

Tuomas Tiensuu

DevSecOps adoption
Improving visibility in application security

Master’s thesis

Master’s Degree Programme in Cybersecurity

2022

Author (authors) Degree title

Time

Tuomas Tiensuu Master’s Degree
Programme in
Cybersecurity

2022

Thesis title

DevSecOps adoption: Improving visibility in application security

63 pages

Commissioned by

Vilma Blomberg

Supervisor

Kimmo Kääriäinen

Abstract

For organizations to be able to build digital products that are as secure as possible for their
customers, security must be implemented in every phase of the software development life
cycle. Good application security management and security improvements require good
visibility of security activities in the SDLC. This research studied visibility in application
security, and what factors are important to consider when aiming to improve visibility.

The action research method was used in this study. The theoretical part consists of an
introduction to modern software development, DevOps practices and security automation,
where visibility is needed. The section also demonstrates the standards and certifications
widely used in the field, as well as various activities during the secure software
development lifecycle.

The primary goal of this study was to amplify the most important issues that should be
considered when developing application security visibility. The secondary goal was to
define the key roles in the organization that need visibility, so that software development
could be performed securely and following best practices.

The research showed that when improving application security visibility, it is necessary to
pay attention to the impact of the security findings provided by the visibility, and how the
situation can be enhanced during the entire software development life cycle. It is very
important to provide visibility to the various stakeholders in the organization, so that any
actions can be taken to improve application security. However, the focus should be on the
business impact, the most accurate situational awareness, and clear guidelines, that can
be used to improve application security.

Keywords

devsecops, application security, visibility, security tooling, security automation, paved road

Contents

LIST OF ABBREVIATIONS ... 5

1 INTRODUCTION .. 7

1.1 Thesis topic .. 9

1.2 Background of the commissioner .. 10

2 RESEARCH PROBLEM AND RESEARCH QUESTIONS .. 10

2.1 Research method ... 12

2.2 Previous research and literature review .. 14

2.3 Visibility Trends in application security ... 15

3 APPLICATION SECURITY PIPELINE FOR CONTINUOUS VISIBILITY 18

3.1 Security visibility ... 18

3.2 DevSecOps .. 19

3.3 DevOps ... 20

3.4 Cloud native .. 22

3.5 Secure Software Development Framework (SSDF) ... 23

3.6 Security metrics .. 24

3.7 Standards and best practices ... 25

3.7.1 NIST DevSecOps Framework ... 25

3.7.2 ISO 27001 ... 27

3.7.3 IEC 62443 ... 29

3.8 Automated security testing ... 30

3.8.1 Continuous Integration .. 32

3.8.2 Continuous Delivery and Continuous Deployment .. 32

3.8.3 SAST .. 33

3.8.4 DAST .. 34

3.8.5 SCA .. 35

3.8.6 IAST .. 36

3.8.7 External Attack Surface Management... 37

3.8.8 AVC .. 38

3.8.9 Tool evaluation ... 38

3.9 Automated vulnerability management ... 39

4 WAYS TO IMPROVE VISIBILITY ... 40

4.1 Automated security requirements management ... 40

4.2 DevSecOps maturity assessment ... 41

4.3 Achieving full-stack visibility from development to production 42

4.4 Assessing DevSecOps objective and key results for development teams 43

4.5 Improving visibility for ISO27001 project ... 43

5 RESULTS ... 45

5.1 Methodology assessment questionnaire ... 45

5.1.1 Culture and collaboration .. 46

5.1.2 Velocity and process efficiency ... 47

5.1.3 Tools and automation ... 49

5.2 Questionnaire for improving visibility .. 50

6 DISCUSSION ... 52

6.1 Which factors should be considered effective to improve application security visibility

in a large organization? .. 53

6.2 Who are the stakeholders in the large organizations that need visibility to application

security and how the organization benefits from it? ... 54

6.3 Which application security metrics must be visible to different stakeholders? 55

7 CONCLUSION AND FURTHER RESEARCH .. 56

REFERENCES .. 59

LIST OF FIGURES .. 63

LIST OF ABBREVIATIONS

API Application Programming Interface

CD Continuous Deployment or Continuous Delivery

CI Continuous Integration

CSRC Computer Security Resource Center

CVMS Centralized Vulnerability Management System

CVSS Common Vulnerability Scoring System

DAST Dynamic Application Security Testing

DevOps Development and Operations

DevSecOps Development, Security, and Operations

EASM External Attack Surface Management

IAST Interactive Application Security Testing

IEC International Electrotechnical Commission

ISO International Organization for Standardization

NIST National Institute of Standards and Technology

PO Product Owner

QA Quality Assurance

SAST Static Application Security Testing

SCA Software Composition Analysis

SDL Software Development Lifecycle

SSDL Secure Software Development Lifecycle

1 INTRODUCTION

In the modern software development world security should be in products DNA,

and it should not be an afterthought. That means we think of and try to solve

security issues early in software development lifecycle (SDL) and try to

implement different security practices and activities in each phase of the SDL.

These activities may include factors such as threat modelling, risk analysis, static

and dynamic application security testing, software composition analysis and

infrastructure security checks, to name only a few. (Zeeshan 2020.)

However, as especially bigger companies have usually many different software

engineering teams and these teams get input and data from many different tools

– security and other development and operations wise critical tools – there is

often a problem with the amount of information development teams and security

teams get from different sources. This makes security very hard in the modern

application engineering world where DevOps methodologies are used, as without

proper automation and workflows in place there are simply too much noise,

various alerts and findings from security and other sources from the toolchain.

Developers should not have to go through multiple external security scanners

and read vulnerability reports from penetration tests, such as SAST, DAST, or

SCA tools separately. Also, security engineers should not need to go through

every single security tool report with each product team one by one since this is

not a scalable way of working in the long run. In fact, it is almost impossible due

to a lack of application security resources compared to product development

resources (Sonatype 2020).

It is also unfair to expect that the members of the development or operation

teams understand security issues at the same level as the information security

professionals. Security issues are not included in a job description of software

developers and often they are not trained for it, either. Instead, the current trend

and consensus has turned to organizations using application security teams to

produce secure frameworks, libraries, and secure defaults for developers to use.

The lack of security visibility and insufficient security checks in the developer

workflow are issues that organizations have struggled with for a long time, and as

one of the ways to solve the issue, security teams have started adoption of so-

called security guardrails. This adoption tries to eliminate the friction between

development teams and security teams ensuring development teams can

produce software quickly and also securely. With the help of these automated

guardrails, development teams can achieve the greatest possible autonomy while

the most important security controls come into use with minimal bottlenecks from

the security team and the security team does not act as a gatekeeper while new

functionalities are released into production (DZone 2022).

Several different parties benefit from good visibility to application security. Lack of

visibility makes it difficult for product owners to make decisions in the software

development lifecycle because there is not always a proper understanding of

security risks. For both application security and incident response team, the lack

of visibility prevents from getting an overview on potential impacts and where to

look for malicious actors. In large organizations there is need for good

compliancy and risk management. Lack of visibility makes it hard to provide, e.g.,

auditors evidence on how controls are being implemented. In the target

organization that is a particularly important factor because one of the goals in

improving visibility is to get an ISO 27001 certificate for the company's digital

products. Without aggregated views on the security risks of the whole

environment, organizations cannot make a proper risk analysis and decisions to

mitigate or accept the risks.

In December 2021 a severe vulnerability was found in Java library called Log4j.

This started a chain of large investigations in most companies. One thing that

internal security people were struggling with was that in many cases they did not

know how many systems were impacted and what applications were using Java

and this particular library. As DevOps and Agile development practices

emphasizes a working software over exhausting documentation, the

documentation created is often made only for team itself to use and supporting

functions in the company have to find other ways to collect important and up-to-

date information about the systems. Security tools in the target organization were

also not very functional for this purpose and did not offer proper visibility to solve

the problem very effectively.

The goal of this study is to help product development teams, application security

team, and other stakeholders by providing visibility to security status of the

different products and applications and make application security practices a little

bit easier by bundling a security toolchain of many different testing tools and how

these capabilities could be used to improve visibility in a meaningful way. There

is also a greater need for security visibility towards different stakeholders since

security issues can have a detrimental effect on the business and especially if the

company is not aware of the security risks that can have a major impact. This

study will also focus on how to enhance the visibility for risk management and

compliancy purposes. (DevSecOps Community Survey 2020.)

1.1 Thesis topic

The objective of this thesis is to study security visibility in the modern software

development lifecycle where development, security and operations try to work

together seamlessly to achieve a common goal – usually referenced as

DevSecOps - as well as what is the visibility status currently in commissioner’s

application security domain and how it could be improved. This thesis focuses on

the visibility of security in large corporations that have shifted mainly to DevOps

tools and practices in their engineering and development work. In this context,

the main focus will be on the R&D functions of the target organization, although

the research can also be continued to cover other functions, such as Enterprise

IT. The reason why this topic is worth researching is because modern software

engineering has taken significant leaps forward past years and at the same time

as the complexity has increased, so has the need to understand the technologies

and the security risks associated with them. One of the most challenging factors

from security perspective is variety and number of programming languages,

frameworks, tools, and platforms that different product development teams use.

Even though DevOps principles strive for seamless collaboration between

development and operations teams, and even unite those two, it is often the case

in software engineering that teams do a lot of work in silos. This is a reason why

security teams find it difficult to actually improve the level of security in software

development lifecycle because they do not always know what and how things are

done in the specific team. (Ribeiro 2022.)

1.2 Background of the commissioner

The commissioner of this work is a Finnish engineering company in the

machinery industry. As many other engineering and traditional industry

companies, the commissioner has also started digitalization journey a few years

ago meaning that new technology has been taken in the use to support its new

products and services. The commissioner has been developing new digital

services to bring new added value to its customers and their end users. In an

increasingly digitalized world, we see increasingly traditional equipment

connected – the Internet of Things – and securing these new digital services is

one of the top priorities. With the traditional equipment being connected with

cloud technologies and applications, good cybersecurity practices are coming a

necessity.

In the commissioner’s business, customers often have strict requirements for

cybersecurity. Software development must be secured throughout its life cycle,

from the design and planning phase to maintenance. Visibility to security

practices helps to show customers that security is taken into account at every

stage of development.

2 RESEARCH PROBLEM AND RESEARCH QUESTIONS

Often, large organizations have need for a high-quality and clear application

security guardrails, policies, and guidelines. Naturally, having a good application

security program can protect an organization’s business assets and property, but

there may also be external requirements for companies to adhere to strict

standards and have security policies followed. However, from the application

security team’s perspective, it can often be the problem that it is unknown how

different teams do their day-to-day work and how security guidelines are followed

in different software development teams. It is not necessarily only a matter of

controlling the working methods and the technologies used, in order to operate

with them as securely as possible, but rather to gain an understanding of how the

security of development work could be supported the best way, and what are the

factors in visibility that need to be improved so that development teams can take

security into account, while in parallel, building functional solutions to customers

to achieve important business goals. It is not uncommon for large corporations to

have twenty different product and software development teams, hundreds of

applications and only one application security team trying to take care of security

practices. To track what is the security status in each team, product and

application is a major challenge. (Ribeiro 2022.)

This problem can be divided into the following research questions

RQ1: Which factors should be considered effective to improve application

security visibility in a large organization?

The first goal can be set as trying to find important factors that affect visibility in

application security and how things could be improved. This also requires an

investigation of the current state of the organization to gain a generic

understanding of how application security practices are implemented with

different teams. From this, the research can be continued with the following

research questions:

RQ2: Who are the stakeholders in the large organizations that need visibility to

application security and how the organization benefits from it?

The purpose is to find out which stakeholders are the ones who benefit from

increasing the visibility of application security, and who can effectively affect

prioritization if the visibility is improved.

RQ3: Which application security metrics must be visible to different stakeholders?

Which metrics are important to bring to the attention of different stakeholders so

that development can be expected to take place? Which metrics are essential in

order to give different stakeholders visibility into the current state of the

organization's application security so that risks can be reduced, and security be

improved?

2.1 Research method

The research was studied by using the action research approach. The action

research is usually carried out as a participatory and cooperative study. All

community members act as active participants and influencers in change and

research processes (Lapan 2011). Information and data related to the study is

gathered and analyzed using observation, surveys and reports from security,

orchestration, and reporting systems. One reason behind choosing an action

research method is Jean McNiff’s idea that if we are not happy with current

practices, we should strive to influence and push strongly towards change, and

always to challenge the current understanding of the situation (McNiff, 2002). In

the longer term, the research's main idea is to influence things that are not at the

level they should be.

The different phases of action research provided by McNiff (2002) are listed

below:

• Surveying the situation and finding out what are the starting points

• Ideation and conceptualization of the activities

• Initiating and implementing the activity

• Monitoring the effects and making observations

• Evaluation

• Possible implementation or correction of a new form of activity

Research methods may change along with the study if new and better ways are

found to be useful. The first half and theoretical part of the study includes

explanation of the terminology and an introduction to basic concepts of

DevSecOps and modern application security engineering. At this stage, a

methodology assessment for application development teams was also carried

out. This assessment included 25 different questions that were divided into 3

categories: culture and collaboration, velocity and process efficiency and tools

and automation. Third party assessment tool GitLab’s DevSecOps Methodology

Assessment was used to help gather questions and categorize them accordingly.

This part of the thesis is going to try to cover as recent literature of the topics as

possible. During this phase problems are identified, and data is collected using

quantitative research methods.

Information for this research phase was gathered from books in the information

technology field, electronic publications, Internet articles and studies and surveys

from global IT and security companies. The majority of the books for this study

were acquired from O’Reilly online book service as they offer up-to-date material

and most of their writers are well-known pioneers in their field. Modern

application security engineering is moved on at such a pace that most books

released a few years ago are clearly and irretrievably outdated. (Farley 2021.)

The second part of the work includes empirical research using empirical evidence

to find answers to research questions. This stage involves analysis and process

development itself, including a survey that was sent to people in different

positions in the IT and software development field:

• Software Developers / Software Engineers

• Operations Leadership

• Technology Executives

• Devops Leadership

• DevOps Engineers

• Software Architects

• Cloud Architects

• Security Leadership

• Product Owners

The study is limited to large businesses with several different software

engineering teams developing new solutions. This work also focuses only on

companies whose software development is meant to be done using modern

DevOps methods and Agile principles.

In recent years, several studies have been completed related to DevSecOps

adoption and security challenges as Agile and Lean methods evolve. Most

studies’ results were analyzed by using qualitative methods. (DevSecOps: A

Multivocal Literature Review, 2017.)

2.2 Previous research and literature review

Visibility is an important term in this study and will be closely examined during

this study. Visibility is often defined as “the state of being able to see or be seen”,

and in this research context it can be defined as the ability of a process and

system to produce high quality information for the needs of different stakeholders

and is always available, regardless of time and place. The goal of good visibility

is to have as complete picture of security status as possible. The probabilities of

security success are reduced when there is no precise visibility into security

activities and therefore security issues cannot be effectively addressed or

developed. It is impossible to control or protect devices, applications, data, or

processes related to these if visibility is not enforced. Thomas and Tabassum

concluded that security training for software developers helped create visibility

into an organization’s security issues, although the training was not otherwise

considered relevant (Thomas & Tabassum 2018). Studies have shown that

maturity and methodology assessments have improved security visibility in

various organizations and thus positively influenced change and risk

management. (Mohammed 2015.)

The search string "application security visibility" or "security visibility" did not

directly give that many results. In several books dealing with application security

or cloud security though, there were chapters that discussed how visibility can be

improved. However, these were mostly related either to the visibility offered by

the tools, which is a very relevant topic, or to security operations, which this work

does not really focus on. It seems that application security from the visibility point

of view has not yet been studied at least very widely, so this study feels very

timely.

2.3 Visibility Trends in application security

There are several concerns related to visibility in application security context. The

adoption of API centric software development weakens the visibility in traditional

sense compared to the previous development model, when you could still test the

functionalities of the application in practice by going to check the application

running in production and testing it dynamically. With an API centric approach or

single page architecture, gaining appropriate visibility to running applications in

production environments becomes more complex. However, good management

of APIs can improve the visibility and comprehensibility of systems. If the

essential assets are known and the architecture is clear, a well-planned and

documented, visibility into the functionalities can even improve and thus the

needs and possible gaps of security are easier to understand. Today, API-based

integrations are de facto between different IT applications, be it a client-server

relationship or process-to-process communications. Modern companies rely

heavily on API’s and microservices not only to build but also to connect

applications and data flow. (Chatterjee 2021.)

The structure of architecture always depends on the organization and the

individual solution but grouping and sharing APIs between different domains can

be divided into layers as shown in Figure 1.

Figure 1. Designing API-first Enterprise Architecture (Chatterjee 2021)

Another major trend in software development and the cloud native approach is

Infrastructure-As-Code (IaC). In the IaC methodology, operations workload is

largely automated, and the configuration of the environments is handled in

roughly the same way as the application code. IaC configurations are usually

defined according to template file and with the help of these files, the information

about environment variables can often be seamlessly transferred to other

systems by using various integration methods. This improves security visibility

because security issues related to misconfigurations can be easily detected

through these files, and automatic testing targeting these files is therefore a

relatively reliable way to make sure that the environments are sufficiently secure.

According to Podjarny (2021), Infrastructure as Code came roughly in two

different phases. At first, the transition was led by tools that enabled commanding

several different servers and other systems, usually virtual machines, at the same

time and set different types of information security settings and controls easily for

many computers at once. Examples of these tools are e.g., Puppet, Chef and

Ansible. The second wave was led by the "cloud native" transition and the

configuration of cloud services and the setting up of cloud infrastructure. This

wave was led by Terraform, which made it possible to tune the infrastructure to

match the applications used in it. The tools of the first wave later developed to

meet the needs of the second wave, and today popular and widely used solutions

are tools such as Kubernetes Helm charts, AWS CloudFormation and Azure

ARM. Infrastructure as Code brings new challenges to security professionals

because new tools and existing IaC syntaxes must be learned. However, it also

enables security automation and potentially improves visibility into the security of

the infrastructure because it is possible to observe and scan the configurations

directly from the template files that define the infrastructure settings.

Along with infrastructure-as-code, other as-code methods have started to be

widely used. Methods such as policy-as-code and everything-as-code are getting

more popularity, which in its brevity means more automation.

Security teams are trying to solve problems regarding lack of asset management

and securing services what their organization is exposing while not making too

much noise and maintaining high accuracy testing on their digital assets.

Organizations need to concentrate more on the complete attack surface

management, discovering and assessing their Internet-facing assets and

scanning for known vulnerabilities or anomalies. In particular, by combining the

DAST scan during software development and attack surface management, the

overall visibility can be significantly improved, and an understanding of the

correct attack surface can be gained, which is not always seen from within the

organization, but actually from outside it. Attack surface management is

considered as top challenge in the application security field in 2022 and is rising

to be even more relevant as companies shift to greater use of public cloud.

Security teams must continuously analyze outputs, define severities for security

defects and prioritize and govern remediation efforts while all these vulnerabilities

and defects are discovered from various sources. (Detectify 2022.)

Figure 2. EASM in existing workflows (Detectify 2022)

3 APPLICATION SECURITY PIPELINE FOR CONTINUOUS VISIBILITY

It should be considered that it is possible to improve security visibility at all stages

in the secure software development pipeline. Understanding the true security

posture of applications requires that we be aware of the need for various security

controls in the plan, code, build, test, release, deploy, operations and monitor

phases in the lifecycle. To achieve this, we need to create a shared security

responsibility culture among several different stakeholders, by providing

continuous and automated visibility. (Chargebee 2022.)

3.1 Security visibility

With security visibility the goal is to obtain a complete picture of a company’s

security activities and the ability to execute them. In general terms, security

visibility provides a holistic picture of an organization’s security status and ability

to respond to risks and threats. Improvement of security visibility can be achieved

by cultural movement but also by technological investment. A good threat

management platform is able to present a versatile view of the attack surface,

showing all the organization's exposed assets and the risks and vulnerabilities

that apply to them. The most important aspects regarding security visibility are

visibility into the security posture, how the organization's assets compare to

benchmarks, and automatic workflow when a security event occurs. (Cooper

2020.)

In this thesis, visibility mostly means visibility in the context of application security

and not in the broader context of cybersecurity, although the same principles and

techniques presented in the work can also help in achieving wider visibility in the

organization.

3.2 DevSecOps

DevSecOps is a cultural and technological movement that aims to merge

development, security, and operations in software development lifecycle. It adds

security in every activity in software development process while maintaining and

respecting DevOps principles and its manifesto. These activities can be divided

into four different phases: requirements, design/development, testing and

deployment. As DevOps aims to improve speed of development and deployment

of an application, DevSecOps ends up helping overall security of the application

since security testing will be partly automated, security bugs can be fixed, and

updated software deployed much faster. More than anything else, DevSecOps

aims to remove the human where manual intervention is not needed. As soon as

you get the person out of the way, human errors such as typos, mistakes,

jumping ahead of instructions etc., disappear from the processes. Of course, not

all mistakes are made by humans, but by switching to DevSecOps, resources

can be shifted to where they are most effective. (Dang 2021.)

Although DevSecOps aims to combine people, processes, and tools into one

well-functioning entity, the term often refers to only one domain of this principle,

e.g., testing tools and how the integration of different application security tools

and other DevOps tools is done smoothly and without disrupting the developer’s

workflow.

3.3 DevOps

DevOps refers to a methodology and culture that aims to integrate development

and operations to improve the overall level of quality in software development

lifecycle. DevOps focuses largely on automation and testing, and one key

principle is to develop processes by automating as many repetitive tasks as

possible. The main idea of DevOps is often that one team is responsible for the

software throughout its entire life cycle, from the design phase all the way to

production and maintenance. In the traditional model, development and

production have their own individual goals. The DevOps model is closely linked to

agile software development. DevOps is a cultural and technical way of working

that enables the ideal of agile development: the rapid development and release of

new software versions, reacting to possible changes in the operating

environment. As much as anything else, the move to DevOps or DevSecOps is

about getting humans out of the middle of processes that are simply better

handled by software. (Dang 2021.)

As Podjarny (2021) states, DevOps has changed working methods and

technologies during the software development lifecycle. It is predicated on

independent and autonomous development teams, who are responsible to own

the application end to end, meaning in the end of the day, they are also the ones

who are accountable for security for their own products. Today, in many contexts,

DevOps also is used identically to DevSecOps, i.e., application security activities

are already built into everything we do, together with development and

operations, in smooth cooperation. This co-operation model is shown in Figure 3.

Figure 3. A continuous DevOps practice (Podjarny 2021)

Improving visibility and making everyone's work as transparent as possible is

inherent to DevOps. When tools, people and processes work well, we also make

our work highly visible to everyone and that enhanced visibility at the same time

also improves our security capabilities and maturity. One way to make a team’s

work more visible is the use of different DevOps techniques and practices, like

visual work boards such as Kanban, as shown in Figure 4, or sprint planning

boards where everybody can present their work in either physical or digital cards.

The use of different tools and methods always depend on the way a specific team

is working. Although it is questionable whether these solutions actually help the

organization's transition to agile models, they can still improve the visibility of

work tasks, often called as backlog items.

Figure 4. An example of Kanban board (Kim 2016)

3.4 Cloud native

Products that are built using modern software development techniques and

technologies like microservices, containers, CI/CD, declarative APIs and

immutable infrastructure are known as cloud native applications. The name

suggests that these applications are really born in the cloud and are also

managed and maintained there as they try to leverage the cloud capabilities to

the max.

According to Podjarny (2021), it should be noted that with cloud native

applications, the development teams have greater responsibility for the different

layers of application development. Layers such as open source libraries,

application code, cloud or SaaS services, and containers are the responsibility of

the development team. Before, when development and operations were divided

more siloed way into application development and IT operations, the

responsibility model looked very different. As shown in Figure 5, older

applications are made up mostly of code and open source libraries. They also

rely on either centralized IT or maintenance team that supports them with

infrastructure, such as hardware, VMs, network access etc. Now technologies

like Infrastructure-as-code (IaC) changes that approach entirely as teams would

spin up the environments from IaC file templates.

Figure 5. Cloud native and pre-cloud comparison (Podjarny 2021)

3.5 Secure Software Development Framework (SSDF)

The purpose of secure software development practices is reducing the amount

and severity of vulnerabilities in software development lifecycle and gain the

means to catch the security issues early in the lifecycle before the software is

released. The Secure Software Development framework is very important set of

practices that organizations should follow and implement. It also provides a

common language that all practitioners in the field can understand and follow the

same terminology. Several DevSecOps tools use SSDF as a help when checking

against a certain reference framework, whether it is SAST, DAST or Threat

modeling tools. National Institute of Standards and Technology (NIST) defines

their SSDF in the following way (National Institute of Standards and Technology,

2020):

The Secure Software Development Framework (SSDF) is a set of fundamental,

sound, and secure software development practices based on established secure

software development practice documents from organizations such as BSA,

OWASP and SAFECode. Few software development life cycle (SDLC) models

explicitly address software security in detail, so practices like those in the SSDF

need to be added to and integrated with each SDLC implementation.

3.6 Security metrics

Security metric is a system that allows us to compare something against a

standard. It can be defined as a measurement in relation to one or more points of

reference in addition to which "metrication" can be defined as the process of

selecting and applying metrics to improve the management of something (Brotby

& Hinson 2016). These metrics can be used to improve information security for

strategic or tactical reasons, and for compliance when there is a need to act in

accordance with certain security frameworks. They help various different

stakeholders to understand the security situation and awareness as well as the

implementation of controls. (Brotby & Hinson, 2016:18-23.)

Some suggestions for security metrics can be:

• Mean-Time-to-Detect and Mean-Time-to-Respond

• open security findings

• number of systems with known vulnerabilities

• number of policy violations

• % of systems with formal risk assessment

• % of systems with tested security controls

• number of identified risks and their severity

• average days to resolution

• severity level of vulnerabilities

• code metrics

o lines of code

o source files

o code churn

o finding density

The research aimed to find out reasonable metrics that would benefit different

stakeholders and improve the visibility of the application security posture. It is

important to understand the purpose of collecting metrics and for which groups

certain metrics are interesting and useful.

3.7 Standards and best practices

In the industrial sector, cybersecurity operations are governed by several different

standards and frameworks. Especially when it comes to IoT devices, it is

important to stand out from competitors by certifying products according to

certain standards. Some of the standards are also forced through regulation,

depending on where in the world the company operates. The visibility of the

certification process to information security operations and activities is very

important, and without that visibility, it is difficult to show during the audit whether

the company meets the requirements set by the standard or not.

3.7.1 NIST DevSecOps Framework

The US National Institute of Standards and Technology (NIST) provides the

standards, frameworks, and information security guidance for public

organizations, private companies and businesses any size. NIST has several

different security frameworks and guidelines, especially comprehensive

cybersecurity framework, which is presented in Figure 6. This work mainly

focuses on its DevSecOps framework and best practices that are presented in it.

In their Computer Security Resource Center (CSRC) NIST has DevSecOps

framework explained as follows (National Institute of Standards and Technology,

2021):

DevOps brings together software development and operations to shorten

development cycles, allow organizations to be agile, and maintain the pace of

innovation while taking advantage of cloud-native technology and practices.

Industry and government have fully embraced and are rapidly implementing

these practices to develop and deploy software in operational environments,

often without a full understanding and consideration of security.

The framework also defines four different value adding capacities (National

Institute of Standards and Technology 2021). DevSecOps:

• reduces vulnerabilities, malicious code, and other security issues in

released software without slowing down code production and releases.

This is an important factor when building a security paved road in the

organization.

• mitigates the potential impact of vulnerability exploitation throughout

the application lifecycle, including when the code is being developed

and when the software is executing on dynamic hosting platforms.

• addresses the root causes of vulnerabilities to prevent recurrences,

such as strengthening test tools and methodologies in the toolchain and

improving practices for developing code and operating hosting platforms.

This is very important in the transition to security automation and

DevSecOps. Finding root causes helps to configure tools and pipelines so

that only the most important and relevant findings end up in the

developers' backlog.

• reduces friction between the development, operation, and security

teams to maintain the speed and agility needed to support the

organization’s mission while taking advantage of modern and innovative

technology.

In addition, NIST has published many other guides such as:

• NIST SP 800-82; a very extensive document for securing ICS (Industrial
Cyber Security)

• NIST SP 800-53, a database for security and privacy measures and
controls

• NIST SP 800-30, guidelines about risk assessment for IT systems

Figure 6. Structure of the NIST Framework (NIST 2021)

Many organizations and teams use NIST frameworks even without knowing it,

because a large part of the security tools map security findings according to

the NIST framework. The different test cases that the tools perform are based

on these frameworks and the best practices presented in them.

3.7.2 ISO 27001

The ISO27000 family of standards is very well known and respected in the world,

which is why companies often aim to achieve ISO certification for their selected

products. The standard is very comprehensive, and the preparation of the

certification is often a very tedious project. In the commissioner organization, an

ISO 27001 certification project was carried out for a large product family, as part

of which application security visibility had to be improved, in order to know at

what level the security capabilities and maturity of the product and teams were

and what would be the possible problem areas that should be addressed well in

advance of the audit. Information Security Management System (ISMS) is an

essential part of ISO27001 implementation. The purpose of ISMS is to create risk

management processes that ensure that risk, continuity, and information security

management is at an appropriate level in the organization. This management

system contributes to improving visibility and processes for secure working

methods, which is not a one-time project, but a process subject to continuous

change.

According to Calder (2020), the idea of ISO27001 certification process is to adopt

controls relevant to you and for your organization. Those controls are divided in

14 different categories which are:

1.A.5 Information security policies

2.A.6 Organization of information security

3.A.7 Human resource security

4.A.8 Asset management

5.A.9 Access control

6.A.10 Cryptography

7.A.11 Physical and environmental security

8.A.12 Operations security

9.A.13 Communications security

10A.14 System acquisition, development and maintenance

11.A.15 Supplier relationships

12.A.16 Information security incident management

13.A.17 Information security aspects of business continuity management

14.A.18 Compliance

These 14 control categories consist totally of 114 different security controls that

organizations can apply to improve their security posture. On a general level, an

organization implementing the ISO 27001 standard must implement an

information security management system, as well as maintain and improve it

continuously in accordance with the requirements. This implementation must be

easily demonstrable when requested by the auditor.

3.7.3 IEC 62443

Another important standard in the field of target organization is IEC 62443. As

described by Flaus (2019), it consists of a set of instructions, requirements and

guidelines intended for security personnel in the development and life cycle of

industrial systems. Those requirements and guidelines are designed for people

having responsibilities implementing them in the industrial automation and control

systems’ (IACS) lifecycle and its different phases, from design and

implementation to management. These people can have roles such as system

integrators, system users, operators, or product suppliers. Mentioned roles and

responsibilities are visually illustrated in Figure 7.

Figure 7. IACS lifecycle (Flaus 2019)

The purpose of the standard is to ensure the safe use of industrial automation

systems. It has a sub-part 62443-4 which in general describes the requirements

of product development, and system requirements for components but also

includes a standard for secure product development lifecycle requirements. It

specifies a set of secure development lifecycle requirements related to industrial

automation and control systems environment, and also guidelines to meet the

very same requirements. It is very important that the implementation of these

controls and requirements are well visible because they are a key matter for the

safety and security of the organization's products.

Figure 8. The target audience for the standard (Flaus 2019)

3.8 Automated security testing

In this context automated security testing, often called as an acronym AST,

techniques refer to the security testing practices in the CI/CD pipeline. One of the

key benefits of automating security testing is that it frees up time for actions that

require human intervention, but also the fact that with the help of automation we

can achieve a real time situation, where we have good visibility into the state of

our application security posture. Automating different application security

activities such as security testing in CI/CD pipelines, automated threat modeling

and requirements management gives us improved visibility to application security

status and that visibility helps organizations secure and understand their

applications throughout the whole life cycle. In Figure 9, different testing methods

are visualized during the software development lifecycle.

Figure 9. Different phases of security testing (Hsu 2019)

According to Hsu (2019) the purpose of security automation is to reduce the

manual workload where human logic is not needed and save resources where

they are most useful. Different test automation methods in the CI/CD pipeline are

an excellent way to get a large test coverage in an application with a scalable

way, without increasing the burden on people too much. Potential security flaws

can exist anywhere, from the source code and third-party components to an

insecure configuration or vulnerable infrastructure. In security test automation, it

is necessary to be able to shift the automation focus where people and manual

steps are not needed. As shown in Figure 10, use of automation transfers limited

resources to fundamental analysis, understanding the security impact and

internal communication in the organization, to get the greatest possible benefit

from the findings of the automated tools.

Figure 10. A shift-left security testing strategy (Hsu 2019)

3.8.1 Continuous Integration

Continuous Integration (CI) is a software development practice, and its purpose is

to automate the delivery of changes of several different developers to the code

base and centralized version control system. With CI, different team members

can work on different things in parallel and combine new features when

necessary, so that the whole application remains intact. The goal is to have a up

and running software the functionalities of which each member of the

development team can develop, change or modify without breaking the system

and losing functionality. Continuous Integration often contains automated tests

when changes are added to a larger code base. When talking about CI practice,

the most well-known CI technologies and tools are also often discussed, such as

Travis CI, Jenkins, Circle CI and GitLab CI.

3.8.2 Continuous Delivery and Continuous Deployment

CD in CI/CD means either Continuous Delivery or Continuous Deployment. The

main difference here is the level of automation. As seen in the Figure 11, the

continuous delivery allows development teams to push any code changes

automatically to certain prepared state for a release to production. This can be

non-production testing, or staging environment. It expands continuous integration

by deploying any code changes to a testing environment and always having a

deployment-ready build artifact that has gone through all the stages and tests in

CI/CD process. Those tests can include not only UI testing, load testing, and

integration testing but also automated security tests. Where continuous delivery

requires a manual approval before changes are pushed into production,

continuous deployment aims to automate the whole pipeline. Without manual

human intervention, deployment to production happens automatically without

explicit approval. (Amazon Web Services 2022.)

Figure 11. Continuous Delivery vs. Continuous Deployment (Amazon Web

Services 2022)

3.8.3 SAST

One of the first automated CI/CD security technologies was SAST (Static

Application Security Testing), also known as automated source code analysis. A

SAST tool called Coverity has been implemented in the target company, and the

goal is to use Coverity to scan the source code of every SRD application,

automatically in the CI/CD pipeline, giving more visibility to security errors in the

source code. One of the key benefits of SAST-tools is that they are relatively

easy to setup and these scans usually do not take too much time to finish,

making them ideal tools for agile teams and CI/CD pipelines. The downside of

these tools is that they frequently produce false positive findings. SAST tools run

security scans against source code, byte code, and assembled code for known

vulnerabilities. SAST tools come in various forms, including plug-ins, libraries,

and SaaS solutions (e.g., Snyk IDE plug-ins, Checkmarx SAST, Security Code

Scan), and can be integrated with CI pipelines natively to run against every

commit. It is also possible to use SAST tools as part of an IDE (Integrated

Development Environment), in which case the tool's plugin is installed directly in

the code editor, and security checks are run at the same time as the application

is being developed. This is the earliest stage when technical security testing can

be brought into the software development lifecycle. SAST is a big part of shifting

security left, as it helps you discover issues during development. (Gayathri

2022.)

3.8.4 DAST

DAST, i.e., dynamic application security testing, is a method of testing

applications when the software is first built and a functional, running application is

tested for various software security vulnerabilities. It differs from static testing in

that, unlike with SAST scanners, there is no access to the source code, but

dynamic testing examines the behavior of the software and how it responds to

various inputs from the user.

Dynamic Application Security Testing (DAST) technologies are one of the most

popular ways to ensure the security of products during application development.

In this testing method, the security testers, examine the application while it is "up

and running". It usually must be run in the test and production environment of the

application in order to have most or all of the functionalities available. Dynamic

security testing is part of black box testing, meaning that the tools try to study the

software's behavior and response to simulated attacks by the testing tool. Based

on the application's responses, the DAST tool aims to determine whether the

application could contain security issues and be vulnerable to real cyberattacks.

Due to the black box methodology, the DAST scanner doesn't really need to

access the software code and in-app functions. In fact, it seeks to automate what

a hacker would do in the "live situation" without excessive inside information

about the target. Thus, finding a vulnerability usually means that the vulnerability

can indeed be exploited. This also distinguishes dynamic security scanning from

static application security testing (SAST) in that it does not produce as many so-

called "false positive" findings.

When talking about DAST products, it is good to clarify what it means in which

contexts. Dynamic testing can be talked about, for example, when performing

largely manual penetration testing on the target system and launching a

vulnerability scan with a testing tool such as Burp Suite or Nmap by a tester. In

general, DAST is more often talked about nowadays when it refers to an

automated security audit in the development phase of an application, e.g., in a

CI/CD pipeline. An example workflow might look like it’s shown in the Figure 12.

Figure 12. Example of DAST workflow

DAST is not a good solution for CI/CD environments in every situation. The

downside of dynamic automated testing is that large-scale testing of an

application can take several hours, making it very poorly suited to a DevOps

workflow that is agile in nature. If DAST tools are intended to be used in the

CI/CD pipeline, the scan settings should be configured carefully, so that the test

stage includes only the essential and most important checks, while taking as little

time as possible to complete.

3.8.5 SCA

SCA (Software Composition Analysis) is a testing method, with the purpose of

checking the open source and third-party components used by the application

and any known vulnerabilities hidden in them. SCA scanning is usually performed

automatically in the CI/CD pipeline before the build phase of the application. SCA

scanning can also be performed using separate plugins directly in the application

development environment, i.e., IDE, or manually from the command line or the

scanner's user interface. Similarly to SAST testing, SCA testing is a static

method, and therefore does not require a running application to run the tests.

It is generally thought that SCA testing is the easiest automated activity to

perform in a secure application development lifecycle and in a CI/CD

environment, so it is often also the first step to automating application security

testing. It has also been estimated that third-party components contain most of

the vulnerabilities in the application, so it is logical to start such a testing activity

where you can get the most benefits right from the start.

In terms of the security visibility, the checks and scans made by SCA tools are

vital because they give visibility into which components the applications consist

of. Most commercial SCA tools include the ability to generate an SBOM

(Software Bill of Materials). SBOM is practically a "recipe" used for the

application, i.e., a list of all the ingredients that the application consists of. Target

company has implemented an SCA tool called Black Duck in SRD. The goal is

that static composition analysis is connected to every application in their CI/CD

pipelines, and their 3rd party components are scanned for known vulnerabilities

automatically. This creates visibility into how applications are built, what their

Software Bill of Materials is, and what different libraries they use. The majority of

all application security vulnerabilities are reported from SCA tools, so this is an

important view to have.

3.8.6 IAST

Interactive Application Security Testing (IAST) is a slightly more modern testing

technology in the field of application security. When implementing IAST, an agent

is installed in the environment that aims to investigate the normal use of the

application and inject various tests to find vulnerabilities and security

misconfigurations in the software's runtime operation. Due to its nature, IAST is

capable of dynamic testing but at the same time able search for the root causes

of vulnerabilities in the code base. According to Hsu (2018), IAST not only does

DAST security testing but also can identify the root/cause at the source code

level via a RASP Agent. In simple terms, IAST = RASP Agent + DAST.

Some of the advantages of IAST:

• Integration into the IDE enables earlier detection of vulnerabilities.

• Because of the detailed information available to the sensors, IAST can pinpoint

sources of error accurately

• Because of the integration in the IDE, IAST can be part of agile development

and the continuous integration/continuous deployment (CI/CD) pipelines.

IAST is the application security tool that most requires a genuine security culture

in the organization. Especially from quality assurance (QA) team, they must have

a real desire to also start security tests as part of the QA teams’ manual and

automated testing. IAST will not find anything if the application is not used as it is

intended to be used, thus it is suitable for use side by side with, e.g., unit and

integration tests, but not very well for use by the application security team. (Hsu

2018.)

3.8.7 External Attack Surface Management

External Attack Surface Management (EASM) is a technique that aims to map

the attack surface and discover organization’s Internet-facing assets for

vulnerabilities. Visibility into assets and their proper inventory are key elements in

securing applications, and EASM technologies can be used to better manage

what the organization's applications visible on the Internet expose. Poor

understanding of the organization's public-facing assets and the visibility they

offer to outsiders can lead to serious exploits, such as severe subdomain

takeover. EASM techniques aim to get answers to questions such as:

• What Internet-facing applications does the organization own?

• What vulnerabilities and anomalies do they contain?

• Where should the organization focus its attention?

• How are the identified vulnerabilities concretely fixed?

EASM solutions make it easier for security teams to focus on practical threats in

the secure software development lifecycle. The technology balances testing

throughout the life cycle, which is often focused on the left side, so to speak, i.e.,

the early stages of the life cycle.

3.8.8 AVC

Application Vulnerability Correlation (AVC) is a centralized vulnerability

management system that gathers and combines security defects from different

sources into a single security dashboard. Different sources of security defects

can be static testing tools, dynamic scanners, IaC tools or penetration testing and

auditing. In addition to the fact that AVC tools are able to collect various security

defects from several different sources, with AVC it is also possible to build

scanner integrations in a way, that management and orchestration of different

tools is possible from the same platform.

3.8.9 Tool evaluation

When trying to solve problems regarding to improve application security

capabilities and the visibility obtained with security tools, the whole toolchain and

their markets should be evaluated regularly. Every security tool category consists

of tens or even hundreds of different tools, and it is often difficult to understand

what the best solution for a specific problem, team, or an organization at large

scale would be. When trying to improve security visibility with the help of these

tools we need to focus on how well they integrate to other critical platforms we

use in regular basis. According to Hsu (2018) there are a few different

considerations when evaluating DevSecOps toolchain:

• Usability. The target users of the code scanning tools are developers. The
usability includes the capability to scan parts of the source code,
differential scans, scanning reports, tracing back to original source code,
and so on.

• Budget. If it is an IDE plugin commercial tool or for example SaaS based
tool we need to consider how many concurrent users' licenses it will need.

• Programming languages support. We can do a survey of the programming
languages used by in-house projects and prioritize the programming
languages that are going to be supported

• Detection rate. It is common for any scanning tools to have false positive
rates, depending on the scanning engine and rules. A high false positive is
not a bad thing, and it can also mean the scanner takes a more
conservative approach. Find the tool that best fits the projects instead of
the most well-known. To evaluate the detection rate, we may use known
vulnerable projects.

• Scanning rules update. It is important that the tool is constantly updated
with rules and scanners. One of the key advantages of a commercial tool
is that the tool will have up-to-date scanning rules.

• API capabilities. With modern application security tools, it is important to
be able to communicate and integrate with them using APIs. The
management of application security tools is a matter of whole chain of
different solutions. Therefore, it is important, that the different systems are
able to talk to each other, and the tools support the existing workflow, not
the other way around.

3.9 Automated vulnerability management

One of the most important elements of any application security program is design

of the good vulnerability management process and make sure that those

vulnerabilities are triaged properly. Some of the clear advantages of automating

vulnerability management are the following:

• It helps in driving security and compliance programs by bringing enhanced

visibility of security status to different stakeholders.

• It helps in prioritizing security defects from different sources, based on for

example the Common Vulnerability Scoring System (CVSS).

• It provides greater visibility to effectiveness of any security program.

• It improves visibility in real time with the faster feedback from CI/CD.

• Improved visibility provides needed proof to both internal and external

auditors.

With automated vulnerability management it is possible to programmatically

compile the data sources to provide effective vulnerability prioritization, validation

and enhance visibility to application security status and defects. With this method

we can save time for more important work that requires human intervention, for

example improving organization’s security processes rather than focusing on

vulnerability data dumps that can be easily observed by a machine. (Magnusson

2020.)

4 WAYS TO IMPROVE VISIBILITY

There are many ways to improve security visibility to certain targets such as

products, development teams, processes, and cultural aspects. In the target

company there were several different practices to enhance the visibility in the

application security during the study, which will be covered in this chapter. Those

ways included improving security toolchain and vulnerability management

processes and technics, automated security requirements management and

communication throughout the organization to improve security awareness

between the security team, product development teams and other important

stakeholders.

4.1 Automated security requirements management

The management of information security requirements is an important and often

demanding task in any organization, and especially in a large international

organization that may operate in several countries or continents, in which case

the information security requirements should also take national legislation and

standards into account. When talking about an organization's ability to comply

with certain information security requirements, it often means the ability of several

units, teams and products to meet these requirements. To see if the requirements

are met for a specific application, product, unit or the entire company, visibility is

needed into the information security status of several different parts of the

organization. This requires good management of information security

requirements.

The automation of information security requirements helps in such a situation to

achieve the goal and can even create an up-to-date view of the information

security status of different parts and products of the organization. In the case of

the target organization, a platform called IriusRisk was used to automate the

management of information security requirements and provide better visibility to

commissioner’s application security posture. The automation of security

requirements also makes sense when the organization develops digital solutions

with several different software development frameworks, for different customer

segments and possibly on a different cloud platform. Therefore, the exact security

requirements against a certain framework can be retrieved automatically and the

security team does not necessarily have to maintain enormously extensive

inventory of documentation on how to use certain individual component or

framework securely. An architecture image is created in the platform’s draw.io

canvas, which contains the product's technical components. Figure 13 visualize

the architecture and AWS components of a simple cloud native web application.

Based on these components, the solution gets exact security requirements,

which can be integrated again with different backlog tools, that the development

teams use.

Figure 13. IriusRisk simple web application diagram

4.2 DevSecOps maturity assessment

The purpose of DevSecOps maturity assessment is to gain an overview of used

technologies, tools and workflows in a particular team or a group of teams. The

assessment helps understanding on what level of maturity a particular team or a

group of teams have achieved in their DevSecOps practices and what are the

key areas to be focused in the near future to improve the maturity and the

security posture of a certain team and its product. Usually, a maturity assessment

consists of 15 to 30 different questions divided into a few different categories to

which the teams would give their answers and it can be done as a self-

assessment. In the target organization, a maturity assessment was carried out for

27 different software development teams in order to improve security visibility and

help the security team better understand the issues that the development teams

need help with. After the questionnaire is completed and the answers are

analysed the next step is building an action plan for improvement. (GitLab, 2020.)

4.3 Achieving full-stack visibility from development to production

Regarding testing tools, the plan is to create a unified pipeline that covers

different types of tests and activities from the initial stages of development to

production. The task of the testing pipeline is to cover all phases of the software

development life cycle and, in addition, the entire attack surface of the product.

This security testing pipeline cannot give very good visibility as it is, but for that

purpose to improve visibility there is a need to create a separate platform from

which the orchestration of tools takes place and security defects are mapped

centrally. The commissioner has chosen CodeDx as a centralized vulnerability

management and correlation system, which is currently owned by Synopsys.

Figure 14: Security testing pipeline

With the help of the CodeDx platform, the overall visibility of the commissioner’s

digital products can be significantly improved in terms of application security. The

platform offers ready-made dashboards from which, with the help of graphic

illustrations, the trend and evolution of application security defects can be seen

over time. The platform collects data from different sources of security defects,

such as SAST, SCA, DAST, penetration testing or bug bounty platform and

compiles the data into one dashboard either for one team or application, or it can

be viewed for the entire organization if there is a need to get a security view, for

example, for the top management. Potentially, security visibility can be improved

enormously with such systems, but the prerequisite for the effective use of these

platforms is that the defects have first been triaged and it has been ensured that

there are no so-called false positive findings that can easily distort data with

dashboards.

4.4 Assessing DevSecOps objective and key results for development

teams

The commissioner is undergoing an extensive transition to DevSecOps, and as

part of this transition, certain OKRs were defined for the application development

teams, the purpose of which is to get all teams to improve their cybersecurity

capabilities and also to improve visibility regarding cybersecurity activities

between different stakeholders. These OKRs included goals such as the

introduction of basic cyber security trainings to the teams, the introduction and

implementation of automatic security testing tools, sharing individual team’s own

operating models, used techniques and technologies and workflows with others

and improving vulnerability management process.

4.5 Improving visibility for ISO27001 project

As the commissioner’s target has been to obtain ISO27001 certification for a few

important digital products, and in the preparation of this certification process, it

has been essential to improve the visibility of the teams' security activities,

workflows and working methods. When evaluating working methods,

cybersecurity plan was divided into different domains, which were

• application security

• asset management

• cloud security

• continuity

• governance

• human resource security

• identity & access management

• information protection

• information security event management

• network security

• secure configuration

• supplier relationships security

• threat vulnerability management

It is crucial in ISO 27001 certification to provide visibility into how

comprehensively the information security guidelines and processes are defined.

For this purpose, a platform called IriusRisk was used. IriusRisk is known for its

ability to automate threat modelling but also to manage information security

requirements in partly automated manner. Figure 15 shows how different

countermeasures with the highest security impact are listed on the IriusRisk

platform.

Figure 15. Example of view of top 10 countermeasures

5 RESULTS

The objective of this study was to analyze the current status of commissioner’s

application security visibility and find ways to improve application security visibility

at the product and also at the company level. A total of two different surveys were

carried out in connection with this research. The first of which was a survey

focusing on methodologies and working methods and the second survey on how

the visibility of application data security could be further improved. Both

questionnaires were built using Microsoft Forms tool and Microsoft Excel and

PowerPoint was used with analysis and presentation of the research data.

5.1 Methodology assessment questionnaire

As one part of this thesis’ work, a DevSecOps maturity assessment was prepared

to gain information about the baseline of DevSecOps methodologies. Its purpose

was to gain visibility into the working methods, technologies used and application

security practices of different development teams. GitLab's DevSecOps

methodology assessment was used as the basis of this questionnaire, from which

the areas and groups of questions were selected to suit our own situation. The

survey was divided into three different areas: culture and collaboration, velocity

and process efficiency and tools and automation. There were 7-10 questions

from each area and a total of 27 application development teams responded to the

survey.

The first conclusions from the maturity assessment are that most of the

development teams understand the importance of application security and that

the company-level information security requirements and policies have been

clearly communicated and enforced. Baseline security requirements are

considered very important, and the existence of the application security team is

known, and help can be requested when it is needed. In their own opinion, the

development teams have moved away from the waterfall development model to

agile development and DevOps ways of working, which is important for the

application security team to understand because there will be more challenges

for several application security activities in the software development lifecycle,

and the importance of security automation must be taken into account. One

aspect that is clearly worrying is, according to the survey, software developers

practically spend most of their time implementing new functionalities, and there is

not much time left for fixing bugs and technical debt. 22 out of 27 teams

answered that they spend more time developing new functionalities than fixing

things, for example related to application security. From business development

perspective this can lead to profits in the short term, but in the long run, increases

the security risks and business continuity to a large extent. This is also

understandable because the target company is under great pressure to develop

digital products for its customers and the industry is just at the transition of

digitalization, so the innovation level is meant to kept very high.

Based on the survey, there is much room for improvement in the level of

automation. 17 teams out of 27 answer that deployments and releases are

automated either completely or partially, but 20 teams say that tickets are not

created for security tests, nor the build is stopped when issues found or DAST

analysis is performed after the build. In terms of visibility, a good solution would

probably be to have the tasks from the security tests in the same place where the

other tasks of the team are and where the teams' backlog is located, so that the

security responsibilities and activities are not separated from the rest of the daily

work.

5.1.1 Culture and collaboration

This section explains how much different teams have adapted DevSecOps to

their practical working culture. It aims to study how well security issues are made

known in the team, how important security actions are considered, and whether

communication regarding security issues works clearly enough. The cultural

aspect also takes a stand on the more demanding and advanced security

activities, such as game days and chaos tests, which usually require a

particularly active approach and the desire to do application security testing well.

Figure 16. Culture and collaboration

As shown in Figure 16, a clear trend can be seen that teams have moved away

from the waterfall model towards agile development methods. Most people seem

to have an idea of who to report security incidents or concerns and where to ask

for help. Security policies exist and they have been enforced to some extent,

although not everyone had accurate information about what these policies are

and where they can be found. Most of them have not yet adopted more advanced

testing techniques, such as chaos testing.

5.1.2 Velocity and process efficiency

The Velocity & process efficiency category aims to practically measure how far

the organization has moved to the left in security testing and secure application

development design. The purpose is to investigate whether appropriate

application security requirements have been collected for the piece of software,

whether threat modeling has been done or static and dynamic security tests have

been automated from the beginning in the CI/CD pipeline. It also examines how

the processes work in practice and whether security is integrated into the

processes in such a way that it remains involved even when new functionalities

are introduced in the application.

Figure 17. Velocity and process efficiency

From Figure 17 it can be stated that almost every team has some level of

orientation process where information security topics and some basic activities

from the application security area are also reviewed. Activities such as threat

modeling and the collection of information security requirements are done quite

actively. One clear point, however, is that the deployment to production is not

forced to fail due to security findings, and the infrastructure is not very

comprehensively and continuously scanned, at least not for security

misconfigurations. Penetration testing is not done at all in half of the cases. At

target company, a form called security summary must be filled in at the start of

each project. This document is used to ensure certain security steps during

development, such as security design, security requirements, risk assessment

and security guidelines. It also includes things that may be necessary, depending

on the project, such as supplier cybersecurity, which aims to ensure that partners

also operate sufficiently securely. Most of the survey respondents had gone

through this phase and several even updated the document as needed, which

indicates that the security processes work well, at least in this respect.

5.1.3 Tools and automation

This category gathers the findings that have come from measuring the level of

tools and automation. The category includes DAST, SAST and SCA tests and

measures how automated deployments to production are. In practice, it is about

whether continuous deployment or continuous delivery is used.

Figure 18. Tools and automation

Here, as shown in Figure 18, the purpose was to find out how automated

workflows are in detecting security findings in the tool, and how they end up in

the teams' backlog. In practice, the most significant observation from this

category was that dynamic security testing is not done basically at all, and no

hard failures are used in the pipeline. The reason for this may be that DAST

scans, especially in the CI/CD pipeline, require the presence of the security team

during the onboarding. To be an effective CI/CD test, the scan must complete its

tasks in a few minutes. This requires configuring the scanner in such a way that it

can crawl and spider the most important areas of the application and perform

tests that are relevant to the target application, but not any additional measures

that could delay the completion of the CI/CD pipeline. Also, the creation of tickets

for backlogs is not automated, so if teams want security findings to go to the

backlog to be fixed, they must be sent there manually. This is possibly the result

of the fact that some security scanners give so many false positives and provide

findings that are not fully understood. Consequently, if automated, this process

could create a large number of tickets that nobody in the development team

would not know how to solve.

5.2 Questionnaire for improving visibility

As the second part of this research a questionnaire was prepared to conduct

research with the aim of getting views from the target company's key personnel

and stakeholders and tackling the research questions presented at the beginning

of the thesis in particular:

▪ RQ1: Which factors should be considered effective to improve application

security visibility in a large organization?

The first research question was set as trying to find important

factors that affect visibility in application security and how things

could be improved. This also requires an investigation of the current

state of the organization in order to gain a generic understanding of

how application security practices are implemented with different

teams. From this, the research can be continued with research

questions 2 and 3:

▪ RQ2: Who are the stakeholders in the large organizations that need

visibility to application security and how the organization benefits from it?

The purpose of RQ2 was to find out which stakeholders are the ones

who benefit from increasing the visibility of application security and

who can effectively change things if the visibility is improved.

▪ RQ3: Which application security metrics must be visible to different

stakeholders?

In more concrete terms, this research question can be divided to

topics such as which metrics are important to bring to the attention

of different stakeholders so that development can be expected to

take place, and which metrics are essential in order to give different

stakeholders visibility into the current state of the organization's

application security so that risks can be reduced, and security be

improved.

The survey was sent to total of 35 people in several different positions at the

target company working mainly in the Research & Development (R&D) unit or

global cybersecurity unit:

• Software Developers / Software Engineers

• Operations Leadership

• Technology Executives

• DevOps Leadership

• DevOps Engineers

• Software Architects

• Cloud Architects

• Security Leadership

• Product Owners

Survey included the following questions:

• What is your role or current job function? You can just add the position you
are in or more detailed explanation of key responsibilities in your role.

• Which factors should be considered effective to improve application
security visibility in a large organization?

• How the different stakeholders benefit from application security visibility?

• Who are the key stakeholders in the large organizations that need visibility
to application security and why?

• Which application security metrics should be visible to different
stakeholders? In this context security metrics can be measurable things
like security tools in use, number of critical or high severity findings, % of
systems with tested security controls, number of systems with known
vulnerabilities, policy violations, etc.

• Are you familiar with the CVMS (Centralized Vulnerability Management
System) platform?

• We have adopted the CVMS (Centralized Vulnerability Management
System) to our use at target organization and have continuously added our
digital products in the platform. Do you feel that the visibility into
vulnerabilities provided by the CVMS platform helps to improve the
security posture of your team/solution?

• Are you familiar with IriusRisk (automated threat modeling and security
requirements management) platform?

• To provide more visibility in the status of compliance and security
requirements we have started to add more solutions to IriusRisk platform.
Do you feel that using IriusRisk has helped you or your team to gain better
understanding of security posture of your solution and required security
activities?

• Are you familiar with the monthly security dashboard provided by
application security team?

• To provide more visibility to specific solution's/product's security posture,
we have started to gather security data from R&D solutions to monthly
security dashboard. In your opinion what kind of data would be the most
important to get in the monthly security dashboard from organizational
point of view?

• What type of data would you like to see in monthly security dashboard
from point of your personal interest?

• Does monthly security dashboard help you understand security-related
problems better?

• Does CVMS dashboard help you understand security-related problems
better?

• Are you familiar with the services and tools provided by cybersecurity
team?

6 DISCUSSION

The purpose of this chapter is to go through the results for the research

questions, to try to solve at least partially the research problem and to discuss the

topic in a general way. The detailed answers to the survey are not included in this

work as such, because some of the answers contain information that is only

intended for internal use of the organization, but the findings and conclusions

from the answers are reviewed in a way that they are generic enough and do not

violate the organization's information sharing policy.

6.1 Which factors should be considered effective to improve application

security visibility in a large organization?

The main purpose of the study was to understand which factors are important to

consider, when aiming to improve application security visibility. The answers from

the questionnaire varied a lot depending on the roles of the respondents. More

than a third highlighted the importance of processes and the fact, that visibility is

not improved with any specific tool, dashboard, or system, such as CVMS, but by

creating good processes and making sure that everyone knows what the

expectations are. Processes and current security status must be communicated

clearly between different stakeholders. Being able to present exactly what the

security status is, what the potential impact of different threats are, and what

exactly needs to be done to improve the situation seems to be most important

factor. How the security posture is presented, and which technologies or tools are

used to achieve visibility, does not seem to matter that much.

If the development teams are not given a sufficiently accurate picture of the

security problems of their own applications, but instead driving them to take more

responsibility for the investigations of vulnerabilities and their remedial measures,

the tools must be easy enough to use and they must give clear instructions on

what needs to be done to implement the security fix. 70% of respondents feel that

the CVMS platform improves visibility and makes it easier to understand the

security status of applications, but at the same time they feel that the view it

offers is not accurate enough. A few problems that emerged in the answers were

the poor prioritization of findings, their duplication and insufficient guidance on

how to fix the issues. It was pointed out that the system still has a lot of potential,

if it is developed into a more mature solution in the future. For software

development teams, visibility must be created for the tools and processes that

developers can use when building secure software by default. These must be

very close to the developers' workflow, so that they are truly adopted and become

part of the work culture. When providing visibility to application security, it is not

enough to create a view of vulnerability list, and how many security issues each

team has in their product. The security team must demand more from itself and

focus on building security paved roads, which are designed secure-by-default.

The security team cannot assume that the development teams will suddenly

become security professionals and use a large part of their working time to

understand findings and alerts from different sources. The security team must set

clear expectations, guardrails, and step-by-step instructions on how to reach the

most important goals and desired levels.

6.2 Who are the stakeholders in the large organizations that need visibility

to application security and how the organization benefits from it?

Understanding stakeholder roles that need visibility is very relevant because at

the end of the day it is people who make decisions, guidance, and show the

direction in which the organization is heading, not tools or technologies. If

security visibility is not made available to the right people, it will be very difficult to

implement the change. Most of the respondents considered it important to give

visibility to product owners or similar persons who have the authority to decide on

the prioritization of the tasks in the development teams. Providing the right kind of

visibility is especially important so that product owners understand the effect of

security status on business impact. Therefore, we can conclude that generic

dashboards do not work very well because each team should be able to have

visibility to concrete security flaws that are relevant in the context of that

application.

On the other hand, the answers also showed that when developers want to be

given visibility into the application security, for example through security tooling,

the tools should be good in terms of usability and the learning threshold should

not be very high. This makes sense because developers already must learn

several different tools and technologies and the time to learn and use application

security tools is very limited. For this reason, the tools should be able to provide

the information that is being sought rather quickly, and the security team should

prepare certain secure frameworks that are configured secure-by-default. In this

case, the developers' workflow is not broken, and the maximum possible benefit

can be obtained from the toolchain. This is something that organizations should

keep in mind when choosing new application security tools, because

organizations do want to allow development teams to be autonomous with no

bottlenecks from application security team.

In summary, visibility must be brought to the leadership so that the necessary

resources can be given to manage security tasks. Relevant instructions and clear

guardrails are important for developers so that they know what is expected of

them.

6.3 Which application security metrics must be visible to different

stakeholders?

The answers to the survey vary a lot, and the question of which metrics are the

most necessary seems to depend entirely on the respondent's role in the

organization. In general, all information was considered interesting and useful but

practical metrics usually depend on application, hosting method, infrastructure

used, policies, regulation and so on. One clear metric that stood out for several

respondents was the criticality of security findings, and they were especially

interested in the findings with the greatest possible business impact. Another

clear metric that several respondents brought up was the number of days it takes

to fix a certain security vulnerability after it is discovered. Inability to fix security

vulnerabilities immediately after they appear reflects the organization's security

culture and the precision at which the processes are designed. The answers also

showed that metrics alone are not always perceived as very important, but one

should be able to present what can be done about the security problems behind

the metrics, and preferably at an accurate level. It can be assumed that until now

the guidelines have been too imprecise or high-level guidelines, so they should

be developed to better meet the needs and expectations of development teams.

7 CONCLUSION AND FURTHER RESEARCH

Visibility alone does not improve the application security if the visibility provided is

not tied to the context. When improving application security visibility, it is

necessary to pay attention to the impact of the security findings provided by the

visibility, and how the situation can be enhanced during the entire software

development life cycle. It is very important to provide visibility to the various

stakeholders in the organization, so that any actions can be taken to improve

application security. However, the focus should be on business impact, the most

accurate situational awareness, and clear guidelines, that can be used to improve

application security.

The research problem was the lack of visibility into the activities in secure

software development lifecycle. That included working methods of different

development teams, used tools and technologies, the utilization rate of security

tools and the security posture of the products. During the research process, it

was noticed that methodology and maturity assessments are effective ways to

enhance visibility and get a high-level view of the DevSecOps practices of an

organization, or specific part of an organization. Methodology and maturity

assessment gives an understanding of the state of different sub-areas, and

different trends that should be paid attention to. However, it alone does not help

to improve and develop application security in a team level, because genuine

improvement and development requires interest and attention to details. One

thing worth noting in this or similar questionnaires are methods where “you get

what you measure”, meaning that by using closed-ended questions and partially

self-administered questionnaires, quality of these assessment may vary. In some

answers, it was noticeable that the question was not completely understood, and

therefore some of the answers can be considered a bit unreliable and some of

them should perhaps have been interpreted between the lines. However, this did

not apply to a large part of the answers, thus did not affect the results too much.

Almost every one of the respondents were familiar with the different security tools

offered by the application security team, although not all of them had used these

tools themselves. A conclusion can be drawn from this observation, that the

visibility has been improved outside the security team as well, and the capabilities

offered by the security team have been communicated successfully. This study

helped indeed to improve the visibility of the target company's application security

activities, and the security posture of digital products. Some clear shortcomings

were noticed though, such as the fact that dynamic testing is not done very

widely in R&D teams, or at least it has not been made visible. In modern

application security, it is not enough just to implement shift left and move security

testing to the beginning of the software development lifecycle. It is also crucial to

be able to test production environment and applications in the state where

customers use them, because that is exactly the view that potential malicious

intruders and hackers get as well.

Visibility improves understanding of security status, tools, processes, and working

methods in the organization. In the target company, the building blocks and

security foundations are well in place, but the study shows clearly that security is

not done in a context-dependent manner. Instead, the same security

requirements, principles, and instructions are followed everywhere. This is not

necessarily always a bad thing, and with the help of generic and good practice

guidelines, we aim to clarify an otherwise very complex operating environment.

However, development teams would greatly benefit from clearer security support

tied to the context. One such idea is the so-called security paved roads, or

guardrails, where the aim is to implement a secure-by-default framework for

application development teams. The framework is a best practices model, that is

always tied to the product and used technologies. It is intended to improve

security visibility and reduce the need for the security team to act as a roadblock,

but instead as an enabler. The research was carried out using the action

research method, and Jean McNiff's model was used as the theoretical basis.

The research project was iterative in nature, and because an open-ended

questionnaire was partly used for data gathering, the analysis was sometimes

challenging. However, it can be stated that the research work was successful,

and answers to the research questions were found.

The topic has a lot of potential for further research. In particular, the correlation

between the security findings provided by increased visibility and fixing the issues

would be a very important area to study, which in this work received little

attention because in large organizations, the development of cultural and working

practices takes its own time. It remains to be seen how the development that took

place during the study, affects the security posture of teams and products in the

long term. Research on security guardrails and secure-by-default frameworks

would be a logical continuation of this work because development teams clearly

need more support and more technically precise instructions so that digital

products can be developed securely in the future. There is a gray zone between

where vulnerabilities are discovered and remedial actions are implemented, and

in this zone, development teams and security teams must meet each other.

Application security as an industry needs to raise its level by one step and offer

developers a secure paved road to walk on.

REFERENCES

Amazon Web Services, Inc. 2022a. What is continuous delivery? WWW

document. Available at: https://aws.amazon.com/devops/continuous-delivery/

Amazon Web Services, Inc. 2022b. What is continuous integration? WWW

document. Available at: https://aws.amazon.com/devops/continuous-integration/

Brotby, W. & Hinson, G. 2016. Pragmatic Security Metrics. Applying Metametrics

to Information Security. Boca Raton: Auerbach Publications.

Calder, A. 2020. The Cyber Security Handbook. Prepare for, respond to and

recover from cyber attacks with the IT Governance Cyber Resilience Framework

(CRF). Cambridgeshire: IT Governance Publishing.

Chatterjee, S. 2021. Designing API-First Enterprise Architectures on Azure.

Birmingham: Packt Publishing.

Conklin, A. & Shoemaker, D. 2022. CSSLP. Certified Secure Software Lifecycle

Professional. New York City: McGraw-Hill.

Dang, W. & Kohgadai, A. 2021. DevSecOps in Kubernetes. California: O’Reilly

Media In.

Detectify. 2022. External Attack Surface Management (EASM). What it is and

what it isn’t. Available at: https://detectify.com/resources/ebooks-

whitepapers/external-attack-surface-management-what-it-is-and-isnt

DevSecOps: A Multivocal Literature Review. 2017. Conference paper. Available

at:

https://www.researchgate.net/publication/319633880_DevSecOps_A_Multivocal_

Literature_Review [Accessed 4 February 2022]

https://aws.amazon.com/devops/continuous-delivery/
https://aws.amazon.com/devops/continuous-integration/
https://detectify.com/resources/ebooks-whitepapers/external-attack-surface-management-what-it-is-and-isnt
https://detectify.com/resources/ebooks-whitepapers/external-attack-surface-management-what-it-is-and-isnt
https://www.researchgate.net/publication/319633880_DevSecOps_A_Multivocal_Literature_Review
https://www.researchgate.net/publication/319633880_DevSecOps_A_Multivocal_Literature_Review

DZone. 2022. How to bring the power of security guardrails to your application

security program. WWW document. Available at: https://dzone.com/articles/how-

to-bring-the-power-of-security-guardrails-to-y

Farley, D. 2021. Modern Software Engineering: Doing what works to build better

software faster. Boston: Addison-Wesley Professional.

Flaus, J. 2019. Cybersecurity of Industrial Systems. New Jersey: Wiley-ISTE.

Gayathri, M. 2022. Full Stack Testing. A Practical Guide for Delivering High

Quality Software. O’Reilly Media, Inc.

GitLab. 2020. GitLab’s DevSecOps Methodology Assessment.

Hsu, T. 2018. Hands-On Security in DevOps. Ensure continuous security,

deployment and delivery with DevSecOps. Birmingham: Packt Publishing.

Hsu, T. 2019. Practical Security Automation and Testing. Tools and techniques

for automated security scanning and testing in DevSecOps. Birmingham: Packt

Publishing.

Kim, G. 2016. The DevOps Handbook. How to create world-class agility,

reliability & security in technology organizations. Portland: IT Revolution Press.

Lapan, S. 2011. Qualitative Research. An introduction to methods and designs.

San Francisco: Jossey-Bass.

Magnusson, A. 2020. Practical Vulnerability Management. A strategic approach

to managing cyber risk. San Francisco: No Starch Press.

McNiff, J. 2002. Action Research: Principles and Practice. London: Routledge.

https://dzone.com/articles/how-to-bring-the-power-of-security-guardrails-to-y
https://dzone.com/articles/how-to-bring-the-power-of-security-guardrails-to-y

Mohamed, S. 2015. DevOps Shifting Software Engineering Strategy Value Based

Perspective. IOSR J. Comput.

National Institute of Standards and Technology, 2021. Framework for

DevSecOps. National Institute of Standards and Technology, Gaithersburg,

Maryland, United States.

Oka, D. 2021. Building Secure Cars. Assuring the automotive software

development lifecycle. New Jersey: Wiley.

Podjarny, G. Cloud Native Application Security. Embracing Developer-First

Security for the Cloud Era. 2021. California: O’Reilly Media, Inc.

Puppet. The 2021 State of DevOps. 2021. Report. Available at:

https://puppet.com/resources/?refinementList%5Btype%5D%5B0%5D=Report&p

age=1&configure%5BhitsPerPage%5D=18 [Accessed 2 February 2022]

Ribeiro, M. 2022. Learning DevSecOps. Integrating continuous security across

your organization. California: O’Reilly Media, In.

Schein, P. & Schein, E. 2016. Organizational Culture and Leadership, 5th Edition.

New Jersey: Wiley.

Sonatype. DevSecOps Community Survey. 2020. Report. Available at:

https://www.sonatype.com/hubfs/DevSecOps%20Survey/2020/DSO_Community

_Survey_2020_Final_4.1.20.pdf [Accessed 1 February 2022]

Thomas, T., Tabassum, M., Chu, B. & Lipford, H. 2018. Security During

Application Development: An Application Security Expert Perspective.

https://dl.acm.org/doi/pdf/10.1145/3173574.3173836

https://puppet.com/resources/?refinementList%5Btype%5D%5B0%5D=Report&page=1&configure%5BhitsPerPage%5D=18
https://puppet.com/resources/?refinementList%5Btype%5D%5B0%5D=Report&page=1&configure%5BhitsPerPage%5D=18
https://www.sonatype.com/hubfs/DevSecOps%20Survey/2020/DSO_Community_Survey_2020_Final_4.1.20.pdf
https://www.sonatype.com/hubfs/DevSecOps%20Survey/2020/DSO_Community_Survey_2020_Final_4.1.20.pdf
https://dl.acm.org/doi/pdf/10.1145/3173574.3173836

Why visibility is critical to your security management program. Check Point.

WWW document. Available at: https://blog.checkpoint.com/2016/03/07/why-

visibility-is-critical-to-your-security-management-program/

Zeeshan, A. 2020. DevSecOps for .NET Core: Securing modern software

applications. Ebook. Apress. Available at:

https://learning.oreilly.com/library/view/devsecops-for-net/9781484258507/

https://blog.checkpoint.com/2016/03/07/why-visibility-is-critical-to-your-security-management-program/
https://blog.checkpoint.com/2016/03/07/why-visibility-is-critical-to-your-security-management-program/
https://learning.oreilly.com/library/view/devsecops-for-net/9781484258507/

LIST OF FIGURES

Figure 1. Designing API-first Enterprise Architecture (Chatterjee, 2021)

Figure 2. EASM in existing workflows (Detectify 2022)

Figure 3. A continuous DevOps practice (Podjarny, 2021)

Figure 4. An example of Kanban board (Kim, 2016)

Figure 5. Cloud native applications include a much broader scope (Podjarny,

2021)

Figure 6. Structure of the NIST Framework (NIST, 2021)

Figure 7. IACS lifecycle (Flaus, 2019)

Figure 8. The target audience for the standard (Flaus, 2019)

Figure 9. Different phases of security testing

Figure 10. A shift-left security testing strategy (Hsu, 2019)

Figure 11. Continuous Delivery vs. Continuous Deployment (Amazon Web

Services, 2022)

Figure 12. Example of DAST workflow

Figure 13. IriusRisk simple web application diagram

Figure 14: Security testing pipeline

Figure 15. Example of view of top 10 countermeasures

Figure 16. Culture and collaboration

Figure 17. Velocity and process efficiency

Figure 18. Tools and automation

