

Hy Pham

BigQuery Automation Exports via

Email

Metropolia University of Applied Sciences

Master of Engineering

Information Technology

Master’s Thesis

05 December 2022

PREFACE

Finding a topic for thesis that is both relevant and interesting may be challenging.

That statement is accurate. In fact, I am now refocusing my thesis for the third

time. I'm searching for a solution to solve real-world problems while still benefiting

customers; if I could only locate the appropriate product, I may find it. While

working on the internal project and writing my thesis at the same time, I learned

a great deal about the Google Cloud Platform and infrastructure as code for

automation. I also came to the conclusion that writing my thesis was the best way

for me to keep track of and think about the work and research I had done for the

project.

I would like to say thanks to Professor Ville Jaaskelainen and Professor Sami

Sainio for all the advice, feedback, and support during my studies.

My partner and my cousin have been a fantastic source of support and inspiration

for me as I try to complete my thesis, especially with regards to my studies in

Metropolia, and I would want to express my appreciation to them both.

Espoo, 05 December 2022

Hy Pham

Abstract

Author: Hy Pham

Title: BigQuery Automation Exports via Email

Number of Pages: 54 pages + 6 appendices

Date: 05 December 2022

Degree: Master of Engineering

Degree Programme: Information Technology

Professional Major: Networking and Services

Supervisor: Sami Sainio, Principal Lecturer

Many clients of Google Cloud choose to export their billing data which contains

price data, usage and cost estimates to CSV or JSON files straight from the

supported billing export tool. This allows them to do future monitoring and

forecasting. Google Cloud Platform (GCP) offered this capability to its clients as

default; however, Google no longer provides this service.

This thesis offers guideline how to implement an alternative solution, which will

be presented as a stand-alone Terraform module in the GCP Landing Zone.

The thesis describes the process of how to leverage other export billing data to

BigQuery (BQ) feature. Other popular GCP services such as Cloud Functions,

Pub/Sub, Cloud Storage, third-party mail server SendGrid, and Infrastructure as

Code Terraform are also discussed. These tools can be used to build the

automated billing data export solution for the case company clients as well as

others, including the FinOps team, Architect, and DevOps team managers.

Keywords:

Google Cloud Platform, BigQuery, Cloud Functions, Pub/Sub, Cloud Storage,

SendGrid, Terraform

Contents

List of Figures

List of Abbreviations

1 Introduction 1

1.1 Case Company 1

1.2 Billing data 2

1.3 Objective 3

2 Theoretical Background 4

2.1 BigQuery 4

2.2 Google Cloud Storage 8

2.3 Cloud Functions 11

2.4 Pub/Sub 13

2.5 Terraform 16

2.6 SendGrid API 17

2.7 Python 18

2.8 Structured Query Language (SQL) 18

2.9 Service Account 20

3 Solution Design 21

3.1 Google Billing Export Solutions 21

3.2 Recommendation Billing Export Solution 24

4 Implementation 26

4.1 Setup 26

4.2 Create service account 30

4.3 The Cloud Functions codes 32

4.4 Deploy 34

5 Results and Analysis 37

5.1 Results 37

5.2 Analysis 41

6 Discussions and Conclusions 42

6.1 Conclusions 42

6.2 Limitations and Improvements 43

References 45

Appendices

Appendix 1. Export_query_results_function

Appendix 2. Send_notification_function

Appendix 3. Terraform solution

List of Figures

Figure 1: BigQuery loading different data formats... 6

Figure 2: BQ in Data Analytics [7] ... 7

Figure 3: Google Cloud Storage class use cases [11] 10

Figure 4: Cloud Functions use cases [13] ... 13

Figure 5: Cloud Pub/Sub message flow [15] ... 14

Figure 6: The stages of Terraform workflow ... 17

Figure 7: Billing export via file export .. 21

Figure 8: Billing data was available on GCS as CSV file. 22

Figure 9: Billing export via BQ export .. 23

Figure 10: Export Cloud Billing data to a file has been deprecated by Google. 24

Figure 11: Solution Architecture Diagram. .. 25

List of Abbreviations

BQ BigQuery

FinOps Financial Operations

SQL Structured Query Language

ID Identification

SDK Software Development Kit

GCS Google Cloud Storage

ETL Extract, Transform, and Load

APIs Application Programming Interface

GCP Google Cloud Platform

IoT Internet Of Thing

IT Information Technology

SKU Stock Keeping Unit

URL Uniform Resource Locator

DML Data Manipulation Language

1

1 Introduction

Monitoring, evaluating, and optimizing expenditures is now an integral part of

managing a business's cloud environment, but dealing with all the company's cost

and consumption data may be challenging. Managing this data, there are data

management tools offered by cloud service providers, such as by Google.

Customers can confidently expand their businesses in the cloud because of the

enhanced visibility, accountability, control, and insight provided by the cost

management solutions. These technologies assist in decreasing the complexity

of company’s cloud expenditures and enhance the predictability of those costs.

They are also tailored to fit the requirements of enterprises of all sizes.

FinOps is a growing cloud financial management discipline and cultural practice

that facilitates collaboration across engineering, finance, technology, and

business teams to make expenditure choices based on data. FinOps is an

approach wherein end-users are responsible for their own cloud use, its

associated expenses, and the impact of that spending on the company's bottom

line.

1.1 Case Company

The case company is a European market leader in cloud implementation,

application development, managed services, and training. They are also a cloud-

native pioneer with a track record of assisting organizations in using the public

cloud in a manner that combines rapid wins, instant savings, and long-term value.

2

The case company works with VMware and is certified by Microsoft Azure,

Google Cloud Platform, and Amazon Web Services. It also takes part in the

Gartner Magic Quadrant. [1]

The case company has ten European centres, over 1700 workers, and has

completed over 1,000 successful cloud projects for mid-size to big corporations.

1.2 Billing data

Billing data is quite granular and can be as detailed as the expense of a single

request, supplied kilobyte, or resource utilization second. This granularity fulfills

the ultimate promise of pay-as-you-go. On the other hand, when a large number

of public cloud services are used, the billing data becomes massive and

eventually impossible to understand. Clarity on the costs of the public cloud

necessitates an in-depth understanding of what is generating these expenses,

how they may be contained, and finally, who should bear these costs. If

expenditures are incorrectly allocated inside an organization, a pay-as-you-go

strategy will not be effective. In addition, carriers offer a variety of strategies to

lower service prices by selecting the appropriate service types, including bulk

discounts, reservations, and discounts for continuing use. Purchasing public

cloud services has become both more flexible and more complex. Most clients

are uncontested leaders in their own industries. They leverage the public cloud

to develop new products and services, provide daily value to their consumers,

and disrupt their respective sectors. Furthermore, the customers focus on public

cloud cost monitoring, monthly budgets, and cost-cutting strategies. The mission

of the case company is to support customers with cost optimization and cost

3

clarity. Customers can monitor and track their cloud expenditures based on the

case company’s Insight tools and services in multiple ways. They also offer cost-

optimization recommendations for the public cloud that are supported by both

artificial and actual intelligence. There are two ways in which the case company

has proven successful in assisting businesses in eliminating waste and making

the most of their cloud resource budgets. Using the right-sizing and pricing

models, Cost Consulting helps to improve production environments, while Cost

Cleanup improves testing environments by eliminating unnecessary waste.

1.3 Objective

This project's objective is to provide an alternative solution for clients and internal

teams, such as the FinOps team and the Architect team, to quickly receive billing

reports regarding cloud usage expenses via email without having to log in to the

Google Cloud Platform. In this project, the usefulness of data is reliant on its

analysis and accessibility. It is possible to export query results from BigQuery as

scheduled emails. This sends an email to end users including a link to the most

recent query results, which is excellent for daily business process statistics,

monthly website metrics summaries, and weekly business assessments.

Through email, stakeholders may quickly get pertinent information for each

inquiry.

4

2 Theoretical Background

This chapter describes the necessary theoretical context for understanding and

implementing the recommended solution.

2.1 BigQuery (BQ)

BQ [2], a corporate data warehouse built on Google's infrastructure, is designed

to ingest, store, analyze, and visualize data with ease. It is also Google’s

serverless service, which means users only need to concentrate on their data

rather than managing the resources. Users can set permissions for others to view

the project or run data queries based on their specific business needs. BQ can

be accessed through the BQ command line tool, cloud console, and REST API

requests through BQ client libraries such as Python, Go, NodeJS, and other

languages. Moreover, users can utilize many third-party utilities to access BQ,

such as tools for data visualization and data loading. The BQ service is

completely managed by GCP. There is no prerequisite deployment of disks or

virtual machines to begin operation.

Each project has its own dataset. Datasets are used to organize and manage

access to nested database objects like tables and views. To start importing data

into BQ, users must first create at least one dataset, which they will use to link

any table or view they want to import.

5

Data from a BQ table is stored in rows. Columns are used to create each

individual record. A schema describing the data types, field or column names and

others is used to define each table. Users can either provide a table's schema

when it is generated, build tables without one, define the schema in BQ query

jobs, or load a task that populates the table database with data. There are table

formats that are supported by BQ. Native tables are tables supported by BQ's

native storage. External tables that are supported by storage outside of BQ such

as Cloud Storage, Cloud SQL and Google Drive. Views are logical

representations of data in the form of tables, specified by a SQL statement. [2]

The SQL commands execution and user-defined functions costs are referred to

query pricing. BQ calculates query fees based on a single metric and the quantity

of bytes handled. Users are charged based on the number of bytes processed,

regardless of where the data is stored. It can be either in BQ or external data

source like GCS and Cloud Bigtable. Monthly processing of the first terabyte of

data is totally free each billing account. Users will be charged $5 per TB each

month after that. [4]

There are multiple methods for importing data into BQ [5]. Using the batch loading

function, the source data can be loaded into a BQ table all at once. An external

database, log files, and a CSV file are all potential components of the data source.

This category includes ETL tasks. The uploaded data type is free. Streaming

involves continuously sending smaller batches of data in real-time so that it can

be queried as it arrives. Apply queries to generate data, then insert or replace it

in a table. DML commands can be used to create batch updates to the existing

database or to store the query results to a new database.

6

Different file formats have different speeds for ingesting data, and many of them

are supported. Avro is row binary file format. It is suitable for maximizing loading

speed. Both Optimized Row Columnar (ORC) and Parquet are columnar formats.

BQ reads the entire record when consuming data. ORC and Parquet files load

slower than Avro because they are columnar formats. Since GZIP (GNU zip)

compression cannot be split, each compressed file must be decompressed

before the process can be run in parallel. This means that compressed CSV and

JSON files perform less well than uncompressed ones. Figure 1 shows the

loading speed of the various data formats.

Figure 1: BQ loading different data formats.

All query results are stored in a BQ table. The BQ table is used to keep track of

the results of all queries. The table is either one in which the user has chosen to

save their data or a cached version of the data. Per-user and per-project

7

temporary tables of cached results are maintained. If query results are written to

a permanent table, storage fees are incurred. All query results are stored for

roughly 24 hours in temporary tables. In this case, the user will only be charged

once for processing the stored data, even if they execute the same query

numerous times. [6]

Figure 2 shows the implementation of BQ in real-time analytics. Successfully

respond to business events in real-time with the help of event-driven analysis.

Streaming data can be imported into BQ and made available for queries because

of its built-in streaming features. Therefore, companies can maintain flexibility

and base business decisions on the most up-to-date information. On the other

hand, a full streaming analytics solution can be made with the help of Dataflow,

which makes it easy to set up quick pipelines for streaming data.

Figure 2: BQ in Data Analytics [7]

8

2.2 Google Cloud Storage (GCS)

GCS [8] is a Google Cloud Platform objects storage service that store

unchangeable data such as images, videos, text and other file types globally,

scalability and security. Users can update or retrieve data as frequently as the

application requires. The stored objects possess an ID, metadata, attributes, and

data. Metadata could consist of a variety of information, such as the file's security

classification, the apps that can access it, and similar data. Object storage is a

good choice for a wide range of applications, from web serving to data analytics,

because of its ID, metadata, and properties.

The following are some methods for utilizing GCS: [9]

- Google Cloud Console: users can manage data by using the console via

a web browser.

- gsutil is a command-line utility that enables Cloud Storage interaction via

a terminal. Downloading the Cloud Software Development Kit, that comes

with gsutil and the gcloud utility for additional services, is an option if users

utilize other GCP services.

- To work with data in REST APIs, users can use either the XML or JSON

API.

- Google Client Libraries help streamline the data using various

programming languages, such as Python, Go, and Node.js to name a few.

Figure 3 shows the example use case of cloud storage classes [10]. Users can

choose standard storage class for storing the data that can be accessed

9

frequently and globally, like when streaming movies, doing interactive work,

providing data for gaming and mobile applications, or delivering website content.

For the data that only needs to be accessed and updated once or less than a

month, nearline storage class is the good choice. It can be used for often

uploading files to cloud storage, but you can only access them once per month

for analysis. Data that is only accessed and changed once quarterly is perfect

with coldline storage class option. However, it's important to keep in mind that the

most cost-effective storage class is archive which can be used for data which can

just being stored for backup or archiving reasons. The archive storage class is

the optimal solution for storing data which will be accessed less frequently than

annually, such as cold data storage and disaster recovery.

10

Figure 3: Google Cloud Storage class use cases [11]

Object storage provides a variety of solutions that can assist a company.

Persistent data store that is provided by using Google Cloud object storage

effectively support the building and migrating to cloud-native applications.

Holding numerous amounts of any types of data, big data analytics provided by

object storage can prove to have significant support and help gain valuable

comprehension of customers, operations, or markets. Additionally, object storage

seems to have couples of benefits relating to financial effectiveness. Rich media,

including music, video, and images, is effectively stored and distributed where it

reduces costs. There might be no need to spend expenses in the backups or

archives while immediate access to all data is always possible. Object storage

11

also aims to balance management of machine-to-machine data and advancing

analytics to make sense of artificial intelligence.

2.3 Cloud Functions (CF)

When it comes to creating and integrating cloud services, Google CF [12]

provides a serverless execution environment that provides a comprehension

solution. By using Cloud Functions, users can build small, purpose-built programs

that react to certain events in the cloud environment. When a monitored event

occurs, the event is triggered. This is a controlled environment in which the code

will run. No infrastructure provisioning or server administration is required.

With Google Cloud Platform, users can create Cloud Functions in JScript, Python,

Ruby, and C#. The function is both portable and locally tested because it can be

run in Node.js 10+, Python 3.7+, Go 1.11+, and Java 11+ environment.

Using Cloud Functions, users will leave administering servers, setting up

software, upgrading frameworks, or patching OS systems to the service provider.

Google handles the software and infrastructure; users are responsible for the

functional code. Moreover, resources are made immediately available in the

events. In other words, a function's invocation rate can be scaled automatically

from a few per day to millions per day.

Events are occurrences in the cloud infrastructure that prompt users to take some

sort of action. Examples include making modifications to a database, adding new

files to GCS, or booting up a virtual machine’s new instance. There are multiple

events that are supported by CF. Data processing like Extract-Transfer-Load

12

(ETL) listens and responds to GCS events, for instance, file creation,

modification, and deletion. CF, which can process images, change the format of

videos, and run any services across the Internet; Webhooks, which respond to

events from third-party systems such as Slack, Stripe, and GitHub, as well as any

system capable of sending HTTP requests, using a simple HTTP trigger;

Lightweight APIs make applications more lightweight with loosely coupled bits of

logic that are simple to develop and scale rapidly. The functions could be either

directly triggered through HTTP/S or event-driven; Users can write the mobile

backend and mobile platform by using CF. Realtime database, storage,

authentication, and Firebase Analytics events are all monitored and handled;

Relating to the IoT area, as data is sent into Pub/Sub by tens of thousands or

even hundreds of thousands of devices, cloud functions are launched,

processing, transforming, and storing the data. With the help of Cloud Functions,

users can do this entirely serverless. (Figure 4)

13

Figure 4: Cloud Functions use cases [13]

2.4 Pub/Sub (P/S)

Cloud P/S [14] is an asynchronous messaging system that is both managed and

scalable. Publisher, subject matter, and subscription make up its three

constituent pieces. A message is sent by the publisher, and topics determine

which messages are sent. A publisher and a subscriber can interact via

messages sent to and received from the topic. The actual message is made up

of separate sets of data and keys. Cloud P/S supports both push and pull

subscription models, where messages can be sent to a subscriber or requested

14

by the subscriber. All sent messages are stored until they receive a delivery

confirmation from the recipient and are resent if necessary. Any message posted

to a topic will be sent to all of its subscribers, and vice versa. Figure 5 is an

example of how data flows through a Cloud P/S system.

Figure 5: Cloud Pub/Sub message flow [15]

Cloud P/S can serve a variety of purposes in GCP, such as data streaming to BQ

and asynchronous message in which a publisher is notified when a new file is

uploaded to GCS. A solution for an easy-to-use asynchronous messaging system

in GCP that has been extensively tested and is in use on a vast scale within

Google. Cloud P/S is not an open-source technology. The use case limitation is

that it is not intended for huge items due to the message size limit.

There are some use cases of Cloud P/S. For utilizing server events from the

system or user interaction events from the end-user apps, users can transmit

these events to P/S. Then, the events can be delivered to databases using a

stream processing technology. BQ and Cloud Storage are examples of such

databases. Cloud P/S enables simultaneous collecting of events from several

clients.

15

Unprocessed or processed events can be made available for real-time

processing to a variety of apps within teams and companies. Cloud P/S provides

event-driven application design patterns and an enterprise event bus. Cloud P/S

enables integration with numerous Google services which export the events to

Cloud P/S. Data among databases are replicated. Cloud P/S is frequently utilised

to deliver database modification event notifications. In BQ and other data storage

systems, users can use these events to generate the database's state history and

state representation.

Using Cloud P/S messages to make a connection with CF enables the efficient

distribution of several jobs to multiple workers. Sending email alerts, testing

models of AI, compressing text files, as well as reformatting images are examples

of these tasks.

It is possible to build a real-time data sharing bus for the entire company, which

can then be used to notify employees of database upgrades, analytics-related

events, as well as business events.

Users can also implement Cloud P/S into data streaming from IoT devices and

services. A real-time stream of events is one type of content that a SaaS

application can deliver. The sensor devices in home can transmit data to Cloud

P/S for use with other GCP products through dataflow pipeline. Refreshing

distributed caches. Invalidation events can be published by an application to

reflect changes to object identifiers. Load balancing for reliability. It's possible, for

instance, for a service to have numerous Compute Engine deployments across

16

different availability zones while still sharing a single topic of communication. If

there is a problem with service in one region, the other regions can take over

without any human intervention. [16]

2.5 Terraform

HashiCorp Terraform [17] is an infrastructure-as-code platform that enables the

definition of both cloud and on-premises resources in human-readable

configuration files that can be versioned, reused, and shared. Then, users can

utilize a uniform procedure to provide and manage the whole infrastructure

throughout its lifespan. Terraform can handle both low-level and high-level

components, including computing, storage, and networking resources, DNS

records, and SaaS capabilities.

Terraform generates and maintains cloud platform resources using their

application programming interfaces (APIs). Providers allow Terraform to interact

with practically any platform or service that has an API. (Figure 6)

17

Figure 6: The stages of Terraform workflow

2.6 SendGrid API

SendGrid [18] is the world's biggest cloud-based email platform for delivering

important messages. SendGrid's technology improves email deliverability, gives

actionable insights, and expands to any email volume, freeing enterprises of the

expense and complexity of managing specialized email infrastructures. SendGrid

is the preferred email distribution platform for more than 150,000 online

application firms and developers, such as Uber, Airbnb, Yelp, HubSpot, CBS

18

Interactive, Spotify, and Pandora. SendGrid sends over 200 billion emails

annually.

2.7 Python

Python is a popular programming language in both conventional IT operations

and DevOps owing to its mix of flexibility, power, and usability. Early in the 1990s,

the Python programming language was made available for system management.

It has been an enormous success in this field and has garnered widespread

acceptance. Python is a general-purpose programming language that is used in

almost every industry. It was welcomed by the visual effects and motion picture

industries. Recent years have seen Python become the language of choice for

data science and machine learning. It has been used in several fields, including

aviation and bioinformatics. Python has a vast array of tools to accommodate the

diverse demands of its users. [19]

2.8 Structured Query Language (SQL)

SQL is a programming language that is used to manage and process data in a

relational database or in a relational data stream management system. It works

especially well with structured data, like data that shows relationships between

entities and variables. SQL is also the main way that users use to interact with

BQ.

19

Query statements, referred to as Data Query Language statements, are the

standard method for analysing data in BQ. After scanning tables or expressions,

they will return rows of computed results. With Data Definition Language

commands, users can make changes to database objects including rows,

columns, tables, and views. Otherwise, to insert, update or delete data from BQ

tables, users can utilise Data Manipulation Language statements. When users

want to control the access and capacity of BQ system resources, they can use

Data Control Language. The transactions can be managed by Transaction

Control Language.

BQ supports SQL:2011 in its entirety, including arrays and sophisticated joins.

BQ's ability to handle arrays eliminates the requirement to flatten nested and

repeated fields when storing hierarchical data as JSON records. Not only does

BQ support SQL:2011, but it also offers a few useful additions that expand its

utility beyond the typical data warehouse contexts. Among these additions is the

capacity to link tables based on distance or overlap criteria, as well as support for

a variety of spatial functions that enable location-aware queries. As a result, BQ

is enable to conduct descriptive analytics as power engine.

There are three main reasons why SQL was selected. First, anyone, not only

programmers, can use SQL to address data issues. Additionally, SQL allows for

any computation to be performed on the data. SQL is more than just a friendly

and approachable language. Additionally, its power is substantial. Lastly, SQL

always terminates. This means that datacenters can safely host SQL processing

without fear of being taken over by an infinite loop.

20

2.9 Service Account (SA)

Applications or compute workload, such as a BQ, Cloud Functions and GCS for

instance, use a special kind of account, which is called service account, to make

authorized API calls. With domain-wide delegation, other Cloud Identity or

Google Workspace users can make API calls while authenticated as the SA.

Particularly, if the applications running on a compute engine want to authenticate

as a SA, it first needs to be attached to that BQ. The applications use their service

account also in order to identify themselves. Furthermore, the roles of the SA

manage which resources the apps can access by granting a SA IAM’s roles that

enable it to access the resources. The email address associated with a SA is its

primary identifier.

Speaking of how a SA would differ from a user account, there are four main points

that can be stated. Passwords do not exist in the use of SA, and logging in a SA

via cookies or browsers is not possible. Signing data and authenticating with

Google both require the usage of public and private RSA (Rivest-Shamir-

Adleman) key pairs, which are associated with SA. It is possible for another user

or SA to mimic a SA. Since a user can use a user account to share assets of

Google Workspace (GW) like events or documents with their whole GW domain,

this operation is restricted to SA. This is explained by SA not belonging to their

GW domain, and the GW asset creation by SA not even happening within the

GW domain. Therefore, any of these assets cannot be controlled by GW and

Cloud Identity’s admins. Still, one important thing needs to be noticed that those

assets which are created in GW domain, they are created when using domain-

21

wide delegation. Based on the above-provided information, with the goal of

enabling such a possibility, it is possible to understand that API requests are

approved as those of the impersonated user rather than the SA itself.

3 Solution Design

3.1 Google Billing Export Solutions

Before 2017, GCP only offered the billing export to CSV or JSON files method for

the Google Cloud’s users. This method allowed users to export the billing data

which including the price, usage as well as the cost estimates directly to Cloud

Storage Bucket. It was really simple to use. Users needed to fulfil the bucket

name, report prefix and files format like CSV or JSON. (Figure 7)

Figure 7: Billing export via file export

22

All exported files would be available on Cloud Storage Bucket. Within 24 hours

of reporting's activation, billing reports will be available in the 'Objects' section.

(Figure 8)

Figure 8: Billing data was available on GCS as CSV file.

In the end of 2017, GCP was pleased to announce the wide availability of billing

export to BQ, the data warehouse service, providing customers with a more

detailed and immediate view of GCP charges than ever before. The billing export

to BQ is a new and enhanced version of the billing export to CSV or JSON files,

and as the name implies, it exports cloud consumption data straight into a BQ

dataset.

Additionally, the BQ billing export includes a few additional data-organizational

features such as Utilize identifiers to classify and monitor expenses; Extra product

information should be organized by GCP services; Service description; Class of

service; SKU ID to identify each resource type in a unique manner; Export time

to assist in cost invoice organization. (Figure 9)

23

Figure 9: Billing export via BQ export

However, GCP still supported for the file export solution. This feature was

deprecated in the beginning of 2021. GCP recommends exporting billing data to

BQ because it contains much more information than file export. (Figure 10)

24

Figure 10: Export Cloud Billing data to a file has been deprecated by Google.

3.2 Recommendation Billing Export Solution

The purpose of this internal project was leveraging the benefits of billing data

export to BQ function and the GCP services to build the automated export. At

first, the architecture diagram was drawn based on the GCP components after

defining their functions. This solution was built step-by-step manually before

implementing automatically.

The architecture for this project is shown in Figure 11 which including functional

steps:

- BQ was configured with a scheduled query.

- Every successful scheduled query execution triggered a Pub/Sub topic.

25

- A Cloud Function subscribed to a Pub/Sub topic and exports query results

to GCS with a job ID prefix of email export. The GCS bucket would always

contain the most recent export, and this file would be replaced with each

subsequent export.

- When a new object was added to a specified bucket, GCS triggered a

second topic through Pub/Sub.

- A second function in the Cloud Function subscribed to the Pub/Sub topic

described in the previous section and sent the email using the SendGrid

API with a link to the signed or unsigned URL of the file.

- The SendGrid API was a web-based API that sends users an email

including a signed URL.

Figure 11: Solution Architecture Diagram.

26

4 Implementation

4.1 Setup

Frist, all relating google service APIs (Application programming interface) need

to be checked and enabled for services to be available. It is shown in the

Terraform code bellows. In this project, the google services API include Cloud

Resource Manager API, BigQuery Data Transfer API, Cloud Functions API,

Cloud Storage API, Identity and Access Management (IAM) API, IAM Service

Account Credentials API, Pub/Sub API, Secret Manager API and Cloud Build API.

These APIs can be found in Google API Library. Each API run on subdomains

googleapi.com over public Internet and virtual networks.

27

Create a BQ dataset to store the tables produced for each export. If customers

want to get an email every day, for instance, this dataset would contain a table

for each daily export with a naming convention such as

"daily_export_$TIMESTAMP." The suggestion is to select a default table expiry

period for this dataset due to its potential for rapid growth. This enables the

removal of tables containing outdated data. The minimum lifetime of all dataset

tables is 3600000 milliseconds. Changes to this property's value will only

influence the creation of new tables and not impact existing ones. Whenever a

table's expiration time is reached, the table in question will be removed without

human intervention. A table's default expiration time is indicated by this property,

but any specific expirationTime provided when creating a table, or any time the

expirationTime property is changed or deleted, even before the table expires, will

be used instead. Relating to dataset locations, BQ supports region and multi-

region. Multi-regions contain two or more places such as EU and US. Region is

only one specific area, for example, Iowa, Oregon in Americas, Melbourne, Delhi

in Asia Pacific, and Belgium, Finland in Europe. Once the dataset was created,

the location cannot be modified. Normally, the US multi-region will be set as the

default. If the requested datasets are not in the same location as those provided,

BQ will throw an error. Every read and written dataset included in the request

must have the same location as the job, whether that location is inferred or

defined. The deletion_protection argument prevents Terraform destroy the

instance.

28

Next, create a Cloud Storage bucket to store the CSV files exported by BQ.

Based on the "Age" condition, the bucket lifecycle management settings can

automatically delete CSV files or move them to a new storage class. This is

similar to how the dataset expiration time works. The location must be set same

as the location of BQ dataset. If the BQ dataset is in Finland (europe-north1), the

GCS bucket must be in Finland region. The force_destroy is true that mean when

a bucket is removed, all of the objects which are in it will also be deleted.

The next configuration step includes enabling access to the SendGrid API. Create

an account and a SendGrid API key to enable the Cloud Function to authenticate

with the Email API and send an email. SendGrid's free plan lets users send

29

40,000 messages a day for the first 30 days. After that, users can send 100

messages a day forever. After API key was created, it should be stored in the

environment variable or config file. It makes sure that the value can be viewed by

those who have permission to access. As a result, they are a safer option for

storing sensitive information like API keys.

To export the billing data to the BQ dataset, the billing export function in Cloud

Billing must be enabled. There are three billing data tables such as standard

usage cost, pricing, and detailed cost. It depends on the requirements of

customers for choosing one of these. After that, the data will be exported

automatically to the BQ dataset that was created above. With the standard and

detailed usage cost export, the loading process will take a few hours. If customers

select the pricing export or standard usage cost, the billing data only includes the

information for charges made on or after the enabled day. The billing will be

available from the beginning of the prior month, if the BQ dataset location is multi-

region. For instance, on July 23, detailed use cost data export will be enabled for

data from June 1. If the BQ dataset is a region location, the precise consumption

cost data is available after billing export. That is, the billing data is not updated

retrospectively for non-multi-region locations dataset. The billing data can be

unavailable for clients who have re-enabled, enabled, as well as disabled detailed

use cost data export. The exported data cannot be recovered if it is removed.

30

4.2 Create service account

SendGrid API authentication requires the creation of a service account. For the

service account to generate signed credentials for Cloud Functions, it requires

the Service Account Token Creator role. The BQ Admin and Storage Object

Admin roles must be added so that the user can perform BQ and Storage tasks.

The google_project_iam_member, google_bigquery_dataset_iam_member,

google_secret_manager_secret_iam_member and

google_storage_bucket_iam_member resources are non authoritative. The role

of a new member will be granted by updating the IAM policy via these resources

31

such as BQ data viewer, Secret Manager secret assessor, Pub/Sub polisher and

Storage admin. Otherwise, they will preserve the role of others. To enable

notification sending from GCS to the topic, the GCS service account should have

permission to do this. The following code sample establishes a service account

with the aforementioned roles:

32

4.3 The Cloud Functions codes

To implement this solution, invoke the Google BQ and Cloud Storage APIs using

the Python Client Library. Instantiate the client library with the relevant service

account credentials to ensure appropriate authentication and completion of the

required tasks. If the primary script is to be executed in Cloud Functions, the

credentials default to the Application Default Credentials. If the application is

being executed locally, the GOOGLE_APPLICATION_CREDENTIALS as an

environment variable will be used for reading the SA key file. The code sample

below explains how to generate credentials:

Customers can use the BQ and Cloud Storage client libraries to create a table,

output the results of a query to it, and then export the table data as a CSV to

Cloud Storage.

33

Create the signed URL for the CSV file that is stored in the bucket. This procedure

comprises establishing an expiry time reflecting the link's accessibility duration.

To prevent receivers from obtaining outdated material, the expiry time should be

set to the time gap between emails. Function Identity retrieves the function's

current identity for authentication purposes (the service account executing the

function). iam.Signer() sends a request to the service account given to create

OAuth credentials for the generate_signed_url() method.

34

To send the email using the SendGrid API, use the token that created and the

SendGrid implementation instructions for the web API. The following example

illustrates what this might look like:

4.4 Deploy

Creating a Pub/Sub topic, deploying the Cloud Function with the code from the

previous part, and setting up Cloud Scheduler to initiate the pipeline are the steps

required to construct the pipeline via Terraform code.

The Pub/Sub topics are crucial part in the pipeline. The first pub/sub topic namely

pubsub_scheduled_query_completed triggers the function event of the Cloud

Functions to notify the BQ when the billing data is imported. After that, the

function runs on Cloud Functions to generate the schedule query results. These

results will be compressed as achieve files and exported to Google Cloud

35

Storage. The second pub/sub topic call pubsub_file_export_completed will trigger

the send email function to notify the GCS when the schedule query results are

imported. Then, the second function will run on CF to send the email with signed

url to clients.

The google_storage_bucket resource generates a bucket that stores a bucket

object which is created by the google_storage_bucket_object resource. This

object contains the query results which are exported from BQ as archive files.

The google_cloudfunctions_function resource creates the

export_query_results_function was built above based on the Python Client

Libraries. Inside this resource block, the event_trigger includes the PubSub topic

as event_type and the resource where to get this event. The

environment_variables argument contains all the information that assigned to the

function such as project id, bucket name, object name, compression, destination

format, and some. The work flow for implementing the cloud functions and the

Pub/Sub to trigger the cloud functions into the send_notification_function same

as the export_query_results_function. However, the values are assigned to the

environment_variables are different. They are project id, signed url, signed url

36

expiration, from emails, to emails, email subject and email template. The email

template body is created as a html file. It can be modified depends on customers

requirements.

37

To deploy this pipeline, the terraform commands as terraform init, terraform plan

and terraform deploy will be run. The outputs results will be the bucket name that

was used to store the query results files and the scheduled query results that was

executed on the billing dataset.

5 Results and Analysis

Results and analysis of the solution's implementation are presented in this

chapter. This analysis details the testing procedure, the results of the testing, and

the implications of those results.

5.1 Results

Standard usage cost data from Google Cloud is exported to BQ, and its structure

is described below. Commonly used account details, for example, account ID,

projects, SKUs, invoice’s date, labels, locations, cost, usage, credits,

adjustments, and currency are all included. The usage costs that are generated

by resources such as virtual machines or solid-state drives are not included in the

normal cost data. Detailed usage cost data can be enabled if users want to export

resource-level cost data to BQ for analysis. Similar to the basic consumption cost

38

data, the exported detailed data also includes all of the same columns and

features.

The monthly invoice total, including all fees, taxes, and other charges, as well as

any modifications or rounding errors, is displayed in the following query for each

39

project.name. Costs that are not related to a project-level item are aggregated for

the month under the name null.

The query results table from BQ was promptly exported to the cloud storage as

a single CSV file when the Pub/Sub triggered the first cloud function, namely the

40

export_query_results_function. However, if the file size exceeds 1 GB, it will be

split into several smaller files.

41

Once the second Pub/Sub triggered the second cloud function, namely

send_notification_function, the email would be sent to the customers with the

GCS signed URL via the SendGrid API.

5.2 Analysis

In a growing cloud environment, it might be difficult to get a handle on cloud costs.

When comparing cost tracking for a small project hosting a single web server to

that of a huge corporation with hundreds of projects and thousands of individuals

working at varying levels in the cloud, there is a significant gap. In order to make

sure it is spending money on the correct things and to plan for the future, it may

be quite helpful for a business to keep tabs on and analyse the resources that go

into calculating its expenditures. There are a number of reasons to activate the

billing export as soon as possible, but one of the most crucial is that the

information cannot be retrieved from the past. As a result, customers will be out

of luck if they want to look at the billing information from the previous month and

they forgot to turn on export. Because of this, users should turn on the export as

soon as they set up their billing account.

Use the built-in reporting tools to quickly acquire answers and gain insight into

business costs. It is a matter of magnitude and detail that separates these two

cases. When teams and companies grow in size, it becomes more complicated

42

to assign financial responsibility. The additional granularity is especially important

for organizations that use a chargeback model (in which a central group pays the

bill for all resources and then provides cost data to individual teams or groups to

hold them accountable for their usage).

Using the exports to their full potential is likely to necessitate familiarity with SQL

or employment in a data analysis capacity. However, users can still get a handle

on the billing data by enabling the export and then setting up visualization tools

with minimal effort. People typically believe they do not require this level of detail

at first but later come to wish they had it as their cloud usage expands.

The example queries and schema documentation are the most helpful parts of

this site. These materials are comprehensive guides that will help users

understand the data and get started. Also, remember that it is preferable to begin

modestly and gradually progress. It is extremely difficult and time-consuming to

develop a comprehensive cost reporting solution for an entire organization from

scratch. Learn to walk by breaking down costs by project and month. Then, learn

to run by setting up anomaly detection and alerting teams when resources under

their control are causing unexpected cost overruns.

6 Discussions and Conclusions

6.1 Conclusions

BQ is a service available on Google Cloud Platform for the purposes of data

warehousing, analytics, and machine learning, as well as the creation,

43

management, distribution, and querying of data. BQ can be used for cloud-based

parallel computing for large-scale data analysis.

Using GCP Billing Export to Google BQ, users can export comprehensive Google

Cloud billing information into a BQ dataset (such as Utilization, Projected Costs,

and Unit Prices). Cloud Billing information may now be viewed in Google Data

Studio or analysed in Google BQ for further depth. Information can be exported

to a JSON file via the GCP Billing Export method, which can then be read by

other programs.

Finally, BQ is an excellent complementary tool for analysing the GCP billing data.

To achieve the desired outcomes, it is crucial to remember that all relevant

procedures must be carried out carefully. BQ should be used with complete

understanding to avoid wasting money on unnecessary data and operations. It is

important to remember that there are still several restrictions to consider.

6.2 Limitations and Improvements

The maximum amount of data that may be exported from BQ in a single file is

one gigabyte (GB). If the results of the query are more than one gigabyte, users

will need to export the data to numerous files in GCS; unfortunately, this solution

does not provide that functionality. Another option would be to make use of GCS

Compose in order to affix together a number of separate items into a single file

that could then be sent.

44

Signed URLs provide a potential danger for the exfiltration of sensitive data. Take

into consideration the potential safety issues that might arise from the transfer of

data over a signed URL.

If the use case users have does not satisfy the requirements outlined above,

users may want to consider using a Cloud Composer process as an alternative

to putting the pipeline into action. This solution may also be accomplished with a

scheduled Apps Script by making use of the BQ Service and exporting data to a

Google Sheet. If users are a customer of GSuite, users can take advantage of

this feature.

It is not feasible to export data that is nested or repeated when using the CSV

format. Exporting data in Avro, JSON, and Parquet all enable nested and

repeated data, respectively. It indicates that the query that is used in a scheduled

query should not build the dataset with the nested fields if a CSV file is going to

be utilized.

45

References

1 Divya R, Jayanthi V. A SURVEY ON CLOUD OPTIMIZATION SYSTEMS.

2 Naidu S, Tigani J. Google BigQuery Analytics. John Wiley & Sons; 2014 May

21.

3 Google Cloud. BQ table. [Online]. Google Cloud; 2022 [cited 2022 Jun 18].

Available from: https://cloud.google.com/BQ/docs/tables-intro.

4 Mucchetti M. Managing BigQuery Costs. In BigQuery for Data Warehousing

2020 (pp. 61-71). Apress, Berkeley, CA.

5 Mucchetti M. Loading Data into the Warehouse. In BigQuery for Data

Warehousing 2020 (pp. 75-103). Apress, Berkeley, CA.

6 Google Cloud. BQ writing results. [Online]. Google Cloud; 2022 [cited 2022 Jun

18]. Available from: https://cloud.google.com/BQ/docs/writing-results.

7 Google Cloud. BQ data analytics use case example. [Online]. The cloud girl;

2022 [cited 2022 Jun 18]. Available from: https://thecloudgirl.dev/BQ.html.

8 Bisong E. Google Cloud Storage (GCS). In Building Machine Learning and

Deep Learning Models on Google Cloud Platform 2019 (pp. 25-33). Apress,

Berkeley, CA.

9 Krishnan SP, Gonzalez JL. Cloud Storage. In Building Your Next Big Thing with

Google Cloud Platform 2015 (pp. 185-210). Apress, Berkeley, CA.

10 Antu AD, Kumar A, Kelley R, Xie B. Comparative Analysis of Cloud Storage

Options for Diverse Application Requirements. In International Conference on

Cloud Computing 2021 Dec 10 (pp. 75-96). Springer, Cham.

https://cloud.google.com/bigquery/docs/tables-intro
https://cloud.google.com/bigquery/docs/writing-results
https://thecloudgirl.dev/bigquery.html

46

11 Google Cloud. Google cloud storage use case example. [Online]. The cloud

girl; 2022 [cited 2022 Jun 18]. Available from:

https://thecloudgirl.dev/CloudStorage.html.

12 Sullivan, Dan. Computing with Cloud Functions. 2019: 225-240.

13 Google Cloud. Google cloud functions use case example. [Online]. The cloud

girl; 2022 [cited 2022 Jun 18]. Available from:

https://thecloudgirl.dev/CloudFunctions.html.

14 Kumar M. Google cloud platform: a powerful big data analytics cloud platform.

Int J Res Appl Sci Eng Technol. 2016 Nov;4(11):387-92.

15 Google Cloud. Google cloud pub/sub message flows. [Online]. The cloud girl;

2022 [cited 2022 Jun 18]. Available from: https://thecloudgirl.dev/pubsub.html.

16 Krishnan SP, Gonzalez JL. Google cloud pub/sub. In Building Your Next Big

Thing with Google Cloud Platform 2015 (pp. 277-292). Apress, Berkeley, CA.

17 Zadka M. Terraform. In DevOps in Python 2022 (pp. 225-230). Apress,

Berkeley, CA.

18 Cukier D. DevOps patterns to scale web applications using cloud services.

InProceedings of the 2013 companion publication for conference on Systems,

programming, & applications: software for humanity 2013 Oct 26 (pp. 143-152).

19 Kelly S. What Is Python? In Python, PyGame and Raspberry Pi Game

Development 2016 (pp. 3-5). Apress, Berkeley, CA.

https://thecloudgirl.dev/CloudStorage.html
https://thecloudgirl.dev/CloudFunctions.html
https://thecloudgirl.dev/pubsub.html

Appendix 1

1 (1)

Export_query_results_function

Appendix 2

2 (2)

Send_notification_function

Appendix 2

2 (2)

Appendix 3

3 (3)

Terraform solution

Provider

Enable APIs

Appendix 3

3 (3)

Creating Service Account and Permissions

Appendix 3

3 (3)

