications and other structures, user interface components are found by

their IDs or information accessible in the Document Object Model (DOM). During

development, these elements are specified in the source code and accessible to

the testing tool. This technique is called DOM-Based Localization. DOM-Based Lo-

calization identifies and locates UI components using their characteristics and

properties, such as their id, class, name, and tag name. These properties may

generate selectors and XPath expressions uniquely identifying the component of

the page. [7]

In our case study, DOM-Based Localization is the most suitable approach due to

its robust, flexible, and cost-effective technique for locating and interacting with

user interface elements on web pages in the long run. Besides, the author partici-

pated in the development of the project from the early days and deeply under-

stood the source code of the project. Cypress framework was used, introduced as

the example above, to build and execute automated user interface tests. The de-

tails of the testing process will be mentioned further in the Development part.

3.3 End-to-end Testing

Test cases will be executed sequentially during testing; earlier tests may influence

subsequent tests. Thus, end-to-end (E2E) testing is the optimal testing design for

our system.

End-to-end testing is a kind of black box testing that verifies, from the user's per-

spective, that the application performs as intended from beginning to finish. It en-

tails testing the complete application process from beginning to end to verify that

all components function as intended and that the application fulfills the require-

ments and user expectations. [8]. E2E testing is advantageous since it can conduct

tests quicker than anyone, and its findings can be automatically reproduced. In

addition, E2E testing may be conducted unsupervised, saving significant testing

time and costs. One or more test cases can be derived from a single test scenario

by specifying the data for each step (for example, username=John.Doe) and the

expected results (i.e., defining the assertions). The execution of each test case can

be automated by implementing a test script following existing approaches (for ex-

ample, Programmable and DOM-based localization) [7].

Broadly speaking, E2E testing can be approached by two classifications: test script

implementation and web page elements localization [7]. There are several tools

that support E2E testing, such as Selenium, Sikuli, or Cypress. As discussed in Chap-

ter 3.2.2 about DOM-Base Localization, Cypress is chosen as an end-to-end frame-

work for our web application.

3.4 Summary

In the previous chapters, a variety of testing methods were covered. In this sec-

tion, a conclusion of all automated testing techniques is summarized and com-

pared in further detail about their advantages and disadvantages. Manual testing

is also considered, even though it was not mentioned above. The results of the

comparison are summarized in Table 1. Those found in the literature review will

be applied and evaluated in the Development part.

Automated user interface testing begins with the decision of what to automate.

As pointed out in [4], not all user interface tests can be automated; most of them

fail with a new version of the software under testing. Therefore, they suggest using

automated testing for regression testing primarily. Manual testing still plays an

important role and should be noticed, especially in exploratory testing. As a result,

a combination of both manual and automated testing can help ensure that an ap-

plication is thoroughly tested and performs as expected. [9]

Table 1: Pros and Cons of different user interface testing methods

Method Pros Cons

Manual testing Low initial cost; high

degree of adaptabil-

ity; good for explora-

tory testing

Time-consuming; vul-

nerable to human error;

hard to run regressively

Capture & Replay Testing Low initial cost; fast

and efficient way to

create test scripts;

Fragile; unreliability for

a consistent run; high

maintenance required

no programming skill

required

Programmable Web Test-

ing

Robust; low mainte-

nance cost; integra-

ble with other auto-

mated testing tools

High initial cost; pro-

gramming skill required

Capture & Replay Testing is the easiest way to start automating user interface test-

ing since no programming skill is required, and effortless to make a script. How-

ever, as mentioned above, since a script is generated through capture and replay

testing, any changes to the UI or application may require manual updates to the

script. This can be time-consuming and may make the script less reliable. Thus,

over time, capture and replay scripts can become challenging to maintain, leading

to increased maintenance costs for the project. If the program does not change

often, this method can still be applied in some basic automated tests.

Programmable testing is divided into three sub-methods: Coordinate-Based Local-

ization, DOM-Based Localization, and Visual Localization. As mentioned in Chapter

3.2, Coordinate-Based Localization is so fragile and complex to implement with

different screen resolutions. According to research by Leotta [5], DOM-Based Lo-

calization takes less time to develop, less flaky test, and has low maintenance cost

compared to visual localization. There are a few different hypotheses that might

explain these findings. The IDs or classes of some elements are hard coded in the-

source code but may have different styles based on responsive display or status,

such as buttons and the value displayed on the screen; these elements can easily

access and verify using the DOM-Based Localization testing method. In a visual

approach, these various styles may make the test broken.

Moreover, visual localization uses an image recognition algorithm, which may be

inaccurate when several same-looking elements are on the page. In addition,

some test cases require different actions, which makes the visual approach hard

to implement. Although there are advantages such as those mentioned above,

there are also disadvantages to using DOM-Based Localization. These test suits

cannot be written by non-technical testers, knowledge of source code is required.

The flaky test can still happen if the underlying structure of the web page changes.

Finally, each approach has its strengths and weaknesses. Visual Localization fits

with the tester, who needs to become more familiar with the source code and vice

versa.

Test coverage and test execution are also important factors that need to be con-

sidered when building an automated UI testing system. It is vital to ensure that the

testing system can adequately cover all critical aspects of the application to iden-

tify and address any potential issues. As Berner highlighted, it is necessary to do

the tests often and keep them in excellent condition since it is more costly to repair

them later. [10]. Test prioritization also needs analyzing when building test suits.

Some test cases are independent, while others are not. Then, an optimized UI test-

ing sequence should be implemented to save time and make it easier to obtain

feedback. Moreover, the necessary tests should be run to get developers' rapid

feedback.

4 DEVELOPMENT

This chapter describes how an automated user interface testing system was built

and integrated into our web application testing. The development part is divided

into three subchapters. The first subchapter presents an overview of web applica-

tion development. Then the following subchapter is the main focus of the study,

the development of automated user interface testing. Lastly, test evaluation and

the outcome of the test development are mentioned in the last subchapter.

4.1 Overview of Web Application Development

After several iterations in close collaboration with the A&C team members, some

crucial functionalities of the application were ready for operation and testing.

Meetings and multiple discussions were held through application development.

The purpose of meetings was to review the process, gain feedback and improve-

ment ideas, and steer the tool development project when needed.

4.2 Development of an Automated User Interface Testing System

As agreed with the General Manager and System Architect, the automated user

interface testing for web applications was chosen for development in this thesis.

Due to confidential policies, the names of test suits and tools were made up and

hidden.

Figure 3 represents the architecture of the test automation system. It is also ap-

plied in other application development of the A&C department. When a developer

commits a new change in the version control system, a new build based on the

change is labeled as either successful or failed, depending on linters or unit tests

running during the build step. If it is successful, the developer is allowed to commit

the change in the staging area to the local repository. If a new pull request is

needed, the CI system will build the code in a virtual machine based on the latest

successful build. If it is successful, a developer can merge the change into the tar-

get branch (approval from other reviews must also be agreed upon clearly).

Figure 3. The architecture of the test automation system.

Various types of linter and unit testing are applied in our project to ensure its flaw-

less execution. However, this chapter presents the description of how the auto-

mated user interface tests using Cypress were built and integrated into our CI sys-

tem to make them run regressively.

4.2.1 Developing Cypress Automated User Interface Testing

Cypress is executed in the same run loop as the application. There is a Node server

process underneath Cypress. Cypress and the Node process interact, synchronize,

and continuously conduct tasks on each other's behalf. Access to both portions

(front and back) allows developers to react to the application events in real-time

while doing actions needing higher permission outside the browser. Cypress also

functions at the network layer by dynamically reading and modifying web traffic.

This allows Cypress to alter all incoming and outgoing browser traffic and any code

that may impede its ability to automate the browser. [11]

Because of the large number of manual tests to be conducted in this PI, to limit

the scope of the thesis, only one test suit will be executed, which is believed to be

performed on any software package. Other test suits can be built based on this

sample test case.

Activation test

The test objective is to verify that activate action functions as intended and appli-

cation is in the specific state when Activate action is triggered. Activation test suit

involves testing in numerous situations. Thus, the status of desired functionalities

and some UI elements must be continuously checked throughout the testing pro-

cess. Due to the limited scope of the thesis and multiple scenarios, a small test

case is depicted in Figure 4 below.

Figure 4. Testing process of Activate action

The content of web application is extracted from an XML file; therefore, it must be

processed and loads the UI components gradually. We must determine whether

the web application is connected. If not, the test fails due to a connection problem.

After the application is connected and all UI components have loaded, the activa-

tion function will be tested. When the user clicks on the action that needs to acti-

vate, a dialog will pop up that requires the user to change and accepts user input.

The user will be prompted to confirm their changes before proceeding. The appli-

cation state will not change when the Cancel button is pressed; it will revert to the

condition it was in when the page was assumed. Confirm will initiate the activation

process. When a certain amount of time has passed after the activation sequence

has completed its run, the UI components and some statuses will be examined to

confirm that the application is in a proper state. The test specifications can be ob-

tained from Appendix 4.

Test Reports

Figure 5. Test reports

The test took about 22 seconds to finish all scenarios in the given example. Since

only 1 test suit was performed, the amount of time is not much less than perform-

ing a manual test, which took about two minutes to run. However, applying it to

the whole system may save a tremendous amount of time and effort. Cypress also

supports video generators, which help improve the testing process by providing a

visual representation of the testing process, making it easier to identify and fix

bugs, and can be used as documentation after the product is finalized.

Figure 6. Videos of processed test

4.2.2 Integrating with CI/CD

This thesis uses a continuous integration server to build and test the automated

UI testing system. Because of the scope of the thesis, the instruction and details

on how to set up docker or CI system configuration will not be mentioned.

CI system will be run when a new pull request is created and for nightly regression

tests. As illustrated below, regression testing needs much work to build up the rig

test and CI configuration, then pull request verification.

Figure 7. Pull request with a successful build

Although the automated UI testing system has been integrated into the CI system,

it has yet to be implemented due to missing the running server on the CI system,

which is exceptionally crucial for the operation of the application.

5 DISCUSSION AND CONCLUSION

This is the last chapter of the research, and its objective is to discuss and summa-

rize the thesis. Different testing methods were compared and applied to an exist-

ing testing system in the Development part. The thesis was presented to team

members, stakeholders, and the system architect at a demo meeting. Everyone

was pleased with the thesis and recommended some features that may be im-

proved and replaced in the future.

In this chapter, the automated UI testing system will be evaluated based on the

described requirements in Chapter 2.2.2. In addition, the existing system still has

several shortcomings; however, due to the scope of this thesis, some suggestions

will be provided for the future growth of the case study system.

5.1 Test Evaluation

The results of the testing system have partly satisfied the goals specified in Chap-

ter 2.2.2. The automated UI testing system ran through all test cases and scenarios

in only a few minutes, interacted with the server side to control and execute the

functionality of web application, which manually endured a few hours to com-

plete.

The automated UI testing system was capable of detecting errors in the user in-

terface. Both successful and failed messages were shown when executing test

suits. Since testing UI interacts directly with HTML, it is straightforward to com-

prehend source codes and maintain and create future test suites. Based on the

sample test case described in the Development chapter, several test suites have

been constructed. Lastly, Cypress provided excellent support for test reporting,

with built-in reporting capabilities and support for third-party tools (screenshots,

video recordings of the test runs).

However, so far, the reliability of the system must also be validated. Multiple test

runs have been undertaken; however, the findings needed to be more consistent,

and flaky tests still occurred. Various factors, such as the browser version, cache,

or page load time, might cause this. This will make it easier and more convenient

to examine pull requests. Furthermore, the short feedback loop factor can be built

but has yet to be applied to the system since the source code has not been opti-

mized and the test was quite fragile. The integration of automated UI testing into

the CI/CD pipeline has yet to be accomplished in the Development area due to

objective reasons related to the desired tested application. Recommendations for

those drawbacks will be presented in the following subchapter.

5.2 Future Development

Before delivering the automated UI testing tool to the case organization's produc-

tion, a substantial amount of work still needs to be done.

Multiple test runs occurred to verify the reliability of the test, but the result was

not promising. Only 23/35 attempts were passed ultimately; other times, some

test suits failed during the process. One of the most frequent errors was lost con-

nection with server during test. Currently, the mechanism of web application

when lost connection happens is wait for a short amount of time then automati-

cally reconnect to the server and reset the state. However, this mechanism makes

the test extremely obsolete since the test uses states of the application to deter-

mine a proper HTML to compare, especially when web application loses connec-

tion during middle of the test. In addition, the HTML elements were not hardcoded

in the application source code. Then sometime HTML elements ‘names were gen-

erated differently to the desired ones by undefined reason. Thus, further improve-

ments are necessary to make the test more robust and trustworthy.

Moreover, some test suits require testing multiple screens simultaneously. In ac-

tual production, not only one application is used but also multiple ones are used

to execute functionality on web application. Multiple tabs testing is under devel-

opment from Cypress team. Therefore, developers must find workarounds to

overcome this problem. Some internal features of some applications in A&C

departments also create obstacles for automated UI testing, which needs to be

handled by exploratory testing.

The automated UI testing system was not completely integrated to CI/CD to per-

form nightly test. Since the application requires a running system to handle all

functionalities, a feature to create and connect the web application to the running

system on a virtualization server or an independent simulation in the desired ap-

plication should be implemented to fulfill the CI integration.

REFERENCES

[1] S. M. Mohammad, "Automation Testing in Information Technology,"

International Journal of Creative Research Thoughts (IJCRT), 2015.

[2] T. T. ,. M. A. R. &. S. C. Ken Peffers, "A Design Science Research

Methodology for," Journal of Management Information Systems, pp. 45-77,

2007.

[3] T. Leivo, "Automating user interface testing: Case study at Finnish Transport

Agency," 2017.

[4] Emil Borjesson and Robert Feldt, "Automated System Testing using Visual

GUI Testing Tools: A Comparative Study in Industry," 2012 IEEE Fifth

International Conference on Software Testing, Verification and Validation,

2012.

[5] Leotta, M., Clerissi, D., Ricca, F., & Tonella, P., "Visual vs. DOM-Based

Web Locators: An Empirical Study," Web Engineering, pp. 322-340, 2014.

[6] D. C. F. R. P. T. Maurizio Leotta, "Capture-replay vs. programmable web

testing: An empirical assessment during test case evolution.," pp. 272-281,

2013.

[7] M. C. D. R. F. &. T. P. Leotta, "Approaches and Tools for Automated End-

to-End Web Testing," Advanced in Computers, pp. 193-237, 2016.

[8] B. Daniel, Q. Luo, M. Mirzaaghaei, D. Dig, D. Marinov, and M. Pezzè,,

"Automated gui refactoring and test script repair," Proceedings of the First

International Workshop on end-to-end Test Script Engineering, pp. 38-41,

2011.

[9] Emil Al´egroth, Robert Feldt, and Lisa Ryrholm, "Visual gui testing in

practice: challenges, problemsand limitations. Empirical Software

Engineering, 20," 2015.

[10] Stefan Berner, Roland Weber, and Rudolf K Keller, "Observations and

lessons learned from automated testing," Software Engineering, 2005. ICSE

2005. Proceedings. 27th International Conference, pp. 571-579, 2005.

[11] Cypress, "Cypress," [Online]. Available:

https://docs.cypress.io/guides/overview/key-differences.

[12] S. K. G. N. D. &. G. P. Gupta, "DOM-based Content Extraction of HTML

Documents," Proceedings of the Twelfth International Conference on World

Wide Web - WWW ’03., 2003.

APPENDIX 1: Example of UI testing using Capture & Replay Testing

The C&R testing method is commonly used with the Sikuli library. A typical exam-

ple of how C&R test case implementation is shown in Figure 5.

In this example, the login page is tested by capturing and comparing the login ele-

ments with the captured image. The next line is executed if the image matches at

least 90%, similar to the target picture. The correct username and password are

inserted; if the home page appears, the user is logged in successfully; otherwise,

the user logged in failed.

APPENDIX 2: Example of UI testing using Visual Localization

Figure 8. Simple C&R code snippet to test the login button

In this example, OpenCV is used to train template images of the username field,

password field, and submit button, which is used to compare to what will be cap-

tured during the test. Selenium WebDriver is used to set up the testing environ-

ment (Chrome) and interact with UI elements of the webpage. In the initial step,

Figure 9. Testing login page using visual localization written in TypeScript

all trained template images and threshold are loaded and defined respectively for

comparison. Chrome driver is configured with compressed options to reduce

memory usage and unnecessary config. After navigating to the desired website, a

screenshot of the login page is captured, and converted the resulting image to

grayscale for faster processing with processed templates. Next, username and

password fields are checked by comparing results from the previous step to target

images if more than 90% of similarities, username, and password fields are clicked

using Selenium functions. If the test passes every checkpoint before, username

and password in text form with be inserted into their fields. Submit button is lastly

navigated, and click if it is identical to the template. "Welcome" text is displayed

as the test completely passes. Image recognition is skipped in this example be-

cause it is irrelevant to the desired study.

APPENDIX 3: Example of UI testing using DOM-Based Localization

Figure 10. Test login page using Cypress

The code snippet from Figure 7 presents how the login page is tested using DOM-

Based Localization using Cypress framework. After visiting the page successfully,

Cypress get() function will find and compare user interface elements in the entire

HTML page to desired DOM elements ("input[name=username]" and "in-

put[name=password]"). If they match, the username and password will be filled in

by the type() function. Basically, the test can end here since if an error happens in

this step; a new error log will be shown. However, it could be more user-friendly

if testers need to look at the log whenever executing test cases. Then DOM ele-

ments("[data-cy=navbar-menu-avatar]") are also used to check that the user ava-

tar is visible, and the test passed.

APPENDIX 4: Activation test specification

Figure 11. Test Specification

