

Smart contract based decentralized voting system

Luka Dimnik

Haaga-Helia University of Applied Sciences

Bachelor’s Thesis

2022

Bachelor of Business Administration

Abstract

Author(s)
Luka Dimnik

Degree
Bachelor of Business Administration

Report/thesis title
Smart contract based decentralized voting system

Number of pages and appendix pages
38

This project has started out of the need for secure voting system which minimizes the need for trust
regarding the party conducting the vote operation as well as other participants. The outcome of the
project is intended as a proof of concept for the application of blockchain voting system on a small
organizational level with minimal overhead. This new voting system should also eliminate the need
for external database dependency for authentication.

In the theoretical part of the thesis reader can get an understanding of the concepts that make
blockchain development possible. Concepts such as blockchain, smart contracts, NFTs, Ethereum,
cryptocurrencies and more are explained in moderate detail.

Thesis goes in to details and describes the technologies that were chosen to complete the project
and what was the rationale behind the decision.

Practical part of the thesis describes the architecture of the application and describes the details of
setting up the local development environment. It continues with describing the process of
implementing the smart contracts and user interface. Smart contracts were implemented with
solidity, Openzeppelin, NodeJS, Hardhat and ethers and user interface was implemented with
ReactJS, ethers and Metamask wallet.

Results and outcome of the project are discussed at the end of the thesis. Project provided a good
outlet for the author to gain knowledge about the emerging field of blockchain development. Project
achieved the initial objectives of the thesis. Outcome of the project was a functional decentralized
application deployed on the Ethereum testnet with a functional UI and an access token NFT as a
form of authentication. Smart contracts were never deployed to the mainet due to high Ethereum
fees which were also stated as one of the reasons why Ethereum smart contract platform is not yet
ready for mass adoption.

Keywords
ethereum, smart contract, blockchain, solidity, hardhat

Table of contents

1 Glossary .. 1

2 Introduction ... 2

2.1 Objectives ... 3

2.2 Scope .. 3

3 Blockchain and cryptocurrencies: an overview .. 4

3.1 Block ... 4

3.2 Consensus algorithm... 5

3.2.1 Proof of work .. 5

3.2.2 Proof of stake ... 5

3.3 Blockchain use cases .. 6

3.4 Smart contracts ... 7

3.5 Wallet .. 7

3.5.1 Wallet address ... 8

3.5.2 Transactions ... 8

3.6 Solidity .. 8

3.7 Ethereum and cryptocurrencies ... 9

3.7.1 EIP – Ethereum improvement proposals .. 10

3.7.2 Ethereum virtual machine ... 10

3.8 NFTs ... 11

4 Methods .. 12

4.1 ReactJS .. 12

4.1.1 Virtual DOM .. 12

4.1.2 One way data flow .. 12

4.1.3 JSX .. 13

4.1.4 Props and state .. 13

4.2 Typescript ... 14

4.3 NodeJS ... 14

4.4 Hardhat ... 14

4.5 Ethers.js .. 15

4.6 MetaMask ... 15

5 Implementation .. 16

5.1 Local development environment .. 17

5.2 Access NFT smart contract ... 19

5.3 Voting smart contract .. 22

5.4 Smart contract deployment and verification ... 25

5.5 UI .. 30

6 Results and discussion .. 33

7 Conclusion .. 35

8 References .. 36

Appendix 1. Ballot smart contract Etherscan address .. 39

Appendix 2. Access token smart contract Etherscan address 39

Appendix 3. Smart contract source code ... 39

Appendix 4. Front end source code ... 39

1

1 Glossary

• RPC – Remote procedure call. Protocol that enables communication with Ethereum block-

chain and outside applications. It provides programmatical way for developers to interact

with Ethereum network such as querying the blockchain, executing smart contract code and

signing transactions.

• NFT – Non-fungible token. Unique digital token that exists on the blockchain. It can be used

to represent various types of digital media, virtual real-estate etc. They are created with

smart contracts and provide a secure and transparent way to verify ownership and transfer

of the assets.

• IPFS – Inter-planetary files system. Protocol and network for decentralized storage and ac-

cess of files. It can be integrated with Ethereum blockchain to provide storage for decentral-

ized applications.

• EVM – Ethereum virtual machine. Runtime environment for executing smart contracts on

Ethereum blockchain. It runs on every node in the Ethereum network and is capable of stor-

age, executing compiled code and therefore running decentralized applications.

2

2 Introduction

There has been a lot of interest and speculation in recent years about this new and emerging tech-

nology called blockchain. There are areas where blockchain has been proven useful and has been

adopted on a massive scale such as cryptocurrency and online gaming. Cryptocurrency has been

around since 2008 and its popularity is only increasing with each passing year but in the last cou-

ple of years blockchain games gained a lot of adoption. Blockchain games allow players to earn

cryptocurrency by playing the game and it also enables virtual assets to become truly unique or

rare. Other areas where adoption is in early stages but there is a lot of potential are supply chain

management for tracking items, identity verification, real estate for recording property transfers,

healthcare and voting.

The best way to find out about the potential viability of the technology for solving a problem is by

experimenting and testing. Because of its transparency, censorship resistance and other qualities

blockchain lends itself as a very convenient tool to help us bring about transparent, trustless, and

convenient voting system. In this project I won’t be attempting to tackle political voting on a mass

scale. For that kind of feat this technology is perhaps too new and not yet widely accepted or un-

derstood. Instead, I will rather try to see if I can use this technology to bring about voting system on

a smaller scale.

This project has started out of the need for secure voting system which minimizes the need for

trust regarding the party conducting the vote operation as well as other participants. The idea is to

use this new emerging technology to bring about system with minimal overhead, high degree of

security and anonymity that can be used in organizations of various sizes and orientations.

The thesis will be beneficial to all students and non-students who have interest in blockchain,

smart contracts, and security. It may also serve as proof of concept and inspire some organizations

in to adopting this approach. As a professional software developer, it is a part of my job to stay ed-

ucated about new technologies and their applications and this project will serve as a good starting

deep dive into the topic of blockchain.

The task of this project is to produce the smart contract voting application with its own identity veri-

fication system that would serve as proof of concept for organizations who want to set up a secure,

trustless, anonymous voting system in a short time with small overhead.

corrections

3

2.1 Objectives

Objective of this project is to gain understanding and explain the theory behind the core concepts

that power blockchain application and to develop an open source blockchain voting application with

a functional user interface that serves as a proof of concept. Voting application should not depend

on any centralized database to manage access or internal state. Research and experience from

practical work on the project should provide me with sufficient knowledge to critically assess the

technical viability of using blockchain voting system in small to medium sized organizations.

To reduce any dependency outside of the blockchain I will use NFTs (non-fungible tokens) for veri-

fying identity on the blockchain. Each participant in the voting will have the possibility to mint their

own NFT which will be used to verify themselves to the smart contract.

Application will consist of several components. UI will be built with typescript and ReactJS and the

backend will consist of several smart contracts deployed to the blockchain written with Solidity.

This project will provide insight in blockchain theory, how to programmatically interact with the

blockchain and how to write smart contracts in solidity programming language and deploy them. If

the schedule permits, I might also investigate the decentralized deployment of the frontend with

technology like IPFS.

2.2 Scope

The scope of the project does not include a very detailed and advanced styling of the UI. Highly

likely is that because of the time constraint end to end integration tests will be missing.

correction

4

3 Blockchain and cryptocurrencies: an overview

Blockchain as we know and understand it today was invented in 2008 by one person or a group of

people under a pseudonym called Satoshi Nakamoto. This technology is only possible due to the

previous work done by Dave Bayer, W. Scott Stornetta and Stuart Haber. What made blockchain

stand out from the rest of technology with similar goal is that it solved the double spend problem in

a decentralized way, meaning that suddenly there was no need for trust in a central authority. The

system itself was capable of self-regulation.

In the practical part of the project, I will utilize Ethereum blockchain to build voting application

which is both cryptocurrency and smart contract platform therefore theoretical overview will be fo-

cused primarily on Ethereum.

3.1 Block

Blockchain is a chain of transaction record collections that are linked together with cryptography. It

holds a complete record of all the transactions that were processed (Chuen, 2015). Each individ-

ual collection of records is called a block and because they are linked together, it’s called block-

chain. In general, every block is composed of the header and the body. Figure 1 provides high

level overview of the blocks in the blockchain being linked together with the hashes and the struc-

ture of individual block.

Figure 1. Example of connected blocks that form a blockchain (Zheng et al., 2018)

Block header contains important data about the block itself. It contains timestamp, parent block

hash that serves as a link to the previous block, Merkle tree root hash that is a hash of all transac-

tions in the block, block version that specifies what are the block validation rules, nBits and Nonce.

Block body contains transactions and counter of transactions. Block size and the size of the trans-

actions dictates how many transactions can be stored in a single block (Zheng et al., 2018).

5

3.2 Consensus algorithm

In a system of distributed nodes without a central authority we run in to a problem of making the

nodes reach a consensus on what is the truth. In computer science this is commonly called a byz-

antine general’s problem. Consensus algorithm is a way of addressing this problem by setting the

protocol, incentives, and ideas by which nodes come to a consensus in a trustless way (Zheng et

al., 2018). The most well-known consensus algorithms are proof of work and proof of stake.

3.2.1 Proof of work

Proof of work relies on computational power. Nodes in the network are calculating hashes of the

block header. Calculated value also called nonce must be smaller or equal than a given value.

Nodes are competing by trying to calculate the right value until the target is reached. As soon as

one node reaches the target other nodes must verify it. When the value is accepted by other

nodes, new block is added to the blockchain and the node who added the new block is rewarded

with some cryptocurrency. Nodes that are calculating hashes are called miners (Nakamoto, 2008).

Nakamoto in his whitepaper explains in principle how the proof of work is working but the explana-

tion lacks nuance, context and the negatives that come with it. It turns out that proof of work is terri-

ble for environment due to energy consumption and the consumption of hardware for the computa-

tions. There is also a danger of emerging mining pools and centralization. If power is concentrated

among small number of mining pools, it can present a real danger to decentralization and security

of the whole network.

3.2.2 Proof of stake

Central premise of proof of stake algorithm is that people with a lot of currency are less likely to at-

tack the network. In PoS the validators are staking their capital if they want to participate in block

validation. In the example of Ethereum the validator deposits 32 Ethereum. If the validator be-

haves in bad faith, they are penalized by destroying their staked capital. (Ethereum documentation,

2022). One of the goals of PoS is to eliminate energy consumption problem of PoW in which it is

quite successful as it reduces energy consumption to trivial level. In PoS competition between vali-

dator nodes is eliminated with random selection of stakeholders that append the block to the block-

chain. Selected validator is given the chance to add a block to the blockchain. By doing that the

validator is rewarded with the reward in the form of blockchain native cryptocurrency (Saleh, 2021).

6

3.3 Blockchain use cases

The core functionality of what makes blockchain so useful is that once the data on the block is

linked to the previous block it is impossible to reverse it. Blockchain can be viewed as a database

that is hosted on a decentralized network of nodes from which you are only able to read and write

data but never delete or alter said data.

Most common form of blockchains are hosted and managed on a peer-to-peer network of comput-

ers where every node holds a “copy” of the whole blockchain. How those computers or nodes

agree on the current state of the blockchain is determined by the consensus protocol. Consensus

protocol are a set of rules that nodes can use to determine if the new block is valid.

Blockchain technology is already being used in supply chain management to bring transparency

and security to the tracking of goods (Queiroz et al., 2020). One example of this is a startup called

Everledger which applies blockchain to diamond supply chain to ensure higher trust in the dia-

mond’s features (Lu & Xu, 2017).

Gaming has found a good use case for blockchain because it enables real ownership of virtual

items and earning of cryptocurrency through reaching game objectives. In recent years there was a

big increase in the popularity of the blockchain games such as Gods Unchained. As participants of

these games are investing real currency in these items and there is a high degree of chance in-

volved it is easy to draw parallels between blockchain gaming and gambling (Scholten et al.,

2019). While the comparison with gambling has a lot of merit there are numerous examples of

mainstream non blockchain games using the same features as loot boxes and in games items that

can be purchased with real money.

Blockchain technology has potentials to disrupt online verification. Because of its decentralized na-

ture it enables individuals to verify their identity without a centralized authority (Jamal et al., 2019).

In healthcare blockchain could be potentially used to create a transparent and secure system for

storing and sharing patient data. This can in turn reduce healthcare costs and improve patient out-

comes (McGhin et al., 2019). Blockchain has the potential to bring about increased confidence to

voting due to its security and transparency. All voting data can be stored indefinitely and securely.

There is an option to protect user anonymity and privacy without sacrificing transparency because

individual voters can be represented by an encrypted key. These features could help increase

voter turnout and decrease voter fraud (Kshetri & Voas, 2018).

7

Real estate system for recording property ownership and transfers can improved with the introduc-

tion of blockchain. Security and transparency can simplify buying and selling process and reduce

the risk of fraud. While the blockchain shows a lot of promise in the real estate sector the current

obstacle is unstandardized data. When real estate data is standardized verification and automation

can be greatly increased (Wouda & Opdenakker, 2019).

3.4 Smart contracts

First person to come use the term smart contract was Nick Szabo in the 1990s and the original

meaning of the term related to the automation of legal contracts (Szabo, 1997). Four purposes we

can think of smart contracts as pieces of computer code that are hosted on the blockchain. Code

will execute by itself once certain predefined conditions are met. Since the code is on the block-

chain it means that everyone has access to the source code, verify it and check how to interact

with the contract.

Smart contracts development promises a lot of potential but currently it there are still challenges for

developers. They naturally require high degree of security but currently there is little else for devel-

opers to ensure safe code than with code reviews and testing. There is a lack of good debugging

tools which makes development slow. Solidity the main development language and EVM has nu-

merous limitations. Overall, there is a lack of standards, community support and best practices

(Zou et al., 2019).

3.5 Wallet

Cryptocurrency wallet is a software application that enables access to the blockchain. Its two pri-

mary use cases are singing the transactions and keeping track of the blockchain assets related to

its address. A wallet also contains private keys which are used to sign transactions and as the

name implies it is vitally important that private keys are not exposed to unwanted parties. The term

wallet is misleading because the wallet does not hold the cryptocurrency itself, it only holds the pri-

vate keys which enable signing of transactions which in practice means sending and receiving

blockchain assets and interacting with smart contracts in some cases (Suratkar et al., 2020). If the

user loses access to the private keys, they also lose access to the assets in the wallet indefinitely.

Assets cannot be spent without the private keys therefore they are considered lost.

We can differentiate between several different wallet types (Suratkar et al., 2020):

• Desktop wallet is installed on the computer and is relatively secure if the computer does not

get hacked.

8

• Online wallet is a software managed by a third party and can be easily accessed from multi-

ple different devices. It is a very insecure option because third party holds the user’s private

keys therefore the users put their trust in to third party not to mismanage or steal their pri-

vate keys and assets in the wallet.

• Mobile wallet is a software app conveniently installed on the mobile device.

• Hardware wallet provides the maximum level of security because the private keys are

safely stored on the hardware device and never get exposed to the outside world. It is the

most secure wallet option but not the most convenient because every transaction needs to

be confirmed with the hardware device. If the hardware device gets stolen or damaged it is

possible to restore the wallet instance on another device if the user has the backup of the

private keys.

As of the time of this writing the most widely used wallet is MetaMask. MetaMask is installed as a

browser extension. It can be used as desktop wallet where users manage their own private keys,

or it can also serve as a user interface for the hardware wallet. This wallet will be used throughout

the practical phase of the project.

3.5.1 Wallet address

Every wallet has an address associated with it in the form of a long string that is created with cryp-

tography (Suratkar et al., 2020). Address in a blockchain context is a unique alphanumerical identi-

fier of fixed length on the blockchain which is used for sending and receiving cryptocurrencies or

other blockchain assets. It is normally created by a cryptocurrency wallet from a public and private

key. It works very similar to email address or bank account number.

3.5.2 Transactions

The only way to alter the state of the blockchain is with transactions and the only way to execute

transactions is by signing it and paying a network fee which can vary depending on many factors.

Transaction is signed with the private key, it is then included in a block and distributed in the net-

work. The receiver can verify the transaction by comparing decrypted hash and the hashed value

of the received data (Zheng et al., 2018). On Ethereum transactions are enabled by ERC-777

standardized smart contracts (Dafflon, 2017).

3.6 Solidity

Solidity is a programming language designed for writing smart contracts on Ethereum. It’s a high

level, statically typed, object-oriented programming language that resembles JavaScript and C++

9

the most. Solidity code is compiled into machine readable bytecode that is executed in the EVM

(Ethereum virtual machine) instance that is run on Ethereum nodes.

Solidity was proposed by Gavin Wood in 2014 who was one of the core Ethereum founders and its

first CTO. It was also heavily developed by Christian Reitwiessner and his group. The language is

actively being developed and sponsored by Ethereum Foundation and its community.

Language was designed from the beginning to be as user friendly as possible and incorporated

syntax that is very familiar to JavaScript developers but with time it became apparent that security

is the primary concern of smart contracts and became more verbose.

Solidity is built explicitly for Ethereum virtual machine and is not multi-purpose language like Ja-

vaScript or Python. It contains many built-in functions that help with smart contract development.

3.7 Ethereum and cryptocurrencies

Cryptocurrencies emerged on the scene in 2008 with Bitcoin. They are a form of digital money built

on top of cryptography. The main selling point of cryptocurrencies is that they remove the need for

the centralized authority that can enable, censor, or even revert transactions.

Ethereum like Bitcoin is a base layer decentralized blockchain. It used to use proof of work consen-

sus mechanism but on September 15th, 2022, it already transitioned to proof of stake which re-

duces its energy consumption by 99.95%. It was invented by Vitalik Buterin and his team in 2013

and it went live in 30th of July 2015. Motivation for Ethereum inception was born out of Bitcoins

constraints. Vitalik saw the need for general purpose programmable blockchain and in his view

Bitcoin couldn’t fulfil the requirements because of its limited scripting language, transaction types,

data types and storage.

The main difference to Bitcoin is that Ethereum uses Turing complete programming language

called Solidity which allows complex smart contracts (programs) to be deployed on its blockchain

which enable all kinds of use cases most notable of which is decentralized finance. Another big dif-

ference is that Bitcoin uses UTXO ledger model which stands for unspent transaction output and

Ethereum uses account-based ledger model. Both approaches have its positive and negative

sides, but account-based model works better with smart contracts and is easier to rationalize due

to its similarity with the bank accounts.

10

Ethereum also allows other fungible or non-fungible (NFTs) tokens to be launched on top of

Ethereum by smart contracts which is quite beneficial for them because they don’t need to worry

about protocol security because they are secured by Ethereum itself.

On Ethereum the most common tokens are fungible tokens based on ERC-20 standard. There are

also non fungible tokens on ERC-721 standard which differ from ERC-20 tokens in that every to-

ken produced by the smart contract is unique and ERC-1155 tokens which can be either ERC-721

or ERC-20 or combination of the two.

3.7.1 EIP – Ethereum improvement proposals

EIP is a chronologically numbered document intended for the Ethereum community to provide de-

scription of a new feature, process, or environment. EIP document should contain a compact tech-

nical description and justification for the feature. It is the responsibility of the author to document

the opposing views to the EIP and establish consensus within the community (Becze, 2015).

EIP is intended to be a structured and transparent way of submitting ideas for new features and as

a base topic for technical discussion within Ethereum community. EIPs are stored as text files in a

versioned repository and as such serve as a historical record of all feature proposals.

There are three main types of EIPs. There is an informational EIP that doesn’t propose a new fea-

ture but present various information to Ethereum community. Next type is meta or process EIP that

propose change to some processes in the Ethereum ecosystem but not the core protocol. The last

type is the standards track EIP that deals with changes to the Ethereum protocol itself. There are

four subcategories of standards track EIP of which the most relevant is ERC. ERC or Ethereum re-

quest for comments introduces standards and conventions on the application level. Obvious exam-

ple is ERC-20 which is a contract token standard (Becze, 2015).

3.7.2 Ethereum virtual machine

EVM or Ethereum virtual machine is at the core of Ethereum protocol. It is a computation platform

for executing machine code written in mostly Solidity programming language. It is quite like the way

Java virtual machine works. EVM is decentralized computer that enables smart contract deploy-

ment and execution (Antonopoulos & Wood, 2019, 7).

11

3.8 NFTs

The term NFT stands for non-fungible token. It’s a type of cryptocurrency created by smart contract

where each token is unique, and it is the only such token on a particular blockchain as opposed to

fungible tokens like ERC-20 standard where each token is the same and there is no way to distin-

guish them from each other. This feature makes it very useful for identification on the blockchain.

NFTs open all kinds of possibilities for establishing ownership of digital or physical assets, authen-

tication, identification. One could also argue that anything that is off chain is a potential risk and us-

ing NFTs to prove something off chain requires some sort of centralized servers or oracles that

feed the data to the blockchain and that can be compromised.

Trading volume of digital arts related to NFTs gained significant traction in 2020 and reached its

peak in 2021and first quarter of 2022 with 17 billion dollars. But by September of 2022 it shrank to

466 million which represents 97% drop (Bloomberg, 2022).

It was first proposed in EIP-721 called non-fungible token standard (Entriken, 2018) and developed

fully in EIP-1155 called Multi token standard (Radomski, 2018).

Every NFT token on ERC-721 standard is made unique by a tokenId that is uint256 variable which

can be used for creating other identifications (Wang, 2021). EIP-1155 introduced another smart

contract standard which enables one contracts to create and manage multiple token types. ERC-

1155 token can hold the same functionality as ERC-20, ERC-721 or even a combination of the two

(Radomski, 2018).

Wang et al. (2021) summarized several desired properties of NFTs:

• Usability. Current ownership information must be available in such a way that other applica-

tions or people can access that information.

• Availability. Token is always available to transact and verify.

• Verifiability. It is possible to publicly verify metadata and historical records.

• Transparent Execution. Every NFT action is recorded and publicly available.

• Tamper resistance. Current metadata and historical data cannot be altered.

• Atomicity. Trading can be done in an ACID transaction.

• Tradability. NFT can be traded at any time.

12

4 Methods

All the necessary tools and services for completing this project will be described in this section.

4.1 ReactJS

For building the client UI I will choose React JavaScript library because it is currently the industry

standard and the familiarity of the library which means I don’t need to do additional research when

developing user interface.

According to its official documentation React is a JavaScript library for building user interfaces.

It was developed by Facebook and first released in 2013. Since then, it has seen a massive rise in

popularity, and was the most popular web framework in 2021 (StackOverflow, 2021). Most popular

application of React framework is applied when building a UI for the SPA (single page application).

Unlike vanilla JavaScript which uses imperative programming style React uses declarative style

which means that we state in the code what we want to happen and react will make that happen

behind the scenes. This is most reflected in how React renders html elements using JSX language.

The core building block of React are reusable components which are just functions of JavaScript

code that can share data between each other.

4.1.1 Virtual DOM

React utilizes virtual DOM (document object data model) which enables changing only part of the

DOM and other optimizations without the need to re-render the whole page which greatly improves

performance. Virtual DOM is connected with actual DOM using a diff() algorithm and it makes sure

that only the nodes that have been changed in the in memory virtual DOM tree end up being

changed in the actual DOM (Bhalla et al., 2020).

4.1.2 One way data flow

React is structured as a tree of components. The main data flow happens from top to bottom, from

parent to a child component via props. If the data is to be passed from a child to a parent compo-

nent, we can achieve this in several ways. One way is to pass functions from parent to child which

can return values from child components. Another way is to use a third-party state management

library like Redux or even Reacts own state management functionality called Context. When the

13

component state changes upstream it will trigger re-render and re-evaluation of all child compo-

nents.

4.1.3 JSX

JSX is a syntax extension to JavaScript. Its syntax looks very similar to HTML but that is mislead-

ing since JSX compiles to simple JavaScript. In figure 2 we see a code snippet containing JSX

code before compilation and below equivalent code after compilation.

Figure 2. JSX code before and after compilation (React documentation, 2022)

Like HTML in JSX elements can also contain children. The purpose of JSX is to help developers

reason with the UI structure and to abstract the menial creation of elements as it would need to be

done in plain JavaScript. It uses declarative programming as we declare what kind of element we

want rendered on screen and React creates those elements behind the screen and updates the

DOM. Because JSX is just Syntactically different JavaScript we can conveniently use JavaScript

code inside JSX inside curly braces, additionally we can also use JSX in our functions, loops and if

statements.

4.1.4 Props and state

In react data is being passed around from one component to another with the use of props. This

flow is mainly from the parent to a child component but there is also a possibility for child compo-

nent to pass data to a parent in the function that the child component received as a prop. Props are

used to configure React components externally. They are immutable which means that they can’t

be changed once they are passed to a child component. This feature prevents child components to

effect change on their parent (Wohlgethan, 2018).

Components own data management is called state. It contains data specific to the component and

is not shared with others. In React it is not recommended to manipulate state directly. State should

14

only be mutated with the use of setState or with the function returned by the useState hook (React

documentation, 2022).

4.2 Typescript

Because clean and safe code is especially important in blockchain development I will choose

Typescript for my main programming language. In recent years I got to work with Typescript exten-

sively and it has proved to provide good developer experience and code with less errors than pure

JavaScript.

Typescript is a strongly typed programming language that extends JavaScript. Typescript is so

called superset of JavaScript which means that all JavaScript code is also valid typescript code,

and all Typescript code gets transpiled to JavaScript before its run. With its JavaScript gets more

features like static typing, compile time checks, code editor support and many more. It was devel-

oped by Microsoft in 2012. Because of its powerful features Typescript has become indispensable

in bigger JavaScript projects. It is also one of the most loved programming languages ended in

third place in 2021 Stack Overflow developer survey (StackOverflow, 2021).

4.3 NodeJS

The chosen scripting language of the project is Typescript therefore we need an engine to execute

our code. For this task I will choose NodeJS because majority of the documentation and tooling is

built for NodeJS.

NodeJS is a JavaScript runtime engine based on Google Chrome JavaScript V8 engine. It enables

execution of JavaScript code outside of the browser. It was developed in 2009 by Ryan Dahl. It is

mostly used to create server-side applications. Node has JavaScript’s own asynchronous, and

event driven functionality that becomes useful in data intensive applications. The feature that

makes Node highly scalable is its non-blocking nature. It does not need to wait for the request to

resolve before continuing with the next task.

4.4 Hardhat

For writing Ethereum smart contracts we will need a special development environment. Hardhat

provides all the needed features such as editing, compiling, debugging, and deploying when devel-

oping smart contracts locally. The main component is Hardhat Runner which enables management

and automating tasks that come naturally with smart contract development.

15

Tasks and plugins are the core concept of Hardhat runner. If we want to run a task, we can do that

from a command line. If we want to compile our Solidity code, we can run compile task like “npx

hardhat compile”. Individual tasks can be customized and by combining them we can create work-

flows (Hardhat documentation, 2022).

4.5 Ethers.js

As of the time of the writing there are two primary libraries for interacting with Ethereum blockchain

called Ethers.js and Web3.js. I will choose Ethers.js because it has slightly easier high-level inter-

face, it is more modular, and it provides Typescript support.

Ethers.js is an open-source library via MIT license designed for interacting with Ethereum block-

chain and its ecosystem. It provides crucial features such as private key security on the client and

others (Ethers documentation, 2022).

Ethers API is divided in to four core modules (Moralis, 2021):

- Ethers.Contract: used for deploying and interacting with the smart contracts. Module allows

us to call smart contract functions and retrieve information from the smart contracts.

- Ethers.Provider: for changing blockchain state we need signed transactions. Provider mod-

ule is used for sending transactions and issuing queries.

- Ethers.Utils: used for formatting data and processing use inputs

- Ethers.Wallet: module allows us to connect to a wallet, create new wallets and sign trans-

actions.

4.6 MetaMask

MetaMask is one of the most widely used Ethereum wallets for storing and transacting Ethereum,

ERC-20 tokens, additionally it provides user interface when connecting with decentralized applica-

tions. It is both a browser plugin and a mobile app. In 2022 one of the most widely used blockchain

applications is Uniswap, a decentralized exchange where you connect with MetaMask to exchange

Ethereum tokens. Main advantages of MetaMask are simplicity and ease of use, its lightweight

since it’s not storing Ethereum blockchain, and good Dapp support.

16

5 Implementation

Entire application will consist of four main components:

• NFT smart contract – enables minting of NFT access tokens which give access to voting

function in the voting contract

• Voting smart contract – tracks the voting state and authenticates user.

• MetaMask wallet – holds the access token, Ethereum tokens and enables singing of the

transactions

• React application – user interface that connects to MetaMask wallet and interacts with

smart contracts

Implementation of the thesis is a decentralized application built on top of the Ethereum blockchain.

Application does not have a traditional backend where the bulk of the logic resides instead smart

contracts will provide the logic of the application. User of the application can access the React cli-

ent-side application through any device that runs a web browser. Client-side application will pro-

vide user friendly access to the smart application functions. To interact with the voting smart con-

tract, the user needs to be connected to their own MetaMask wallet with which he will sign transac-

tions to execute functions on the smart contract e.g., cast a vote. Before the user can cast a vote in

the voting contract NFT access token has to be minted first from the NFT contract. When the user

wants to cast a vote the code in the voting contract will check if the MetaMask wallet holds the NFT

access token from the NFT contract that was deployed alongside voting contract. If the wallet does

not hold the access token the voting operation will be rejected.

17

Figure 3. Application architecture

In the Figure 3 we can see a simplified version of Ethereum blockchain composed of linked blocks.

NFT and voting contract are deployed separately to different blocks. All the communication be-

tween the client-side application and the EVM (Ethereum virtual machine) is done through the RPC

(remote procedure call). Ethers.js library is used by the React application to act as a bridge to facil-

itate communication between the MetaMask wallet and Ethereum blockchain.

5.1 Local development environment

For local development we will use visual studio code editor as it provides a lot of extensions that

together make a great blockchain development environment. First, we will install node.js version 18

as this will be a node project. We will initialize node project by running npm init. For vs code we will

18

install extension called Solidity + Hardhat as it provides solidity language support with syntax high-

lighting, code completion and editor integration for hardhat projects.

To communicate with the Ethereum blockchain we must use RPC (remote procedure call) to con-

nect to an Ethereum node. We can construct and send http requests to RPC endpoint directly or

we can abstract some of the complexity and use library like Ethers.js that provides far easier inter-

face.

During development we will use wallet private key and API keys which shouldn’t be exposed to the

public therefore we will create a few local environment variables, store them in .env file and access

them in our project with the help of “dotenv” npm package.

To interact with Ethereum test or main network we will need a real EVM wallet with some test

Ethereum. For this purpose, we will create a fresh MetaMask wallet and export wallet private key

and store it in the .env file.

To complete our development environment, we will also install hardhat local development environ-

ment “npm install --save-dev hardhat”. Now we can initialize hardhat project by running “npx

hardhat”. We will be presented by a prompt about what kind of project we want to initialize as seen

in Figure 4. We will pick typescript project and we will also agree to install "@nomicfounda-

tion/hardhat-toolbox" which is a bundle of most used hardhat extensions. Hardhat initialization will

create hardhat.config.ts file at the root of the project. All the hardhat configuration like extensions,

tasks, networks, etc. is done through this file.

Figure 4. Hardhat initialization prompt

Some of the most helpful things Hardhat does is that it prepares test setup for us, it enables us to

run our own node on local machine and offers us a JavaScript console which we can use to send

requests to the local node. This is convenient for quickly testing features on the fly without having

to write a script. Hardhat toolbox also includes type-chain extension that generates typescript types

for smart contracts once they are compiled. We can see how the hardhat.config.ts and the project

structure look like at the end of our configuration in Figure 5.

19

Figure 5. Project folder structure (left) and hardhat configuration file (right)

5.2 Access NFT smart contract

We will use Openzeppelin to give us the basis for our smart contract so that we don’t need to write

boilerplate. npm install @openzeppelin/contracts. By interacting with this smart contract user will

be able to mint or create a non-fungible token ownership of which will give the user the right to

vote.

First, we specify which solidity version this contract will be using. Then we import the contract tem-

plate from open zeppelin. When we define the contract, we will extend the ERC721 from the open

zeppelin template so that we inherit all the basic functionalities from the template as seen in Figure

6.

Figure 6. Utilizing OpenZeppelin ERC721 contract

20

Figure 7 shows initialization of “s_tokenCounter” property. It will be a variable that will give a

unique token identifier to every minted NFT. We will go with the simple version and will make a to-

ken identifier incremented number of every mint execution.

Figure 7. Initialization of s_tokenCounter

In the constructor we specify that this is a 721 constructor. Constructor will take two arguments.

First string argument will specify what will be the NFT collection name and the second argument

tells the contract what the acronym for the nft collection will be. In the constructor we will initialize

s_tokenCounteer private variable with zero (Figure 8).

Figure 8. Access token constructor function

Next, we will define a function called mintNft() (Figure 9) which will return uint256 integer. Inside

this function we will call _safeMint() function which comes from OpenZeppelin template. _safeMint

function will take first argument which will be the address of whoever called the function so that

they will receive the nft and the second argument will represent the unique token id which will in

our case be s_tokenCounter. The second action of this mintNft function will be the incrementing

s_tokenCounter variable by 1 and returning the incremented s_tokenCounter.

Figure 9. Function for minting access tokens

Next function in this contract is getTokenCounter (Figure 10) which is a public function meaning

everyone can access it and it returns current s_tokenCounter.

21

Figure 10. Access token counter function

TokenUri is an important function that tells us how this token is going to look like. Token URI (uni-

versal resource identifier) turns into URL that returns JSON object like the figure below. We will de-

fine the tokenURI function explicitly in our contract to override the same function from the template

as seen in Figure 11.

Figure 11. Function providing token uri

Every ERC721 token should have the same URI metadata schema. Schema can be seen in Figure

12.

Figure 12. ERC721 Metadata JSON schema (Entriken, 2018)

Next, we will write some basic tests to be sure that our contract works correctly. We start with the

basic describe block where we will initialize variables deployer and basicNft because we want them

22

to be available in all our tests. To prepare for our tests we will use beforeEach() function to get the

deployer address and the contract object as depicted in Figure 13.

Figure 13. Access token test preparation

In our first test we will first mint our nft and then wait for one block confirmation then we get the to-

kenURI of the minted token and the token counter. First, we want to make sure that tokenCounter

increments when we mint a token, second, we want to make sure that minted token has the correct

tokenUri as seen in Figure 14.

Figure 14. Testing access token minting functionality

5.3 Voting smart contract

Now that we have nft contract that mints nft access tokens in place we can move on and create a

voting smart contract. This contract will contain the logic for creating proposals and following the

score and determining who can vote or not.

23

Figure 15. Construct and properties of Ballot contract

Voting contract will contain two constructs and three properties as depicted in Figure 15. Two con-

structs are called “Voter” and “Proposal”. We can think of constructs in Solidity as interfaces in

TypeScript. It tells us the structure of the object and the types of properties it holds. Voter construct

will have property “voted” which is a Boolean and we will simply use it to indicate if a particular

voter already cast their vote. “vote” property indicates which voting option voter selected. Proposal

construct will contain name property which will be bytes32 type as byte32 type takes less space in

memory and we can save a little on gas cost and “voteCount” integer for tracking the amount of

votes for the proposal. Below constructs we a property “nftContractAddress” with type “address”

and it will store the address of access token contract upon contract initialization. “voters” public

property has a type mapping which is equivalent to an object in Java or JavaScript, and we specify

that this object will have key object pairs composed of addresses and “Voter” objects. Last property

is “proposals” which is an array of “Proposal” objects.

Figure 16. Voting contract constructor function

Constructor function has two parameters “proposalNames” array of bytes32 and “_nftContrac-

tAddress”. Memory keyword indicates that the argument value is only needed for the constructor

24

execution and can be destroyed afterwards to save storage space. We will loop through “proposal-

Names” and create an array of proposals and give each proposal a name and a “voteCount” start-

ing at zero. Second parameter “_nftContractAddress” will simply be assigned to “nftContrac-

tAddress” property (Figure 16).

Figure 17. Voting function

Our main function for voting will take a proposal represented by integer as an argument and we will

use it as an index for accessing the desired proposal in the “proposals” array and incrementing its

vote count by one. There are two checks before the proposal vote count can be incremented. First,

we will import an interface IERC721 and its function “balanceOf” from OpenZeppelin contracts to

check if the address that is calling the function holds at least one token from the access token con-

tract we deployed earlier. If the caller of the function does not hold the token the function will throw

an error. Next condition will check if the voter has already voted if it did it will again throw an error.

If the checks pass, we initialize “sender” variable with the type of voter and assign it to the newly

created property in the voter’s object. Storage keyword here indicates that we want to persist the

“sender” variable even after the function execution. Finally, we mark that “sender” has voted and

for which proposal (Figure 17).

25

Figure 18. Function for declaring winning proposal

“winningProposal” is a public view function that can be called, and it will return the index of pro-

posal with the highest vote count. Code can be seen in Figure 18.

Figure 19. Function for declaring the winner of the vote (above) and function for checking eligibility

to vote (below)

If instead of just the index of the proposal, we want the name we can call a public view function

“winnerName” and it will return the name of the proposal in byte32 format. Last function on this

contract is “isElligibleToVote” that returns a Boolean value based on the fact if the caller holds the

access nft token or not (Figure 19).

5.4 Smart contract deployment and verification

Since the contracts are ready, we can begin implementing the deployment script. We will be de-

ploying to Goerli Ethereum test network. To help us with deployment we will use another hardhat

plugin called “hardhat-deploy”. We will install it with the command “npm install -D hardhat-deploy”.

This will give our hardhat environment another command called deploy which we will use later.

26

Figure 20. Deployment script imports

For the deploy scripts we will need to import a few packages. Most of the imports are for various

types but there are a few utility functions and constants we will be using as can be seen in Figure

20.

Figure 21. Hardhat runtime environment de-structuring

Deploy function will be an async function that will be responsible for deploying both contracts con-

secutively. It takes “hre” (hardhat runtime environment) as an argument. We don’t need to worry

about passing arguments to deploy function because hardhat-deploy will pass it the whole hardhat

development environment for us in the background. From “hre” we will de-structure some proper-

ties and methods we will use (Figure 21).

27

Figure 22. Defining arguments and executing deployment

First contract to be deployed is the access nft contract. This contract does not need any arguments

when deployed so we will leave the args as an empty array. Next, we will use the deploy function

which we de-structured from “hre” argument earlier. Deploy will first take a contract name, and a

deploy options object as arguments. In the options argument we will specify the address of the de-

ployer, arguments for the contract, how many block confirmations to wait before proceeding and

that we want to log results of the deployment. We will repeat similar set of instructions for deploy-

ing the Voting contract with one important difference. We want to pass two arguments to the Ballot

contract. First will be the array of proposal options and the second will be the contract address of

the nft access token contract (Figure 22).

28

Figure 23. Conditional Etherscan verification

Before finishing the script, we want to decide if we want to verify the contracts on Etherscan or not.

Verified contracts instill more trust as it makes the code publicly available and verifiable. We only

want to verify if we are deploying to Ethereum test or main net therefore we want to skip this step if

we are running node locally. Verify is a utility function that was created just for this scenario. In the

end we use the default export to the function and add the tags. Tags are very useful when we want

to customize our deployment. By adding the flag “--tags nftandballot” to deploy command we tell

hardhat that we only want to run deploy scripts that have that same tag defined (Figure 23).

Figure 24. Etherscan verification function

29

We will pass contract address and constructor arguments to verify function. It will run a common

hardhat command verify and handle any potential errors (Figure 24).

We can use Etherscan which is a visual tool for browsing the blockchain to get an overview of our

contracts (Figure 25).

Figure 25. Contract overview on Etherscan

In the contract tab of the we can also see that our verification process was successful (Figure 26).

We now ensured that we deployed the exact intended code of the contract to the blockchain. This

action also gives the users confidence in the contract because they can read and audit the con-

tract.

Figure 26. Verification successful

30

5.5 UI

Once the smart contracts are deployed to Ethereum test network we can use the React UI to inter-

act with it. For creating our react app we will use a front-end build tool called Vite. We will initialize

our app with the command “npm create vite@latest”. To interact with the blockchain from the client

we will use Ethers.js library and install it with “npm install --save ethers”. Final folder structure and

UI main page can be seen in Figure 25.

Figure 27. Front-end main page (left) and project structure (right)

To do anything on the Ethereum blockchain we need to sign transactions and to sign transaction

we need access to the wallet.

Figure 28. Request client’s wallet account

To connect to the wallet, we can press “Connect wallet” button which will invoke the “requestAc-

count” function (Figure 26). This function will open the MetaMask wallet in the browser. We can

proceed by typing in our password and clicking connect. When connecting we are giving our app

the rights to suggest transactions for us to approve.

31

Figure 29. Connecting MetaMask wallet to the browser application

Next step is to mint the access token by clicking on the “Mint NFT” button (Figure 28).

Figure 30. Mint access token from client application

Once the wallet is connected and we have minted the access token we can proceed and vote in

the election. We choose the desired option and press vote. Function for voting will look as depicted

in Figure 29.

32

Figure 31. Voting function from client application

To check the winner of the election we can press the “Get winning proposal” button and the result

will be displayed on screen.

Figure 32. Fetching winning proposal function from client application

33

6 Results and discussion

By security we mean that we can be sure that the contract can’t be taken down, but we can’t be

sure that we don’t have vulnerabilities in the code itself.

Results of the project are satisfactory. The main goals of the project have been achieved most im-

portant of which is delivering smart contract application with a functional UI and authentication

based on the access token. The application is secured by the whole weight of the Ethereum block-

chain and has no dependance on the external components like databases for example. Smart con-

tracts have been deployed to the Ethereum test network and we can use Etherscan to see all inter-

actions with the smart contracts and that contracts have been verified. Using blockchain hosted ac-

cess token for voting is a practical solution that removes the need for a database. Potentially that

same token can also be used for accessing other contracts of for example certain organization. I

can also envision some downsides to this solution. There can potentially be the case of a loss of

access to the wallet that holds the token, or the wallet could get compromised and the access to-

ken stolen. In this case it would be interesting to explore a possibility to invalidate stolen or lost to-

ken and give the user the option to mint a new token.

The project serves as a proof of concept only and it was never deployed to the Ethereum main net

due to unacceptable high fees. This illustrates that in its current state Ethereum platform is not yet

ready for mass adoption and it is not a good choice for hosting an application such as the voting

system. The smart contract platform that will be able to provide speed and security on the same

level as Ethereum has currently and is able to scale and keep network fees in check, will be a win-

ner of the future. As of now Ethereum is the market leader for smart contract platforms, and it has

a lot of strong features. It has the biggest number of developers, users, development tools, it is en-

vironmentally friendly, but it is not able to process large number of transactions with low fees re-

quired for mass adoption.

The UI due to the time constraint turned out to be quite simple but that was expected from the be-

ginning. It had the least importance for this proof of concept and the development time dedicated to

it was first in line to be sacrificed in case of delays. Useful improvement to the UI could be imple-

menting a feature where the user could select themselves which voting smart contract they want to

connect to because currently the address is provided to with the environment variables. Addition-

ally, if the application would be developed for production, some considerable UX improvements

would be required.

34

For the project implementation I always strived to pick the most up to date and popular tools and

technologies as that would give me the best opportunity of finding support online once I inevitably

hit the roadblock in development. In hindsight this was a good decision since even with using the

established tools finding the right information was much harder compared to the traditional web de-

velopment.

Before the start of the project, I had basic understanding of blockchain technology but no

knowledge of blockchain and smart contract development. This led me to spend lots of time re-

searching, reading documentation, and going through tutorials. As a result of this, development

was much slower than I originally anticipated. I had to learn how to use certain development tools

and a completely new specialized programming language. At the end of the project, I gained a

good overall understanding of blockchain development and challenges that come with it. There is

also more to blockchain development that was covered during this project such as the use of ora-

cles to feed data outside of blockchain to smart contracts which opens even more possibilities,

NFTs with special feature, cross-chain development and more.

Blockchain and cryptocurrency opened the door for a completely new field in software develop-

ment. This new type of developer is now called blockchain developer and they combine some of

the knowledge from traditional front-end web development with a backend that is now powered

with blockchain and other tools. This new field also requires a complete shift in the mentality of the

developer. The idea of “move fast and break things” that was popularized by the successful Silicon

Valley startups must be put aside as it can be dangerous in blockchain space as was demon-

strated by multiple examples in the past. More appropriate approach should be more akin to devel-

oping critical piece of software like for example software for planes, spaceships, etc. Just like in

launching a rocket to space there is very little that can be done once smart contracts are already

deployed to the blockchain. Once smart contract is deployed you can’t update it. Of course, if vul-

nerability is found early contract can be scrapped and we could deploy a new one but if vulnerabil-

ity is found years later and multiple other complex applications are being built on top of the existing

one it can be a serious issue.

Suggestion for future development could be development of a DAO (decentralized autonomous or-

ganization) based on the unique access token where voting system such as it was presented in

this thesis could serve as only one component of a bigger organization.

35

7 Conclusion

During this thesis, it was demonstrated that it is possible to build a small-scale, transparent voting

system quickly with a high degree of security utilizing smart contract platforms like Ethereum where

no component of the system is centralized and vulnerable. The biggest obstacle currently for mak-

ing this kind of applications production ready and widely used are the high Ethereum fees. When

Ethereum or some other platform solves the scaling problem applications like the one described in

the thesis will become viable.

It is very possible that in the future cryptocurrency will not be the main application of the blockchain

but there will be numerous other applications. Number of mainstream smart contract applications

will increase dramatically once a couple of big issues are solved. One is the maturity of the smart

contract programming languages, Ethereum fees, high degree or oracle reliability and cross-chain

communication.

36

8 References

Antonopoulos, A.M. and Wood, G., 2018. Mastering ethereum: building smart contracts and dapps.

O'reilly Media.

Bhalla, A., Garg, S. and Singh, P., 2020. Present day web-development using reactjs. International

Research Journal of Engineering and Technology.

Bloomberg. (2022) NFT Trading Volumes Collapse 97% From January Peak. Retrieved October

20, 2022, from https://www.bloomberg.com/news/articles/2022-09-28/nft-volumes-tumble-97-from-

2022-highs-as-frenzy-fades-chart?leadSource=uverify%20wall.

Chuen, D.L.K. ed., 2015. Handbook of digital currency: Bitcoin, innovation, financial instruments,

and big data. Academic Press.

Ethereum documentation. (2022) The Official Ethereum Documentation. Retrieved October 19,

2022, from https://ethereum.org/en/developers/docs/consensus-mechanisms/pos/#top.

Ethers documentation. (2022) The Official Ethers Documentation. Retrieved October 24, 2022,

from https://docs.ethers.org/v5/.

HardHat documentation. (2022) The Official HardHat Documentation. Retrieved October 22, 2022,

from https://hardhat.org/hardhat-runner/docs/getting-started#overview.

Jacques Dafflon, Jordi Baylina, Thomas Shababi, "EIP-777: Token Standard," Ethereum Improve-

ment Proposals, no. 777, November 2017. [Online serial]. Available:

https://eips.ethereum.org/EIPS/eip-777.

Jamal, A., Helmi, R.A.A., Syahirah, A.S.N. and Fatima, M.A., 2019, October. Blockchain-based

identity verification system. In 2019 IEEE 9th International Conference on System Engineering and

Technology (ICSET) (pp. 253-257). IEEE.

Kshetri, N. and Voas, J., 2018. Blockchain-enabled e-voting. Ieee Software, 35(4), pp.95-99.

Lu, Q. and Xu, X., 2017. Adaptable blockchain-based systems: A case study for product traceabil-

ity. Ieee Software, 34(6), pp.21-27.

https://www.bloomberg.com/news/articles/2022-09-28/nft-volumes-tumble-97-from-2022-highs-as-frenzy-fades-chart?leadSource=uverify%20wall
https://www.bloomberg.com/news/articles/2022-09-28/nft-volumes-tumble-97-from-2022-highs-as-frenzy-fades-chart?leadSource=uverify%20wall
https://ethereum.org/en/developers/docs/consensus-mechanisms/pos/#top
https://docs.ethers.org/v5/
https://hardhat.org/hardhat-runner/docs/getting-started#overview
https://eips.ethereum.org/EIPS/eip-777

37

Martin Becze, Hudson Jameson, et al., "EIP-1: EIP Purpose and Guidelines," Ethereum Improve-

ment Proposals, no. 1, October 2015. [Online serial]. Available: https://eips.ethereum.org/EIPS/eip-

1.

McGhin, T., Choo, K.K.R., Liu, C.Z. and He, D., 2019. Blockchain in healthcare applications: Re-

search challenges and opportunities. Journal of Network and Computer Applications, 135, pp.62-

75.

Moralis. (2022) JavaScript Libraries – Ethers.js vs Web3.js. Retrieved October 12, 2022, from

https://moralis.io/javascript-libraries-ethers-js-vs-web3-js/.

Nakamoto, S., 2008. Bitcoin: A peer-to-peer electronic cash system. Decentralized Business Re-

view, p.21260.

Queiroz, M.M., Telles, R. and Bonilla, S.H., 2020. Blockchain and supply chain management inte-

gration: a systematic review of the literature. Supply chain management: An international journal,

25(2), pp.241-254.

React documentation. (2022) The Official React Documentation. Retrieved October 16, 2022, from

https://reactjs.org/.

Saleh, F., 2021. Blockchain without waste: Proof-of-stake. The Review of financial studies, 34(3),

pp.1156-1190.

Scholten, O.J., Hughes, N.G.J., Deterding, S., Drachen, A., Walker, J.A. and Zendle, D., 2019, Oc-

tober. Ethereum crypto-games: Mechanics, prevalence, and gambling similarities. In Proceedings

of the annual symposium on computer-human interaction in play (pp. 379-389).

StackOverflow. (2022) Stack Overflow developer survey 2021. Retrieved October 15, 2022, from

https://insights.stackoverflow.com/survey/2021#overview.

Suratkar, S., Shirole, M. and Bhirud, S., 2020, September. Cryptocurrency wallet: A review. In

2020 4th international conference on computer, communication and signal processing (ICCCSP)

(pp. 1-7). IEEE.

Szabo, N., 1997. Formalizing and securing relationships on public networks. First monday.

https://eips.ethereum.org/EIPS/eip-1
https://eips.ethereum.org/EIPS/eip-1
https://moralis.io/javascript-libraries-ethers-js-vs-web3-js/
https://reactjs.org/
https://insights.stackoverflow.com/survey/2021#overview

38

Wang, Q., Li, R., Wang, Q. and Chen, S., 2021. Non-fungible token (NFT): Overview, evaluation,

opportunities and challenges. arXiv preprint arXiv:2105.07447.

William Entriken, Dieter Shirley, Jacob Evans, Nastassia Sachs, "EIP-721: Non-Fungible Token

Standard," Ethereum Improvement Proposals, no. 721, January 2018. [Online serial]. Available:

https://eips.ethereum.org/EIPS/eip-721.

Witek Radomski, Andrew Cooke, Philippe Castonguay, James Therien, Eric Binet, Ronan Sand-

ford, "EIP-1155: Multi Token Standard," Ethereum Improvement Proposals, no. 1155, June 2018.

[Online serial]. Available: https://eips.ethereum.org/EIPS/eip-1155.

Wohlgethan, E., 2018. Supportingweb development decisions by comparing three major javascript

frameworks: Angular, react and vue. js (Doctoral dissertation, Hochschule für Angewandte Wissen-

schaften Hamburg).

Wouda, H.P. and Opdenakker, R., 2019. Blockchain technology in commercial real estate transac-

tions. Journal of property investment & Finance.

Zheng, Z., Xie, S., Dai, H.N., Chen, X. and Wang, H., 2018. Blockchain challenges and opportuni-

ties: A survey. International journal of web and grid services, 14(4), pp.352-375.

Zou, W., Lo, D., Kochhar, P.S., Le, X.B.D., Xia, X., Feng, Y., Chen, Z. and Xu, B., 2019. Smart

contract development: Challenges and opportunities. IEEE Transactions on Software Engineer-

ing, 47(10), pp.2084-2106.

https://eips.ethereum.org/EIPS/eip-721
https://eips.ethereum.org/EIPS/eip-1155

39

Appendices

Appendix 1. Ballot smart contract Etherscan address

Appendix 2. Access token smart contract Etherscan address

Appendix 3. Smart contract source code

https://github.com/lukadimnik/voting-system

Appendix 4. Front end source code

https://github.com/lukadimnik/voting-system-frontend

https://github.com/lukadimnik/voting-system
https://github.com/lukadimnik/voting-system-frontend

	1 Glossary
	2 Introduction
	2.1 Objectives
	2.2 Scope

	3 Blockchain and cryptocurrencies: an overview
	3.1 Block
	3.2 Consensus algorithm
	3.2.1 Proof of work
	3.2.2 Proof of stake

	3.3 Blockchain use cases
	3.4 Smart contracts
	3.5 Wallet
	3.5.1 Wallet address
	3.5.2 Transactions

	3.6 Solidity
	3.7 Ethereum and cryptocurrencies
	3.7.1 EIP – Ethereum improvement proposals
	3.7.2 Ethereum virtual machine

	3.8 NFTs

	4 Methods
	4.1 ReactJS
	4.1.1 Virtual DOM
	4.1.2 One way data flow
	4.1.3 JSX
	4.1.4 Props and state

	4.2 Typescript
	4.3 NodeJS
	4.4 Hardhat
	4.5 Ethers.js
	4.6 MetaMask

	5 Implementation
	5.1 Local development environment
	5.2 Access NFT smart contract
	5.3 Voting smart contract
	5.4 Smart contract deployment and verification
	5.5 UI

	6 Results and discussion
	7 Conclusion
	8 References
	Appendix 1. Ballot smart contract Etherscan address
	Appendix 2. Access token smart contract Etherscan address
	Appendix 3. Smart contract source code
	Appendix 4. Front end source code

