
Binary data serialization of CAD 2D drawings

Optimized file format with FlatBuffers serialization library for presenting data

Bachelor’s degree

Information and communication technology, Engineering

Spring 2023

Noora Turunen

Information and communication technology, Engineering Abstract
Author Noora Turunen Year 2023
Subject Binary data serialization of CAD 2D drawings:

Optimized file format with FlatBuffers serialization library for presenting data
Supervisors Toni Laitinen (HAMK), Mika Salonen (Trimble)

Tekla Structures uses TrimBim file format for transferring serialized data. This file format is

optimized for the 3D model data. However, the same file format is used for 2D drawings,

and, while the format functions sufficiently with the drawings, the 2D drawing optimized file

format would increase the efficiency.

The aim of this thesis is to create an enabler for the possible development of 2D engineering

drawing file format. The enabler is a FlatBuffers schema, which the binary data serialization

with FlatBuffers can be implemented with. Furthermore, the thesis aims to validate the

hypothesis that the file size of binary file format written with FlatBuffers serialized data is

more compact compared to other vector graphics file formats, such as SVG and DWG.

In this thesis, the main topics to support the realization of the goals are 2D drawings and file

formats, as well as data serialization and tools to implement serialization. Furthermore,

these topics include subjects, such as vector graphics and data types.

The outcome of the thesis was a schema file for the thesis commissioner, Trimble Inc.

Additionally, the thesis validated that the schema is functional by implementing data

serialization with FlatBuffers and writing this data into binary file format. This was done

separately from Tekla Structures as a prototype project. Furthermore, the SVG file was

created and converted into DWG file to compare file sizes. By comparing all three file

formats, it was concluded that, with a substantial amount of data, the file size is smaller in

the binary file format consisting of data serialized with FlatBuffers.

Keywords 2D engineering drawing, binary file format, Computer-Aided Design, CAD, C++,
data serialization, FlatBuffers, SVG, Tekla Structures, vector graphics

Pages 48 pages and Appendices 6 pages

Tieto- ja viestintätekniikan koulutus Tiivistelmä
Tekijä Noora Turunen Vuosi 2023
Työn nimi CAD-piirustusten binääridatan serialisointi: FlatBuffers serialisointi kirjastolla

optimoitu tiedostoformaatti datan esittämiseen.
Ohjaaja Toni Laitinen (HAMK), Mika Salonen (Trimble)

Tekla Stuctures -ohjelmisto käyttää tiedonsiirtoon TrimBim-tiedostoformaattia, joka on

optimoitu 3D-malleille. Tätä formaattia käytetään myös 2D-piirustuksiin. Vaikka tämä

formaatti on riittävä, tiedostoformaatti, joka on optimoitu 2D-piirrustuksille, lisäisi

tehokkuutta tiedostojen käsittelyyn.

Opinnäytetyön tavoite on tuottaa FlatBuffers-skeema, joka voisi mahdollistaa 2D-

piirustukselle optimoidun tiedostoformaatin jatkokehityksen. Skeemaa tarvitaan

binääridatan serialisointiin, joka toteutetaan FlatBuffers serialisointikirjastolla. Tämän lisäksi

tavoitteena on todentaa hypoteesi, jonka oletuksena on, että FlatBuffersin avulla

serialisoidusta datasta tehty binääritiedosto on kooltaan pienempi kuin vertailussa olevat

vektorigrafiikkatiedostot, kuten SVG ja DWG.

Teoriaosuudessa käsitellään 2D-piirrustuksia, tiedostoformaatteja sekä data serialisointia ja

tapoja toteuttaa serialisointi. Muut aiheet, jotka kuuluvat näihin oleellisesti, ovat

vektorigrafiikka ja datatyypit.

Toteutuksen lopputuloksena tuotettiin skeema toimeksiantajan Trimble Inc.:n käyttöön.

Opinnäytetyössä varmistettiin, että skeeman toiminta täyttää vaatimukset. Tämä

toteutettiin serialisoimalla malliaineisto FlatBuffersilla ja tuomalla data binääritiedostoon.

Tuotos tehtiin erillisenä projektina, eikä sen koodi tai aineisto ole liitetty Tekla Structuresiin.

Lisäksi tiedostokokojen vertailua varten tuotettiin SVG-tiedosto, josta konvertoitiin DWG-

tiedosto. Malliaineiston pohjalta tehdyn binääri-, SVG- ja DWG-tiedoston vertailussa

todennettiin hypoteesi todeksi, kun datan määrä on runsas ja monimutkainen.

Avainsanat 2D-piirrustukset, binääritiedosto, CAD, C++, data serialisointi, FlatBuffers, SVG,
Tekla Structures, vektorigrafiikka

Sivut 48 sivua ja liitteitä 6 sivua

Content

1 Introduction ... 1

1.1 Research Problem .. 2

1.2 Goal .. 3

1.3 Prerequisites and scope ... 4

2 Handling of 2D drawing data and file formats .. 5

2.1 2D drawings and graphics .. 5

2.1.1 Coordinate system, geometric primitives and shapes in drawings 6

2.1.2 Drawing primitives onto the screen with 2D graphics library 7

2.2 Different formats to store and transfer 2D drawings 8

2.2.1 Binary versus text file formats ... 9

2.2.2 Comparing 2D drawing vector file formats .. 10

2.3 Data serialization.. 12

2.3.1 Data serialization with FlatBuffers in C++ .. 14

2.3.2 Data serialization with binary versus with text 15

2.3.3 Data types in C++.. 17

3 Plans and instructions for realization of the thesis goals .. 19

3.1 Steps to reach goals of making schema and comparing file formats 19

3.2 The structure and syntax of schema .. 21

3.3 Generating the header file and adding libraries to FlatBuffers project 23

3.4 Writing and reading FlatBuffers ... 24

4 Process of making FlatBuffers schema and writing files for comparison 26

4.1 Writing primitives into schema .. 26

4.2 Writing and serializing dummy data with FlatBuffers 31

4.3 Writing and reading files in C++ ... 34

4.4 Reading and deserializing data with FlatBuffers in program 35

4.5 Generating SVG file from deserialized data ... 37

4.6 Comparing file sizes of SVG, DWG and new binary file format 39

5 Conclusions .. 43

Sources ... 44

Figures and Tables

Figure 1. Data Serialization and Deserialization process (Hazelcast, n.d.). 13

Figure 2. Struct for Point in FlatBuffers Schema. .. 27

Figure 3. Struct for Line in FlatBuffers Schema. .. 27

Figure 4. Model table in FlatBuffers Schema. ... 31

Figure 5. Start of FlatBuffers project file with headers and creating line. 32

Figure 6. Creating Polygon in FlatBuffers project file. ... 33

Figure 7. Finishing serializing data to FlatBuffers. ... 34

Figure 8. Writing and reading binary file with C++. ... 35

Figure 9. Verifying read data and passing it to buffer. .. 36

Figure 10. Accessing line and polygon data in FlatBuffers. ... 36

Figure 11. Template function for iterating through FlatBuffer vectors. 37

Figure 12. Function for the beginning for SVG file. ... 37

Figure 13. Write line content for SVG file. .. 38

Figure 14. Function to generate, or write, SVG file. .. 39

Figure 15. Comparing visualization between DWG and SVG. ... 40

Figure 16. Loop for creating points for polyline and writing polyline to FlatBuffers. 41

Table 1. Advantages and disadvantages Cons of DWG and DXF file (Andy, 2019). 11

Table 2. Comparing SVG and DXF size and loading time (Fahiem & Farhan, 2007, pp. 4–5).

 ... 12

Table 3. Comparing serialization between JSON and FlatBuffers (Zaks, 2016)............... 16

Table 4. Data types and sizes in FlatBuffers Schema (FlatBuffers, n.d. -e). 22

Table 5. Representing primitives in FlatBuffers Schema. .. 28

Table 6. Comparing FlatBuffers binary file, SVG and DWG file sizes............................... 42

Appendices

Appendix 1. Table of C++ data types, their sizes in bytes and their range.

(GeeksForGeeks, 2023 -a; Codecademy, n.d.)

Appendix 2. PrimitivesSchema.fbs, the FlatBuffers Schema for point, line,

polyline, polygon, circle, text, and model

Appendix 3. Material2d.fbs, the FlatBuffers Schema for pen with colour, line

type and line width

Appendix 4. Data serializing circle, pen, line with pen and text to FlatBuffers

Appendix 5. Deserializing data for reading pen, circle and text with FlatBuffers

Appendix 6. Write polygon, polyline, circle, and text to SVG file

1

1 Introduction

Trimble Inc. product portfolio includes solutions for agriculture, construction, geospatial

information, and infrastructures among many others (Trimble n.d. -a). This thesis work will

focus on Tekla products and especially Tekla Structures. Tekla Structures is Building

Information Modelling (BIM) based Computer-Aided Design (CAD) software for construction

industries needs and is used by structural design engineers, detailers, contractors, and

project managers among others (Trimble n.d. -b).

The technology this thesis focuses on, CAD, was invented in 1980 (English, 2020), and Tekla

Structures, which has roots in Xsteel software, was launched in 1990s (Trimble, 2013 -a, pp.

15-17, 29). At the heart of Tekla Structures are three-dimensional (3D) BIM models for

constructions. The information in BIM models does not only include information about

objects geometrics but also other levels of information, such as relations and properties

between model objects (Czmocha and Pekala, 2014).

However, even in this millennium three-dimensional (3D) models need to be converted into

two-dimensional (2D) engineering drawings that are used for example, on construction

sites. With Tekla Structures, construction engineer can produce 2D drawings from 3D models

almost automatically.

Compared back to the 14th century, when 2D drawings were invented in result of

perspective drawing, and to the year 1765 when the descriptive geometry was invented, the

drawings in the 2000s include more information. With 3D models, designing has become

more convenient, but with the increasing number of information connected to the model

objects, the file size has increased as well. This affects the performance of the CAD software

and transferring the drawings. Moreover, different file formats challenge the

interchangeability of the information between software. Furthermore, transferring and

viewing drawings through World Wide Web is an appealing development direction, which

would require more efficient file formats in size. (English, 2020; Maciej et al., 2017, p. 32–33)

2

1.1 Research Problem

Previously, Trimble has developed file format called TrimBim for 3D models. This enhanced

transferring of file data in Tekla products. However, this 3D optimized formatting is currently

also used for 2D drawings. Therefore, Trimble is investigating how to utilize a similar solution

that is optimized for 2D drawings allowing organizing and reading data more efficiently.

Moreover, in the future, Trimble seeks possibilities to utilize web applications more, where

the size of drawings affects performance significantly.

To answer the questions about optimization and performance, Trimble would need a file

format that transfers 2D drawing data efficiently. This would mean reducing the file size

without compromising the data and drawing accuracy. The hypothesis is that the binary file

format optimized for 2D drawings would be smaller in size and more efficient than already

used vector graphic file formats.

Based on these research questions, two tasks have been set for this thesis:

1. to provide an enabler for the development of 2D drawings, which can be enhanced

further to complete software specific cases better and maybe be implemented into

Tekla Structures software

2. to validate hypotheses by comparing binary file format to chosen vector graphic file

formats.

The process for implementing own binary file format for 2D drawing includes creating a

schema, which enables data serialization and finally writing data into binary files. The chosen

tool for data serialization is FlatBuffers by Google, which is Open Source cross platform

serialization library for several programming languages, including C++, C# and JavaScript that

are used in Tekla products. The serialization with FlatBuffers is done by creating schema for

objects with different data types.

3

1.2 Goal

To complete the two tasks set for this practice-based thesis, the following goals have been

established:

1. Create schema for data serialization with FlatBuffers. The schema would work as the

enabler mentioned in the first task. The schema would be used as part of Trimble’s

product development

2. Validate the hypotheses by creating binary file with serialized data in FlatBuffers that

uses the schema created in the first goal, and

3. Generate Scalar Vector Graphics (SVG) file with the previously used data for the

comparison

The aim is to create an applicable, low-level schema that might be developed further in the

future to include more objects such as fonts. Working means that the compiling of schema

succeeds, and data is serialized to FlatBuffers. By generating SVG file from the same data in

FlatBuffers, it possible also to validate that the schema works, since with the SVG it is

possible to visualize used data on the screen. When making different file formats, the focus

is to make publishing format, meaning that the file can only be viewed and not edited.

In the knowledge and the theory section of the thesis, the topic of what 2D drawing is,

delving more into the file formats for vector graphics and focusing on SVG and DWG file

formats, will be covered. Moreover, the data serialization and how serialization is done with

FlatBuffers for C++ programming language will be defined. In the section that covers the

objectives of the development work, the steps for the practical portion of this thesis and the

instructions for using FlatBuffers in practice are introduced. In the realization of the output,

the process of creating FlatBuffers schema with 2D drawing primitives, how the FlatBuffers

was used to serialize and deserialize data, how the generation of SVG file was done, and

compare file sizes of binary file format, SVG file format and DWG file format is described.

4

1.3 Prerequisites and scope

The 2D drawing primitive classes of Tekla Structures are used to describe the data structure

for schema. Furthermore, having access to the FlatBuffers schema for TrimBim allows to use

them as a reference when constructing separate schema for 2D drawings. With the chosen

tool FlatBuffers, it is possible to compile the schema into many languages but, in this thesis,

the focus is on presenting examples in C++ language only, unless mentioned otherwise.

The schema, the program for using FlatBuffers, and the generating of SVG are done in a

separate project repository as a prototype. Even though the project is done from the bases

of Tekla Structures primitives, during this thesis, the prototype is not connected to the actual

Tekla Structures software or uses its data. All data used in data serialization is dummy data

created within the project. The possible follow up could include the tuning of high-level

schema and implementation to Tekla Structure, but technology and code presented is this

thesis is not guaranteed or promised to be implemented in any Trimble product.

Tekla Structure includes many specific objects, and although primitives for those are

available, the thesis focus is on to the so-called basic primitives such as lines, polyline, circle,

and polygons as well as their styles. Within the thesis scope, these primitives are sufficient

since they function as a bases for creating shapes on screen. However, text primitive is

mentioned, and text is also shown in the visualization, but they are excluded from extensive

examination, since the text is included in wider discussion about fonts and their

vectorization, which has not been concluded during the making of this thesis.

Moreover, there are many more shapes that are mentioned in literature, such as splines, but

it should be acknowledged, that this thesis includes only those primitives and possibilities

that are available currently in Tekla Structures. Although the thesis is not able to cover every

aspect of Tekla Structures, nothing will be introduced that Tekla Structure is not capable of

doing.

5

2 Handling of 2D drawing data and file formats

In this thesis context, when mentioning 2D drawings, it refers to technical drawings, or

rather to its subcategory, 2D engineering drawings. In Tekla Structures, a drawing is

constructed from views in 3D model. There are several views that can be created in Tekla

Structures, for example, views of the entire 3D model, of selected parts and of selected

components (Trimble n.d. -c). Moreover, in Tekla Structures, there are 5 different drawing

types that can be made for different use purposes: general arrangement, single-part,

assembly, cast unit and multidrawings (Trimble n.d. -d).

Computer-Aided Design (CAD) programs have enabled that the 2D drawings could be

manufactured from 3D models (Acaddrafting, 2016). For engineers, this means that there is

no need to refine detailed drawings, which improves their workflow. If changes are made to

the 3D model, the drawings are updated accordingly. This saves time and accuracy, because

there is no need to redraw manually after every change. Although 3D improved design, 2D

drawings are still the main means to view design in manufacturing and construction sites.

(Acaddrafting, 2016; Maciej et al., 2017, p. 29)

In the following chapters, it is often referred to the term vector in different context. It should

be noted that when the term “vector” is used as stand alone, it is a reference to sequence

container used in C++ programming language (see chap. 2.3.3). When referring to file format

or graphics, vector is a descriptive word preceding these terms, such as vector graphics (see

chap. 2.1), vector file or vector file format (see chap. 2.2) and so forth.

2.1 2D drawings and graphics

Images that we see on computer screens are built from a collection of pixels. For example, a

straight line is an alignment of pixel dots that form a single object that could be edited.

When discussing images on the screen, there are two types that are used: a raster image and

a vector image. With the raster images, formats such as PNG and JPEG, the pixels are

displayed according to the information of pixels’ place and colour. With the vector images,

the way the image is rendered to the screen is based on its shape and path definition.

6

Programs turn on and off the pixels in the viewed area based on the vector data calculation.

(Grabowski, 2022; MDN, n.d. -a; Aalto, n.d.)

Consequently, CAD programs use vector file format. Vector files store information about

every object in the drawing such as the type, the size, and the location. For example, when

drawing a circle, CAD program would only need to know the centre point and the radius of

the circle to implement the drawing. If the values change, the program will redraw the circle

with new data. (Grabowski, 2022)

Every CAD program has their own algorithm and a way to produce a drawing from the

model. However, there are formatting rules regarding the information that is contained in

them, such as line types, scales, descriptions, dimensions, and reference line. Primary

information, that should be included the drawings automatically, describes the represented

element in the model and their properties. Properties are, for example, the name, the type,

the geometric data, and the material. Moreover, additional information, such as dimensions,

resizing or other previously undefined information, can be added to the model element.

(Maciej et al., 2017, p. 29)

2.1.1 Coordinate system, geometric primitives and shapes in drawings

The locations of the drawing’s elements in vector graphics, and therefore in CAD programs,

are often defined with Cartesian coordinate system, which was first conducted by Descartes

in his Discourse on Methods. This would mean that the location of starting and ending points

of the line, the centre of circle and location of text are measured from the intersection of

axes (by convention the X-axis and the Y-axis). These axes are perpendicular to one another

creating intersection point or origin; also marked as 0,0 (x, y). Positive points are on the right

and above the origin and negatives are on the left and below. (Grabowski, 2022)

The location of the axis depends on rendering library. For example, in Tekla Structures the

origin (0,0 point) is in the bottom left of bounding box, meaning that the direction of Y is

upwards. Whereas in SVG and in Canvas API, both widely used to draw 2D and vector

7

graphics on web, the point of origin is in the top left corner and the direction of Y is

downwards (MDN, n.d. -b).

2D drawings, and overall vector computer graphics, use fundamental vector types to

represent geometry: points, lines, and polygons. These are also called geometric primitives.

They are the simplest geometric shapes that can be used to construct a drawing. (Chen &

Clarke, 2017, p. 1; Campbell, J. & Shin, 2011, pp. 86–87)

A point is one coordinate pair (x, y) that has only information about the location. Points are

used in creating a line that has a start and end point. A line that has multiple points, but does

not close back to the starting point, is called polyline. A collection of lines that are connected

and closed to the starting point is called polygon. The meeting point of the lines and polygon

corners are called vertices. (Campbell, J. & Shin, 2011, pp. 86–87)

In addition to fundamental geometric primitives, there are other complex yet usually

predefined geometric shapes, such as circles and arcs. More complex shapes that are not

predefined, are constructed from the compilation of geometric primitives. (Chen & Clarke,

2017, p. 1; Campbell, J. & Shin, 2011, pp. 86–87)

2.1.2 Drawing primitives onto the screen with 2D graphics library

The visualization of the 2D drawing data is done with the 2D graphics library. These are

program libraries that are designed to assist with the rendering of computer graphics onto

the monitor screens.

Rendering, also called rendering pipeline, consists of three conceptual stages: application,

geometry, and rasterization. These stages in themselves consist of pipeline stages that have

functional stages or, in other words, tasks. The number of tasks varies depending on the

implementation in graphics library; in some they might be combined and in others

separated. (Akenine-Möller et al., 2000, pp. 13–14)

The stage, where the developer can have to the most impact on implementation and on

performance effecting the following stages, is the application stage (Akenine-Möller et al.,

8

2000, pp. 14–15). In this thesis, the work is done on this stage. The geometric primitives and

other rendering primitives, meaning points, lines etc., are handed over to geometry stage at

the end of application stage. The geometry stage is where the model is transformed to

different coordinate systems and furthermore to its unique world, as well as where partially

shown primitives are handled. Rasterizer stage uses data from the geometry stage to

compute and set colours for pixels that will ultimately become an image on screen.

(Akenine-Möller et al., 2000, pp. 15–26)

There are many different graphics libraries available, and libraries in offline software bring

even more variety. Some well-known libraries for 2D graphics are, for example, DirectX, and,

especially for web usage, WebGL and Canvas API. (MDN, n.d. -c) Tekla Structures has its own

2D graphics library called xkit that passes on data given from Core side of the software.

Another way to draw on screen is SVG, a XML mark-up language, that uses specifications of

vector graphics and is supported by major browsers such as Chrome and Mozilla Firefox

(MDN, n.d. -d).

2.2 Different formats to store and transfer 2D drawings

Usually, different software has their own file format that stores data in the most suitable

way for the programs’ needs. This, however, causes challenges for the interoperability

between different software. Therefore, it is common practice that files can be converted

into different file formats. (Maciej et al., 2017, p. 32–33)

It has been established that CAD programs use vector files since they support different type

of data. Therefore, the focus is on comparing vector file formats that are used in CAD

programs and representing in binary format.

The most common file formats for 2D drawings that use vector data are DXF, DWG, DGN,

PDF, and SVG. The difference between the file formats comes from the compactness and

which line formats, colours, layering, or curve types are supported. Some of the formats are

binary-based and some use XML. (Maciej et al., 2017, p. 35)

9

At the time of writing this thesis, DWG is used in Trimble Connect software that links Tekla

Structure to other Tekla products to transfer drawing data. SVG, on the other hand, is one of

the most popular formats to show vector graphics on web and therefore, it is interesting to

compare these to formats (MDN, n.d. -e). One of the thesis goals is to compare binary file

format to SVG and DWG. For that purpose, it is important to understand what these file

formats are.

2.2.1 Binary versus text file formats

Before comparing file formats, it should be examined how data is stored in them. Data can

be categorized into two types: numeric data and character data. These data types (see

chapter 2.3.3 about data types in C++) are represented in binary and are stored in memory

in terms of bytes. (Dot Net Tutorials, n.d. -a)

Generally, there are two file types: binary and text. In binary files, the series of sequential

bytes (8 bits each) are arranged into a binary format. Binary file can have in the same file

different types of data that construct graphics, such as images, and videos. Text files in turn

can only contain textual data, and, since it is a standard format, multiple programs can read

and edit the file. By contrast, with the binary file, the program or hardware processor needs

to know exactly how the content is formatted and data read. Usually this requires separate

schema. The clearest difference between the formats is that text files are human-readable

unlike the binary. (Sheldon, R., 2022; Itskawal2000 et al. 2023; FileInfo.com, 2011)

Binary file saves memory by storing any data type in memory as per its memory size. As this

format is not the most user-friendly, an error can corrupt the file and the error is not easily

detected. Moreover, since it is not human-readably, the reading and modifying is not

effortless either. However, binary format stores data more compactly and can have

application defined extension. (Itskawal2000 et al. 2023)

In a nutshell, the benefits for using binary files compared to text files are:

1. Input and output are faster when data is in binary format.

10

2. File size is smaller, which decreases the storage space, the transmitting and

processing time. For example, in system, where certain data values are not permitted

and they need to be translated into text format, the file size can increase by 30

percent (Rouse, M., 2012)

3. Not all data can be represented with characters.

(Kjell, B., n.d., chapter 86 page 6)

Developers rarely work directly with the binary file and the logic is defined and applied to

human-readable text file, schemas, and to project file of the chosen high-level programming

language. During the development process, schemas and project files are compiled so that

the source code is translated to machine code. When transferring file as binary, programs

that receive them do not have to review or change them. (Sheldon, R., 2022)

2.2.2 Comparing 2D drawing vector file formats

One aspect of comparing 2D drawing file formats is the accessibility. Software’s internal

presentation of vector graphics is mostly proprietary and the code to recreate them is not

available. Therefore, many CAD programs enable importing and exporting drawings in

different formats gaining possibility for interchanging information. (Eisenberg & Bellamy-

Royds, 2014, chapter 1)

The two commonly used vector file formats for CAD drawings are DWG, which is native file

format of AutoCAD that supports 3D and 2D, and DXF for 2D, which is recognized by CAD

tools only. Both these file formats are de facto standards and store same type of data with

similar level of quality. DXF and DWG contain data to represent the contents of CAD files,

such as design, geometric data, and maps and photos, and are mainly used by architects,

engineers, and designers. (FileFormat, n.d.; Fahiem & Farhan, 2007, p. 1; Adobe n.d.)

Although DWG is the most used in AutoCAD, some other CAD software, as well as Tekla

Structures, support this format. However, DXF file, as an open standard file format, is

supported by more software compared to DWG and thus, is a standard for exchanging the

11

design files. (FileFormat, n.d.; Fahiem, M. & Farhan, 2007, p. 1; Adobe n.d.) Therefore, the

apparent difference between these formats is accessibility and compatibility. Another

difference between these files is that the DWG is a binary file and DXF text file, and

consequently, DWG is more compact compared to DXF. There are also some CAD elements

that DXF does not support, such as dynamic blocks. (BlueEnt, 2022) Some distinctive

differences between DWG and DXF are gathered in the Table 1.

Table 1. Advantages and disadvantages Cons of DWG and DXF file (Andy, 2019).

 Advantages Disadvantages

DWG

Native file format for AutoCAD

Binary file format, resulting in
smaller file size

Supports both 2D and 3D graphics

Not publicly documented

Not supported in all CAD programs

Not supported in web browser

DXF

Open format

Publicly documented

Supported almost in all CAD
programs

2D graphics only

Text file format, resulting in larger
file size

Not supported in web browsers

As seen from comparing DWG and DXF in Table 1, both files lack support for web browser.

Most of the CAD drawing files are encoded in binary and therefore, browsers and other

software or products might not be able to parse and create vector files out of them.

Therefore, one aspect of considering different file formats for representing drawings is the

use of web applications or using HTML document viewer to observe the drawing. SVG has

gained reputation as the most precise for representing and accessing CAD 2D drawings from

browsers and devices (Snowbound, 2015).

Scalar vector graphics, SVG, is a vector format for 2D vectors that is based on XML markup

languages and was developed by World Wide Web Consortium (W3C) in 1999. Defined in

XML means that the SVG images can be searched, indexed, scripted, and compressed as well

as created and edited with text editor or other software. Essentially, SVG is same for images

than HTML is for text. (Snowbound, 2015; SVG on the Web n.d.; MDN n.d. -f; Fahiem, M. &

12

Farhan, 2007) What makes SVG appropriate for Web is its small file size and that most

browsers support it (Andy, 2019). However, it should be noted that when using more

complex SVG file with bigger file size, this would also affect the processing time in the

browser (Amadine, 2022).

In their research, Representation of Engineering Drawings in SVG and DXF for Information

Interchange, Fahiem et al. concluded that when distributing engineering drawings, such as

CAD drawings, through web, SVG format is more suitable in comparison to DXF. This

comparison was done in basis of file size and loading time. The results of their research are

collected in Table 2, where it is possible to see that, at best, SVG was one-third of the size of

DXF and one-fourth faster in processing speed. (Fahiem & Farhan, 2007, pp. 4–5)

Table 2. Comparing SVG and DXF size and loading time (Fahiem & Farhan, 2007, pp. 4–5).

 SVG DXF

File size Less, 200kB More, 800kB

Loading time Less, approx. 150ms More, 600ms

2.3 Data serialization

Now that the topics of file format types and their benefits and challenges in CAD file formats

have been discussed, the next step is to define how the data structures are stored as a

stream of bytes, in other words, how data is serialized (Kleppmann, 2017). Streams are the

sequences of bytes that move in and out of the program (Nanyang Technological University,

2013).

Serialization means that a data structure is written into format that can be stored,

transmitted, and reconstructed. The storing could happen in a file or in a data buffer. Buffer

stores temporarily input data in the memory to be outputted later. Transmitting could be,

for example, streaming data over networks, and reconstructing could, for example, occur

when data is handled in different environments. (Devopedia, 2020)

13

The process of reading serialization format and creating identical clones of the original

object is called deserialization. Similarly to serialization, where data is stored in stream of

bytes, deserialization extracts a data structure from the stream (see Figure 1). After

serialization, the data is transferred to be stored in file, database or in memory where they

can be streamed to the program to be deserialized. (Hazelcast, n.d.)

Figure 1. Data Serialization and Deserialization process (Hazelcast, n.d.).

Cases, where data serialization is used, are, for example, in

• Persisting state, meaning how long the data persists after closing the application it

was created in (MongoDB, n.d.)

• Machine to machine communication

• Representing the configuration

(Zaks, 2016; Devopedia, 2020)

Furthermore, there are five ways to conduct data serialization: Custom binary

representation, which is used for example with persisting state and machine to machine

communication , built-in binary serialization, which is included in most object-oriented

program languages, such as Java and C#, text-based representations, which is popularly

used in representing configuration and its most common formats are XML, JSON and YAML,

Embedded SQL or NoSQL databases, which is usually used only with persisting state, and

14

the binary cross platform serialization library, which will be the focus of this thesis. One of

the serialization libraries, FlatBuffers, will be used in this thesis. Other serialization libraries

are, for example, ProtocolBuffers, which is most in common with FlatBuffers. Serialization

libraries are fit to be used with all the mentioned data serialization cases. (Zaks, 2016)

2.3.1 Data serialization with FlatBuffers in C++

FlatBuffers is an Open Source, cross platform serialization library that is created by Google,

and it is available under the Apache License v2 on GitHub: github.com/google/flatbuffers.

FlatBuffers is supported in different operating systems, such as Windows, macOS, Linux and

Android and can be used with many programming languages such as C++, Java, C#, Go,

Python, Rust, JavaScript, PHP, C, Dart, Lua, and TypeScript. (FlatBuffers, n.d. -a)

Originally FlatBuffers was made to meet the needs of game development and other

performance-critical applications. The motivation was to create a serialization library, which

considers memory in terms of spreading, accessing, and allocating, and in number of usages.

Moreover, when it comes to serialization, developers wanted to reduce the need for parsing

since it would mean additional copying, allocating patterns, locality and using temporary

data structures – all that causes memory inefficiency. (FlatBuffers, n.d. -b)

Reasons to use FlatBuffers, provided by their website, are:

1. possibility to access serialized data without first parsing or unpacking, which is due to

representing data in a flat binary buffer,

2. memory efficiency and speed, where it is only needed to access data in buffer and

only part of buffer is required to be in memory,

3. flexibility, meaning that it is compatible forward and backwards, and user can control

how to design data structure and what data to use,

4. its small code footprint, referring to the amount of generated code and minimum

dependency of one header file,

5. it is strongly typed, meaning that errors happen at compile time,

http://www.github.com/google/flatbuffers

15

6. it is convenient to use with generated C++ code and option to parse schemas and text

representation, and

7. it uses cross platform code without dependencies, which with C++ means that it

works with recent gcc or clang compilers.

(FlatBuffers, n.d. -c)

More details about how the FlatBuffers is used are introduced in chapters 3.2–3.4. In

general, FlatBuffers is used with schema files, which define data structure that is used in a

program. FlatBuffers schema uses interactive data language, IDL, which has similar syntax to

C++. Schema has fields for different variables, and they can be either scalar or compound

type (more about data types, see chapter 2.3.3). These fields are optional, and they have

default values.

Based on the definition in the schema, a file is generated for the chosen programming

language. For example, in the thesis, the C++ programming language will be used and

therefore, the schema is compiled into C++ header file. This header file is then included in

the actual program along with FlatBuffers library. From the FlatBuffers library, the

FlatBufferBuilder class is used for constructing a flat binary buffer and with the functions in

generated header file, user can add object to the instantiated buffer. When reading the

FlatBuffers, the user obtains a pointer to the root object that can be used to access other

fields in the schema. (FlatBuffers, n.d. -c)

2.3.2 Data serialization with binary versus with text

Data serialization can be represented with a binary (binary serialization) or with text (for

example, XML and JSON) (Devopedia, 2020). In his article, Beyond JSON — Introduction to

FlatBuffers, Maxim Zaks compares JSON, a text-based data serialization format, with

FlatBuffers, a binary-based data serialization library. In the Table 3 below, his main findings

when using these formats for data serializing persistent data and sending data, are collected.

If interested to see more data on FlatBuffers performance compared to other serialization

solution, refer to FlatBuffers Benchmark page (FlatBuffers, n.d. -d).

16

Table 3. Comparing serialization between JSON and FlatBuffers (Zaks, 2016).

Criteria JSON FlatBuffers

Size: the outcome of the
process and the smaller the
better

With simple messages, JSON
is better but can be verbose
when handling a lot of
repeating data.

With a lot of data that has
repeating data structure,
FlatBuffers is better. With a
small amount of data, it is
unnecessarily powerful.

Read and write
performance: how fast is
the process, meaning
converting data in and from
memory

Has to be parsed, which
means that transient
memory is used, and
therefore, the efficiency is
lesser than with FlatBuffers.

Reads values directly from
buffer. Therefore, there is no
need for parsing, decoding
or creating transient
memory.

Human-readability and
writability

The best part of JSON.
Binary itself is not readable
but with sending data, this is
not relevant.

Supporting object-oriented
language types: typed data
eliminates some bugs and
smooths development

Library for OO languages
exists but is not
straightforward to use.

The schema compiler
generates APIs for many
languages.

Version support: data might
be read between different
client versions

Is not a features but there is
possibility to write
migration code and can be
made to be backwards
compatible.

With virtual tables, data
storing is backwards and
forward compatible.

Benefits with text-based data serialization is that it is human-readable, and this type of

encoding is the most useful with a small amount of data. Another advantage is that it can

also be communicated to other systems regardless of the programming language. However,

what text-based encoding gains in readability, it loses in file size. Generally, the binary

occupies small physical space in bytes after serialization. Moreover, binary formats are faster

and become even faster with compressed data. (Devopedia, 2020)

17

2.3.3 Data types in C++

Since serialization relates to handling data structures and organizing bytes in stream, the

data types, and the number of bytes they use, affect the serialization performance as well as

writing and reading of the files (Devopedia, 2020). Therefore, it is relevant to discuss data

types more in detail and the size of memory they allocate. In this chapter, the data types for

C++ programming language will be introduced.

C++ is strongly and statically typed language. This means that, to compile, every object;

variable, function arguments, function return value, must have type that never changes,

unless copying value to different type as a result of conversion. In general, there are scalar

and non-scalar data types. Scalar type holds a single value that can be arithmetic (integral or

floating-point values), a pointer type, pointer-to-member types and std::nullprt_t. Non-

scalar types or compound types include array types, function types, class or struct types,

union types, enumerations, references, and pointers to non-static class members.

(Microsoft, 2022)

C++ has three categories of data types for variable and function; fundamental or build-in,

derived and user-defined data types. Fundamental data types are so called primitive data

types that can be used directly, and derived data types are derived from them. Usually,

fundamental types are scalar types. (GeeksForGeeks, 2023 -a)

Fundamental data types in C++ are integer; int, floating point; float, double, Boolean; bool,

and character; char. Additionally, std::string, which is compound type that consists of

sequence of character (char) sequence, is used in this thesis. In Appendix 1, the memory

sizes for these data types are collected in bytes. 1 byte is 8 bits, and out of these bits the first

is the most significant and the last the least. The sign of the number, meaning positive (zero,

0) or negative (one, 1), is reserved in the first bit. (Dot Net Tutorials, n.d. -b)

In addition to these types, there are data type modifiers in C++ that modify the length of

data types (int, double or char). These modifiers are signed, unsigned, short, and long.

(Codecademy, n.d.) In Appendix 1, it is also shown how these modifiers effect the size and

range of data types. As it can be seen in the Appendix 1, signed modifier means that both

18

negative and positive values can be used. On the contrary, with unsigned, only zero (0) and

positive values are used. Moreover, long modifier increases the size, whereas short modifier

decreases the size of data type. (Mahamuni, 2022)

When writing a schema, the struct type is used. Although the schema uses other language

than C++, struct has a same function as in C++. Struct is used-defined typed, and once it is

defined, it can be used as a fundamental type in a program. The difference to fundamental

types is that compiler does not have built-in knowledge of them and learns it during the

compilation process. (Microsoft, 2022)

When writing the Flatbuffer project, a vector is used. In C++, vectors are sequence

containers, and, similarly to dynamic arrays, can resize automatically. Vector’s type is

defined between angle brackets, <>, and to access element in the vector, a pointer to the

element is used. (GeeksForGeeks, 2023 -b; cplusplus.com, n.d.)

19

3 Plans and instructions for realization of the thesis goals

As established in the previous chapters, there are many aspects to consider when creating

file format for CAD 2D drawing. The theory mainly alludes to the topics regarding publishing

file format, which means that the representation is only for viewing and not for editing or

another interactivities. However, the issue would remain the same: how to transfer large

data sizes efficiently without losing data. Web offers a great way to inspect this because

browsers support many graphics viewers and file size affects the performance considerably.

Additionally, regarding the direction where the industry is headed, the possibility to view

drawings through web or mobile would improve connectivity.

The hypothesis that the data, serialized with FlatBuffers, in the binary file format would be

smaller in size, is supported by the theory. Therefore, a binary file format with serialized

data with FlatBuffers offer possibilities to improve performance of 2D drawings in Tekla

Structure. This thesis attempts to prove that the hypothesis is correct by comparing the file

size of formats 1) that is a possible new binary file format constructed with FlatBuffers, 2)

that is popular representing vector graphics online, SVG, and 3) that is currently used in

Tekla products to transfer data between users, DWG. To do this, a binary file format with

FlatBuffers serialized data in bytes needs to be created with several steps. After that, a SVG

file format from the same data should be created. Finally, the SVG file is converted into DWG

file. The making of binary file format includes steps of making FlatBuffers schema and data

serialization. These steps are presented more closely in the following chapter.

3.1 Steps to reach goals of making schema and comparing file formats

As mentioned in the beginning, the output of this thesis is an enabler and will be used as a

separate prototype. Since it is separate and works as an individual project, dummy data is

used instead of actual model data to create the drawing in a program that uses FlatBuffers

for serialization. To validate that serialized data actually can be drawn on the screen, the aim

is to visualize this data within this project.

20

The steps of the process done the scope of this thesis are the following:

1. Create schema file from drawing primitives (see chap. 4.1)

2. Create dummy data and pass it to FlatBuffers (see chap. 4.2)

3. Create buffer with data given to FlatBuffers (see chap. 4.2)

4. Write binary file (see chap. 4.3)

5. Read binary file (see chap. 4.3)

6. Pass binary data to buffer to be used with FlatBuffers (see chap. 4.4)

7. Handle data with FlatBuffers to get values (see chap. 4.4)

8. Pass values and write them to text file (see chap. 4.5)

9. Write SVG file (see chap. 4.5)

10. Compare size between SVG, DWG and new binary file format (see chap. 4.6)

Passing data and creating model (steps 2–3) are the parts of serialization of the data that are

done with FlatBuffers schema (step 1). Writing and reading binary file (steps 4–5) is part of

validating that the serialized data will pass on to be used in another program that use

FlatBuffers. This step also produces a binary file format for the comparison. Passing binary

data and handling that given data (steps 6–7) are parts of deserializing of the data to acquire

the values to be used in another program. As one goal is to visualize the data and see that it

can be used for drawing on screen, the SVG file format is created in steps 8–10. After these

steps, if there is a shape inside the defined bounding box and the shape has colour, it can be

concluded that the data serialization has been successful. This also produces the SVG file for

the comparison.

To check the hypothesis “compression of data to binary file format is smaller and thus more

efficient than in other formats, such as SVG and DWG”, the SVG file will be converted with

tools found online to DWG file and the file sizes of SVG, DWG and new binary file format will

be compared (step 10).

For the process of implementing these steps, a blank project repository in BitBucket, and a

text file with the .fbs file extension, which enables FlatBuffers to read the file, are created.

This will be the schema file. To use FlatBuffers and to execute serialization and

21

deserialization as well as to create binary and SVG file, a project solution is created with

Visual Studio 2022.

Next in this chapter, the concept of making FlatBuffers project in general, writing and

compiling of the schema, and writing and reading of FlatBuffers is explained. This serves as a

basis for chapter 4, where working with a FlatBuffers in practice is presented.

3.2 The structure and syntax of schema

As mentioned in chapte 2.3.1, FlafBuffers schema uses IDL and looks similar to the C family

languages. Below, the syntax and types used in FlatBuffers schema are introduce from those

part that are relevant to this thesis. For example, there is documentation about unions in the

schema, but since they will not be used in this schema, it is not relevant to explain them in

detail.

The main way to define object in schema is using tables. The table has a name and fields.

Each field in turn has a name, a data type and an optional default value the following way:

table Example {

 field_name1:data type (required);

 field_name2:data type (required);

}

The default value is zero, 0, for scalar type zero, and for other types null if they are not

defined by the user. Renaming fields and tables is possible, but it should be noted that

adding a new field is done at the end of a table definition because it would be ignored in

compiler. Moreover, fields cannot be deleted, but by marking them “deprecated”, the fields

are enforced to not be used anymore. (FlatBuffers, n.d. -e)

Other way to define object is with struct. Contrary to the table, the fields or defaults are not

optional. Struct may also contain only scalar types and other structs. Benefit for struct is that

it uses less memory than table and is faster to access. (FlatBuffers, n.d. -e)

22

FlatBuffers schema has built-in scalar types and built-in non-scalar types. The list of these

types and aliases, which can be used instead and without affecting code generation, are

collected in the Table 4. The types cannot be changed, but same-size data could be casted to

another if the current data does not use higher number of bits. For example, in Table 4 uint

could be changed into int. Enum is one of the non-scalar types. It defines a sequence of

constants that can only have integer types. When enum is declared, the data type is

specified with “:” and all the fields in enum would have this type. (FlatBuffers, n.d. -e)

Table 4. Data types and sizes in FlatBuffers Schema (FlatBuffers, n.d. -e).

Size Data Type Scalar or non-scalar

1 byte (8 bits)
byte (int8)
ubyte (uint8)
bool

Built-in scalar types

2 byte (16 bits)
short (int16)
ushort (uint16)

4 byte (32 bits)
int (int32)
uint (uint32)
float (float32)

8 byte (64 bits)
long (int64)
ulong (uint64)
double (float64)

Depends on type
Vector of other type,
denoted with box brackets;
[type]

Built-in non-scalar
types Depends on type

string; only hold UTF-8 or 7-bit
ASCII

Depends on type
References to other tables,
structs, enums or unions

23

An attribute can be attached to a declaration in a field, a table or a struct. This attribute is

optional and would communicate to the compiler, for example, the order priority, which

fields are required, and which fields should not be generated anymore. In this thesis, the

required attribute is used, which is optional and indicates that the field value should always

be set. Using this attribute contributes to the forward and backwards compatibility making

the schema to be not version specific. If the required field is not initialized in a code, an

assert will rise, and the buffer verifier would fail. (FlatBuffers, n.d. -e)

Tables and structs with fields are the basic blocks that build up schema. In addition, schema

structure would include namespaces and includes, that could be other schema files. In the

end of the schema, the root type is declared. The root type is the root table or root struct of

the serialized data. The root dictates where to start the serialization. (FlatBuffers, n.d. -e)

FlatBuffers schema, as many other languages, has its recommended style for naming and

formatting. These are:

• UpperCamelCase for table, struct and enum

• snake_case for table and struct field names

• UpperCamelCase for enum values

• UpperCamelCase for namespaces

• Opening brace on the same line as the start of declaration

• Indent is by 2 spaces

• No spaces around “:” with types

• Spaces on both sides with “=”

(FlatBuffers, n.d. -e)

3.3 Generating the header file and adding libraries to FlatBuffers project

Compiling of FlatBuffers schema is done with flatc executable through a chosen terminal.

Flatc is a Schema Compiler that generates header files from schema. There are instructions

how to build flatc executable on Google’s FlatBuffers site: Building with CMake. (FlatBuffers,

24

n.d. -f) In this thesis, a prebuilt flatc.exe was used that was built for Tekla Structures and

could be found in its private repository.

In command, user can specify the language they want to generate header file for. For

example, in this thesis, “c” is used since it stands for C++. Lastly, the name of the schema file,

that is generated into header file, is added to the command. (FlatBuffers, n.d. -g) For

example, a FlatBuffers schema file called PrimitivesSchema.fbs is used in this thesis. To

generate this into a header file for C++ language, a command “flatc -c PrimitivesSchema.fbs”

is used.

In order to use FlatBuffers with the new generated header file in program, the generated

header file and FlatBuffers C++ library need to be included in the project. The library can be

found in FlatBuffers GitHub: github.com/google/flatbuffers/tree/master/include/flatbuffers.

As this thesis uses Visual Studio 2022 project (Console App), additional include library needs

to be manually added to the project (Microsoft, 2021). The path to do this is in Visual Studio

view and selecting from project the following: Properties -> Configuration Properties ->

C/C++ -> General -> Additional Include Directories.

3.4 Writing and reading FlatBuffers

The usage of FlatBuffers, meaning writing and reading FlatBuffers, is explained from the

perspective of C++ but on FlatBuffers site, there can be found tutorials for other languages

as well. Once the library and the generated header files are included in the project, the same

namespace that was specified in the schema is used in the project. FlatBuffers uses data

from buffer and for this purpose the writing is started by creating of FlatBufferBuilder

instance that can be found in FlatBuffers library. This instance contains the buffer, and the

user can give it an initial size, but it is not mandatory since the buffer will grow

automatically. (FlatBuffers, n.d. -h)

Before adding data to instance, the instance is called here “exampleInstance” for

demonstration, the user needs to create or import the data that would correspond with the

http://www.github.com/google/flatbuffers/tree/master/include/flatbuffers

25

data types defined in schema. Values for build-in types can be passed to variable in usual

coding manner, but some other types must be passed with the FlatBuffers function.

(FlatBuffers,n.d. -g) In these cases, it is usually convenient to give the variable “auto” type,

since it can recognize the FlatBuffers type like in the example below:

auto exampleString = exampleInstance.CreateString(“Example”);

auto exampleVector = exampleInstance.CreateVector(vector);

short exampleInt16 = 3;

Adding data to the buffer is done with the functions generated in header file (FlatBuffers,

n.d. -h). For example, if there is a table called Example, function call to create and to add

that to the buffer would be along the lines:

exampleInstance.CreateExample(exampleInstance, exampleString,

exampleInt16);

Once all the tables and structs are serialized with the create function, the final serialization is

done for the root table. When this is completed, the buffer is finished by calling the finish

method, for example exampleInstance.Finish(root). (FlatBuffers, n.d. -h)

After serializing the data, the buffer can be stored, compressed or transfer. If this is written

into a binary file, the user can get the needed pointer and buffer size with flatbuffers

methods GetBufferPoint() and GetSize(). (FlatBuffers, n.d. -h)

When reading the FlatBuffers, the program, where the data has been sent, should also

include generated header files from schema and FlatBuffers library and use the same

namespace that is specified in schema. FlatBuffers is read-only, meaning in C++ that

everything is const. Buffer pointer to the data that has been read should be data type of

uint8_t. To get the pointer to the root object, the GetExample(bufferPointer) method is

used. Now that the user can access to root, they can also access the tables and their fields.

(FlatBuffers, n.d. -h)

26

4 Process of making FlatBuffers schema and writing files for comparison

In this chapter the process and findings of realization of the defined goals will be presented.

The following topics are in order of the steps introduced in p. 20: making schema, writing

FlatBuffers (serializing), writing and reading binary file format, reading FlatBuffers

(deserializing), generating SVG file format and comparing sizes of a new binary file format,

SVG, and converted DWG.

4.1 Writing primitives into schema

Primitives that are included in schema in the scope of this thesis are point, line, polyline,

polygon, circle, and pen. The text primitive is included into final representation, but since

some of the topics relating to it, like fonts, are undecided, they are mentioned briefly and

recognized to need more development.

In Tekla Structures, drawings are defined with primitive classes where the definitions for

member functions and variables are. With these files, it is possible to see how primitives are

built and with what data type, and a data structure can be constructed to the schema file.

To further explain this, a small example of how basic line from points is constructed is

introduced below.

1. Line has starting and ending point and thus it can be identified that line has two

variables.

2. Both variables are points, which tell a coordinate in 2D space along x- and y-axis.

Thus, one point would have two variables.

3. Point values, x and y, have a data type of float.

4. Now a struct can be built on bases of x and y data type. This struct is called Vec and

it would tell that the struct is a vector containing two fields. (See Figure 2)

27

Figure 2. Struct for Point in FlatBuffers Schema.

5. Having struct for point, a struct for line can be made with the start point and the

end point with data type Vec. (See Figure 3)

Figure 3. Struct for Line in FlatBuffers Schema.

In the Table 5 (pages 28–30), all the primitives that are included in schema, which data types

they are constructed of, and how they are written in schema, are presented. There is also a

visualization of the shape, where the points of the shape are marked. The screenshots of the

actual FlatBuffers schemas are in Appendices 2–3.

The schema was started with the most basic concept of primitives: points. With points, other

primitives, such as line that has starting and ending point, can be built, which can be used in

turn to build more complex but basic primitives such as polylines and polygons etc. When

creating points in Tekla Structures, the program uses the Vector_c type, which uses struct

point_t that has three member variables (x, y, z) that are type double. The third variable has

a default value of zero and thus works well in 2D scenarios as well.

Although in Tekla Structures’ primitives, the values of the points are double, the float type

was chosen after discussion with Trimble instructor. It was concluded that float is large

enough type to define values for the points. The reasoning behind it was that since these are

2D drawings that are wanted to be formatted for web use and they are not civil engineering

drawings including maps with several kilometre accuracy, float should be sufficient type to

28

contain the used values. Moreover, as discussed in chapters 2.3.3 and 3.2, the using of

double data type would also double the memory size compared to using float data type.

Now that there is a definition for point, a line can be defined. In a code, a line segment has a

starting and ending point type Vector_c. With polyline, there would be more points between

the start and end point. Therefore, the points field would be a vector with type of Vec.

Table 5. Representing primitives in FlatBuffers Schema.

Primitive in
Tekla
Structures

Class variables in Tekla
Structures

FlatBuffers Schema Visualization

Type Name

Point
primitive

class Vector Position

struct Vec {

 x:float;

 y:float;
}

Note: class Vector inherits
from public point and is
defined as

struct point
{
 double x, y, z;
}

Line segment

primitive

Vector StartPoint struct Line {
 start:Vec;

 end:Vec;
} Vector EndPoint

Polyline
(not separate
primitive
class in Tekla
Structures)

std::vector
<Vector>

Points

table Polyline {
 points:[Vec];

 style:Pen;
}

Polygon
primitive

LoopPrimiti
ve

OuterLoop

29

std::vector
<LoopPrimi
tive>

InnerLoops

table Polygon {
 position:[Vec]
 (required);

 style:Pen;
}

Note: LoopPrimitive class
uses vector with class type
of Line segment primitives,
Arc segment primitives
and Path segment
primitives. In thesis, the
Line segment primitive is
used. In the schema, only
the OuterLoop is used.

Circle
primitive

Vector CenterPoint table Circle {

 center:Vec;

 radius:float;

 style:Pen;
} double Radius

Pen primitive

int LineColor
table Pen {
 line_color:
 LineColorDefined
 = Black;

 line_type:LineType
= Normal;

 line_width:
 LineWidth;
}

typedef
unsigned
short

LineType

unsigned
char

LineWidth

30

Text
primitive

std::string Text

table TextDisplay {

 text:string;

 font:string;

 position:Vec2f;

 height:float;

 angle:float;

 style:Pen;
}

std::string Font

Vector Position

double Height

double Angle

double
CharProport
ion

Polygon comprises of several points. Therefore, polygon type has vector of points. In

schema, the field for points is called positions referring to the vertices of the polygon.

Vertices are corner points, which polygon should have at least three. Another way to find

the vertices is by checking the index each point would have. In this thesis, position will be

enough for drawing polygon with SVG, but in the future development, indexes might be

utilized. Circle can be draw with two information: circle’s centre point and the radius. Centre

point is the type Vec, the same that was defined for the point. Radius is a float type.

As seen in Table 5, the pen data type is included in line, polyline, polygon, and circle and

named as a style. This is because each shape could have its own style. Pen is also included as

its own table to the schema. The pen primitive contains three variables: LineColor, LineType

and LineWidth. The type for the colour is integer (int). LineType has its own typedef that is

unsigned short. In schema, unsigned short can be declared with ushort. LineWidth is

unsigned char type. Pen has default values and thus does not need to be defined separately

for every shape. When looping through the values in program, it would be inefficient to

check shapes style with every line. Therefore, it should be noted that, in the program, there

could be a function to check if the style has changed and only then update shape’s style.

The text primitive introduced in Tekla Structures is included in the schema. The fields and

their types are a text, which is a displayed text in string type, a font, which is a name of the

31

font in string, a position, which is a Vec type point and tells where the text begins and in

Tekla Structures, it is located on the bottom left corner, a height, which refers to the font

size in pixels (px) in float type, and an angle, which is a degree or a radiant value given in

float and is used to set the direction of the text in drawing. The topic of text will not be

inspected further in this thesis, and it is one topic for further development. The reason is to

do with the fonts and need to vectorize them, which is because fonts, that are defined

company specifically and some operating system specific fonts, will not be compatible in

web, which uses Google fonts. To answer this challenge and to use fonts on web that are not

compatible, they need to be made into a vector graphics.

4.2 Writing and serializing dummy data with FlatBuffers

Writing and serializing is done in the project file of the chosen language. In this thesis, the

file is TrimBim2D.cpp. Since the data from the Tekla Structure software is not used, the data

is created in the same program where Model root table is serialized with FlatBuffers. The

root table means that serialization of data starts from the table called Model. In order to

serialize this, all the objects that are in the root table need to be serialized. Model consists of

all the tables and structs that have been specified in schema (see Figure 4).

Figure 4. Model table in FlatBuffers Schema.

In the scope of this thesis, data and shapes for line, polyline, polygon, circle, style, and text

are created. This is done as means to verify that the data is passed to FlatBuffers and, further

on, it will be verified whether these shapes can be visualized on the screen with this data.

32

In Figure 5, the lines 1–10 shows included headers, namespace and creating the instance of

FlatBufferBuilder called fbb. To follow up, the line is created with a dummy data. This was

done by giving the values to points in float type, meaning that the point has two values

presenting x- and y-coordinate (see Figure 5 lines 13–14). Since line is a struct with two

values type of Vec, the points defined before can be passed to the line. The line with two

points values is then inserted into new vector that could contain more lines.

Figure 5. Start of FlatBuffers project file with headers and creating line.

With “fbb.CreateVectorOfStructs(lines)”, the line object is collected into a temporary data

structure. Objects return values are captured into lineVector, meaning that they are offsets

into the serialized data, or, in other words, it is now possible to indicate to the values’

location. Later, when creating the Model with its fields, reference to line’s values can be

made with lineVector.

When proceeding into creating a polygon, there is an example of more complex use of

flatbuffers vectors and offsets (see Figure 6). When creating the polygon, four points are

created with type of Vec. The last point of polygon is the same as the first one because it

closes to the starting point. The last point does not have be specified separately here

because, for example, in SVG, polygon reference automatically closes the polygon to the first

point. After this, the vector with these points is created and they are passed onto

flatbuffer::vector further on to the offset, same as with the line. In Figure 6 between lines

78–81, a style for this polygon is also created, and a colour, line type and line width are

given. With CreatePen() method, the style is serialize and its offsets are collected into

polygonStyle.

33

Figure 6. Creating Polygon in FlatBuffers project file.

Between lines 84–88 in Figure 6, polygon with a style is created and added to the buffer

instance, fbb. Since vector of points is created into polygonPoints, and its style into

polygonStyle, a polygon can be created with method CreatePolygon() on line 84. This is

where the serialization happens. Since Model collects a vector of polygons, a so-called

nested vector of objects is created, where, in lines 85–85, an additional vector containing

polygon offsets is created and, in line 88, collected into temporary data structure.

The same repeats with every primitive that are included in this thesis. To read how circle,

pen and text was created in code, see Appendix 4. When comparing sizes of file, the creation

of polyline is utilized by looping different number of lines and therefore, the creating of

polyline is inspected in more detail in chapter 4.5.

Once every object that are used in Model are serialized, the root table is serialized as shown

in Figure 7 on line 136. The root Model includes all the primitives that have been introduced

in Figure 4 on page 31. To finalize the buffer, the FinishModelBuffer() method is called on

line 138. Additionally, a verification for the data, where it checks that the data in buffer

matches FlatBuffers, is added (see lines 145–158 in Figure 7).

34

Figure 7. Finishing serializing data to FlatBuffers.

4.3 Writing and reading files in C++

As part of the comparing the sizes of different file formats, a serialized data needs to be

written into a binary file. As one goal is to see visually that the data can be used for drawing

shapes, the data needs to be also read from this binary file.

To pass the buffer to a file, the buffer pointer and the size of the data are needed to the

serialized data (see Figure 7 lines 139–140). When creating output file (see Figure 8 line 161),

a name, “sample.bin” is given and the file is defined to be a binary file type, which is

important. This is done with stream class ofstream, which can be used to write to the file. In

Figure 8 on the line 168, the file is written by passing the FlatBuffers pointer and casted into

char pointer (char*) and the size of the data, which is the number of bytes on the stream,

that would be written to the file at a time. After writing, the file is closed.

35

Figure 8. Writing and reading binary file with C++.

When reading the binary file, the ifstream is for inputted data. When opening the file, it

should be specified to open as a binary. For reading the file, the size of the data that would

be read to the stream is needed. This is done in Figure 8 between lines 178–180. First, the

position for the next inputted character is set from the beginning to the end of the stream

with seekg(0, std::ios::end). Then, the position of the current character is obtained with

tellg() method and it is passed into fileSize variable. This is now the size of the stream in

which the data is stored. Finally, the position is set back to the beginning of the stream with

seekg(0, std::ios::beg) method. On the lines 187–189 of the Figure 8, the fine is read. First,

memory is allocated by the size for the file data. Then, inFile is read to that new memory

location. When this is completed, the file is closed.

4.4 Reading and deserializing data with FlatBuffers in program

For reading the binary file, memory needs to be allocated for char data type. However,

reading the same data with FlatBuffers requires that the data is in uint8_t type. Although,

char and uint8_t should be interchangeable, it was required to transform data to uint8_t

36

type vector (see Figure 9 line 193). To make sure, that data is not corrupted, it was verified

with FlatBuffers VerifyModelBuffer() method.

Figure 9. Verifying read data and passing it to buffer.

After this, it is possible to deserialize the data with GetModel() method. Since the Model

consists of vectors of tables and structs, they need to be looped through to obtain the value

that can be used. In the Figure 10, it is demonstrated how the reading of the data for line

and polygon is done. For reading other primitives: polyline, pen, circle, and text, refer to

Appendix 5.

Figure 10. Accessing line and polygon data in FlatBuffers.

For iterating through the FlatBuffers vectors, a template function, vectorIterator() is created,

which enables to repeat the same function for different types of vectors (see Figure 11).

When calling the vectorIterator() function (see Figure 10), the type for passed argument and

for the return value need to be defined. For example with the line, a vectorOfLine with type

const flatbuffers::Vector<const TrimBim2D::fbs::Line*> and return value of type

std::vector<const TrimBim2D::fbs::Line*> are passed to the template. In this template

37

function, a new vector with user-defined type is created, the passed vector argument is

iterated through and its values are inserted to the new vector, and, lastly, the new vector is

returned.

Figure 11. Template function for iterating through FlatBuffer vectors.

4.5 Generating SVG file from deserialized data

Once able to access and read data from FlatBuffers, the SVG file can be made for two

reasons: 1) to visualize data and validate that the created data in FlatBuffers can be used, 2)

to have a web applicable vector graphics file for comparing the file size with binary file.

There is a separate function for writing SVG header (see Figure 12) and for the content of the

SVG file (see Figure 13). The header part of the code would be staying the same. Adding and

excluding the SVG file content would only happen in create_image_header() function. Both,

content, and header, are written into their own text files; headerFile.txt and contentFile.txt.

Figure 12. Function for the beginning for SVG file.

The SVG file is written between the root <svg></svg>. The macros are used to define the

width and height of the canvas. The canvas is where the visualization is done, and if some

38

part of the drawing is outside of it, that part will not be rendered to the screen. In addition,

the header includes xmlns, which binds the correct namespace for SVG.

The actual content of the drawing is defined in create_image_content() function. The

pointers to the objects in the FlatBuffers are passed to this function where their values are

taken for new variables used in SVG file. In Figure 13, there is an example of how a line is

written into the SVG file. At the beginning of the function, a map for colour definitions is

created. Tekla Structures uses its own definitions for colours, but with SVG, the RGB

definition is used. When reading the colour from FlatBuffers, the char value is converted into

an int (see line 272 in Figure 13), which works as a key for the map’s values. Values in the

FlatBuffers are accessed by looping through the vectors (see lines 279–284).

Figure 13. Write line content for SVG file.

To start the SVG command, the element reference to the line is added (see line 286 in Figure

13), and the start and the end points with x and y values, as well as a style for the line

(colour and width) are specified. The SVG file syntax is closed with </svg> and the file, where

the text is passed into, is closed with close() (see lines 362–363 in Figure 14) . To read how

polygon, polyline, circle, and text are written into SVG file, see Appendix 6.

39

Figure 14. Function to generate, or write, SVG file.

In addition to these functions, there is a final function, where both header and context text

file are put together and written into a file with SVG extension (see Figure 14). First, the

newly created text files are opened and new SVG file created. Then, the text files are read

line by line with std::getline() method (see lines 375–382 in Figure 14) and written into the

SVG file. In the end, all the files are closed.

4.6 Comparing file sizes of SVG, DWG and new binary file format

In order to compare different file formats, the binary file with serialized data from

FlatBuffers and SVG file with the same data have been created so far. The thesis focus for

comparing is between the binary file, and SVG file but the DWG file was decided to be

introduces alongside them because DWG is currently used in Trimble Connect for

cooperation through cloud. Therefore, it is interesting to see how DWG compares to SVG

and to the new binary files. To get DWG file with the same data, the SVG file is converted to

DWG file with a converter tool found online at www.online.reaconverter.com.

40

However, the DWG cannot be the focus of the comparison, because with the converters

online, it is possible that some data might be lost in the process and therefore, the file size is

only approximate. However, when comparting the visualization of SVG on web and DWG on

Trimble Connect, it can be seen that most of the data is preserved (see Figure 15).

Figure 15. Comparing visualization between DWG and SVG.

Comparing the visualization in SVG and DWG format, an example of how the application

specific definition for origin (see chapter 15) might affect visualization can be seen clearly.

On SVG, the origin is at the top left corner and in Trimble Connect the origin is at the bottom

left corner. This is especially apparent when examining the starting point of the short line.

The consequence is that the shapes are interpreted with different coordinates and

therefore, shapes appear to be rotated in DWG compared to original SVG image.

To obtain data for comparing different file size, a loop generating as many points as is the

loop’s range, is created for polyline. For example, in Figure 16 between lines 46–51, the loop

range is 1000. Inside the loop, there is a multiplier that assists to obtain new values for the

point. After that, the point values are given their value and added to the vector. In the

visualization (see Figure 16), this loop can be seen as a long line that in most cases would be

partially out of screen. When reading the data and bringing it to SVG, the vector iteration is

done with the points, and they are written to the file (see Appendix 5).

DWG SVG SVG

41

Figure 16. Loop for creating points for polyline and writing polyline to FlatBuffers.

The comparison was made with 100, 1,000, 10,000 and 100,000 points or loops. In Table 6

on page 42, the results are gathered. The size that is compared, is the data size and not the

size on disk. In addition, the size of compressed file done with zip is included.

When comparing to DWG file, it was not possible to reach satisfying results. With the online

converter, regardless of the data size, the file size stays the same. There are too many

unsettled questions regarding how the converter works and therefore, any conclusions

about DWG cannot be made.

The results on Table 6 shows that between binary file and SVG, the binary file is in all of the

cases smaller in size. However, the difference decreases with the smaller data size. This

supports the theory in chapter 2.3.2, where it was indicated that the benefit of binary files is

more apparent when the data is complex and the size of the data large. With smaller data,

binary serialization might be excessive since the result with human-readable format is

practically the same and as compressed slightly smaller than binary file.

Since Tekla Structure, and CAD programs in general, uses complex data and the data sizes

are in abundance, binary format would be recommended since its size could be less than half

of the SVG file size.

42

Table 6. Comparing FlatBuffers binary file, SVG and DWG file sizes.

Number of loops and
overall data size

FlatBuffers binary
file size

SVG file size DWG file size

100 loops

1.16 kB
(1,192 bytes)

1.56 kB
26.3 kB
(27,015 bytes)

Compressed:
830 bytes

Compressed:
789 bytes

Compressed:
21.1 KB
(21,620 bytes)

1,000 loops

8.19 kB
(8,392 bytes)

12.1 kB
(12,407 bytes)

26.3 kB
(26,951 bytes)

Compressed:
3.92 kB
(4,016 bytes)

Compressed:
4.50 kB
(4,611 bytes)

Compressed:
21.1 kB
(21,620 bytes)

10,000 loops

78.5 kB
(80,392 bytes)

135 kB
(138,407 bytes)

26.3 kB
26,948 bytes

Compressed:
37.8 KB
(38,750 bytes)

Compressed:
42.6 kB
(43,660 bytes)

Compressed:
21.1 kB
(21,620 bytes)

100,000 loops

781 kB
(800,392 bytes)

2,09 MB
(2,198,399 bytes)

Too large to convert
online Compressed:

355 kB
(363,815 bytes)

Compressed:
458 kB
(469,026 bytes)

43

5 Conclusions

In the scope of this thesis, the FlatBuffers schema, the FlatBuffers project file to create data

and serialized them with FlatBuffers, as well as the serialized data into binary file format are

made. Moreover, for the comparison section of this thesis, the SVG file from the deserialized

data of binary file was created and SVG file converted into DWG file.

The value from this project comes from the schema that can be utilized and used as a basis

for high-level schema and data serialization of the 2D drawings in Tekla Structures.

Furthermore, by comparing file formats is can be concluded that the hypothesis “the binary

file with FlatBuffers is smaller in size than SVG” is correct. However, contrary to the original

hypotheses that also included the DWG, the conclusion how this new binary file format

compares to DWG was not made due to insufficient conversion with online converter tool.

The schema written in this thesis is low-level and would need fine tuning, adding, and

improving, for it to be implemented into Tekla Structures. For example, there is a question

about how to handle fonts in the text, as well as the arcs and some other primitives are not

yet included in the schema. However, with the visualization of the data with SVG file, it can

be confirmed that the current schema is applicable and could be developed further.

The file format, that was produced in as the result, is a publishing format. Other topics for

further development could then be adding interactivity and editing possibilities. This would

mean in schema that the objects should have, for example, id so that the additional data or

changes can be allocated to object specifically. Moreover, in this thesis topics, such as

annotation, including dimensioning; measuring horizontal and vertical distance (Gharge,

2021), that are essential for designers and add information to the drawing that cannot be

seen in 2D space, are not covered.

All this points to the fact that in order to implement this to CAD 2D drawing, there would be

still some topics to consider and work to do. However, as a result of this thesis, there is now

an enabler, a base to start further development, and analysis of file size that can contribute

into making decision whether continue this development at some point.

44

Sources

Aalto (n.d.). The Difference between Vector and Raster Graphics. Guide for Digital Design.

https://digitaldesign.aalto.fi/digital-design-workflows/the-difference-between-vector-

and-raster-graphics/

Adobe (n.d.). DWG vs. DXF. Comparison. https://www.adobe.com/creativecloud/file-

types/image/comparison/dwg-vs-dxf.html

Acaddrafting (26.5.2016). The Magnificence of 2D Technical Drawing. The engineering

design. https://www.theengineeringdesign.com/the-magnificence-of-2d-technical-

drawing/

Akenine-Möller, T., Haines, E. & Hoffman, N. (2008). Real-Time Rendering. A K Peters/CRC

Press.

Amadine (12.2022). What Are Scalable Vector Graphics. https://amadine.com/useful-

articles/what-are-scalable-vector-graphics-svg

Andy (8.12.2019). Which Vector File Type Should I Choose?. Scan2CAD.

https://www.scan2cad.com/blog/tips/vector-file-type-choose/

BlueEnt (8.4.2022). PDF to CAD Conversion: Common Challenges With Their Solutions.

Construction Drawings. https://www.bluentcad.com/blog/pdf-to-cad-conversion-

challenges/

Campbell, J. & Shin, M. (2011). Essentials of Geographic Information Systems. From publisher

https://www.saylor.org/books/.

Chen, J. & Clarke, K. (2017). Modeling Standards and File Formats for Indoor Mapping.

[Conference article] 3rd International Conference on Geographical Information Systems

Theory, Applications and Management, Santa Barbara, CA, United States.

Codecademy (n.d.). Data Types. C++.

https://www.codecademy.com/resources/docs/cpp/data-types

https://digitaldesign.aalto.fi/digital-design-workflows/the-difference-between-vector-and-raster-graphics/
https://digitaldesign.aalto.fi/digital-design-workflows/the-difference-between-vector-and-raster-graphics/
https://www.adobe.com/creativecloud/file-types/image/comparison/dwg-vs-dxf.html
https://www.adobe.com/creativecloud/file-types/image/comparison/dwg-vs-dxf.html
https://www.theengineeringdesign.com/the-magnificence-of-2d-technical-drawing/
https://www.theengineeringdesign.com/the-magnificence-of-2d-technical-drawing/
https://amadine.com/useful-articles/what-are-scalable-vector-graphics-svg
https://amadine.com/useful-articles/what-are-scalable-vector-graphics-svg
https://www.scan2cad.com/blog/tips/vector-file-type-choose/
https://www.bluentcad.com/blog/pdf-to-cad-conversion-challenges/
https://www.bluentcad.com/blog/pdf-to-cad-conversion-challenges/
https://www.saylor.org/books/
https://www.codecademy.com/resources/docs/cpp/data-types

45

cplusplus.com, (n.d.). <vector>. Containers. https://cplusplus.com/reference/vector/vector/

Czmocha, I. & Pekala, A. (2014). Traditional Design versus BIM Based Design. Procedia, 91,

210–215.

Devopedia (2020). Data Serialization. https://devopedia.org/data-serialization

Dot Net Tutorials (n.d. -a). Why Data Types in C++. https://dotnettutorials.net/lesson/why-

data-types-in-cpp/

Dot Net Tutorials (n.d. -b). Primitive Data Types in C++.

https://dotnettutorials.net/lesson/primitive-data-types-in-cpp/

Eisenberg, D. & Bellamy-Royds, A. (2014). SVG Essentials, 2nd Edition. O'Reilly Media, Inc.

English, T.(2020). Why Engineers Still Create 2D Detailed Drawings.

https://interestingengineering.com/innovation/why-engineers-still-create-2d-detailed-

drawings

Eynon, J. (2016). Construction Manager’s BIM Handbook. John Wiley & Sons, Inc.: Hoboken,

NJ, USA.

Fahiem, M. & Farhan, S. (2007, December 29–31). Representation of Engineering Drawings

in SVG and DXF for Information Interchange. [Conference article] 6th WSEAS International

Conference on Circuits, Systems, Slectronics, Sontrol & Signal processing, Cairo, Egypt.

FileFormat (n.d.). What is a DWG file. CAD. https://docs.fileformat.com/cad/dwg/

FileInfo.com (21.12.2011). What is the difference between binary and text files?. Help

Center. https://fileinfo.com/help/binary_vs_text_files

FlatBuffers (n.d. -a). FlatBuffer Internals.

https://google.github.io/flatbuffers/md__internals.html

FlatBuffers (n.d. -b). FlatBuffers white paper.

https://google.github.io/flatbuffers/flatbuffers_white_paper.html

FlatBuffers (n.d. -c). Overview. FlatBuffers. https://google.github.io/flatbuffers/

https://cplusplus.com/reference/vector/vector/
https://devopedia.org/data-serialization
https://dotnettutorials.net/lesson/why-data-types-in-cpp/
https://dotnettutorials.net/lesson/why-data-types-in-cpp/
https://dotnettutorials.net/lesson/primitive-data-types-in-cpp/
https://interestingengineering.com/innovation/why-engineers-still-create-2d-detailed-drawings
https://interestingengineering.com/innovation/why-engineers-still-create-2d-detailed-drawings
https://fileinfo.com/help/binary_vs_text_files
https://google.github.io/flatbuffers/md__internals.html
https://google.github.io/flatbuffers/flatbuffers_white_paper.html
https://google.github.io/flatbuffers/

46

FlatBuffers (n.d. -d). FlatBuffer C++ Benchmarks.

https://google.github.io/flatbuffers/flatbuffers_benchmarks.html

FlatBuffers (n.d. -e). Writing a schema. Programmer’s Guide.

https://google.github.io/flatbuffers/flatbuffers_guide_writing_schema.html

FlatBuffers (n.d. -f). Building. Programmer’s Guide.

https://google.github.io/flatbuffers/flatbuffers_guide_building.html

FlatBuffers (n.d. -g). Using the schema compiler. Programmer’s Guide.

https://google.github.io/flatbuffers/flatbuffers_guide_using_schema_compiler.html

FlatBuffers (n.d. -h). Tutorial. Programmer’s Guide.

https://google.github.io/flatbuffers/flatbuffers_guide_tutorial.html

Ganovelli, F., Corsini, M., Pattanaik, S. & Di Benedetto, M. (2014). Introduction to Computer

Graphics. Chapman and Hall/CRC.

GeeksForGeeks (18. 3. 2023 -a). C++ Data Types. Geeks for geeks.

https://www.geeksforgeeks.org/cpp-data-types/

GeeksForGeeks (20. 3. 2023 -b). Vector in C++ STL. Geeks for geeks.

https://www.geeksforgeeks.org/vector-in-cpp-stl/

Gharge, P. (29.11.2021). Dimensions in AutoCAD. All You Need to Know. All3DP.

https://all3dp.com/2/dimension-autocad-command-explained/

Grabowski, R. (2022). AutoCAD For Dummies. For Dummies.

Hazelcast (n.d.). What Is Serialization?. https://hazelcast.com/glossary/serialization/

Itskawal2000, 123mangooo & jatinsharma_0987 (19.2.2023). Difference Between C++ Text

File and Binary File. Geeks for Geeks. https://geeksforgeeks.org/difference-between-cpp-

text-file-and-binary-file/

Kjell, B. (n.d). Introduction to Computer Science using Java. Central Connecticut State

University.

https://google.github.io/flatbuffers/flatbuffers_benchmarks.html
https://google.github.io/flatbuffers/flatbuffers_guide_writing_schema.html
https://google.github.io/flatbuffers/flatbuffers_guide_building.html
https://google.github.io/flatbuffers/flatbuffers_guide_using_schema_compiler.html
https://google.github.io/flatbuffers/flatbuffers_guide_tutorial.html
https://www.geeksforgeeks.org/cpp-data-types/
https://all3dp.com/2/dimension-autocad-command-explained/
https://hazelcast.com/glossary/serialization/
https://geeksforgeeks.org/difference-between-cpp-text-file-and-binary-file/
https://geeksforgeeks.org/difference-between-cpp-text-file-and-binary-file/

47

Kleppmann, M. (2017). Designing Data-Intensive Applications. The Big Ideas Behind Reliable,

Scalable, and Maintainable Systems. O'Reilly Media.

Logothetis, S., Valari, E., Karachaliou, E. & Stylianidis, E. (2018). Development of an Open

Source Spatial DBMS for a FOSS BIM. From publication Shu-Kun Lin (pub.), Latest

Developments in Reality-Based 3D Surveying and Modelling. (pp. 326–347). MDPI.

Maciej, S., Andrzej, S. & Przemyslaw, B. (2017). BIM in General Construction. Lublin

University of Technology.

Mahamuni, A. (16.3.2022). Modifiers in C++. https://www.scaler.com/topics/cpp/modifiers-

in-cpp/

MDN (n.d. -a). Adding vector graphics to the web. https://developer.mozilla.org/en-

US/docs/Learn/HTML/Multimedia_and_embedding/Adding_vector_graphics_to_the_We

b

MDN (n.d. -b). Positions. SVG: Scalable Vector Graphics. https://developer.mozilla.org/en-

US/docs/Web/SVG/Tutorial/Positions

MDN (n.d. -c). Canvas API. https://developer.mozilla.org/en-US/docs/Web/API/Canvas_API

MDN (n.d. -d). Introduction. SVG: Scalable Vector Graphics.

https://developer.mozilla.org/en-US/docs/Web/SVG/Tutorial/Introduction

MDN (n.d. -e). Adding vector graphics to the web. Multimedia and embedding.

https://developer.mozilla.org/en-

US/docs/Learn/HTML/Multimedia_and_embedding/Adding_vector_graphics_to_the_Web

MDN (n.d. -f). SVG: Scalable Vector Graphics. https://developer.mozilla.org/en-

US/docs/Web/SVG

Microsoft (11.7.2022). C++ type system. C++ language reference. Basic concepts.

https://learn.microsoft.com/en-us/cpp/cpp/cpp-type-system-modern-cpp?view=msvc-170

Microsoft (3.8.2021). Additional include directories. https://learn.microsoft.com/en-

us/cpp/build/reference/i-additional-include-directories?view=msvc-170

https://www.scaler.com/topics/cpp/modifiers-in-cpp/
https://www.scaler.com/topics/cpp/modifiers-in-cpp/
https://developer.mozilla.org/en-US/docs/Learn/HTML/Multimedia_and_embedding/Adding_vector_graphics_to_the_Web
https://developer.mozilla.org/en-US/docs/Learn/HTML/Multimedia_and_embedding/Adding_vector_graphics_to_the_Web
https://developer.mozilla.org/en-US/docs/Learn/HTML/Multimedia_and_embedding/Adding_vector_graphics_to_the_Web
https://developer.mozilla.org/en-US/docs/Web/SVG/Tutorial/Positions
https://developer.mozilla.org/en-US/docs/Web/SVG/Tutorial/Positions
https://developer.mozilla.org/en-US/docs/Web/API/Canvas_API
https://developer.mozilla.org/en-US/docs/Web/SVG/Tutorial/Introduction
https://developer.mozilla.org/en-US/docs/Learn/HTML/Multimedia_and_embedding/Adding_vector_graphics_to_the_Web
https://developer.mozilla.org/en-US/docs/Learn/HTML/Multimedia_and_embedding/Adding_vector_graphics_to_the_Web
https://developer.mozilla.org/en-US/docs/Web/SVG
https://developer.mozilla.org/en-US/docs/Web/SVG
https://learn.microsoft.com/en-us/cpp/cpp/cpp-type-system-modern-cpp?view=msvc-170
https://learn.microsoft.com/en-us/cpp/build/reference/i-additional-include-directories?view=msvc-170
https://learn.microsoft.com/en-us/cpp/build/reference/i-additional-include-directories?view=msvc-170

48

MongoDB (n.d.). An Introduction to Data Persistence.

https://www.mongodb.com/databases/data-persistence

Nanyang Technological University (2013). Stream IO and File IO. C++ Programming Language.

https://www3.ntu.edu.sg/home/ehchua/programming/cpp/cp10_io.html

Rouse, M.(31.10.2012). Binary File Transfer. Technopedia.

https://www.techopedia.com/definition/515/binary-file-transfer-bft

Sheldon, R. (06.2022). Binary file. Programming.

https://www.techtarget.com/whatis/definition/binary-file

Snowbound (2015). Scalable Vector Graphics. The Little-Known Treasure of Document

Viewing[Brochure].https://snowbound.com/app/uploads/2022/07/eBook_Scalable_Vector_

Graphics.pdf

SVG on the Web (n.d.). Introduction. SVG on the Web. https://svgontheweb.com/

Trimble (n.d. -a). Industries. Solutions.

https://www.trimble.com/en/solutions/industries/overview

Trimble (n.d. -b). Tekla Structures. https://www.tekla.com/products/tekla-structures

Trimble (n.d. -c). Create Model Views. https://support.tekla.com/doc/tekla-

structures/2023/mod_creating_a_view

Trimble (n.d. -d). Drawing Types. https://support.tekla.com/doc/tekla-

structures/2023/dra_drawing_types

Trimble (2013). Tekla History. https://www.slideshare.net/Tekla/tekla-history

Zaks, M. (2.11.2016). Beyond JSON — Introduction to FlatBuffers. Medium.

https://mzaks.medium.com/beyond-json-introduction-to-flatbuffers-fba1dfd0dcfe

https://www.mongodb.com/databases/data-persistence
https://www3.ntu.edu.sg/home/ehchua/programming/cpp/cp10_io.html
https://www.techopedia.com/definition/515/binary-file-transfer-bft
https://www.techtarget.com/whatis/definition/binary-file
https://snowbound.com/app/uploads/2022/07/eBook_Scalable_Vector_Graphics.pdf
https://snowbound.com/app/uploads/2022/07/eBook_Scalable_Vector_Graphics.pdf
https://www.trimble.com/en/solutions/industries/overview
https://www.tekla.com/products/tekla-structures
https://support.tekla.com/doc/tekla-structures/2023/mod_creating_a_view
https://support.tekla.com/doc/tekla-structures/2023/mod_creating_a_view
https://support.tekla.com/doc/tekla-structures/2023/dra_drawing_types
https://support.tekla.com/doc/tekla-structures/2023/dra_drawing_types
https://www.slideshare.net/Tekla/tekla-history
https://mzaks.medium.com/beyond-json-introduction-to-flatbuffers-fba1dfd0dcfe

Appendix 1 / 1

Appendix 1: Table of C++ data types, their sizes in bytes and their range (Windows OS).

(GeeksForGeeks, 2023 -a; Codecademy, n.d.)

Data type Memory Size Range

int

short 2 bytes -32,768 to 32,767

unsigned short 2 bytes 0 to 65,535

unsigned 4 bytes 0 to 4,294,967,295

(default) 4 bytes -2147483648 to 2147483647

long 4 bytes -2,147,483,648 to 2,147,483,647

unsigned long 4 bytes 0 to 4,294,967,295

long long 8 bytes -(2^63) to (2^63)-1

float 4 bytes -3.4x10^38 to 3.4x10^38

double

(default) 8 bytes -2.3E-308 ×10^308 to1.7×10^308

long 12 bytes 3.4E-4932 to 1.1E+4932

bool 1 byte True or false

char

(default) 1 byte -128 to 127

signed 1 byte -128 to 127

unsigned 1 byte 0 to 255

std::string (MSVC compiler) 24 bytes

Appendix 2 / 1

Appendix 2: PrimitivesSchema.fbs, the FlatBuffers Schema for point, line, polyline,

polygon, circle, text and model

Appendix 3 / 1

Appendix 3: Material2d.fbs, the FlatBuffers Schema for pen with colour, line type and line

width

Appendix 4 / 1

Appendix 4: Data serializing circle, pen, line with pen and text to FlatBuffers

Appendix 5 / 1

Appendix 5: Deserializing data for reading pen, circle and text with FlatBuffers

Appendix 6 / 1

Appendix 6: Write polygon, polyline, circle, and text to SVG file

	1 Introduction
	1.1 Research Problem
	1.2 Goal
	1.3 Prerequisites and scope

	2 Handling of 2D drawing data and file formats
	2.1 2D drawings and graphics
	2.1.1 Coordinate system, geometric primitives and shapes in drawings
	2.1.2 Drawing primitives onto the screen with 2D graphics library

	2.2 Different formats to store and transfer 2D drawings
	2.2.1 Binary versus text file formats
	2.2.2 Comparing 2D drawing vector file formats

	2.3 Data serialization
	2.3.1 Data serialization with FlatBuffers in C++
	2.3.2 Data serialization with binary versus with text
	2.3.3 Data types in C++

	3 Plans and instructions for realization of the thesis goals
	3.1 Steps to reach goals of making schema and comparing file formats
	3.2 The structure and syntax of schema
	3.3 Generating the header file and adding libraries to FlatBuffers project
	3.4 Writing and reading FlatBuffers

	4 Process of making FlatBuffers schema and writing files for comparison
	4.1 Writing primitives into schema
	4.2 Writing and serializing dummy data with FlatBuffers
	4.3 Writing and reading files in C++
	4.4 Reading and deserializing data with FlatBuffers in program
	4.5 Generating SVG file from deserialized data
	4.6 Comparing file sizes of SVG, DWG and new binary file format

	5 Conclusions
	Sources

