

Jon Gellin

Application for Detecting

Maliciousness in Text Input

Metropolia University of Applied Sciences

Bachelor of Engineering

Electrical and Automation Engineering

Bachelor’s Thesis

13 November 2022

Abstract

Author: Jon Gellin

Title: Application for Detecting Maliciousness in Text Input

Number of Pages: 30 pages

Date: 13 November 2022

Degree: Bachelor of Engineering

Degree Programme: Electrical and Automation Engineering

Professional Major: Automation

Supervisors: Erkki Räsänen, Principal Lecturer

The goal of this Final Year Project was to create a software solution to combat text-
based scams in an increasingly volatile field of cybercrime.

Email based attacks are by far the most common initial vector in cyberattacks.
Technical implementations can always be made more robust, but the human mind
and its vulnerabilities are not as easily patched. By offering an application which
allows a user to insert text they are suspicious of, and receive feedback based on the
input, users might be able to avoid potential scams and learn to stay safe from them
in the future. In a best-case scenario, potentially even educating others about them.

Many organizations offer solutions such as spam filters and reporting functionality to
combat cyberattacks. These solutions do well at reducing the risk but are not
foolproof, often doing nothing in terms of educating the user. The web application
created in this project offers a universal tool, not tied to any certain communications
platform, allowing users with no registration or cost requirements to receive
instantaneous help combating cybercrime.

To achieve the set goal of the Final Year Project, this thesis examines potential
approaches to detecting malicious intent in text. In addition, this thesis discusses
methods to create a simple web application from start to finish. The result is a web
application allowing a user to input text for evaluation, and receive feedback based
on the estimated maliciousness of the text.

Keywords: artificial intelligence, machine learning, phishing, cybersecurity, security

awareness, social engineering

Tiivistelmä

Tekijä: Jon Gellin

Otsikko: Sovellus haitallisuuden tunnistamiseen

tekstisyötteessä

Sivumäärä: 30 sivua

Aika: 13.11.2022

Tutkinto: Insinööri (AMK)

Tutkinto-ohjelma: Sähkö- ja Automaatiotekniikka

Ammatillinen pääaine: Automaatiotekniikka

Ohjaajat: Yliopettaja Erkki Räsänen

Tämän insinöörityön tavoite oli luoda sovelluspohjainen ratkaisu tukemaan

kyberrikollisuuden vastaista kamppailua. Insinöörityö tutkii erilaisia ratkaisuja

tekstin haitallisuuden tunnistamiseen sekä selainpohjaisen sovelluksen

julkaisemiseen.

Useimmat kyberhyökkäykset alkavat sähköpostitse. Teknisiä ratkaisuja voi aina

parantaa tehden niistä vaikeammin murrettavia, mutta ihmismieli ja sen

haavoittuvuudet eivät ole yhtä yksinkertaisesti paikattavissa. Tarjoamalla

sovelluksen, joka antaa loppukäyttäjän syöttää tekstiä ja saada syötteeseen

perustuvaa palautetta tekstin haitallisuudesta, saattaa yhä useampi pysyä

turvassa huijauksilta.

Monet viestintäalustat sisältävät roskapostin suodattimia, jotka vähentävät

paljolti loppukäyttäjien saamia huijausviestejä. Nämä suodattimet eivät

kuitenkaan ole täydellisiä, sillä hyökkääjät innovoivat jatkuvasti uusia tapoja

saada viestinsä perille. Tässä insinöörityössä keskitytään ratkaisuun, joka toimii

viestintäalustasta huolimatta. Työn lopputuloksena oli sovellus, johon käyttäjä

voi alustasta riippumatta kopioida epäilyttävän tekstin ja saada sille

koneoppimiskeinoin räätälöidyn palautteen.

Avainsanat: tekoäly, koneoppiminen, verkkokalastelu,

kyberturvallisuus, tietoturva, sosiaalinen

manipulaatio

Contents

List of Abbreviations

1 Introduction 1

2 Background 2

3 Machine Learning 3

3.1 Model Choice 3

3.1.1 Supervised Learning 4

3.1.2 Unsupervised Learning 4

3.1.3 Reinforcement Learning 5

3.2 Dataset (Analysing Data) 5

3.3 Training the Model 8

3.4 Evaluating the Model 10

3.5 Text Evaluation with the Model 11

4 Deploying the Model 12

4.1 Creating the Website 13

4.1.1 Designing the Website 14

4.1.2 Coding the Website 14

4.1.3 Coding the Backend 17

4.2 Application Deployment 18

5 Ideas for Improvement 20

6 Conclusion 22

References 23

List of Abbreviations

AI: Artificial Intelligence. A non-living intelligence able to perform

cognitive actions and simulate reasoning, allowing it to solve

problems typically solved by intelligent living beings.

ML: Machine Learning. Discipline of training a software solution to

perform predictions and actions based on substantial amounts of

training data.

HTML: Hypertext Markup Language. A standard markup language

consisting of different elements informing a web browser on how to

display a page’s contents.

PaaS: Platform-as-a-Service. A cloud-based development and deployment

environment used for hosting diverse types of applications.

1

1 Introduction

Cybercrime is a constantly growing issue for both individuals and businesses

alike, email-based attacks being by far the most common initial vector in

cyberattacks. Email based attacks combine both technical tricks and social

engineering to achieve desired results.

Email based attacks, commonly known as phishing, describe the malicious

practice of sending emails designed to induce the recipient into revealing

sensitive information or to perform a desired action with positive outcome for the

malicious actor.

Social engineering on the other hand is a commonly used term within the

context of information security to describe manipulation of the human factor. A

social engineer utilises psychological manipulation to have individuals perform

certain actions, such as revealing sensitive information.

The human factor is often the key defence to breach for malicious actors, as

systems can be built with increasing security levels, but human psychology

remains vulnerable. According to data from 2014, more than 90 percent of the

191.4 billion emails sent each day are spam, and 60 percent of all attacks had

the “human factor” as a major piece in the attack (1).

A successful cyberattack usually involves a breach of information security. A

malicious actor might for example gain access to a company network, allowing

them to extract information or install malware. Ransomware attacks pose a

significant risk for organisations currently, as in those attacks the malicious

actors encrypt data and request a ransom for the encryption key. Large scale

ransomware attacks can disrupt business functions, or even disable critical

infrastructure such as power and water grids.

2

The goal of this Final Year Project was to create a software solution to combat

social engineering. The fundamental aim was to create a web-based solution,

allowing users to input text, and receive a probability score on the

maliciousness of said text. This thesis describes the process, outcomes, and

learnings from the project.

2 Background

To solve the problem of identifying malicious intent in text with a software

solution, one could utilize one of the three generally employed approaches:

• Denylist – A denylist is a list of features, such as words or domains

that are known to be malicious. These features are detected, and

actions are performed depending on set rules. A denylist is a

recommended approach if a low rate of false positive matches is

required. A false positive match meaning an instance where a

legitimate message is detected as malicious. However, as a denylist

is based on known features, it requires frequent updating and does

not perform well against e.g. new types of attacks such as a new

phishing campaign (2).

• Rule-based heuristics – Implementing this approach requires the

manual creation of relevant heuristics, such as the length of the

message, or the number of links it might have. One could analyse

data to find indicators such as a set number of links which often

indicates that a message is malicious. This approach is often seen

as unsuitable for general solutions, as messages can be complex

and used are used for a wide array of purposes. Therefore, finding

effective heuristics that do not cause a large number of false

positives is nigh impossible.

• Machine learning – A machine learning approach to identifying

malicious intent utilises features in the email similar to ones used in

rule-based heuristics. The difference being that in machine learning

3

the model finds the features from the data instead of the features

being manually researched (3).

From the three approaches described above, machine learning seems like the

most suitable solution to this project, as it offers a good combination of

efficiency and accuracy. Machine learning does however require a significant

pre-existent dataset, while rule-based heuristics can potentially be invented

purely based on domain knowledge or lesser amounts of data.

3 Machine Learning

Artificial intelligence (AI) is a wide field of research, focused on studying

intelligent agents such as animals and humans and creating intelligent systems,

able to perceive information and take actions leading it closer to its goal. An AI

can perform cognitive actions and simulate reasoning allowing it to solve

problems usually thought to only be solvable by intelligent living beings.

Machine learning (ML) is considered a subset of AI. In machine learning, the

idea is to train a model to perform tasks that are commonly left for humans due

to their complexity. These tasks could be e.g. distinguishing certain objects in

images, playing chess or even solving protein folding among others (4).

Machine learning is the process of using mathematical methods to allow a

computer to analyse and learn from data.

3.1 Model Choice

Machine learning solutions may be distinguished by grouping them into three

main groups depending on the learning process and intended use case. Each of

these groups have large disparities in the type of data they require and the

tasks they can accomplish.

4

3.1.1 Supervised Learning

Supervised learning is used to solve two main problem types, classification

problems and regression problems. Learning the mapping from an input (X) to

the output (Y) is the goal, and to accomplish this the correct outputs must be

known in the training data.

Classification problems mean that a certain input is given a certain

classification. In its simplest form a certain input can be classified with a value

between zero and one, meaning that the model returns a calculated probability

of something being true or false based on the data it has been trained with. (5)

An example of training data that could be used for this type of model is the

ImageNet dataset, providing researchers with image data of over 100 000

distinct types of objects and on average 1000 images for each object type (6).

This dataset can be utilized to create machine learning models for classification

problems such as object recognition with great accuracy.

Regression problems are related to continuous data. An example task could be

predicting the price of a vegetable, given the season, area, brand, and store.

3.1.2 Unsupervised Learning

Unsupervised learning, as the name suggests, is the opposite of supervised

learning. No labelled dataset is used here, instead the models' goal is to find

patterns within the data to be able to predict output.

Unsupervised learning is utilized for three main types of tasks, clustering,

association, and dimensionality reduction. Real world applications include

anomaly detection, where substantial amounts of data are combed for atypical

data points such as sensor faults in processing plants.

5

Unsupervised learning is known to bear the risk of inaccurate output, as the

result of e.g. the model finding unforeseen patterns. Unsupervised learning also

often results with non-transparent models, making it hard to analyse why a

certain input leads to a certain output. (7)

3.1.3 Reinforcement Learning

Reinforcement learning differs largely from the previously described types of

learning. This type of learning results in a model which outputs a sequence of

actions, the sequence often containing a vast number of steps.

A simplified example use case for this type of model could be collision

avoidance. In this case the model is given a starting point and an end goal with

obstacles in between. The further the model can get without colliding with the

obstacles, the more it is rewarded. With enough iterations, the model will

eventually learn to pass the obstacles safely. The problem here is that if the

obstacles are always situated in the same places, the model might learn to only

pass this course. Therefore, during learning the model would have to encounter

many different courses to learn to deal with many different types of scenarios. In

the end, with the correct reward functions, the model could for example be used

to define the most efficient path to reach a goal.

Reinforcement learning is used in applications such as chess engines,

autonomous vehicles, healthcare, and marketing (8).

3.2 Dataset (Analysing Data)

A dataset has several important features. As previously stated, machine

learning requires a large dataset to achieve a well performing model. As an

example, Google Translate uses trillions of data points, or examples as a basis

for the functionality (9). However, a model is only as good as the quality of its

dataset. If a model is taught using e.g. erroneously labelled data, the model will

6

function poorly when used for real tasks. This means, that the dataset should be

carefully chosen or acquired, and studied before it is used.

The dataset chosen for this project contains 5 572 messages, labelled as either

spam or ham, ham meaning that the message is legitimate. The messages are

all in English and the dataset is composed of multiple smaller sets of data

gathered from public sources (10). As there is no clarity on how reliable the

labelling is, the first step is to analyse the data to see if clear errors can be

spotted. Figure 1 displays some example data points found in the dataset, after

loading it to a Pandas data frame. Importing the dataset into a data frame

makes manipulation of the data simple in later stages of model training. Being

able to differentiate between spam and ham can at times be quite hard without

any additional context. When analysing a string for maliciousness, the easiest

way to gain certainty of its purpose is to analyse its payload, meaning the action

the recipient is supposed to take or the part they are supposed to interact with.

This could for example be a link or an attachment in the message.

Figure 1 Example data points found in the dataset.

7

The distribution of labels is also important, as training a model with an

imbalanced dataset can lead to skewed weights and therefore deficient

performance. In the dataset chosen for this project, the data is distributed to be

86.6% spam, and 13.4% ham, as displayed in figure 2. To counteract this, the

dataset must be resampled to even out the ratio, or a model able to handle the

oversampling of one label must be chosen.

Figure 2 Distribution of labels in the dataset

When a dataset has been chosen and analysed, the data is split into a training

set and a test set. As the goal is to create a model which generalises well to

new data, a test set allows us to see how well the model is performing on new

data and to iterate when needed. Making sure the data in both sets differ, and

that no duplicates are found in both sets is particularly important, as testing the

model on familiar data might lead to skewed metrics and a model which

performs poorly when used for its intended task.

8

3.3 Training the Model

With supervised learning identified as the most suitable approach for a

classification problem such as the one in this project, the next step is to choose

the correct type of language model. Neural language models, such as BERT

(Bidirectional Encoder Representations from Transformers) represent the

current state-of-the-art approach in solving language problems with AI. (11) This

type of model utilises Transformers, a key technical innovation allowing the

model to take word attention into account, meaning that the model can e.g.

recognize differences in meaning depending on word placement in sentences.

This technical innovation was introduced in the paper Attention Is All You Need

(12) published in 2017.

To achieve great accuracy, one could utilize transfer learning to fine-tune pre-

existing language models, such as BERT. This approach would utilise previous

research and processing, allowing one to create models with millions of

parameters with relatively cheap training costs.

Due to resource constraints such as the lack of dedicated graphical processing

units and to maximise personal learning, utilising the techniques presented

previously to build a model without utilising pre-existing base models was

chosen as the appropriate approach. In machine learning projects, it is also

commonly advised to begin with smaller scale models to test the solution before

scaling up.

When training a neural language model, the first step is to pre-process the data

for tokenisation. The data used for training the model is text, and for a

successful tokenisation the text must be cleaned of unnecessary typographical

symbols and punctuation. These symbols can be for example dashes, slashes,

exclamation- or question marks.

With the data pre-processed, the next step is to tokenise the training data.

Tokenisation is the process of dividing larger entities into smaller parts. For

example, the string:

9

“When do you think the pandemic is over?”

In its tokenised form would result in something similar to this:

‘when’ ‘do’ ‘you’ ‘think’ ‘the’ ‘pandemic’ ‘is’ ‘over’

This allows easier handling of the strings’ contents during the later training

stages, for example by enabling it to count word frequencies or to take their

positions and attention into account. (13)

The tokenised text can now be transformed into integers. Each word will be

assigned a corresponding integer value, which can then be used for training the

model.

Figure 3 summarises the finished model used in this project. The model type is

sequential, meaning that the model is a linear stack of layers.

Figure 3 Summary of the model structure and its features

10

The dense layers are widely used in neural networks. The dense layers are

used to perform matrix-vector multiplications, applying changes such as

rotation, scaling, and translation to input from the previous layer.

3.4 Evaluating the Model

Accuracy represents the percentual number of correctly classified data points.

Higher accuracy intuitively means better results, but in many applications

different types of errors have a vastly different weight. In the case of this project,

an error of classifying malicious input as non-malicious has a much worse

potential outcome than classifying non-malicious input as malicious. Therefore,

to better be able to evaluate the model, additional metrics must be utilised.

Precision represents the amount of true positive results divided by the sum of

true positive and false positive results. This value should ideally be as close to

one as possible, as an increased amount of false positive results leads to a

result further away from one. In the case of this project, a true positive result

means classifying something malicious correctly as malicious, and a false

positive result would mean that a non-malicious input would be classified as

malicious.

A third metric one can utilise is recall. This metric should also ideally be as

close to one as possible. The metric can be calculated by dividing the amount of

true positive results with the sum of true positive results and false negative

results. False negative results being times when a malicious input is classified

as non-malicious. As earlier stated, these types of errors have the worst

potential outcome in this models’ planned application.

A final metric one can utilise is the F1 score. The F1 score metric takes into

account both precision and recall and is widely regarded as a better measure

than accuracy. The F1 score can be calculated as shown in equation 1.

𝐹1 𝑆𝑐𝑜𝑟𝑒 = 2 ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
 (1)

11

Evaluating the model created for this with the metrics presented previously

returns the following values:

• Accuracy: 0.9878

• Precision: 0.9178

• Recall: 0.9324

• F1 Score: 0.9250

These results are quite promising, but one must consider that they are

calculated using test data separated from the training data, still originating from

the same data set. Real world results may be very different.

3.5 Text Evaluation with the Model

Once the model weights have been saved, strings of text can be evaluated by

first performing the same processing on the string as done to the training data,

and then evaluating it.

To make this process more efficient, a function shown in listing 1 was written,

which performs all the necessary steps and can be called later when the model

has been deployed.

12

def evaluate_text(text):

whitespace = re.compile(r"\s+")

web_address = re.compile(r"(?i)http(s):\/\/[a-z0-9.~_\-\/]+")

user = re.compile(r"(?i)@[a-z0-9_]+")

text = text.replace('.', '')

text = whitespace.sub(' ', text)

text = web_address.sub('', text)

text = user.sub('', text)

text = re.sub(r"\[[^()]*\]", "", text)

text = re.sub(r"\d+", "", text)

text = re.sub(r'[^\w\s]','',text)

text = re.sub(r"(?:@\S*|#\S*|http(?=.*://)\S*)", "", text)

processedText = text.lower()

 FinalText =

 tf.keras.preprocessing.sequence.pad_sequences(tokenizer.texts_to_sequenc

 s([processedText]), padding='pre', maxlen=171)

return(model.predict(finalText))

Listing 1. Function for string processing and text evaluation

The function receives a string, which it then processes similarly to how the

training data was processed, stripping it from special characters and returning it

in lower case. The text is then tokenized used for evaluation. Eventually, the

function returns a value between zero and one. The closer the value is to one,

the higher the confidence of maliciousness.

4 Deploying the Model

As the goal of this project was to build a web app allowing users to interact with

the model by inserting their data and receiving a classification, creating a

website with an interactive user interface is required. Creating a website is quite

simple with the tools available today, such as Platform-as-a-service (PaaS)

solutions like Heroku. The route used for deploying the model for this project

includes choosing a web development framework, designing, and coding the

website, creating an app for running the website and handling the data transfer,

and eventually hosting the app on a platform.

13

4.1 Creating the Website

Choosing the web development framework is the first step to deploying a model

for web usage. Both Django and Flask are popular choices for web

development frameworks.

Django offers a fast, scalable, and secure framework often chosen for large

projects. Django is a full-stack framework, suitable for multi-page applications

with dynamic HTML pages. It supports popular relational database

management systems such as MySQL and Oracle. However, Django does not

allow developers to have full control over the modules and functions as it has

built in libraries. (14)

Flask offers a lightweight, flexible, and independent framework. Flask has a

modular approach enabling developers to use libraries and extensions of their

choosing, with no inherit dependencies on external libraries. (15)

The web development framework chosen for this project is Flask. As the project

only requires a single-page web app with minimal functionality, Flask will cover

all the necessities, while being fast and simple to set up and iterate on.

Setting up a virtual environment is highly recommended, as it allows managing

dependencies conveniently. With a virtual environment one can install only the

needed packages with the correct versions for synergy. For this project, Conda

was used to set up a virtual environment for the Anaconda Python environment.

Conda is widely used due to it being a combination of both a package manager

and an environment manager, simplifying dependency management (16).

With the virtual environment set up, and flask imported, development of the

website can begin. As a minimum viable product, this project requires a website

which allows the user to insert a string, and to receive a feedback based on the

value returned by the model. When the string is input, it must be processed

similar to how the training data was processed. The processed text can then be

14

evaluated, and the evaluation result is used to identify which type of feedback to

return to the user.

4.1.1 Designing the Website

Determining the target audience plays an important role in designing a user

interface. As the product offers a solution related to security, and scams affect

everyone, the UI should be easily accessible for an as wide as possible

audience. Users should be able to easily distinguish what the website is offering

them, and the UI should be efficient allowing them to insert their text, and to

receive feedback fast with no required extra steps.

To achieve a clear, informative layout, the UI was designed to contain an

informative title, a short guide-text telling the user how they should interact with

the application and what to expect, a large text field for user input and below

that, a field for feedback. The feedback field should be dynamic, with changing

information depending on the verdict.

In addition to just giving a score for the likelihood of maliciousness for the text

input, it was thought best to also offer some tips on how to proceed depending

on what the outcome is. According to data provided by Hoxhunt (17),

employees in sales, business development and marketing departments are the

most likely user group to fall for their phishing simulations. However, the failure

rate does not fluctuate by much between the most common departments.

Therefore, crafting tips for an as wide as possible audience, without focusing on

specific types of attacks was deemed the best approach.

4.1.2 Coding the Website

Coding the website requires basic knowledge of Hypertext Markup Language or

HTML for short. HTML is the standard markup language for creating web

15

pages, consisting of a series of elements informing the browser how to display

the contents (18).

Listing 2 displays part of the source code for the web site created for the project.

<div class="content">

<h1>Maliciousness Prediction</h1> <!--These fields are always shown-->

<p>

 Input your text and receive an AI -powered guess on whether the text is

 malicious or not!

</p>

 <form action="/" method="POST">

 <input type="text" name="input_string" maxlength="171"

 placeholder=" Input your text here">

 <input type="submit"

 </form>

</div>

Listing 2. Partial source code of the website.

The title field is always displayed, as is the form for user input. The maximum

length of input is set to 171, as that is the maximum length of a Short Message

Service message. Short Message Service (SMS) being the common component

used in mobile device systems for messaging. This maximum length has also

been used during training of the model and is also used when processing user

input for evaluation, as seen in chapter 3.4.

When text has been input, the feedback will be shown. Listing 3 showcases the

logic behind displaying the feedback.

16

{% if feedbackState %} <!--feedbackState = True when feedback is requested-->

<div class="content">

<h3>Results</h3>

<p>Input: "<i>{{o}}</i>"</p>

<p>Your input is malicious with the probability of {{r}}%</p>

{% if m %}

<p>Your message has been deemed likely malicious. Interacting with the

 message is not recommended.</p>

{% else %}

<p>Your message has been deemed unlikely to be malicious. You should still

proceed with caution!</p>

{% endif %}

</div>

{% endif %}

Listing 3. Logic for choosing the correct feedback.

When feedback is requested, the variable feedbackState is set to True,

therefore enabling the if-clause. The user is then shown their input and the

probability score given by the model. If the probability score is above 0.6, the

user is told that the input is likely malicious, and therefore interacting with the

message is not recommended. The figure 4 demonstrates the view when an

input likely to be malicious is given.

17

Figure 4 The user interface when a malicious input has been given.

Any score below the 0.6 threshold will return a message about the input being

unlikely to be malicious. Avoiding absolutes in the wording is best here, as the

results are based on educated guesses by the model.

4.1.3 Coding the Backend

To run the web site, an application must be created which renders the HTML file

created previously, handles the input data, performs the evaluation with the

model and then returns a verdict. In a previous chapter, Flask was deemed to

be the most suitable web development framework for this project. With Flask,

rendering the template is quite straightforward, as listing 4 displays.

18

app = Flask(__name__)

@app.route("/", methods = ['GET', 'POST'])

def site():

if request.method == 'GET': ##What is initially shown

 act = False

return render_template('index.html', a = act)

if request.method == 'POST': ##When user input is received

 oInp = request.form["input_string"]

 result = eval.evaluate_text(oInp) * 100

 if result >= 0.6: ##Deciding which feedback is shown

 mal = True

 else:

 mal = False

 act = True

fResult = re.sub(r"[\[\]]",'',str(result)) ##formatting the result

return render_template("index.html", o=oInp, r=fResult, m=mal,

a=feedbackState) ##returning all the necessary values

if __name__ == "__main__":

app.run()

Listing 4. Code for rendering the HTML template.

With these 19 lines of code, the app will render the HTML template defined in the

previous chapter. When user input is received, it is stored in a variable, the

contents of which are given to the function for evaluating input. The verdict sets

a variable used to determine which feedback is shown, and in the end the

necessary values are returned.

4.2 Application Deployment

Deploying the application requires a server which can manage the

communications and computation needed. This need can be covered by a more

traditional solution, as in running the application on a physical server, or then by

utilizing a more modern solution: Platform as a Service (PaaS).

19

For this project, using a PaaS solution was a logical option due to its ease of

use and cost efficiency. PaaS solutions allow developers to build scalable

applications, while paying for only the resources needed. Using a PaaS solution

allows the developers to avoid the hassle of physical infrastructure

maintenance, and the problem of scaling the infrastructure to the applications

needs. Many PaaS solutions also provide a free tier which includes enough

resources for the simplest applications.

Some commonly used PaaS solutions currently include Heroku, Google

Firebase and Amazon Elastic Beanstalk. These solutions offer different

benefits, such as integration opportunities and regions of operation.

For the scope of this project, any of the aforementioned solutions would cover

the needs. Heroku was eventually chosen due to its straight-forward nature,

allowing one to easily link up a GitHub repository and deploy the code within.

Heroku utilises Amazon servers both in the United States and in Europe,

meaning that the latency will be sufficient in a large part of the world. (19; 20)

Heroku applications run in so-called dynos, defined as lightweight containers

that run the specified commands. Dynos can be added depending on the scale

of the project, and then removed in case traffic amounts reduce. Deploying an

application simply requires one to create an account on the platform, choose a

suitable payment plan and to link their GitHub repository with the code of the

application. Linking a GitHub repository is not required, but by doing so, one

can enjoy the benefits of distributed version control with a visual user interface.

With these pre-requisites done, the next step is simply to choose the branch

and then deploy it. Heroku also supports automatic deployment which can be a

useful feature when a project is being developed over longer periods of time.

(21)

20

5 Ideas for Improvement

An issue faced during this First Year Project was the lack of a high-quality open-

source data set for maliciousness detection. Comparing studies and their

results done within the field of maliciousness detection in text is problematic, as

the data used is often proprietary. This of course being a product of the data

usually stemming from private messaging collected by organisations who are

unable to share it openly. Therefore, the data set used for this project is quite

small, not containing many of the most common types of phishing attacks. The

following examples display some of the resulting downfalls. Both strings

evaluated in the following picture are so-called advance-fee scams, the trick is

that the recipient must pay a transaction fee to receive the generous sum of

money, which of course is then never delivered.

Figure 5 Two different messages of the same attack type evaluated with the

model.

As seen in figure 5 above, the model does well at detecting the maliciousness

of the first string which mimics a typical lottery scam, informing the recipient that

they have won a large sum of money.

The second string is also a part of a typical malicious pre-text. In this scam, the

malicious actor impersonates a Nigerian prince requesting monetary assistance

in transferring large amounts of gold out of the country. In return, the recipient is

promised a large monetary reward. This string is however not deemed

malicious by the model.

21

The data set used for training is clearly lacking in its coverage even in some of

the most common types of attacks. To improve this coverage, the application

could be configured to save user input with their permission. This user input

could then be classified similar to the original data set and be later used to train

the model further.

The application in its current state is designed for desktop usage, and while it

can be used on a mobile device, the user experience leaves much room for

improvement. Creating a mobile version of the site seems like a low hanging

fruit one could take advantage of next. Creating a mobile application also being

a potential route. In this case, one could also enable sharing to the site or

application, which would allow users to easily share for example text messages

to it automatically, reducing the amount of actions needed by the user to receive

feedback. This would potentially increase usage, which in turn would help

combating cybercrime further while also receiving more data which could be

used to improve the model.

Another aspect of the application which could be simply improved is the user

interface. The interface could include more tips for the user, informing them e.g.

on how to verify if something is truly malicious or not. This could be done by for

example analysing the payload of the message, in the case of it being a link the

user could be directed to other services specialised in automatically analysing

websites, allowing the user to receive additional information about them. The

user interface could also be made more welcoming by adding graphics and an

about page containing more information about the tool and how their data is

processed. These all should be considered before making the application

available to the general public.

Payload analysis is also something which could be done automatically by

integrating other solutions to the application. A possible solution to integrate

could be for example VirusTotal, as they provide an API allowing one to

programmatically interact with their solution (22). VirusTotal utilises many

libraries of data in their solution which allows the user to upload a file and

22

receive information about the maliciousness of the file, what it does when ran

and for example what type of virus it might contain. This information can be

fetched using the API and could then be shown in the application giving the

user even better feedback regarding their input. This type of integration would

introduce additional latency, but the additional functionality could for example be

optional.

6 Conclusion

This Final Year Project examined different solutions to detecting maliciousness

in text automatically, of which machine learning solutions were deemed as the

most suitable option. The cybersecurity field would benefit greatly from open-

source data sets allowing researchers to better advance the field using machine

learning solutions. Another desirable future event would be that large

organisations within the field with pre-existing data from e.g. spam filtering

solutions would allocate more resources into developing solutions that allow

users to train their cyber security awareness. These types of solutions are

becoming increasingly sought after as services and communication are

digitalised.

23

References

1 Hadnagy, Christopher. 2015. Phishing Dark Waters – The Offensive and

Defensive Sides of Malicious Emails. John Wiley Sons Inc.

2 Kohnji, Mahmoud. Iraqi, Youssef. Jones, Andy. 2013. Phishing Detection:

A Literature Survey.

3 Alpaydin, Ethem. 2020. Introduction to Machine Learning, Fourth Edition.

MIT Press.

4 Hassabis, Demis. 2022. Alphafold Reveals the Structure of the Protein

Universe. Available from: https://www.deepmind.com/blog/alphafold-

reveals-the-structure-of-the-protein-universe (Accessed August 17 2022)

5 Arora, Surbhi. 2020. Supervised vs Unsupervised vs Reinforcement.

Aitude. Available from: https://www.aitude.com/supervised-vs-

unsupervised-vs-reinforcement/ (Accessed 21 August 2022).

6 ImageNet. 2021. Available from: https://www.image-net.org/about.php

(Accessed 19 August 2022).

7 IBM Cloud Education. 2020. Unsupervised Learning. IBM. Available from:

https://www.ibm.com/cloud/learn/unsupervised-learning (Accessed 21

August 2022).

8 Mwiti, Derrick. 2022. 10 Real-Life Applications of Reinforcement Learning.

Neptune.ai. Available from: https://neptune.ai/blog/reinforcement-learning-

applications (Accessed 21 August 2022).

9 Google. 2022. Data Preparation and Feature Engineering in ML. Online

Course. Available from: https://developers.google.com/machine-

learning/data-prep/ (Accessed 25 August 2022).

10 UCI Machine Learning. 2018. SMS Spam Collection Data Set. Available

from: https://archive.ics.uci.edu/ml/datasets/SMS+Spam+Collection

(Accessed 14 July 2022).

https://www.deepmind.com/blog/alphafold-reveals-the-structure-of-the-protein-universe
https://www.deepmind.com/blog/alphafold-reveals-the-structure-of-the-protein-universe
https://www.aitude.com/supervised-vs-unsupervised-vs-reinforcement/
https://www.aitude.com/supervised-vs-unsupervised-vs-reinforcement/
https://www.image-net.org/about.php
https://www.ibm.com/cloud/learn/unsupervised-learning
https://neptune.ai/blog/reinforcement-learning-applications
https://neptune.ai/blog/reinforcement-learning-applications
https://developers.google.com/machine-learning/data-prep
https://developers.google.com/machine-learning/data-prep
https://archive.ics.uci.edu/ml/datasets/SMS+Spam+Collection

24

11 Devlin, Jacob, Chang, Ming-Wei. 2018. Open Sourcing BERT: State-of-

the-Art Pre-training for Natural Language Processing. Available from:

https://ai.googleblog.com/2018/11/open-sourcing-bert-state-of-art-pre.html

(Accessed 25 August 2022)

12 Vaswani, Ashish, Shazeer, Noam, Parmar, Niki, Uszkoreit, Jakob, Jones,

Llion, Gomez, Aidan N., Kaiser, Lukasz, Polosukhin, Illia. 2017. Attention

Is All You Need. Available from: https://arxiv.org/abs/1706.03762

(Accessed 25 August 2022)

13 Burchfiel, Anni. 2022. What is NLP (Natural Language Processing)

Tokenization? Available from: https://www.tokenex.com/blog/ab-what-is-

nlp-natural-language-processing-

tokenization#:~:text=Tokenization%20is%20used%20in%20natural,into%2

0understandable%20parts%20(words) (Accessed 25 August 2022).

14 Django Software Foundation. Available from:

https://docs.djangoproject.com/en/4.1/ (Accessed 28 August 2022).

15 The Pallets Projects. 2010. Available from:

https://flask.palletsprojects.com/en/2.2.x/# (Accessed 28 August 2022).

16 Conda User Guide. 2017. Available from:

https://docs.conda.io/projects/conda/en/latest/index.html (Accessed 28

August 2022).

17 Hoxhunt. 2022. Behavioural Cybersecurity Statistics. E-Book. Hoxhunt.

18 Connolly, D., Masinter, L. The ‘text/html’ Media Type. 2000. Available

from: https://www.rfc-editor.org/rfc/rfc2854 (Accessed 3 October 2022)

19 Salesforce. About Heroku. 2022. Available from:

https://www.heroku.com/what (Accessed 3 October 2022)

20 Salesforce. Heroku Regions. 2022. Available from:

https://devcenter.heroku.com/articles/regions (Accessed 3 October 2022)

https://ai.googleblog.com/2018/11/open-sourcing-bert-state-of-art-pre.html
https://arxiv.org/abs/1706.03762
https://www.tokenex.com/blog/ab-what-is-nlp-natural-language-processing-tokenization#:~:text=Tokenization%20is%20used%20in%20natural,into%20understandable%20parts%20(words)
https://www.tokenex.com/blog/ab-what-is-nlp-natural-language-processing-tokenization#:~:text=Tokenization%20is%20used%20in%20natural,into%20understandable%20parts%20(words)
https://www.tokenex.com/blog/ab-what-is-nlp-natural-language-processing-tokenization#:~:text=Tokenization%20is%20used%20in%20natural,into%20understandable%20parts%20(words)
https://www.tokenex.com/blog/ab-what-is-nlp-natural-language-processing-tokenization#:~:text=Tokenization%20is%20used%20in%20natural,into%20understandable%20parts%20(words)
https://docs.djangoproject.com/en/4.1/
https://flask.palletsprojects.com/en/2.2.x/
https://docs.conda.io/projects/conda/en/latest/index.html
https://www.rfc-editor.org/rfc/rfc2854
https://www.heroku.com/what
https://devcenter.heroku.com/articles/regions

25

21 Salesforce. Getting Started on Heroku with Python. 2022. Available from:

https://devcenter.heroku.com/articles/getting-started-with-

python?singlepage=true (Accessed 3 October 2022)

22 Virustotal. Public vs Premium API. 2022. Available from:

https://developers.virustotal.com/reference/public-vs-premium-api

(Accessed 9 October 2022)

https://devcenter.heroku.com/articles/getting-started-with-python?singlepage=true
https://devcenter.heroku.com/articles/getting-started-with-python?singlepage=true
https://developers.virustotal.com/reference/public-vs-premium-api

