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The goal of this Final Year Project was to create a software solution to combat text-
based scams in an increasingly volatile field of cybercrime.  
 
Email based attacks are by far the most common initial vector in cyberattacks. 
Technical implementations can always be made more robust, but the human mind 
and its vulnerabilities are not as easily patched. By offering an application which 
allows a user to insert text they are suspicious of, and receive feedback based on the 
input, users might be able to avoid potential scams and learn to stay safe from them 
in the future. In a best-case scenario, potentially even educating others about them.  
 
Many organizations offer solutions such as spam filters and reporting functionality to 
combat cyberattacks. These solutions do well at reducing the risk but are not 
foolproof, often doing nothing in terms of educating the user. The web application 
created in this project offers a universal tool, not tied to any certain communications 
platform, allowing users with no registration or cost requirements to receive 
instantaneous help combating cybercrime. 
 
To achieve the set goal of the Final Year Project, this thesis examines potential 
approaches to detecting malicious intent in text. In addition, this thesis discusses 
methods to create a simple web application from start to finish. The result is a web 
application allowing a user to input text for evaluation, and receive feedback based 
on the estimated maliciousness of the text. 
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Tämän insinöörityön tavoite oli luoda sovelluspohjainen ratkaisu tukemaan 

kyberrikollisuuden vastaista kamppailua. Insinöörityö tutkii erilaisia ratkaisuja 

tekstin haitallisuuden tunnistamiseen sekä selainpohjaisen sovelluksen 

julkaisemiseen. 

 

Useimmat kyberhyökkäykset alkavat sähköpostitse. Teknisiä ratkaisuja voi aina 

parantaa tehden niistä vaikeammin murrettavia, mutta ihmismieli ja sen 

haavoittuvuudet eivät ole yhtä yksinkertaisesti paikattavissa. Tarjoamalla 

sovelluksen, joka antaa loppukäyttäjän syöttää tekstiä ja saada syötteeseen 

perustuvaa palautetta tekstin haitallisuudesta, saattaa yhä useampi pysyä 

turvassa huijauksilta.  

 

Monet viestintäalustat sisältävät roskapostin suodattimia, jotka vähentävät 

paljolti loppukäyttäjien saamia huijausviestejä. Nämä suodattimet eivät 

kuitenkaan ole täydellisiä, sillä hyökkääjät innovoivat jatkuvasti uusia tapoja 

saada viestinsä perille. Tässä insinöörityössä keskitytään ratkaisuun, joka toimii 

viestintäalustasta huolimatta. Työn lopputuloksena oli sovellus, johon käyttäjä 

voi alustasta riippumatta kopioida epäilyttävän tekstin ja saada sille 

koneoppimiskeinoin räätälöidyn palautteen. 

 

Avainsanat: tekoäly, koneoppiminen, verkkokalastelu, 

kyberturvallisuus, tietoturva, sosiaalinen 

manipulaatio
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List of Abbreviations 

AI: Artificial Intelligence. A non-living intelligence able to perform 

cognitive actions and simulate reasoning, allowing it to solve 

problems typically solved by intelligent living beings. 

ML: Machine Learning. Discipline of training a software solution to 

perform predictions and actions based on substantial amounts of 

training data. 

HTML: Hypertext Markup Language. A standard markup language 

consisting of different elements informing a web browser on how to 

display a page’s contents. 

PaaS: Platform-as-a-Service. A cloud-based development and deployment 

environment used for hosting diverse types of applications. 
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1 Introduction 

Cybercrime is a constantly growing issue for both individuals and businesses 

alike, email-based attacks being by far the most common initial vector in 

cyberattacks. Email based attacks combine both technical tricks and social 

engineering to achieve desired results.  

Email based attacks, commonly known as phishing, describe the malicious 

practice of sending emails designed to induce the recipient into revealing 

sensitive information or to perform a desired action with positive outcome for the 

malicious actor.  

Social engineering on the other hand is a commonly used term within the 

context of information security to describe manipulation of the human factor. A 

social engineer utilises psychological manipulation to have individuals perform 

certain actions, such as revealing sensitive information.  

The human factor is often the key defence to breach for malicious actors, as 

systems can be built with increasing security levels, but human psychology 

remains vulnerable. According to data from 2014, more than 90 percent of the 

191.4 billion emails sent each day are spam, and 60 percent of all attacks had 

the “human factor” as a major piece in the attack (1). 

A successful cyberattack usually involves a breach of information security. A 

malicious actor might for example gain access to a company network, allowing 

them to extract information or install malware. Ransomware attacks pose a 

significant risk for organisations currently, as in those attacks the malicious 

actors encrypt data and request a ransom for the encryption key. Large scale 

ransomware attacks can disrupt business functions, or even disable critical 

infrastructure such as power and water grids.  
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The goal of this Final Year Project was to create a software solution to combat 

social engineering. The fundamental aim was to create a web-based solution, 

allowing users to input text, and receive a probability score on the 

maliciousness of said text. This thesis describes the process, outcomes, and 

learnings from the project. 

2 Background 

To solve the problem of identifying malicious intent in text with a software 

solution, one could utilize one of the three generally employed approaches:  

• Denylist – A denylist is a list of features, such as words or domains 

that are known to be malicious. These features are detected, and 

actions are performed depending on set rules. A denylist is a 

recommended approach if a low rate of false positive matches is 

required. A false positive match meaning an instance where a 

legitimate message is detected as malicious. However, as a denylist 

is based on known features, it requires frequent updating and does 

not perform well against e.g. new types of attacks such as a new 

phishing campaign (2). 

• Rule-based heuristics – Implementing this approach requires the 

manual creation of relevant heuristics, such as the length of the 

message, or the number of links it might have. One could analyse 

data to find indicators such as a set number of links which often 

indicates that a message is malicious. This approach is often seen 

as unsuitable for general solutions, as messages can be complex 

and used are used for a wide array of purposes. Therefore, finding 

effective heuristics that do not cause a large number of false 

positives is nigh impossible. 

• Machine learning – A machine learning approach to identifying 

malicious intent utilises features in the email similar to ones used in 

rule-based heuristics. The difference being that in machine learning 
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the model finds the features from the data instead of the features 

being manually researched (3).  

From the three approaches described above, machine learning seems like the 

most suitable solution to this project, as it offers a good combination of 

efficiency and accuracy. Machine learning does however require a significant 

pre-existent dataset, while rule-based heuristics can potentially be invented 

purely based on domain knowledge or lesser amounts of data. 

3 Machine Learning 

Artificial intelligence (AI) is a wide field of research, focused on studying 

intelligent agents such as animals and humans and creating intelligent systems, 

able to perceive information and take actions leading it closer to its goal. An AI 

can perform cognitive actions and simulate reasoning allowing it to solve 

problems usually thought to only be solvable by intelligent living beings. 

Machine learning (ML) is considered a subset of AI. In machine learning, the 

idea is to train a model to perform tasks that are commonly left for humans due 

to their complexity. These tasks could be e.g. distinguishing certain objects in 

images, playing chess or even solving protein folding among others (4). 

Machine learning is the process of using mathematical methods to allow a 

computer to analyse and learn from data. 

3.1 Model Choice 

Machine learning solutions may be distinguished by grouping them into three 

main groups depending on the learning process and intended use case. Each of 

these groups have large disparities in the type of data they require and the 

tasks they can accomplish. 
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3.1.1 Supervised Learning 

Supervised learning is used to solve two main problem types, classification 

problems and regression problems. Learning the mapping from an input (X) to 

the output (Y) is the goal, and to accomplish this the correct outputs must be 

known in the training data. 

Classification problems mean that a certain input is given a certain 

classification. In its simplest form a certain input can be classified with a value 

between zero and one, meaning that the model returns a calculated probability 

of something being true or false based on the data it has been trained with. (5) 

An example of training data that could be used for this type of model is the 

ImageNet dataset, providing researchers with image data of over 100 000 

distinct types of objects and on average 1000 images for each object type (6). 

This dataset can be utilized to create machine learning models for classification 

problems such as object recognition with great accuracy.  

Regression problems are related to continuous data. An example task could be 

predicting the price of a vegetable, given the season, area, brand, and store.  

3.1.2 Unsupervised Learning 

Unsupervised learning, as the name suggests, is the opposite of supervised 

learning. No labelled dataset is used here, instead the models' goal is to find 

patterns within the data to be able to predict output. 

Unsupervised learning is utilized for three main types of tasks, clustering, 

association, and dimensionality reduction. Real world applications include 

anomaly detection, where substantial amounts of data are combed for atypical 

data points such as sensor faults in processing plants. 
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Unsupervised learning is known to bear the risk of inaccurate output, as the 

result of e.g. the model finding unforeseen patterns. Unsupervised learning also 

often results with non-transparent models, making it hard to analyse why a 

certain input leads to a certain output. (7) 

3.1.3 Reinforcement Learning 

Reinforcement learning differs largely from the previously described types of 

learning. This type of learning results in a model which outputs a sequence of 

actions, the sequence often containing a vast number of steps. 

A simplified example use case for this type of model could be collision 

avoidance. In this case the model is given a starting point and an end goal with 

obstacles in between. The further the model can get without colliding with the 

obstacles, the more it is rewarded. With enough iterations, the model will 

eventually learn to pass the obstacles safely. The problem here is that if the 

obstacles are always situated in the same places, the model might learn to only 

pass this course. Therefore, during learning the model would have to encounter 

many different courses to learn to deal with many different types of scenarios. In 

the end, with the correct reward functions, the model could for example be used 

to define the most efficient path to reach a goal. 

Reinforcement learning is used in applications such as chess engines, 

autonomous vehicles, healthcare, and marketing (8).  

3.2 Dataset (Analysing Data) 

A dataset has several important features. As previously stated, machine 

learning requires a large dataset to achieve a well performing model. As an 

example, Google Translate uses trillions of data points, or examples as a basis 

for the functionality (9). However, a model is only as good as the quality of its 

dataset. If a model is taught using e.g. erroneously labelled data, the model will 
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function poorly when used for real tasks. This means, that the dataset should be 

carefully chosen or acquired, and studied before it is used. 

The dataset chosen for this project contains 5 572 messages, labelled as either 

spam or ham, ham meaning that the message is legitimate. The messages are 

all in English and the dataset is composed of multiple smaller sets of data 

gathered from public sources (10). As there is no clarity on how reliable the 

labelling is, the first step is to analyse the data to see if clear errors can be 

spotted. Figure 1 displays some example data points found in the dataset, after 

loading it to a Pandas data frame. Importing the dataset into a data frame 

makes manipulation of the data simple in later stages of model training.  Being 

able to differentiate between spam and ham can at times be quite hard without 

any additional context. When analysing a string for maliciousness, the easiest 

way to gain certainty of its purpose is to analyse its payload, meaning the action 

the recipient is supposed to take or the part they are supposed to interact with. 

This could for example be a link or an attachment in the message.  

 

Figure 1 Example data points found in the dataset. 
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The distribution of labels is also important, as training a model with an 

imbalanced dataset can lead to skewed weights and therefore deficient 

performance. In the dataset chosen for this project, the data is distributed to be 

86.6% spam, and 13.4% ham, as displayed in figure 2. To counteract this, the 

dataset must be resampled to even out the ratio, or a model able to handle the 

oversampling of one label must be chosen.  

 

Figure 2 Distribution of labels in the dataset 

When a dataset has been chosen and analysed, the data is split into a training 

set and a test set. As the goal is to create a model which generalises well to 

new data, a test set allows us to see how well the model is performing on new 

data and to iterate when needed. Making sure the data in both sets differ, and 

that no duplicates are found in both sets is particularly important, as testing the 

model on familiar data might lead to skewed metrics and a model which 

performs poorly when used for its intended task. 
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3.3 Training the Model 

With supervised learning identified as the most suitable approach for a 

classification problem such as the one in this project, the next step is to choose 

the correct type of language model. Neural language models, such as BERT 

(Bidirectional Encoder Representations from Transformers) represent the 

current state-of-the-art approach in solving language problems with AI. (11) This 

type of model utilises Transformers, a key technical innovation allowing the 

model to take word attention into account, meaning that the model can e.g. 

recognize differences in meaning depending on word placement in sentences. 

This technical innovation was introduced in the paper Attention Is All You Need 

(12) published in 2017.  

To achieve great accuracy, one could utilize transfer learning to fine-tune pre-

existing language models, such as BERT. This approach would utilise previous 

research and processing, allowing one to create models with millions of 

parameters with relatively cheap training costs. 

Due to resource constraints such as the lack of dedicated graphical processing 

units and to maximise personal learning, utilising the techniques presented 

previously to build a model without utilising pre-existing base models was 

chosen as the appropriate approach. In machine learning projects, it is also 

commonly advised to begin with smaller scale models to test the solution before 

scaling up. 

When training a neural language model, the first step is to pre-process the data 

for tokenisation. The data used for training the model is text, and for a 

successful tokenisation the text must be cleaned of unnecessary typographical 

symbols and punctuation. These symbols can be for example dashes, slashes, 

exclamation- or question marks.  

With the data pre-processed, the next step is to tokenise the training data. 

Tokenisation is the process of dividing larger entities into smaller parts. For 

example, the string: 
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“When do you think the pandemic is over?” 

In its tokenised form would result in something similar to this: 

‘when’ ‘do’ ‘you’ ‘think’ ‘the’ ‘pandemic’ ‘is’ ‘over’ 

This allows easier handling of the strings’ contents during the later training 

stages, for example by enabling it to count word frequencies or to take their 

positions and attention into account. (13) 

The tokenised text can now be transformed into integers. Each word will be 

assigned a corresponding integer value, which can then be used for training the 

model.  

Figure 3 summarises the finished model used in this project. The model type is 

sequential, meaning that the model is a linear stack of layers.  

 

Figure 3 Summary of the model structure and its features 
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The dense layers are widely used in neural networks. The dense layers are 

used to perform matrix-vector multiplications, applying changes such as 

rotation, scaling, and translation to input from the previous layer. 

3.4 Evaluating the Model 

Accuracy represents the percentual number of correctly classified data points. 

Higher accuracy intuitively means better results, but in many applications 

different types of errors have a vastly different weight. In the case of this project, 

an error of classifying malicious input as non-malicious has a much worse 

potential outcome than classifying non-malicious input as malicious. Therefore, 

to better be able to evaluate the model, additional metrics must be utilised.  

Precision represents the amount of true positive results divided by the sum of 

true positive and false positive results. This value should ideally be as close to 

one as possible, as an increased amount of false positive results leads to a 

result further away from one. In the case of this project, a true positive result 

means classifying something malicious correctly as malicious, and a false 

positive result would mean that a non-malicious input would be classified as 

malicious. 

A third metric one can utilise is recall. This metric should also ideally be as 

close to one as possible. The metric can be calculated by dividing the amount of 

true positive results with the sum of true positive results and false negative 

results. False negative results being times when a malicious input is classified 

as non-malicious. As earlier stated, these types of errors have the worst 

potential outcome in this models’ planned application.  

A final metric one can utilise is the F1 score. The F1 score metric takes into 

account both precision and recall and is widely regarded as a better measure 

than accuracy. The F1 score can be calculated as shown in equation 1. 

𝐹1 𝑆𝑐𝑜𝑟𝑒 = 2 ∗  
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
 (1) 
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Evaluating the model created for this with the metrics presented previously 

returns the following values: 

• Accuracy: 0.9878 

• Precision: 0.9178 

• Recall: 0.9324 

• F1 Score: 0.9250 

These results are quite promising, but one must consider that they are 

calculated using test data separated from the training data, still originating from 

the same data set. Real world results may be very different. 

3.5 Text Evaluation with the Model 

Once the model weights have been saved, strings of text can be evaluated by 

first performing the same processing on the string as done to the training data, 

and then evaluating it.  

To make this process more efficient, a function shown in listing 1 was written, 

which performs all the necessary steps and can be called later when the model 

has been deployed. 
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def evaluate_text(text): 

whitespace = re.compile(r"\s+") 

web_address = re.compile(r"(?i)http(s):\/\/[a-z0-9.~_\-\/]+") 

user = re.compile(r"(?i)@[a-z0-9_]+") 

text = text.replace('.', '') 

text = whitespace.sub(' ', text) 

text = web_address.sub('', text) 

text = user.sub('', text) 

text = re.sub(r"\[[^()]*\]", "", text) 

text = re.sub(r"\d+", "", text) 

text = re.sub(r'[^\w\s]','',text) 

text = re.sub(r"(?:@\S*|#\S*|http(?=.*://)\S*)", "", text) 

processedText = text.lower() 

 FinalText =  

 tf.keras.preprocessing.sequence.pad_sequences(tokenizer.texts_to_sequenc 

 s([processedText]), padding='pre', maxlen=171) 

return(model.predict(finalText)) 

 

Listing 1. Function for string processing and text evaluation 

The function receives a string, which it then processes similarly to how the 

training data was processed, stripping it from special characters and returning it 

in lower case. The text is then tokenized used for evaluation. Eventually, the 

function returns a value between zero and one. The closer the value is to one, 

the higher the confidence of maliciousness. 

4 Deploying the Model 

As the goal of this project was to build a web app allowing users to interact with 

the model by inserting their data and receiving a classification, creating a 

website with an interactive user interface is required. Creating a website is quite 

simple with the tools available today, such as Platform-as-a-service (PaaS) 

solutions like Heroku. The route used for deploying the model for this project 

includes choosing a web development framework, designing, and coding the 

website, creating an app for running the website and handling the data transfer, 

and eventually hosting the app on a platform. 
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4.1 Creating the Website  

Choosing the web development framework is the first step to deploying a model 

for web usage. Both Django and Flask are popular choices for web 

development frameworks.  

Django offers a fast, scalable, and secure framework often chosen for large 

projects. Django is a full-stack framework, suitable for multi-page applications 

with dynamic HTML pages. It supports popular relational database 

management systems such as MySQL and Oracle. However, Django does not 

allow developers to have full control over the modules and functions as it has 

built in libraries. (14) 

Flask offers a lightweight, flexible, and independent framework. Flask has a 

modular approach enabling developers to use libraries and extensions of their 

choosing, with no inherit dependencies on external libraries. (15) 

The web development framework chosen for this project is Flask. As the project 

only requires a single-page web app with minimal functionality, Flask will cover 

all the necessities, while being fast and simple to set up and iterate on. 

Setting up a virtual environment is highly recommended, as it allows managing 

dependencies conveniently. With a virtual environment one can install only the 

needed packages with the correct versions for synergy. For this project, Conda 

was used to set up a virtual environment for the Anaconda Python environment. 

Conda is widely used due to it being a combination of both a package manager 

and an environment manager, simplifying dependency management (16).  

With the virtual environment set up, and flask imported, development of the 

website can begin. As a minimum viable product, this project requires a website 

which allows the user to insert a string, and to receive a feedback based on the 

value returned by the model. When the string is input, it must be processed 

similar to how the training data was processed. The processed text can then be 
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evaluated, and the evaluation result is used to identify which type of feedback to 

return to the user.  

4.1.1 Designing the Website 

Determining the target audience plays an important role in designing a user 

interface. As the product offers a solution related to security, and scams affect 

everyone, the UI should be easily accessible for an as wide as possible 

audience. Users should be able to easily distinguish what the website is offering 

them, and the UI should be efficient allowing them to insert their text, and to 

receive feedback fast with no required extra steps. 

To achieve a clear, informative layout, the UI was designed to contain an 

informative title, a short guide-text telling the user how they should interact with 

the application and what to expect, a large text field for user input and below 

that, a field for feedback. The feedback field should be dynamic, with changing 

information depending on the verdict. 

In addition to just giving a score for the likelihood of maliciousness for the text 

input, it was thought best to also offer some tips on how to proceed depending 

on what the outcome is. According to data provided by Hoxhunt (17), 

employees in sales, business development and marketing departments are the 

most likely user group to fall for their phishing simulations. However, the failure 

rate does not fluctuate by much between the most common departments. 

Therefore, crafting tips for an as wide as possible audience, without focusing on 

specific types of attacks was deemed the best approach.  

4.1.2 Coding the Website 

Coding the website requires basic knowledge of Hypertext Markup Language or 

HTML for short. HTML is the standard markup language for creating web 
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pages, consisting of a series of elements informing the browser how to display 

the contents (18).  

Listing 2 displays part of the source code for the web site created for the project.  

 

<div class="content"> 

<h1>Maliciousness Prediction</h1> <!--These fields are always shown--> 

<p> 

 Input your text and receive an AI -powered guess on whether the text is 

 malicious or not! 

</p> 

      <form action="/" method="POST"> 

 <input type="text" name="input_string" maxlength="171"   

 placeholder=" Input your text here">  

 <input type="submit"  

 </form> 

</div> 

Listing 2. Partial source code of the website. 

The title field is always displayed, as is the form for user input. The maximum 

length of input is set to 171, as that is the maximum length of a Short Message 

Service message. Short Message Service (SMS) being the common component 

used in mobile device systems for messaging. This maximum length has also 

been used during training of the model and is also used when processing user 

input for evaluation, as seen in chapter 3.4. 

When text has been input, the feedback will be shown. Listing 3 showcases the 

logic behind displaying the feedback. 
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{% if feedbackState %} <!--feedbackState = True when feedback is requested--> 

<div class="content"> 

<h3>Results</h3> 

<p>Input: "<i>{{o}}</i>"</p> 

<p>Your input is malicious with the probability of <b>{{r}}%</b></p> 

{% if m %} 

<p>Your message has been deemed likely malicious. Interacting with the 

 message is not recommended.</p> 

{% else %} 

<p>Your message has been deemed unlikely to be malicious. You should still 

proceed with caution!</p> 

{% endif %} 

</div> 

{% endif %} 

Listing 3. Logic for choosing the correct feedback. 

When feedback is requested, the variable feedbackState is set to True, 

therefore enabling the if-clause. The user is then shown their input and the 

probability score given by the model. If the probability score is above 0.6, the 

user is told that the input is likely malicious, and therefore interacting with the 

message is not recommended. The figure 4 demonstrates the view when an 

input likely to be malicious is given. 
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Figure 4 The user interface when a malicious input has been given. 

Any score below the 0.6 threshold will return a message about the input being 

unlikely to be malicious. Avoiding absolutes in the wording is best here, as the 

results are based on educated guesses by the model.  

4.1.3 Coding the Backend 

To run the web site, an application must be created which renders the HTML file 

created previously, handles the input data, performs the evaluation with the 

model and then returns a verdict. In a previous chapter, Flask was deemed to 

be the most suitable web development framework for this project. With Flask, 

rendering the template is quite straightforward, as listing 4 displays. 
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app = Flask(__name__) 

 

@app.route("/", methods = ['GET', 'POST']) 

def site(): 

if request.method == 'GET': ##What is initially shown 

 act = False 

return render_template('index.html', a = act) 

if request.method == 'POST': ##When user input is received 

 oInp = request.form["input_string"] 

 result = eval.evaluate_text(oInp) * 100 

 if result >= 0.6: ##Deciding which feedback is shown 

  mal = True 

 else: 

  mal = False 

  act = True 

fResult = re.sub(r"[\[\]]",'',str(result)) ##formatting the result 

return render_template("index.html", o=oInp, r=fResult, m=mal, 

a=feedbackState) ##returning all the necessary values 

 

if __name__ == "__main__": 

app.run() 

 

Listing 4. Code for rendering the HTML template. 

With these 19 lines of code, the app will render the HTML template defined in the 

previous chapter. When user input is received, it is stored in a variable, the 

contents of which are given to the function for evaluating input. The verdict sets 

a variable used to determine which feedback is shown, and in the end the 

necessary values are returned.  

4.2 Application Deployment 

Deploying the application requires a server which can manage the 

communications and computation needed. This need can be covered by a more 

traditional solution, as in running the application on a physical server, or then by 

utilizing a more modern solution: Platform as a Service (PaaS). 
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For this project, using a PaaS solution was a logical option due to its ease of 

use and cost efficiency. PaaS solutions allow developers to build scalable 

applications, while paying for only the resources needed. Using a PaaS solution 

allows the developers to avoid the hassle of physical infrastructure 

maintenance, and the problem of scaling the infrastructure to the applications 

needs. Many PaaS solutions also provide a free tier which includes enough 

resources for the simplest applications.  

Some commonly used PaaS solutions currently include Heroku, Google 

Firebase and Amazon Elastic Beanstalk. These solutions offer different 

benefits, such as integration opportunities and regions of operation.  

For the scope of this project, any of the aforementioned solutions would cover 

the needs. Heroku was eventually chosen due to its straight-forward nature, 

allowing one to easily link up a GitHub repository and deploy the code within. 

Heroku utilises Amazon servers both in the United States and in Europe, 

meaning that the latency will be sufficient in a large part of the world. (19; 20) 

Heroku applications run in so-called dynos, defined as lightweight containers 

that run the specified commands. Dynos can be added depending on the scale 

of the project, and then removed in case traffic amounts reduce. Deploying an 

application simply requires one to create an account on the platform, choose a 

suitable payment plan and to link their GitHub repository with the code of the 

application. Linking a GitHub repository is not required, but by doing so, one 

can enjoy the benefits of distributed version control with a visual user interface. 

With these pre-requisites done, the next step is simply to choose the branch 

and then deploy it. Heroku also supports automatic deployment which can be a 

useful feature when a project is being developed over longer periods of time. 

(21) 
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5 Ideas for Improvement 

An issue faced during this First Year Project was the lack of a high-quality open-

source data set for maliciousness detection. Comparing studies and their 

results done within the field of maliciousness detection in text is problematic, as 

the data used is often proprietary. This of course being a product of the data 

usually stemming from private messaging collected by organisations who are 

unable to share it openly. Therefore, the data set used for this project is quite 

small, not containing many of the most common types of phishing attacks. The 

following examples display some of the resulting downfalls. Both strings 

evaluated in the following picture are so-called advance-fee scams, the trick is 

that the recipient must pay a transaction fee to receive the generous sum of 

money, which of course is then never delivered. 

 

Figure 5 Two different messages of the same attack type evaluated with the 

model. 

As seen in figure 5 above, the model does well at detecting the maliciousness 

of the first string which mimics a typical lottery scam, informing the recipient that 

they have won a large sum of money.  

The second string is also a part of a typical malicious pre-text. In this scam, the 

malicious actor impersonates a Nigerian prince requesting monetary assistance 

in transferring large amounts of gold out of the country. In return, the recipient is 

promised a large monetary reward. This string is however not deemed 

malicious by the model. 
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The data set used for training is clearly lacking in its coverage even in some of 

the most common types of attacks. To improve this coverage, the application 

could be configured to save user input with their permission. This user input 

could then be classified similar to the original data set and be later used to train 

the model further.  

The application in its current state is designed for desktop usage, and while it 

can be used on a mobile device, the user experience leaves much room for 

improvement. Creating a mobile version of the site seems like a low hanging 

fruit one could take advantage of next. Creating a mobile application also being 

a potential route. In this case, one could also enable sharing to the site or 

application, which would allow users to easily share for example text messages 

to it automatically, reducing the amount of actions needed by the user to receive 

feedback. This would potentially increase usage, which in turn would help 

combating cybercrime further while also receiving more data which could be 

used to improve the model. 

Another aspect of the application which could be simply improved is the user 

interface. The interface could include more tips for the user, informing them e.g. 

on how to verify if something is truly malicious or not. This could be done by for 

example analysing the payload of the message, in the case of it being a link the 

user could be directed to other services specialised in automatically analysing 

websites, allowing the user to receive additional information about them. The 

user interface could also be made more welcoming by adding graphics and an 

about page containing more information about the tool and how their data is 

processed. These all should be considered before making the application 

available to the general public. 

Payload analysis is also something which could be done automatically by 

integrating other solutions to the application. A possible solution to integrate 

could be for example VirusTotal, as they provide an API allowing one to 

programmatically interact with their solution (22). VirusTotal utilises many 

libraries of data in their solution which allows the user to upload a file and 
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receive information about the maliciousness of the file, what it does when ran 

and for example what type of virus it might contain. This information can be 

fetched using the API and could then be shown in the application giving the 

user even better feedback regarding their input. This type of integration would 

introduce additional latency, but the additional functionality could for example be 

optional.  

6 Conclusion 

This Final Year Project examined different solutions to detecting maliciousness 

in text automatically, of which machine learning solutions were deemed as the 

most suitable option. The cybersecurity field would benefit greatly from open-

source data sets allowing researchers to better advance the field using machine 

learning solutions. Another desirable future event would be that large 

organisations within the field with pre-existing data from e.g. spam filtering 

solutions would allocate more resources into developing solutions that allow 

users to train their cyber security awareness. These types of solutions are 

becoming increasingly sought after as services and communication are 

digitalised. 
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