
 

  

 

 

 

 

 

 

 

 

 

 

 

Md Moniruzzaman 

 

MERN STACK APPLICATION DEPLOYMENT IN THE CLOUD AND 

AUTOMATION PROCESS USING TERRAFORM 

 



  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

MERN STACK APPLICATION DEPLOYMENT IN THE CLOUD AND 

AUTOMATION PROCESS USING TERRAFORM 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Md Moniruzzaman  
Bachelor’s Thesis 
Autumn 2022 
Bachelor of Engineering  
Oulu University of Applied Sciences



  

3 

ABSTRACT 

Oulu University of Applied Sciences 
Bachelor of Engineering, Information Technology  
 

 
Author(s): Md Moniruzzaman 
Title of the thesis: MERN Stack Web Application Deployment in the Cloud and Automation Process 
Using Terraform 
Thesis examiner(s): Teemu Korpela 
Term and year of thesis completion: Autumn 2022 Pages: 41 + 1 appendix 
 

 
This Bachelor’s thesis aimed to provide the audience with a clear idea of deploying a MERN stack 
application in the cloud and automation process using Terraform. Maintaining cloud infrastructure 
of any substantial size can often require performing the same actions or procedures over and over. 
There is, however, another way; the proposed solution was to utilize Terraform to automate a well-
defined and concise way to deploy infrastructure resources and changes. 
 
The introduction chapter introduced the theme of the thesis. Cloud technologies used in this thesis 
were evaluated with their pros and cons. In this thesis, a very tiny fraction of AWS cloud 
technologies was introduced. The work started by developing a step-by-step process of deploying 
the MERN stack application using AWS cloud-native technologies. This thesis has profiled brief 
research and implementation of DevOps practices using HashiCrop Terraform. The concluding 
chapter summarises the previous chapters and envisages how future studies will help to develop 
the system in the upcoming days. 
 
It was evident that a complete cloud environment would be necessary to achieve high-performance 
web applications. However, this could not be accomplished while using the manual deployment 
technique. By adopting Terraform Technologies, these issues will be solved, thus resulting in a 
perfect solution to increase overall productivity. 
 
 

Keywords: AWS, Terraform, EC2, VPC, Nginx, CLI, Amazon Linux  



  

4 

PREFACE 

 

This thesis was submitted for the degree of Information Technology at the Oulu University of 

Applied Sciences. The thesis described herein was conducted under Lecturer Teemu Korpela in 

the department of Information Technology, Oulu University of Applied Sciences, during the autumn 

of 2022. 

 

From the Oulu University of Applied Sciences, I am grateful to my supervisor Teemu Korpela for 

his kind support & guidance during my thesis journey. 

 
 
 
 
 
 
 
 
 
Oulu, 8 November 2022 

Md Moniruzzaman 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  



  

5 

ABBREVIATIONS 

 

API  Application Programming Interface  

AWS  Amazon Web Services 

CDN  Content Delivery Network 

CI/CD  Continuous Integration and Continuous Delivery 

CLI  Command-line Interface    

DB  Database 

DevOps  Development and Operations 

EC2  Elastic Compute Cloud 

GCP  Google Cloud Platform 

HTTP  Hypertext Transfer Protocol 

HTTPS   Hypertext Transfer Protocol Secure 

IaC  Infrastructure as Code 

IAM  AWS Identity and Access Management 

ICPM  Internet Control Message Protocol 

IG  Internet Gateway 

IP  Internet Protocol 

JSON  JavaScript Object Notation 

MERN    MongoDB, Express, React, Node 

NPM  Node Package Manager 

SSH  Secure Shell 

TCP  Transmission Control Protocol  

UI  User Interface 

VPC  Virtual Private Cloud 

VPN  Virtual Private Network 

 

 

 



  

6 

CONTENTS 

1 INTRODUCTION .................................................................................................................... 8 

2 CLOUD COMPUTING MODELS .......................................................................................... 10 

2.1 Infrastructure as a Service (IaaS) ............................................................................. 10 

2.2 Platform as a Service (PaaS) .................................................................................... 10 

2.3 Software as a Service (SaaS) ................................................................................... 10 

2.4 Comparisons of Cloud Computing Models ................................................................ 11 

3 CLOUD DEPLOYMENTS MODELS ..................................................................................... 12 

3.1 Community Cloud...................................................................................................... 12 

3.2 Private Cloud............................................................................................................. 13 

3.3 Hybrid Cloud ............................................................................................................. 13 

3.4 Public Cloud .............................................................................................................. 14 

4 DISADVANTAGES OF CLOUD COMPUTING ..................................................................... 15 

4.1 How to Avoid Surprise Cost ...................................................................................... 15 

4.1.1 Third-Party Software to Visualize Cost ....................................................... 15 

4.1.2 Setup Serverless ........................................................................................ 17 

4.1.3 Budget Alert ................................................................................................ 17 

5 OVERVIEW OF AMAZON WEB SERVICES........................................................................ 19 

5.1 Amazon EC2 (Elastic Cloud Computing) .................................................................. 19 

5.2 Amazon S3 (Simple Storage Services) ..................................................................... 19 

5.3 Amazon VPC (Virtual Private Cloud)......................................................................... 19 

5.4 Identity and Access Management (IAM) ................................................................... 20 

6 MERN STACK APPLICATION DEVELOPMENT ................................................................. 22 

6.1 MongoDB .................................................................................................................. 22 

6.2 Express.js ................................................................................................................. 22 

6.3 React.js ..................................................................................................................... 23 

6.4 Node.js ...................................................................................................................... 23 

7 APPROACH TO DEPLOY AN APPLICATION ONTO THE AWS CLOUD ........................... 25 

7.1 Naming the EC2 instance ......................................................................................... 25 

7.2 Choosing a Suitable AMI (Amazon Machine Image) & Instance Type ...................... 25 

7.3 Key Pair Configuration .............................................................................................. 25 

7.4 Launching and Monitoring EC2 Instance .................................................................. 26 



  

7 

7.5 Configuring Network Access to An Instance ............................................................. 26 

7.6 NGNIX Server Setup ................................................................................................. 28 

7.6.1 NGINX: Up & Running ................................................................................ 28 

7.7 PM2 (Process Manager) ........................................................................................... 29 

7.7.1 Start Application Using PM2 ....................................................................... 30 

7.8 Results of The Deployment ....................................................................................... 31 

8 INFRASTRUCTURE AS A CODE ........................................................................................ 32 

8.1 Why Use Terraform Over Others? ............................................................................ 32 

8.2 Practical Implementation of Terraform Using Amazon AWS ..................................... 34 

8.2.1 Main Terraform command .......................................................................... 34 

8.2.2 Default Profile Setup For AWS ................................................................... 34 

8.2.3 Defining a Provider ..................................................................................... 35 

8.2.4 Create a Virtual Private Cloud (VPC) & Internet Gateway (IG) ................... 35 

8.2.5 Security Group Creation ............................................................................. 36 

8.2.6 Create an Ubuntu Server and Install Apache ............................................. 37 

8.3 Result of The Deployment Using Terraform .............................................................. 38 

9 CONCLUSION AND FUTURE DEVELOPMENT ................................................................. 41 

REFERENCES ............................................................................................................................. 42 

 



  

8 

1 INTRODUCTION 

Cloud computing is one of the hottest buzzwords in the 21st century and is considered the fastest-

growing tech industry. The term “cloud computing” was first coined by George Favaloro in 1996 

while writing his Compaq Business plan. In 1997, Chellappa provided the first academic definition 

of the phrase "cloud computing," and in 2007, the term began to gain traction. According to the 

National Institute of Standards and Technology (NIST), cloud computing is “a model for enabling 

ubiquitous, convenient, on-demand network access to a shared pool of configurable computing 

resources (e.g. networks, servers, storage, applications, and services) that can be rapidly 

provisioned and released with minimal management effort or service provider interaction.”( P. Mell 

and T. Grance, 2011). 

 

Cloud-based products, such as storage, computation, databases, mobile developer tools, IoT, AI, 

enterprise apps, networking, management tools, and many more, are within short reach. These 

give enterprises, start-ups, and big businesses the perfect opportunity for easy adaptation in a 

rapidly changing business environment to be continuously successful. 

 

AWS, Microsoft Azure, and Google Cloud are the key players in the cloud industry. According to 

Statista, Amazon leads the two-hundred-billion-dollar cloud market. Amazon has over 200+ 

available services. Amazon's market share is about 34% among cloud services providers; Microsoft 

Azure has 21%, followed by Google Cloud, which counts only 10% of the share. [3] 

 

 

FIGURE 1. Worldwide market share of major cloud services providers. [3] 



  

9 

Terraform is an infrastructure as code (IaC) tool. IaC is the fundamental pillar of implementing 

DevOps practices. Terraform allows developers to configure and build local and remote instances. 

The use of IaC scripts helps developers to increase their deployment speed. [4] 

Amazon Web Services (AWS) will be the foundation of my thesis because it accounts for around 

34% of the existing public cloud services industry. Amazon Web Services (AWS) has established 

itself as a leader in cloud computing and a model for other cloud service providers.  

This thesis aims to identify and study different AWS services & follow the best industry practices to 

implement them in real-life scenarios. 

 



  

10 

2 CLOUD COMPUTING MODELS 

“Cloud Computing” is a newly emerged computing paradigm. Cloud Computing has been provided 

by prominent service providers like Amazon, IBM, Google, Oracle, Microsoft, and many more. The 

Cloud computing model, also known as CBMF (Cloud Business Model Framework), is mainly 

categorized into three layers: the infrastructure layer, the platform-as-a-service layer, and the 

application layer (SaaS) on top. This chapter will provide more profound information by providing 

insights into these categories. 

2.1 Infrastructure as a Service (IaaS) 

IaaS is a cloud computing model that allows cloud developers total control over their infrastructure 

without needing physical hardware. It offers on-demand cloud computing services via the internet, 

including networking, storage, and other infrastructure components. Cloud developers can 

configure their infrastructure according to their needs. IaaS is divided into three major segments: 

computation, network, and storage. It provides cloud developers with the building blocks to develop 

specialized systems. [5] 

2.2 Platform as a Service (PaaS) 

PaaS, or Platform-as-a-Service, is a cloud computing model that provides the cloud developer with 

a complete cloud platform. This way, a cloud developer can run applications without managing 

underlying infrastructure (for example, updates, maintenance, hardware, and operating systems). 

PaaS also provides a well-defined framework for cloud developers to create customized 

applications. [8] 

2.3 Software as a Service (SaaS) 

SaaS, or software-as-a-service, is cloud-based application software and easily accessible by a web 

browser or mobile application. The Cloud vendor oversees running, managing, and supporting the 

software and the infrastructure on which it runs. SaaS is one of the most prominent software 

delivery models nowadays. Many popular day-to-day utilities, including Gmail (for email), Dropbox 



  

11 

(for file storage and sharing), and many essential corporate programs, are offered via the SaaS 

model. SaaS offers pre-built solutions that are beneficial to companies of all kinds. Organizations 

and Companies can grow quickly with minimal to no managerial overhead and a predictable cost 

model. [6] 

2.4 Comparisons of Cloud Computing Models 

IaaS, PaaS, and SaaS are the three most popular ‘as a service’ types of computing models offered 

by cloud service providers. Many enterprises use all three cloud models, often in combination with 

traditional IT. The main difference between those services is management ease versus complete 

control. TABLE 1 shows the different hardware and software components required to run an 

application. It illustrates how developers progressively manage fewer components as the company 

goes from the traditional on-premises computing service model to the SaaS model. It is evident 

that the on-premises cloud computing model, also known as private cloud, has hundred percent 

control over everything, including hardware and software, which is also discussed in section 3.2  

 

TABLE 1. Management responsibilities for cloud computing models. [11] 

Control over resources 

 

 On-Premises IaaS PaaS SaaS 

Application     

Data     

Runtime     

Middleware     

OS     

Virtualization     

Servers     

Storage     

Networking     

 



  

12 

3 CLOUD DEPLOYMENTS MODELS 

According to the NIST definition, there are four cloud computing deployment models: private 

clouds, public clouds, hybrid clouds, and community clouds represent the cloud environments in 

which a developer can deploy applications. In accordance with the definition, it points out where 

the infrastructure for the deployment resides and how cloud services are made accessible to end 

users. This section will discuss four deployment models associated with cloud computing. [6] 

3.1 Community Cloud 

Community cloud computing paradigm is a promising cloud environment. This particular cloud 

computing model builds upon sharing computer resources from different organizations. Sharing 

computing resources has laid a foundation for more innovative research work. Community 

members can standardize operational and regulatory requirements. [7] 

As stated by The National Institute of Standards and Technology (NIST), "community cloud" 

defines as: 

“The cloud infrastructure is provisioned for exclusive use by a specific community of consumers 

from organizations that have shared concerns (e.g., mission, security requirements, policy, and 

compliance considerations). It may be owned, managed, and operated by one or more of the 

organizations in the community, a third party, or some combination of them, and it may exist on or 

off premises.” (P. Mell and T. Grance, 2011). 

 

Benefits of using public cloud 

• Cost-effective 

• More control over the underlying software and hardware. 

• Minimizes the likelihood of legal action due to quickly adopting regulation. 



  

13 

3.2 Private Cloud 

A private cloud, also known as an internal or corporate cloud, refers to a cloud computing 

infrastructure in which all hardware and software resources are dedicated exclusively to a single 

customer. It is an easier option for many companies due to regulatory requirements. [9] 

According to The National Institute of Standards and Technology (NIST), "private cloud" is 

described as: 

“The cloud infrastructure is provisioned for exclusive use by a single organization comprising 

multiple consumers (e.g., business units). It may be owned, managed, and operated by the 

organization, a third party, or some combination of them, and it may exist on or off premises” (P. 

Mell and T. Grance, 2011) 

Benefits of a Private cloud: 

• Complete control over hardware and software selection 

• Ability to change software and hardware 

• Compliance with legal requirements at anytime 

3.3 Hybrid Cloud 

Hybrid cloud integrates public cloud with private cloud. As a consequence, a company may 

execute and grow conventional or cloud-native workloads on the most appropriate computing 

model using a single, unified, and flexible distributed computing environment. 

In accordance with The National Institute of Standards and Technology, "hybrid cloud" is 

described as: 

"The cloud infrastructure is a composition of two or more distinct cloud infrastructures (private, 

community, or public) that remain unique entities, but are bound together by standardized or 

proprietary technology that enables data and application portability (e.g., cloud bursting for load 

balancing between clouds)." (P. Mell and T. Grance, 2011). 

 

Benefits of using Hybrid Cloud 



  

14 

• Tackle unnecessary costs. 

• More efficient infrastructure. 

• Greater flexibility of moving any cloud model.  

3.4 Public Cloud 

The public cloud is defined as computing services offered by third-party vendors. It is possible to 

build an entire application in the cloud or migrate from existing infrastructure. An individual or 

organization can use the cloud for different purposes, for instance, hosting dynamic and static 

websites, storing data to make a dependable backup, and using CDN for distributing content 

worldwide. 

In accordance with The National Institute of Standards and Technology (NIST), "public cloud" 

defines as: 

"The cloud infrastructure is provisioned for open use by the public. It may be owned, managed, 

and operated by a business, academic, government organization, or some combination of them. 

It exists on the premises of the cloud provider" (P. Mell and T. Grance, 2011). 

Benefits of using the public cloud: 

• No upfront investment 

• Flexible capacity 

• Increase Speed and agility 



  

15 

4 DISADVANTAGES OF CLOUD COMPUTING 

Despite having such unique advantages of cloud computing, cloud computing can often be 

considered a complex centralized solution. In this domain, we will dive deep into a few 

disadvantages of cloud computing: 

• Vendor lock-in – One of the drawbacks of cloud computing is what is known as vendor 

lock-in. Easy switching between cloud services has not fully matured, and enterprises 

may struggle to make a transition to their services from one provider to another. It can 

raise some unexpected costs while doing the transition. 

• Limited control- Cloud users may discover they have less control over how services 

operate and are carried out within a cloud-hosted infrastructure (depending on the 

specific service). Since the cloud infrastructure is owned, managed, and monitored by the 

cloud service provider , the amount of control a customer has over their back-end 

infrastructure could not be the same as the cloud infrastructure. 

• Unexpected Cost- The final downside of cloud computing is the expenses. Adopting 

cloud technologies on a small-scale business and for short-term projects might appear 

costly. Auto-scaling might add another layer of cost if it is done improperly. Allocating 

more resources than required definitely will result in pouring money down the drain. 

4.1 How to Avoid Surprise Cost 

Cloud users tend to spend a considerable amount of money on their cloud assets. Undoubtedly 

cloud computing cost is one of the most significant factors. Proper planning, minimizing ideal time, 

and use of automation help to tackle unexpected costs. However, a few methods will be described 

in this section to avoid incidental charges. There are several ways to prevent these unforeseen 

expenses while using AWS cloud services; among them, the most popular methods are serverless, 

notification and alert, and cost-management tools. 

4.1.1 Third-Party Software to Visualize Cost 

It is important to recognize that both AWS Billing Dashboard and third-party cost-management tools 

such as Vantage have been built for the same purpose. However, the two tools differ in a variety 



  

16 

of ways. The Comparison table (TABLE 2) makes it easy to sort and quickly find the differences 

between the two platforms. 

 

TABLE 2. Comparison between Vantage and AWS 

 Vantage AWS 

Cost Recommendation Vantage can optimize cost by 
pointing out ideal resources. 
 

AWS does not have such  

a dynamic feature like 

Vantage. 

Multi-cloud Support Yes (All in one platform) No (It only supports AWS 

services) 

Resource Inventory It can list every resource's 

driving costs. 

Limited or no functionality of 

showing every driving cost. 

Notification & Alert Slack, Teams, Email Email, SMS 

Service Cost Mostly Free Costly 

 

According to the comparison table, it is clearly visible that Vantage is an excellent cloud cost 

management and optimization platform. It supports all major cloud platforms (i.e., AWS, GCP, 

Azure). Since it is multicloud-supportive, cloud cost can be visualized combinedly or separately. 

Even though AWS has its native cost explorer(Billing Dashboard), Vantage is better than AWS cost 

explorer because of its simplicity and ease of use. Vantage has a unique UI that shows the cost 

right in front of the user, as shown in FIGURE 2. 

 



  

17 

 

FIGURE 2. AWS cloud Cost report visualization using Vantage 

4.1.2 Setup Serverless 

Serverless is a cloud-native development service that runs to respond to a particular event. In other 

words, it is an event-based trigger. In AWS, it has a unique name called Lambda. The Lambda 

function responds to demand automatically, such as starting and stopping EC2 instances at a 

particular time. Lambda supports numerous languages. A cloud architect 1can setup up the system 

in a way that helps to shut down the system based on the input parameter. [40] 

4.1.3 Budget Alert 

A cloud developer can set custom budgets to track costs and usage in AWS. Based on 

configurations, it will send an email or text notification if it exceeds the defined threshold, as shown 

in the picture. An eight-dollar monthly ($8) budget has been created for demonstration purposes. 

After passing the threshold, it will send an email with a description. The budget alert will always 

break down costs, as shown in FIGURE 3. 

 
1 In this thesis, the word “cloud architect” is used interchangeably with “cloud developer” 



  

18 

 

FIGURE 3. AWS budget alert through Email 



  

19 

5 OVERVIEW OF AMAZON WEB SERVICES 

AWS is the most comprehensive and widely used cloud platform in the world, providing over 200 

available services from various data centers across the globe. It helps to build sophisticated and 

reliable cloud applications with increased flexibility and scalability. Amazon EC2, Amazon 

Relational Database Service (RDS), Amazon Simple Storage Service (S3), Amazon CloudFront, 

AWS Lambda, and Amazon VPC, along with others, are the most commonly used services. 

This section aims to provide an overall view of the AWS EC2, VPC, S3 & IAM because those 

services have been implemented in this thesis project. 

5.1 Amazon EC2 (Elastic Cloud Computing) 

Amazon Elastic Computation Cloud (Amazon EC2) is a web service that provides resizable 

computing power. It supports all major operating systems, such as Windows, Linux, and Mac. A 

cloud developer can scale Amazon EC2 instances horizontally or vertically based on their needs. 

Amazon EC2 comes up with different purchasing options based on configuration. [12] 

5.2 Amazon S3 (Simple Storage Services) 

Amazon S3 is a cloud storage service that allows data to be stored as objects in buckets. 

Architecturally S3 is designed for handling large amounts of unstructured data. Objects can be 

nearly any data file, such as documents, images, or videos. Buckets are logical containers for 

objects—theoretically, S3 stores an infinite number of objects within a bucket. According to the 

white paper, AWS S3 provides 11’9s durability (99.999999999 percent). [13] 

 

Additionally, AWS S3 offers low latency to access the data over the internet by Hypertext Transfer 

Protocol (HTTP) or Secure HTTP (HTTPS). 

5.3 Amazon VPC (Virtual Private Cloud) 

A VPC combines cloud computing resources with a VPN infrastructure, establishing a secure 

connection between infrastructures. Its definiens a virtual network in a logically isolated area within 



  

20 

the AWS Cloud. FIGURE 4 shows a pair of VPCs connected to two different availability zone. A 

VPC can span numerous cloud servers across the globe. [23] 

 

A VPC consists of several key components, including  

• Subnet- In a Network topology, subnet or subnetwork refers to a network segment. 

Subnetting allows network traffic to move across shorter distances, which increases the 

effectiveness of networks. As illustrated in the figure below, a subnet's connectivity with 

Internet Gateway (IG) determines whether it is public or private. [16] 

• Security Group- A Security group acts as a firewall for EC2 instances. It allows inbound 

or outbound traffic. 

 

 

FIGURE 4. Illustration of AWS Well-Architected VPC design. [15] 

• Router- A router is a component that routes traffic within a virtual private network (VPC). 

• Internet Gateway- It acts as a communication channel between instances. 

5.4 Identity and Access Management (IAM) 

Identity and Access Management, also known as IAM, is a web service that helps to define user 

access. This service controls which are authenticated and authorized to use AWS services. If the 

access control is not properly configured, unauthorized users can swiftly abuse these same 



  

21 

resources. Usually, the AWS root user has all the access and can be granted the same to other 

groups or users. [17] 

 

  



  

22 

6 MERN STACK APPLICATION DEVELOPMENT 

MERN describes a specific set of JavaScript-based technologies used in web application 

development. MERN stack comprises four technologies: MongoDB, Express, React, and Node.js. 

It enables us to build a three-tier architecture(front-end, back-end, and database) purely with 

JavaScript and JSON. As a result, MERN makes the development process smoother and more 

manageable. [18] 

 

 
 

FIGURE 5. MERN Architecture. [18] 

6.1 MongoDB 

MongoDB is a document-oriented database. It is also a non-relational database. MongoDB stores 

data in flexible, JSON-like documents, meaning fields can vary from record to record, and structure 

can be changed over time. MongoDB is a distributed database at its core; therefore, it has built-in 

high availability, horizontal scaling, and global dispersion. 

6.2 Express.js 

Express is a popular open-source back-end web framework developed in JavaScript and hosted 

on the Node.js runtime environment. As a result, Express.js can reduce coding time significantly 

without compromising its built quality. In 2010, Express was first introduced to the developer 

community and is currently on version 4.18.0. Express minimizes complexity and makes creating 

and maintaining apps considerably more manageable than using the built-in Node.js tools. 

ExpressJS accomplishes the same thing for NodeJS as Bootstrap does for HTML/CSS. It simplified 

NodeJS development and provided developers with new server-side functionalities. Until now, 

ExpressJS has been the most widely used NodeJS framework. 



  

23 

 
FIGURE 6. Express function call architecture explained. [22] 

6.3 React.js 

ReactJS is an open-source, component-based front-end library responsible only for the 

application’s view layer. Facebook maintains the React library. It helps to build a user interface for 

any kind of web application. React is written in JavaScript. React was first released in 2013 and is 

one of the most commonly used JavaScript libraries among developer communities.  

6.4 Node.js 

Node.js is a cross-platform, open-source runtime environment for creating server-side applications. 

The "Single Threaded Event Loop" architecture handles multiple clients simultaneously. It is a 

server-side platform built on Google Chrome's JavaScript V8 Engine.Node.js application written in 

JavaScript and executable on Linux, macOS, and Microsoft Windows.Node.js also has an 

extensive library of JavaScript modules that significantly facilitates the creation of web applications 

using Node.js. This functionality allows developers to write synchronous and asynchronous 

JavaScript in a single-threaded environment without worrying about concurrency issues. To avoid 

complexity and handle high-volume concurrent connections, Node.js was first introduced in 2009 

by Ryan Dahl. [20] 



  

24 

 

FIGURE 7. Nodejs Architecture. [20] 

In this thesis demonstration MERN stack application, React has been used to build the front end, 

Express and Node for the back end, and Mongoose for the database. CROS functionality has been 

implemented to connect the backend with the front end. By entering the “npm start” command, the 

application will start in the development server as shown in the figure & viewable by entering the 

link in the browser. In this case, the URL is - http://172.31.84.238:3000 

 

 

FIGURE 8. MERN stack application Up & Running inside the EC2 server 

http://172.31.84.238:3000/


  

25 

7 APPROACH TO DEPLOY AN APPLICATION ONTO THE AWS CLOUD 

This section describes the process of deploying full-stack applications in which a cloud architect 

can choose the available services that better fulfil the full-stack application architectural 

requirements. While designing a fault-tolerant and robust server for a large-scale production-level 

application, the specifications that cross a cloud developer's mind are “faster, stronger, bigger,” or 

possibly even “agility, speed, and scalability.” The steps below will be followed to achieve this 

resilient and fault-tolerant production-level server. [28] 

7.1 Naming the EC2 instance  

A cloud developer needs to define a suitable EC2 name for identification purposes so that an 

external developer in the team can identify the instance for future reference. In Amazon Web 

Service (AWS), this naming process is called tagging, and it is entirely optional for running an EC2 

instance. By naming the instance, AWS creates “a key-value pair”. Where value represents the 

name(tag) entered for EC2. In this thesis demonstration, it is called “Web Server,” as illustrated in 

FIGURE 8. [24] 

7.2 Choosing a Suitable AMI (Amazon Machine Image) & Instance Type 

An AMI includes the operating system, application server, and software configuration needed to 

begin an instance. AWS has seven different kinds of OS images. Those are Ubuntu, Amazon Linux, 

macOS, Microsoft Windows, Red Hat, SUSE Linux, and Debian. Among them, macOS has recently  

been added. Amazon EC2 offers a diverse set of instance types tailored to particular use cases. 

Instance types are combinations of CPU, memory, storage, and networking capabilities. After 

careful consideration, Amazon Linux 2 AMI and t1.micro has been selected for this thesis 

demonstration since both have 750 hours of free usage. [29] 

7.3 Key Pair Configuration 

A key pair is a security credential consisting of a public and private key. It is a collection of security 

credentials used to authenticate while connecting to an Amazon EC2 instance. Key pair allows a 



  

26 

cloud developer to connect instances securely using SSH(Secure Shell). After clicking the “Create 

key pair” button, it will automatically download a .pem format private key name “web-server-key-

pair.pem” in the local machine, and the public key will be stored in the EC2 instance. [30] 

7.4 Launching and Monitoring EC2 Instance 

After configuring the EC2 instance, the developer can launch the instance by clicking the “Launch 

Instance” button in the user interface. Monitoring is a crucial aspect of ensuring the stability, 

availability, and performance of Amazon EC2 instances. The “Status checks” tab shown in FIGURE 

9 provides a clear view of whether EC2 has identified any issues that may prevent instances from 

running apps.  

 

FIGURE 9. The running status of the Web Server Instance 

It is worth mentioning that AWS performs automated checks on every running EC2 instance to 

identify hardware and software issues. At the time of launching EC2 instance will automatically be 

associated with the default security group for the VPC. 

7.5 Configuring Network Access to An Instance 

To manage incoming and outgoing traffic, a security group functions as a virtual firewall for EC2 

instances. Inbound rules control the incoming traffic to the instance, and outbound rules govern the 

outgoing traffic from an instance. When launching an instance, one or more security groups can be 



  

27 

specified. Without specifying a security group, Amazon EC2 uses the default security group. 

Security group rules are modifiable. All instances connected to the security group receive automatic 

updates for new and changed rules. 

Edit Inbound & Outbound rules 

Each inbound rule consists of three key elements:  

• Protocol - The protocol type, such as TCP or UDP. Provides an additional ICMP option. 

• Port range - Allows traffic on a specific port or set of ports. 

• Source – Controls the traffic that can reach the instance. It can be either a single IP 

address or an IP address range in CIDR notation. (For example, 10.10.1.0/28) 

 

For this demo Full-stack application deployment, custom TCP 3000 has been used since this 

application is running on that PORT. Both HTTP (PORT 80) and HTTPS (PORT 443) have been 

enabled, as shown in TABLE 3. After allowing traffic from port 3000. Output at the EC2 instance's 

Public IPv4 DNS will be able to observe. In this case, the URL will be the following- 

 http://ec2-44-204-168-22.compute-1.amazonaws.com:3000 

The outbound security group as default settings will be left as it is since this instance does not need 

to communicate. 

 

TABLE 3. Inbound security group rules setup 

Type Protocol Port Range Source 

SSH TCP 22 0.0.0.0/0 

Custom TCP TCP 3000 0.0.0.0/0 

HTTPS TCP 443 0.0.0.0/0 

Custom TCP TCP 8000 0.0.0.0/0 

HTTP TCP 80 0.0.0.0/0 



  

28 

7.6 NGNIX Server Setup 

NGINX, pronounced as “Engine X,” is free and open-source software. NGNIX is the second most 

popular web server after Apache. It is best known for its optimum performance, stability, and simple 

configuration. NGNIX was developed by a Russian developer called Igor Sysoev. 

It has a handful number of possible use cases, such as reverse proxying, caching, load balancing, 

media streaming, and many more. Along with serving as an HTTP server, NGINX may operate as 

an email proxy server and a load balancer. [32] 

In this thesis, NGINX will serve as a reverse proxy protocol. A reverse proxy server is a protocol 

that often sits behind a private network's firewall and sends client requests to the proper back-end 

server. In other words, a reverse proxy works for the server, whereas a proxy works for the client. 

A reverse proxy adds another layer of abstraction and control to the network traffic flow between 

clients and servers. Nginx will execute on port 80 in front of the application server to intercept all 

internet traffic and route it to port 3000. 

7.6.1 NGINX: Up & Running 

In this installation guide section, a cloud developer must install open-source Nginx binaries in the 

Linux server by entering this “sudo yum -y install ngnix” command in the CLI and enabling it at the 

same time by using “sudo amazon-linux extras enable nginx-1” command. After downloading all 

relevant dependencies, the Nginx server will be running on Public IPv4 DNS. 

 

Configuring NGINX 

 

A cloud architect needs to configure Nginx to facilitate application system development and 

promote the achievement of functional requirements for the MERN stack application. For the best 

security practices, it is not recommended to have port numbers exposed in public URLs. To resolve 

the port number visibility issue, a proxy pass needs to add in the “nginx.conf” configuration file 

located in the /etc directory, as shown in FIGURE 10 with the underlined green box. It is worth 

mentioning that the proxy pass consists of an EC2 public IPv4 address & a redirected port (3000 

in this case). After successfully implementing the code, the Nginx server needs to restart to take it 

into effect. 



  

29 

 

FIGURE 10. Configuration of nginx.conf file  

7.7 PM2 (Process Manager) 

PM2 is a Node.js process manager with an integrated load balancer. PM2 (Process manager) is a 

program that guarantees apps remain operational once launched. It also enables monitoring of the 

application. Application logs and other vital metrics, such as CPU, application status, and memory 

usage, can be accessed, through PM2, as shown in FIGURE 11. [34] 



  

30 

 

FIGURE 11. MERN Stack Application Log via PM2 

7.7.1 Start Application Using PM2 

One of the most important and definitive aspects of software development is deployment. A cloud 

developer needs to install PM2 on a Linux EC2 server as a part of a proper deployment strategy. 

PM2 is available through the NPM package. By entering this “npm install pm2” command, it will 

download the latest version of PM2 in the EC2 server. “pm2 -v” command can verify the version in 

the CLI.  The PM2 binary (shown in FIGURE 11) is used to start an application in the background 

while deploying it to production. It forms a daemon that watches our application and runs it 

indefinitely. 

 

The PM2 binary (shown in FIGURE 12) is used to start an application in the background while 

deploying it to production. It forms a daemon that watches our application and runs it indefinitely. 

pm2 start “npm start” --name "job Tracker" 

FIGURE 12. PM2 command to run the MERN stack application 



  

31 

7.8 Results of The Deployment 

Upon completing a successful connection with MongoDB, implement the Nginx proxy protocol. 

MERN stack application will be successfully functional, as shown in FIGURE 13, and PM2 will help 

to keep the system up and running infinitely. 

 

 

FIGURE 13. Deployed application in AWS Linux EC2 



  

32 

8 INFRASTRUCTURE AS A CODE 

Infrastructure as code, also known as laC, offers DevOps practices that enable a cloud developer 

to work more efficiently with configuration files rather than graphical UI. IaC allows a cloud 

developer to declare resource configurations that may subsequently be versioned, reused, and 

shared. The most widely used configuration management and provisioning tools are as follows: 

Terraform, Ansible, CloudFormation, Chef, and Puppet. 

 

TABLE 4. A comparison of IaC as of October 2022. [36] 

Name Release year Source 

Terraform 2014 Open 

Ansible 2012 Open 

CloudFormation 2011 Closed 

Chef 2009 Open 

Puppet 2005 Open 

 

Terraform is an open-source IaC tool created and maintained by HashiCrop. It uses declarative 

configuration language known as HashiCorp Configuration Language (HCL) and Terraforms 

language code is stored with the “.tf” file extension. 

8.1 Why Use Terraform Over Others? 

Infrastructure as code (IaC) is fantastic, but the process of picking an IaC tool is not. Many of the 

IaC tools overlap in what they do. Perhaps they have so little difference that using one of them 

does not make a significant difference. Yet the most important reason to choose Terraform over 

others is as follows- 

• Multicloud Deployment- One of the main reasons for choosing Terraform is its multi-

cloud support. With Terraform, a developer can handle cross-cloud dependencies and 

manage various providers using the same procedure. For massive, multi-cloud systems, 

this makes administration and orchestration simpler. Terraform support major cloud 

provider, including Amazon AWS, Google GCP, and Microsoft Azure. 



  

33 

• Declarative Language- Terraform is declarative in nature, where a developer can 

specify the end state. The IaC tool is in charge of determining how to achieve that 

condition. 

-ec2: 

    count         = 20 

    image         = "ami-09d3b3274b6c5d4aa" 

    instance_type   = "t3.micro" 
FIGURE 14. Ansible template to deploy EC2 onto AWS  

resource "aws_instance" "Oulu10_server" { 

    count         = 20 

    ami           = "ami-09d3b3274b6c5d4aa" 

    instance_type = "t3.micro" 

} 
FIGURE 15. Terraform template to deploy EC2 onto AWS 

On the surface, these two approaches will produce similar results. The exciting thing will 

happen if a cloud developer wants to make any changes due to any possible scenarios 

(i.e., increasing traffic). With Ansible (FIGURE 14), if a cloud developer runs this code with 

an increasing number, let’s say the total count=30. It will add 30 servers on top of 20 

servers. So, in total, 50 servers will be deployed. 

On the other hand, in Terraform (FIGURE 15), count=30 will be considered as the final 

counting. It will automatically apply the configuration and update it to 30 servers. 

• Agentless- Agent is a little piece of software that can monitor IT infrastructure. Both 

Agentless and Agent-Based monitoring methods have been around for decades. Agent-

Based monitoring requires us to install small pieces of software on the equipment. The 

agent will collect all the Metrics locally and send them to the monitoring platform. In 

contrast, Agentless solutions require that the equipment has some kind of API or protocol 

for monitoring platforms to collect the metrics remotely; therefore, no need to install an 

agent beforehand. DevOps teams are monitoring one hundred percent of the 

infrastructure, not just servers but databases, networks, firewalls, middleware, wi-fi, and 



  

34 

everything. They need universal equipment that can work with all equipment without 

having to mess around. As Terraform users, we do not have to take care of that Agent 

software. Cloud providers like Amazon AWS, Google GCP, and Microsoft AZURE will 

manage agent software on each of their physical servers. 

8.2 Practical Implementation of Terraform Using Amazon AWS 

Terraform is a powerful tool in automating deployment across multiple clouds. In this domain, a 

step-by-step process will be described to build, change, and destroy AWS infrastructure using 

Terraform. 

8.2.1 Main Terraform command 

Terraform CLI to Terraform is the “terraform” command, which accepts a wide range of 

subcommands. In terms of practical implementation and in terms of usages of terraform effectively, 

five commands are described below without any additional arguments. 

“Terraform init”- command will initialize a working directory. 

“Terraform validate”- will validates the terraform file syntax. 

“Terraform plan”- will create a reviewable execution plan. 

“Terraform apply”- command will execute the action plan. 

“Terraform destroy”- command will destroy all previously created remote objects. 

8.2.2 Default Profile Setup For AWS 

After installing terraform on a local machine, a cloud developer can confirm this by running the 

following command “terraform -v” in the terminal. Upon successfully installed, this command will 

print the current version of the terraform. 

 

It is a must to provide the Amazon AWS access key and secret key in Terraform configuration file 

so that it can interact with the cloud account in order to deploy, modify and destroy servers. There 

are two ways to provide those keys (access, secret), one in the main.tf file and another in the 



  

35 

configuration file. By providing keys in the main file, it imposes two most significant risks factors 

which are- 

One- In case of deletion, a cloud developer needs to reproduce the key & copy-paste each time 

while interacting with AWS cloud. 

Two- Another reason is if it is somehow compromised, anyone can do anything with the AWS cloud 

account. This is key simply too powerful. 

 

In order to avoid those risks, it is recommended to make a default profile by using the command 

“vim ~/.aws/credentials”. After storing the credential, the “aws configure” command will print the 

following in the console, as demonstrated in FIGURE 16 as a confirmation. After configuring the 

default profile, we can use profile = “default” as a reference for our access & secret key. 

 

FIGURE 16. AWS default configuration verification for Terraform 

8.2.3 Defining a Provider 

The first thing a developer has to do is to define a provider (AWS, in this thesis project case). It is 

a plugin that allows Terraform to talk specific set of APIs. It will make sure to download all necessary 

dependencies to talk to the AWS API.  

8.2.4 Create a Virtual Private Cloud (VPC) & Internet Gateway (IG) 

The following block of code will be used to create a VPC. In order to do this, a cloud developer 

needs to specify a CIDR block that will define the range of IP addresses. In this implementation, 

10.0.0.0/16 will create 65,536 addresses theoretically. It is worth mentioning that AWS has five 

reserved IP addresses, so that it will make 65,531 addresses instead of 65,536. 

For the resources in a VPC to send and receive traffic from the internet, an internet gateway must 

be attached to the VPC. An internet gateway enables resources to connect to the internet. The 



  

36 

following code block, as shown in FIGURE 17, will create and attach an IG with the VPC called 

“Production.” 

 

 # 1. This code block will Create a VPC 

resource "aws_vpc" "prod-vpc" { 

  cidr_block = "10.0.0.0/16" 

  tags = { 

    "Name" = "Production" 

  } 

} 

# 2. This code block will create an Internet Gateway 

resource "aws_internet_gateway" "gw" { 

  vpc_id = aws_vpc.prod-vpc.id 

} 

FIGURE 17. VPC and IG creation process in Terraform 

8.2.5 Security Group Creation 

A security group is a way to define the network traffic for the EC2 instances. Terraform currently 

provides both a standalone Security Group rule resource and a Security Group resource with in-

line defined ingress and egress rules. A name is a must for creating a security group so that it can 

be used as a future reference. The security group's name in this practical section is "allow_web" 

as shown in FIGURE 18.  Security Group name cannot be edited after the resource is created. 

In this creation process, the VPC reference is attached to the security group with the highlighted 

syntax, as shown in line 60. Ingress stands for inbound rules. For the security group, three ports 

have been added to the rules, for example, 443 for HTTPS, 80 for HTTP, and PORT 22 for SSH. 

Defining “0.0.0.0/0” in the CIDR block means any IP address can access it. For the outbound rules, 

as described in line 85 with the highlighted orange box in FIGURE 18. “from_port = 0” and 

“to_port=0” means allowing all ports in the egress direction. “Protocol= -1” is used to specify all 

protocols. 



  

37 

 

FIGURE 18. Security group construction using Terraform 

8.2.6 Create an Ubuntu Server and Install Apache  

Ubuntu is a Linux-based operating system, and Apache is an open-source web server available for 

Linux servers. In this creation process, we have to define Ami, instance type, key name, and an 

availability zone. Key name and availability zone are optional, but we need to define the key name 

in order to SSH. The hardcoded availability zone will make sure all services are created in the same 

region. 

Highlighted user_data code syntax starting from line 128, as shown in FIGURE 19 will install and 

activate the Apache server. “Hello from Oamk” will be delivered upon visiting the IP address. 

(FIGURE 22) 



  

38 

 

FIGURE 19. Apace server installation process during boot event 

8.3 Result of The Deployment Using Terraform 

First, the “terraform init” command has to be run. Terraform will download all relevant dependencies 

and initialize a working directory containing the configuration file. The “Validate” command needs 

to be executed before the final approach. The “validate” command is always recommended, even 

though the “terraform apply” command will always validate the whole process before execution. 

After validating, we can finally run terraform apply -auto-approve . “-auto-approve” subcommand 

will help to avoid unnecessary typing in the console. Upon successfully running, it will create all the 

defined services in the code block & confirmation message will be displayed in bold green text. 



  

39 

 

FIGURE 20. Results of Terraform execution 

According to the practical approach, the following will be shown, an EC2 instance running in the 

Amazon AWS called “Thesis Server” (FIGURE 21). “Hello from Oamk” will be delivered upon 

visiting the IP address (FIGURE 22). Ping command will be able to run after logging from the 

console (FIGURE 23). On top of it, the route table, CIDR block, IAM, VPC, and IG will also be 

created in the Amazon AWS cloud, and all will be attached to the “Thesis Server” to make it 

functional. 

 

 

FIGURE 21. Newly deployed EC2 Instance summary  



  

40 

 

FIGURE 22. HTML text in the deployed “thesis server” using Terraform 

 

FIGURE 23. Ping the command log of the ubuntu server 



  

41 

9 CONCLUSION AND FUTURE DEVELOPMENT 

Cloud-native technology is an emerging solution that promises high scalability of applications and 

software. The aim of this thesis was to study AWS services and implement them to deploy MERN 

stack applications and test them in the cloud. Instead of using a manual deployment process, 

Terraform provides a complete solution to configure and build local and remote instances and 

saves a lot of time while developing the application. 

 

Despite the promising results in deploying the MERN stack application in the cloud, only the 

Amazon AWS cloud environment was tested. It could have been an excellent idea if another cloud 

provider like Google GCP and Microsoft Azure was included to conduct the application deployment 

and test their performance simultaneously. Stopped or hibernated instances always receive a new 

public IP address; this problem resulted in a significant loss of time that might have been spent to 

enhance the implementation's features. If something had been changed during this project, it would 

have been to spend less time configuring the NGINX on the remote server. 

 

The project covers a tiny fraction of what AWS and Terraform can do together. Much more can be 

done by leveraging this technology. One of the most important use cases that will be developed in 

the future is to set up a CI/CD pipeline with GitHub to automate the workflow so that when the 

project is updated, it can fetch the latest version from GitHub. Organizations can produce higher-

quality code more quickly by automating CI/CD throughout the development, testing, production, 

and monitoring phases of the software development lifecycle. 

 

After working with AWS services, it became apparent that it was not designed for cost optimization 

for the short-term use case. Nevertheless, it was possible to achieve significant cost deduction just 

by reserving the services for a long-term period. It would be an excellent idea if such a move were 

made. Although, it is possible to execute each of the deployment steps manually. However, the 

actual value of Terraform is realized through automation. Automating the process aims to minimize 

human error and maintain a consistent approach to releasing software.  



  

42 

REFERENCES 

1. The NIST Definition of Cloud Computing. Data retrieved on 3rd October 2022 from 
https://csrc.nist.gov/publications/detail/sp/800-145/final 
 

2. Types of Cloud Computing. Data retrieved on 4th October 2022 from 
https://aws.amazon.com/types-of-cloud-computing/ 
 

3. AWS Market Share 2022(Q2). Data retrieved on 4th October 2022 from 
https://www.wpoven.com/blog/aws-market-share/ 
 

4. A systematic mapping study of infrastructure as code research. Data retrieved on 4th 
October 2022 from 
https://www.sciencedirect.com/science/article/abs/pii/S0950584918302507 
 

5. What is IaaS? Infrastructure as a Service Explained. Data retrieved on 3rd October 2022 
from https://www.digitalocean.com/blog/what-is-iaas 
 

6. Cloud Deployment Models. Data retrieved on 5th November 2022 from 
https://www.sciencedirect.com/topics/computer-science/cloud-deployment-model 
 

7. What is Community Cloud. . Data retrieved on 5th November 2022 from 
https://www.spiceworks.com/tech/cloud/articles/what-is-community-cloud/ 
 

8. PaaS(Platform as a service). Data retrieved on 4th October 2022 from 
https://www.ibm.com/cloud/learn/paas 
 

9. Private Cloud. Data retrieved on 31st October 2022 from 
https://www.ibm.com/cloud/learn/introduction-to-private-cloud 
 

10. Disadvantage of Cloud computing. Data retrieved on 31st October 2022 from 
https://cloudacademy.com/blog/disadvantages-of-cloud-computing/ 
 

11. IBM Cloud,2021:IaaS versus PaaS versus SaaS .Data retrieved on 21st October 2022 
from https://www.ibm.com/cloud/learn/iaas-paas-saas#toc-saas-versu-8QqZtSK8 
 

12. What is EC2? Data retrieved on 8th November 2022 from 
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/concepts.html 
 

13. Amazon S3 Features. Data retrieved on 5th November 2022 
from.https://aws.amazon.com/s3/features/ 
 

14. Central storage: Amazon S3 as the data lake storage platform.Data retrieved on 3rd 
November 2022 from https://docs.aws.amazon.com/pdfs/whitepapers/latest/building-
data-lakes/building-data-lakes.pdf#amazon-s3-data-lake-storage-platform 
 

15. AWS Architecture Blog (One to Many: Evolving VPC Design). Data retrieved on 3rd 
November 2022 from https://aws.amazon.com/blogs/architecture/one-to-many-evolving-

https://csrc.nist.gov/publications/detail/sp/800-145/final
https://aws.amazon.com/types-of-cloud-computing/
https://www.wpoven.com/blog/aws-market-share/
https://www.sciencedirect.com/science/article/abs/pii/S0950584918302507
https://www.digitalocean.com/blog/what-is-iaas
https://www.sciencedirect.com/topics/computer-science/cloud-deployment-model
https://www.spiceworks.com/tech/cloud/articles/what-is-community-cloud/
https://www.ibm.com/cloud/learn/introduction-to-private-cloud
https://cloudacademy.com/blog/disadvantages-of-cloud-computing/
https://www.ibm.com/cloud/learn/iaas-paas-saas#toc-saas-versu-8QqZtSK8
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/concepts.html
https://aws.amazon.com/s3/features/
https://docs.aws.amazon.com/pdfs/whitepapers/latest/building-data-lakes/building-data-lakes.pdf#amazon-s3-data-lake-storage-platform
https://docs.aws.amazon.com/pdfs/whitepapers/latest/building-data-lakes/building-data-lakes.pdf#amazon-s3-data-lake-storage-platform
https://aws.amazon.com/blogs/architecture/one-to-many-evolving-vpc-design/


  

43 

vpc-design/ 
 

16. VPC with public and private Subnets(NAT) .Data retrieved on 3rd November 2022 from 
https://docs.aws.amazon.com/pdfs/vpc/latest/userguide/vpc-ug.pdf#VPC_Scenario2 
 

17. What is IAM? Data retrieved on 7th November 2022 from 
https://docs.aws.amazon.com/pdfs/IAM/latest/UserGuide/iam-ug.pdf#introduction 
 

18. MERN Stack Explained. Data retrieved on 30th October 2022 from 
https://www.mongodb.com/mern-stack 
 

19. What is Express.js? Data retrieved on 30th October 2022 from 
https://www.codecademy.com/article/what-is-express-js 
 

20. Express/Node introduction. Data retrieved on 30th October 2022 from 
https://medium.datadriveninvestor.com/the-node-js-architecture-f86e2337bcd2 
 

21. React. Data retrieved on 30th October 2022 from https://reactjs.org 
 

22. Writing middleware for use in Express apps. Data retrieved on 30th October 2022 from 
https://expressjs.com/en/guide/writing-middleware.html 
 

23. The Case for Enterprise-Ready Virtual Private Clouds. Data retrieved on 3rd November 
2022 from https://www.usenix.org/legacy/events/hotcloud09/tech/full_papers/wood.pdf 
 

24. Tag your Amazon EC2 resources. Data retrieved on 4th November 2022 from 
https://docs.aws.amazon.com/pdfs/AWSEC2/latest/UserGuide/ec2-ug.pdf#Using_Tags 
 

25. Launch your instance. Data retrieved on 1st October 2022. 
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/LaunchingAndUsingInstances.
html 
 

26. Amazon EC2 security groups for Linux instances. Data retrieved on 1st October 2022 
from https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-security-groups.html 
 

27. Amazon EC2 key pairs and Linux instances. Data retrieved on 21st October 2022 from 
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-key-pairs.html 
 

28. Building Resilient and Fault Tolerant Applications with Micro. Data retrieved on 4th 
October 2022 from https://micro.dev/blog/2016/05/15/resiliency.html 
 

29. Amazon Machine Images (AMI). Data retrieved on 11th October 2022 from 

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/AMIs.html 

 

30. Amazon EC2 key pairs and Linux instances. Data retrieved on 11th October 2022 from 

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-key-pairs.html 

 

31. Default custom security groups. Data retrieved on 1st November 2022 from 

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/default-custom-security-

https://aws.amazon.com/blogs/architecture/one-to-many-evolving-vpc-design/
https://docs.aws.amazon.com/pdfs/vpc/latest/userguide/vpc-ug.pdf#VPC_Scenario2
https://docs.aws.amazon.com/pdfs/IAM/latest/UserGuide/iam-ug.pdf#introduction
https://www.mongodb.com/mern-stack
https://www.codecademy.com/article/what-is-express-js
https://medium.datadriveninvestor.com/the-node-js-architecture-f86e2337bcd2
https://reactjs.org/
https://expressjs.com/en/guide/writing-middleware.html
https://www.usenix.org/legacy/events/hotcloud09/tech/full_papers/wood.pdf
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/LaunchingAndUsingInstances.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/LaunchingAndUsingInstances.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-security-groups.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-key-pairs.html
https://micro.dev/blog/2016/05/15/resiliency.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/AMIs.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-key-pairs.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/default-custom-security-groups.html


  

44 

groups.html 

 

32. What is NGINX? Data retrieved on 4th November 2022 from 

https://www.nginx.com/resources/glossary/nginx/#:~:text=NGINX%20is%20open%20sou

rce%20software,for%20maximum%20performance%20and%20stability. 

 

33. What is a Reverse Proxy Server? Data retrieved on 12th October 2022 from 

https://www.nginx.com/resources/glossary/reverse-proxy-server/ 

 

34. A Complete Guide to Node.js Process Management with PM2. Data retrieved on 12th 

October 2022 from https://blog.appsignal.com/2022/03/09/a-complete-guide-to-nodejs-

process-management-with-pm2.html 

 

35. Amazon EC2 security groups for Linux instances. Data retrieved on 13th October 2022 

from https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-security-groups.html 

 

36. Yevgeiny, B. (2019).Terraform: Up & Running(3rd ed.).How Does Terraform Work? : 

Large Community Versus Small Community. Data retrieved on 1st November 2022 from 

https://www.oreilly.com/library/view/terraform-up-

and/9781098116736/ch01.html#8e64a7f0-6e4b-4b3e-90f6-6b7d9d4f28d5 

 

37. What is infrastructure as Code with Terraform? Data retrieved on 17th October 2022 from 

https://developer.hashicorp.com/terraform/tutorials/aws-get-started/infrastructure-as-code 

 

38. Terraform use cases. Data retrieved on 18th October 2022 from 

https://developer.hashicorp.com/terraform/intro/use-cases 

 

39. AWS whitepaper. Data retrieved on 21st October 2022 from 

https://d1.awsstatic.com/whitepapers/aws-overview.pdf 

 

40. What is AWS Lambda? Data retrieved on 1st November 2022 from 

https://docs.aws.amazon.com/lambda/latest/dg/welcome.html 

 

41. Cloud business model framework (Weinhardt et al., 2009). Data retrieved on 8th 

November 2022 from https://www.researchgate.net/figure/Cloud-business-model-

framework-Weinhardt-et-al-2009_fig4_262451962 

 

 

  

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/default-custom-security-groups.html
https://www.nginx.com/resources/glossary/nginx/#:~:text=NGINX%20is%20open%20source%20software,for%20maximum%20performance%20and%20stability
https://www.nginx.com/resources/glossary/nginx/#:~:text=NGINX%20is%20open%20source%20software,for%20maximum%20performance%20and%20stability
https://www.nginx.com/resources/glossary/reverse-proxy-server/
https://blog.appsignal.com/2022/03/09/a-complete-guide-to-nodejs-process-management-with-pm2.html
https://blog.appsignal.com/2022/03/09/a-complete-guide-to-nodejs-process-management-with-pm2.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-security-groups.html
https://www.oreilly.com/library/view/terraform-up-and/9781098116736/ch01.html#8e64a7f0-6e4b-4b3e-90f6-6b7d9d4f28d5
https://www.oreilly.com/library/view/terraform-up-and/9781098116736/ch01.html#8e64a7f0-6e4b-4b3e-90f6-6b7d9d4f28d5
https://developer.hashicorp.com/terraform/tutorials/aws-get-started/infrastructure-as-code
https://developer.hashicorp.com/terraform/intro/use-cases
https://d1.awsstatic.com/whitepapers/aws-overview.pdf
https://docs.aws.amazon.com/lambda/latest/dg/welcome.html
https://www.researchgate.net/figure/Cloud-business-model-framework-Weinhardt-et-al-2009_fig4_262451962
https://www.researchgate.net/figure/Cloud-business-model-framework-Weinhardt-et-al-2009_fig4_262451962


  

45 

TERRAFORM CODE APPENDIX 1 

terraform { 

  required_providers { 

    aws = { 

      source  = "hashicorp/aws" 

      version = "4.34.0" 

    } 

  } 

} 

provider "aws" { 

  region = "us-east-1" 

} 

 

# 1. This code block will Create VPC 

resource "aws_vpc" "prod-vpc" { 

  cidr_block = "10.0.0.0/16" 

  tags = { 

    "Name" = "Production" 

  } 

} 

# 2. This code block will create an Internet Gateway 

resource "aws_internet_gateway" "gw" { 

  vpc_id = aws_vpc.prod-vpc.id 

} 



  

46 

# 3. It will Create a custom route table 

resource "aws_route_table" "prod-route-table" { 

  vpc_id = aws_vpc.prod-vpc.id 

 

  route { 

    cidr_block = "0.0.0.0/0" 

    gateway_id = aws_internet_gateway.gw.id 

  } 

  route { 

    ipv6_cidr_block = "::/0" 

    gateway_id      = aws_internet_gateway.gw.id 

  } 

  tags = { 

    Name = "Production" 

  } 

} 

# 4. Create a subnet for the VPC 

resource "aws_subnet" "subnet-1" { 

  vpc_id            = aws_vpc.prod-vpc.id 

  cidr_block        = "10.0.0.0/16" 

  availability_zone = "us-east-1a" 

  tags = { 

    "Name" = "Production-subnet" 

  } 



  

47 

} 

 

# 5.This code will make an Associate subnet with route table 

resource "aws_route_table_association" "a" { 

  subnet_id      = aws_subnet.subnet-1.id 

  route_table_id = aws_route_table.prod-route-table.id 

} 

 

# 6.Create a security group to allow the following PORT 

(22,80,443) 

resource "aws_security_group" "allow_web" { 

  name        = "allow_web_traffic" 

  description = "Allow web inbound traffic" 

  vpc_id      = aws_vpc.prod-vpc.id 

 

  ingress { 

    description = "HTTPS" 

    from_port   = 443 

    to_port     = 443 

    protocol    = "tcp" 

    cidr_blocks = ["0.0.0.0/0"] 

  } 

 

  ingress { 



  

48 

    description = "SSH" 

    from_port   = 22 

    to_port     = 22 

    protocol    = "tcp" 

    cidr_blocks = ["0.0.0.0/0"] 

  } 

  ingress { 

    description = "HTTP" 

    from_port   = 80 

    to_port     = 80 

    protocol    = "tcp" 

    cidr_blocks = ["0.0.0.0/0"] 

  } 

 

  egress { 

    from_port   = 0 

    to_port     = 0 

    protocol    = "-1" 

    cidr_blocks = ["0.0.0.0/0"] 

 

  } 

 

  tags = { 

    Name = "allow_WEB" 



  

49 

  } 

} 

 

# 7.Create a network interface with an IP that was created in step 

5. 

resource "aws_network_interface" "web-server-net-interface" { 

  subnet_id       = aws_subnet.subnet-1.id 

  private_ips     = ["10.0.1.50"] 

  security_groups = [aws_security_group.allow_web.id] 

} 

# 8.Assign an EIP & attached to the Internet Gateway 

resource "aws_eip" "server-eip" { 

  vpc                       = true 

  network_interface         = aws_network_interface.web-server-net-

interface.id 

  associate_with_private_ip = "10.0.1.50" 

  depends_on                = [aws_internet_gateway.gw] 

  tags = { 

    Name = "serverEIP" 

  } 

 

} 

 

# Create an Ubuntu server and install/enable apache 2. 



  

50 

resource "aws_instance" "Thesis_server" { 

  ami               = "ami-08c40ec9ead489470" 

  instance_type     = "t2.micro" 

  availability_zone = "us-east-1a" 

  key_name          = "web-server-key-pair" 

 

  network_interface { 

    device_index         = 0 

    network_interface_id = aws_network_interface.web-server-net-

interface.id 

  } 

 

  user_data = <<-EOF 

               #!/bin/bash 

                sudo apt update -y 

                sudo apt install apache2 -y 

                sudo start apache2 

                sudo bash -c "echo Hello From Oamk > 

/var/www/html/index.html" 

              EOF 

  tags = { 

    Name = "Thesis Server" 

  } 

} 


	CONTENTS
	1 INTRODUCTION
	2 Cloud Computing Models
	2.1 Infrastructure as a Service (IaaS)
	2.2 Platform as a Service (PaaS)
	2.3 Software as a Service (SaaS)
	2.4 Comparisons of Cloud Computing Models

	3 Cloud Deployments Models
	3.1 Community Cloud
	3.2 Private Cloud
	3.3 Hybrid Cloud
	3.4 Public Cloud

	4 Disadvantages of cloud computing
	4.1 How to Avoid Surprise Cost
	4.1.1 Third-Party Software to Visualize Cost
	4.1.2 Setup Serverless
	4.1.3 Budget Alert


	5 Overview of amazon web services
	5.1 Amazon EC2 (Elastic Cloud Computing)
	5.2 Amazon S3 (Simple Storage Services)
	5.3 Amazon VPC (Virtual Private Cloud)
	5.4 Identity and Access Management (IAM)

	6 MERN STACK application development
	6.1 MongoDB
	6.2 Express.js
	6.3 React.js
	6.4 Node.js

	7 Approach To deploy an application onto the AWS cloud
	7.1 Naming the EC2 instance
	7.2 Choosing a Suitable AMI (Amazon Machine Image) & Instance Type
	7.3 Key Pair Configuration
	7.4 Launching and Monitoring EC2 Instance
	7.5 Configuring Network Access to An Instance
	7.6 NGNIX Server Setup
	7.6.1 NGINX: Up & Running

	7.7 PM2 (Process Manager)
	7.7.1 Start Application Using PM2

	7.8 Results of The Deployment

	8 INFRASTRUCTURE AS A CODE
	8.1 Why Use Terraform Over Others?
	8.2 Practical Implementation of Terraform Using Amazon AWS
	8.2.1 Main Terraform command
	8.2.2 Default Profile Setup For AWS
	8.2.3 Defining a Provider
	8.2.4 Create a Virtual Private Cloud (VPC) & Internet Gateway (IG)
	8.2.5 Security Group Creation
	8.2.6 Create an Ubuntu Server and Install Apache

	8.3 Result of The Deployment Using Terraform

	9 Conclusion and Future development
	References

