

Viet Nguyen

ORDER FULFILLMENT MANAGER

School of Technology
2022

ACKNOWLEDGMENTS

I would like to thank all my teachers at VAMK and especially Dr. Ghodrat
Moghadampour – supervisor for my thesis. I could not finish the thesis paper
without him.

Next, I want to thank Mr. Emiliano Spinella for his guidance during my time as an
intern at Syndeno.

Finally, I want to thank Anh Minh, a VAMK student, for his encouragement in the
process of thesis writing.

Viet Nguyen

Hanoi, Vietnam

25.11.2022

VAASAN AMMATTIKORKEAKOULU
UNIVERSITY OF APPLIED SCIENCES
Information Technology

ABSTRACT

Author Viet Nguyen
Title Order Fulfillment Manager
Year 2022
Language English
Pages 49
Name of Supervisor Ghodrat Moghadampour

The main objective of the thesis was to develop a module that enables the user
to install needed tools and software on a Kubernetes cluster through the data
given by the customer.

Triggering pipeline and deploying resources is a tedious job that requires several
processes. Therefore, in real-world production environment, there is need to
build a microservice to operate and automate that work.

This application fully achieved its aim. Order Fulfilment Manager succeeds in de-
ploying needed software on a Kubernetes cluster. It could receive orders, pro-
cesses, and saves the output to the database. The thesis provides an insight of
how to integrate different types of technologies into integration script and how
to communicate between Jenkins and a cloud platform.

Keywords Python, Apache Kafka, Kubernetes, Cloud Platform, Jenkins

CONTENTS

1 INTRODUCTION ... 1

1.1 Objective .. 1

1.2 Syndeno ... 2

2 RELEVENT TECHNOLOGIES ... 3

2.1 Python.. 3

2.2 Google Cloud Platform ... 3

2.2.1 Google Kubernetes Engine .. 4

2.3 MongoDB ... 4

2.4 Jenkins ... 4

2.5 Terraform ... 5

2.6 Apache Kafka ... 6

2.7 Docker .. 7

2.8 Kubernetes ... 8

2.8.1 Basic Object in Kubernetes.. 8

2.8.2 Benefits of Kubernetes.. 8

2.9 Helm .. 9

3 APPLICATION DESCRIPTION ... 10

3.1 Objective and Function .. 12

3.2 Prerequisite .. 12

3.3 Requirements Analysis ... 12

3.3.1 Must-have Requirements .. 13

3.3.2 Should-have Requirements ... 13

3.3.3 Nice-to-have Requirements .. 13

3.4 Main Processes .. 13

3.4.1 Simulate Apache Kafka Order.. 15

3.4.2 Pre-validate order ... 16

3.4.3 Validate and Process order ... 18

3.4.4 Save Output .. 20

4 DATABASE ... 23

4.1 Entity Diagram ... 23

4.2 Collection ... 24

4.2.1 Servers Collection ... 24

4.2.2 Products Collection ... 24

4.2.3 Orders Collection .. 25

4.2.4 Builds Collection ... 26

5 IMPLEMENTATION .. 28

5.1 Setting up before Running the Application ... 28

5.1.1 Deploy GKE cluster .. 28

5.1.2 Get GCP access token.. 28

5.1.3 Jenkins Pipeline to Deploy Grafana ... 29

5.2 Order Fulfillment Manager ... 32

5.2.1 Simulate New Order.. 32

5.2.2 Order New Consumer ... 33

5.2.3 Order validated process .. 37

5.2.4 Order processing process .. 40

6 TESTING... 42

6.1 Simulate New Order ... 42

6.2 Order New Consumer ... 42

6.3 Order Validated Process ... 43

6.4 Order Processing Process ... 44

7 CONCLUSIONS ... 47

7.1 Future work.. 47

REFERENCES .. 48

LIST OF FIGURES AND TABLES

Figure 1. OFM architecture diagram .. 10

Figure 2. Order state flow chart diagram ... 11

Figure 3. Use case diagram .. 14

Figure 4. Class diagram .. 15

Figure 5. Simulate Apache Kafka Order sequence diagram 16

Figure 6. Consumer class ... 16

Figure 7. Pre-validate order sequence diagram .. 17

Figure 8. OrderManagement class ... 17

Figure 9. Validate and Process sequence diagram .. 18

Figure 10. Class DAO .. 19

Figure 11. OrderProccess class ... 19

Figure 12. Save output sequence diagram ... 21

Figure 13. Jenkins class .. 21

Figure 14. Entity relationship diagram ... 23

Figure 15. Deploy Grafana structure .. 29

Figure 16. The simulate_new_OrderInstall file structure 32

Figure 17. File structure of order_NEW_consumer .. 34

Figure 18. File structure of order_VALIDATED_process 38

Figure 19. Simulate Apache Kafka order .. 42

Figure 20. The order_NEW_cosumer output .. 42

Figure 21. Orders collection ... 43

Figure 22. The order_VALIDATED_process output ... 43

Figure 23. Incomplete build data saved in Builds collection 44

Figure 24. State change to PROCESSING .. 44

Figure 25. The order_PROCESSING_process output ... 45

Figure 26. Build and stage status in database... 45

Figure 27. State changes to COMPLETE .. 46

LIST OF CODE SNIPPETS

Code Snippet 1. Servers collection .. 24

Code Snippet 2. Products collection .. 25

Code Snippet 3. Orders collection .. 25

Code Snippet 4. Builds collection ... 26

Code Snippet 5. Get access token .. 29

Code Snippet 6. kubernetes.tf ... 30

Code Snippet 7. variables.tf ... 30

Code Snippet 8. helm_release.tf .. 31

Code Snippet 9. grafana-values.yaml ... 31

Code Snippet 10. versions.tf .. 32

Code Snippet 11. Initialize new Kafka producer ... 33

Code Snippet 12. Send message to consumer .. 33

Code Snippet 13. order_NEW_consumer.py .. 34

Code Snippet 14. Consuming the data ... 35

Code Snippet 15. Convert JSON to Python object .. 35

Code Snippet 16. Class Order... 36

Code Snippet 17. Initialize order object ... 36

Code Snippet 18. preValidateOrder() ... 36

Code Snippet 19. saveOrder() .. 37

Code Snippet 20. order_VALIDATED_process.py.. 39

Code Snippet 21. validate_NEW_order method .. 39

Code Snippet 22. process_VALIDATED_order method 39

Code Snippet 23. trigger_jobs method .. 40

Code Snippet 24. Main function order_PROCESSING_process 40

Code Snippet 25. check_order_status() method .. 41

Code Snippet 26. Retry FAIL/FAIL_PARTIAL order .. 41

LIST OF ABBREVATIONS

OFM Order Fulfillment Manager

GCP Google Cloud Platform

GKE Google Kubernetes Engine

OOP Object Oriented Programming

SMB Small and Midsize Business

NoSQL Not Only SQL

JSON JavaScript Object Notation

Amazon EC2 Amazon Elastic Compute

HTML Hypertext Markup Language

API Application Programming Interface

UNIX Uniplexed Information Computing System

RESTAPI Representational State Transfer

VM Virtual Machine

YAML Yet Another Markup Language

IP Internet Protocol

GUI Graphical User Interface

CI/CD Continuous Integration/ Continuous Deployment

1

1 INTRODUCTION

Cloud computing is a term that has gained popularity in recent years. With the

exponential increase in data use that has accompanied society's transition into

the digital century, individuals and organizations are finding it increasingly diffi-

cult to keep all their critical information, programs, and systems up and running

on in-house computer servers. Hence, the developer should utilize this technol-

ogy work more effectively. /1/

In real-world production environments, team members must work together

throughout the entire software development cycle of an application, from coding

and testing to deployment and ongoing monitoring. For that reason, different

tools and software were built to decrease the workload of the developer. How-

ever, the integration of several technologies is a tedious task and requires an un-

counted number of steps. Luckily, automation is the key to solve that problem.

Therefore, there is a need to create microservice to automate it. Order Fulfilment

Manager was built to adapt to the need.

1.1 Objective

The aim of the thesis is to create an application to install needed tools and soft-

ware on a Kubernetes cluster.

This thesis consists of seven sections. The first part is the objective, background,

and brief introduction to the company. The second part is discussion of the tech-

nologies that were used for the application. The third part contains the require-

ment, description of the project, and the requirement analysis. The fourth is

about the database. The implementation is examined in part five while the sixth

part is for testing and the outcomes. The conclusions is the last part of this thesis.

2

1.2 Syndeno

Syndeno is a software company established in the Demium incubator in Valencia

in February 2021. Their mission is to make the latest and most innovative data

connectivity accessible to as many users as. Syndeno was created to democratize

the access to new technologies and help Small and Midsize Business (SMB) in

their digitalization process. They help companies transform the way they do busi-

ness in the context of a rapid growth in data and automatization. The main client

of the company is a start-up. /2/

Syndeno has 7 products, Syndeno for Kubernetes, Syndeno for Jenkins, Syndeno

for Grafana, Syndeno for Databases, Syndeno for Apache Kafka, Syndeno for

Apache Flink. Customers can choose the product that meets their need.

Normally, the load on servers is very high when a company has a high number of

users on the platform. The Syndeno team has developed a solution, Apache

Kafka, to streamline the load. /2/

3

2 RELEVENT TECHNOLOGIES

Order Fulfillment Manager uses various tools for DevOps and cloud computing.

This section describes each tools in detail and the reason why it was chosen.

2.1 Python

Python is a computer programming language that is frequently used to create

websites and software, automate tasks, and analyze data. It can be used to cre-

ate a variety of programs and is not specialized for any particular problem. This

versatility, combined with its ease of use for beginners, has made it one of the

most widely used programming languages today. /3/

It is also a multi-paradigm programming language, which means it supports dif-

ferent programming approach. Python also provides object-oriented program-

ming (OOP), which allows to break the program into the bit-sized problems that

can be solved easily. /3/

Python was chosen for this project because it provides libraries for integrating

with Apache Kafka, Jenkins, and MongoDB. Moreover, the syntax is not compli-

cated, and the code is maintainable.

2.2 Google Cloud Platform

Google cloud platform (GCP) is a medium that allows users to easily access Goog-

le's cloud systems and other computing services. The platform provides a wide

range of services that can be used in various cloud computing sectors, such as

storage and application development. Google Cloud Platform can be used freely

according to users’ needs. /4/

4

2.2.1 Google Kubernetes Engine

Google Kubernetes Engine (GKE) is a managed environment that allows you to

deploy, manage, and scale containerized applications using Google infrastruc-

ture. Multiple machines are grouped together to form a cluster in the GKE envi-

ronment. Users can use Google Cloud Platform Console or the gcloud command

line interface to interact with Google Kubernetes Engine. /5,6/

Software developers frequently use Google Kubernetes Engine to create and test

new enterprise applications. Administrators also use containers to meet the

scalability and performance demands of enterprise applications such as web

servers. /6/

2.3 MongoDB

MongoDB is an open-source database that uses a document-oriented data model

and a non-structured query language. It is one of the most powerful NoSQL sys-

tems and databases around, today. /7/

MongoDB uses collections and documents rather than using tables and rows, as

in the traditional relational databases. Documents are made up of key-value

pairs, similar to JavaScript Object Notation (JSON). Collections are equivalent to

relational database tables in that they contain sets of documents and functions.

/7/

MongoDB was chosen because the application has unstructured data and Mon-

goDB has no storable data type limits.

2.4 Jenkins

Jenkins is an open-source Continuous Integration server written in Java for or-

chestrating a chain of actions to achieve the Continuous Integration process in an

5

automated fashion. Jenkins supports the complete development life cycle of

software from building, testing, documenting the software, deploying, and other

stages of the software development life cycle. /8/

Jenkins can be used to automate and speed up the software development pro-

cess. It integrates all development life-cycle processes, including build, documen-

tation, testing, packaging, staging, deployment, static analysis, and much more. It

also provides plugin to achieve Continuous Integration. For example, Git, Maven

2 project, Amazon EC2, and HTML publisher. /8/

Jenkins was chosen because it is open source so company could get started re-

gardless of the budgetary constraints. Furthermore, Jenkins provides plugin suit-

able with the application.

2.5 Terraform

Terraform is a tool that defines both cloud and on-premises resources in human-

readable configuration files that users can version, reuse, and share. It uses a

consistent workflow to provision and manage all infrastructure throughout its

lifecycle. /9/

Terraform uses application programming interfaces to create and manage re-

sources on cloud platforms and other services (APIs). It can work with almost any

platform or service that has an API. /9/

The core Terraform workflow consists of three stages:

- Write: Define infrastructure in configuration files

- Plan: Review the changes Terraform will make to the infrastructure

- Apply: Terraform provisions infrastructure and update the state file /9/

6

Provisioning infrastructure across multiple clouds improves fault tolerance and

enables more graceful recovery from cloud provider outages. Multi-cloud de-

ployments, on the other hand, add complexity because each provider has its own

interfaces, tools, and workflows. Terraform allows users to manage multiple pro-

viders and cross-cloud dependencies with the same workflow. This simplifies

management and orchestration for multi-cloud infrastructures on a large scale.

/10/

Terraform was chosen for the project because code can be used to manage and

maintain resources. It allows to store the infrastructure status and track the

changes in different components of the system.

2.6 Apache Kafka

Apache Kafka is a distributed publish-subscribe messaging system and a robust

queue that can handle a high volume of data and enables the user to pass mes-

sages from one endpoint to another. It is suitable for both offline and online

message consumption. Kafka messages are persisted on the disk and replicated

within the cluster to prevent data loss. /11/

A single Kafka Server is called a Broker. The user can have a Kafka Cluster created

in multiple brokers inside it. The broker received messages from the Producer,

and it stores on a local disk. It also caters to a fetch request which is coming from

the Consumers and provides the messages which are already written to the un-

derline local disk. Based on the hardware, one Kafka Broker can handle 1000s of

partitions and millions of messages per second. One partition is assigned to multi-

ple brokers the owner being a single partition. /11/

Kafka's publish and subscribe pipelines are low-latency, high-throughput, and

fault-tolerant, and it can process event streams. Kafka is popular because a com-

pany benefits greatly from event-driven architecture. This is due to the massive

7

amount of data generated and consumed by numerous services (internet of

things, machine learning, mobile, microservices). /11/

Apache Kafka was chosen because of the flexibility. Kafka can be used for the ma-

jority types of contents and add different types of producers and consumers to

the system. Therefore, if the business grows, there is no need rewrite the whole

architecture.

2.7 Docker

Docker is an open platform for app development, shipping, and running. Applica-

tions are separated from infrastructure through packaging and running (poten-

tially multiple) applications in loosely isolated environments called a container so

user can deliver software quickly. /12/

Docker operates on a client-server model. The Docker client communicates with

the Docker daemon, which builds, runs, and distributes Docker containers.

Docker client and daemon can coexist on the same machine, or the user can con-

nect a Docker client to a remote Docker daemon. The Docker client and daemon

communicate with one another via a REST API, UNIX sockets, or a network inter-

face. /12/

The reason Docker is growing popular is because it enables more efficient use of

system resources. The cost savings will vary depending on what applications and

how resource-intensive they may be, but containers invariably work out as more

efficient than VMs. /12/

Docker was chosen because it provides a consistent and isolated environment.

8

2.8 Kubernetes

Kubernetes is a container orchestration platform. It can manage the entire lifecy-

cle of individual containers, spinning up and shutting down resources as needed.

The orchestration platform will launch another container if a container shuts

down unexpectedly. Furthermore, Kubernetes also provides a mechanism for ap-

plications to communicate with each other even as underlying individual contain-

ers are created and destroyed. /13/

2.8.1 Basic Object in Kubernetes

The Pod object is the fundamental building block in Kubernetes, consisting of one

or more (tightly related) containers, a shared networking layer, and shared

filesystem volumes. Pods, like containers, are intended to be ephemeral - there is

no expectation that a specific, individual pod will last a long time. /13/

A Deployment object is made up of a collection of pods that are defined by a

template and a replica count (how many copies of the template we want to run).

The user can either specify a specific replica count or use a separate Kubernetes

resource to control the replica count based on system metrics like CPU utiliza-

tion. /13/

A Kubernetes Service provides a stable endpoint that can be used to direct traffic

to the desired Pods even when the underlying Pods change as a result of up-

dates, scaling, and failures. Services determine which Pods to send traffic to base

on labels (key-value pairs) defined in the Pod metadata. /13/

2.8.2 Benefits of Kubernetes

Kubernetes can be used to scale, and quick scaling up/down depends on the

workloads. This is especially true if it consists of multiple services and requires

scaling up and down depending based on various workloads to move to the

9

cloud. factors. Compared to VMs, containers provide an easy way to scale appli-

cation. Moreover, Kubernetes prepares workloads to move to the cloud. If the

cloud cannot be built now, building on containers and Kubernetes may be a good

way to prepare for a future cloud migration. /14/

2.9 Helm

Helm is widely known as "the package manager for Kubernetes". Helm's initial

goal was to provide users with a better way to manage all Kubernetes YAML files

created in Kubernetes projects. Helm Charts are used to solve this problem. Each

chart is a collection of one or more Kubernetes manifests - a chart can have child

and dependent charts. This means that when users run the install command for

the top-level chart, Helm installs the entire project's dependency tree. /15/

Charts allow to version manifest files too, just like with Node.js or any other

package. The user can install specific chart versions, which means keeping spe-

cific configurations for infrastructure in the form of code. /15/

Helm natively supports Kubernetes, so users do not need to write any complex

syntax files or anything else to begin using Helm. /15/

https://helm.sh/
https://azure.microsoft.com/services/kubernetes-service/?WT.mc_id=containers-19838-ludossan
https://docs.microsoft.com/azure/aks/kubernetes-helm?WT.mc_id=containers-19838-ludossan

10

3 APPLICATION DESCRIPTION

In this section, the objective and function of the application will be discussed in

detail. After that, the project requirement is analysed and categorized. Finally,

use-case diagram, class diagram, sequence diagram, architectural diagram will be

presented and explained to show the functionalities of the thesis.

Figure 1 below describes the architecture of the application.

Figure 1. OFM architecture diagram

There are two main modules in the application: Syndeno Order Manager and Or-

der Fulfillment Manager. Syndeno Order Manager was developed by my col-

leagues and its output is an Apache Kafka order, which will be consumed by OFM

in the following step. Then, OFM saves the order in the database. After that,

OFM communicates with Keycloak to get a refresh token to access GCP. Next, it

will trigger Jenkins pipeline to deploy needed software by the data provides from

the order as parameters. In the end, all the pipeline status and run time data is

saved to the database.

11

Figure 2 below shows how the state of the Apache Kafka order changes from be-

ginning till end.

Figure 2. Order state flow chart diagram

When the order is pre-validated and saved to the database, it has the state

“NEW”. After executing the order_VALIDATED_consumer image, the order

moves to “VALIDATING” state and decision “Is the order valid?”. If it is no, the or-

der has the “INVALID” state, and the program terminates. If it is yes, the order

has the “VALID” state and move to “PROCESSING” state to start deploying appli-

cation on a GKE cluster. Now, the user could execute order_PROCESSING_pro-

cess image and the program encounters “Is the order completed?” logic. If the

12

application is deployed successfully on GKE cluster, the state “COMPLETED” is

used and program ends. If not, the order will have “FAIL/FAIL PARTIAL” state and

moves immediately to the “RETRY” state, where the Jenkins pipeline will be trig-

gered again five times. Next, the program meets the logic “Is the order com-

pleted?” again and if nothing changes, the state would be set to “FAIL/FAIL PAR-

TIAL” and the program terminates. However, if the application is deployed suc-

cessfully, the state would be “COMPLETED” and the program ends.

3.1 Objective and Function

The main objectives of the project are to receive Apache Kafka order, process,

and save its output to the MongoDB database. After receiving the order, the ap-

plication will extract data (the name of application the user wants to deploy) and

deploy the needed resources on a Kubernetes cluster on GCP. In the end, the

build data after the Jenkins pipeline is done is saved to a collection in MongoDB.

3.2 Prerequisite

The following is required to run the application:

- GCP (Google Cloud Platform) account with a service account.

- Kubernetes cluster on GKE (Google Kubernetes Engine).

- Three Jenkins pipelines to deploy MySQL, MongoDB, Grafana on GKE clus-

ter

- Bash script code to gain access to GCP through a service account

3.3 Requirements Analysis

The requirements can be divided into three categories: must-have requirements,

should-have requirements, and nice-to-have requirements.

13

3.3.1 Must-have Requirements

The program must fulfil the following requirements:

 The resources are deployed successfully on the GKE cluster

 The build data is fully saved in the database

 The state of the Apache Kafka order in the database should change ac-

cording to its status

 The application can pre-validate the Apache Kafka order

 The application can validate the Apache Kafka order and then trigger the

right Jenkins pipeline

3.3.2 Should-have Requirements

The application should have the following requirements:

 Use a refresh token for authorization to GCP

 Config file for credentials of database and IP address

3.3.3 Nice-to-have Requirements

It is nice for the application to have the following requirements:

 Docker file for each process

 More Jenkins pipeline for different types of application

 GUI

3.4 Main Processes

The use case diagram, sequence diagram, class diagram will be used to show de-

tail each process of the application.

Figure 3 summarizes the details of the project.

14

Figure 3. Use case diagram

The user is able to simulate an Apache Kafka order. After that, the order can be

pre-validated to check if it meets the minimum requirement. Next, the user can

validate and start processing the order to deploy resources on GKE cluster.

Lastly, the user can display and save the output of build data.

15

Figure 4. Class diagram

Figure 4 describes classes, methods, and properties which are involved in the ap-

plication. Five classes (Orders, Products, Builds, BuildStatus, and StageStatus)

contain variables which will be used in the database later. All other classes pos-

sess methods that help the project functions.

3.4.1 Simulate Apache Kafka Order

Figure 5 below shows the sequence diagram of Simulate Apache Kafka Order

process.

16

Figure 5. Simulate Apache Kafka Order sequence diagram

The user executes the simulate_new_order image (Figure 5) to simulate an

Apache Kafka order.

Figure 6. Consumer class

Consumer class (Figure 6) is used to save the Apache Kafka order to the database.

3.4.2 Pre-validate order

Figure 7 below shows the sequence diagram of Pre-validate order process.

17

Figure 7. Pre-validate order sequence diagram

After running the Pre-validate image shown in Figure 7 (which names or-

der_NEW_consumer in Docker) image, the application will pre-validate the order

and save it to the database.

Figure 8. OrderManagement class

OrderManagement class (Figure 8) deals with order validation and save infor-

mation to the database.

The method preValidateOrder() checks whether the order ID is filled or not.

Meanwhile, validateOrder() and validateOrderProduct() investigate all the attrib-

utes of the order. If any attribute is missing, the order will change to status INVA-

LID.

18

The method saveBuild() saves the build of order to the database. The last

method of the class is updateBuild(), which is used to add the build data from

Jenkins API to MongoDB.

3.4.3 Validate and Process order

Figure 9 below shows the sequence diagram of Validate and Process order pro-

cess.

Figure 9. Validate and Process sequence diagram

The next process is Validate and Process order (the image was named or-

der_VALIDATED_consumer). This will validate the order and save partial of build

data to the database. After that, this image will trigger the needed Jenkins pipe-

line to deploy application on GKE cluster.

19

Figure 10. Class DAO

DAO will receive the credentials of Jenkins from the database (Figure 10).

Figure 11. OrderProccess class

The OrderProcess class (Figure 11) has methods for validate order, process, and

save output to the database.

The method validate_NEW_order() is called for validate the order with NEW

state. Whereas, process_VALIDATED_order() is for the process order with VALI-

DATED state

20

The method update_state_order() would update the state of the order in the da-

tabase. Meanwhile, trigger_jobs() authorizes to Jenkins server and trigger the

pipeline to deploy resources on Kubernetes cluster. The retry_fail_job() method

would rerun the Jenkins pipeline when the order has state FAIL/FAIL_PARTIAL.

The method getProducer() and sendMessage() receive and consume message

from Apache Kafka.

The method fetch_NEW_order(), fetch_PROCESSING_order(),

fetch_all_builds_with_same_orderID() fetch order with correspond state. After

that, those data would be used for the following process of the application.

The method get_productID(), get_productName(), get_parameters(),

get_jobs_and_parameters_from_MongoDB() get needed data from Products col-

lection in MongoDB. These will be used for triggering Jenkins pipelines.

Method check_order_status() is used to define whether the order is FAIL,

FAIL_PARTIAL, or SUCCESS.

Method get_status_PROCESSING_order() saves all the build data to the data-

base.

Method run_jobs_and_save_build_data_to_MongoDB() would trigger the pipe-

line and save partial build data to the database.

3.4.4 Save Output

Figure 12 below shows the sequence diagram of Save Output process.

21

Figure 12. Save output sequence diagram

The last process is Save Output (image was named order_PROCESSING_con-

sumer). It will get the build data from Jenkins API and save that to new collection

in the database.

Figure 13. Jenkins class

Jenkins class will interact with Jenkins API to get the job status and stage status.

The method get_build_id(), get_url_job(), and get_url_stage() get the build id,

the URL of the Jenkins pipeline API for job status and for stage status. Mean-

while, build_job() extracts the whole build data from Jenkins API and return that

at the end of method. The print_job_status() method is used to print the status

of the job in the terminal to test if it is right.

22

The method stage_status() could get useful information (name, status, duration)

of each step of the pipeline.

23

4 DATABASE

MongoDB was chosen as the database for the project. There are four collections

in the database: servers, products, orders, and builds. This section will discuss

about the architecture and schema of the database.

4.1 Entity Diagram

Figure 14 below shows the entity relationship diagram.

Figure 14. Entity relationship diagram

The Servers collection does not have any connection to other collections. The

Products collection has productID as the primary key. Orders collection has or-

derID as primary key. For an order to exist, it must have at least one product and

different product can be comprised of that order. Therefore, “one or many” was

used to show relation between those order.

A product can be part of no orders, but it also can be a product of many orders.

For that reason, “zero or many” notation was used in the diagram.

The “Builds” collection uses composite primary keys with orderID and productID.

24

4.2 Collection

There are four collections in the database: Servers collection, Products collection,

Orders collection, and Builds collection. This section gives examples and explain

the functionality of each collection.

4.2.1 Servers Collection

Code snippet 1 below shows an example of the Servers collection.

[{

 "type": "jenkins",

 "serverID": "jenkins-01",

 "serverName": "Your_Jenkins",

 "credentials": {

 "url": "http://localhost:8080/",

 "username": "admin",

 "password": "yourpassword",

 "token": "My-token"

 }

}]

Code Snippet 1. Servers collection

The Servers collection contains data about credentials for the Jenkins server. The

key “type” contains data of which CI/CD tool the user wants to use (in this sce-

nario is “Jenkins”). “Credentials” object has Jenkins URL, username, password,

and token. Saving the credentials in the database is a good way to enhance se-

curity instead of writing that in the code.

4.2.2 Products Collection

Code snippet 2 below shows an example of the Products collection.

[{

 "productID": "P4",

25

 "productName": "grafana",

 "jobName": "deploy-grafana",

 "parameters": [{

 "name": "NAME_TF_WORKSPACE",

 "defaultValue": "deploy-grafana"

 }]

}]

Code Snippet 2. Products collection

The Products collection carries data about the product the user wants to deploy

on a GKE cluster. Each product has a unique “productID”. The “jobname” key is

the name of the Jenkins pipeline. The “Parameters” document value will be used

as a parameter in the Jenkins pipeline.

4.2.3 Orders Collection

Code snippet 3 below shows an example of the Orders collection.

[{

 "orderID": "order-2",

 "accountCustomerID": "123",

 "accountProviderID": "999",

 "state": "COMPLETE",

 "orderStatus": "",

 "products": [{

 "productID": "P4",

 "productName": "grafana",

 "providerType": "GCP"

 }]

}]

Code Snippet 3. Orders collection

The Orders collection contains details about the order and the state of that or-

der. The state will change according to the flowchart diagram. More details

about the product is also showed in the “products” document.

26

4.2.4 Builds Collection

Code snippet 4 below shows an example of the Builds collection.

[{

 "orderID": "order-1",

 "productID": "P4",

 "productName": "grafana",

 "jobName": "deploy-grafana",

 "buildID": "510",

 "url_jenkins_job_status": "http://localhost:8080/job/de-
ploygrafana/510/api/json",

 "parameters": [{

 "name": "NAME_TF_WORKSPACE",

 "defaultValue": "deploy-grafana"

 }],

 "buildStatuses": [{

 "status": "FAIL",

 "duration": "8.409s",

 "estimateDuration": "42.864s"

 }],

 "stageStatuses": [{

 "name": "Declarative: Checkout SCM",

 "status": "SUCCESS",

 "duration": "568ms"

 }]

}]

Code Snippet 4. Builds collection

The Builds collection will carry details about the build data after the pipelines

have been triggered. It shows the orderID, productID, productName, jobName,

buildID, and an URL that uses to get the data from Jenkins API. The

“buildStatuses” document shows the status of the pipeline, the duration and es-

timateDuration of pipeline. The “stageStatuses” document shows all the steps, as

27

well as the name, status, and duration of each step. All that data is taken from

the Jenkins API.

28

5 IMPLEMENTATION

In this section, the implementation of the software will be described. There are

several steps to set up before running the application. After that, the functional-

ity and code snippet of Order Fulfillment Manager is discussed.

5.1 Setting up before Running the Application

This section will describe prerequisite before executing the project. There are

three steps: Deploy GKE cluster, bash script to get GCP access token, and Jenkins

pipeline to deploy application.

5.1.1 Deploy GKE cluster

A GKE cluster is prerequisite for Order Fulfillment Manager. Instructions found

on the reference number 16 were used to create a GKE cluster. /16/

5.1.2 Get GCP access token

GCP requires authorization to be able to access and use resources. Therefore, we

need to find a way to access GCP through the service account.

#!/bin/bash

key_json_file="syndeno-sandbox-dee00834aba3.json"

scope="https://www.googleapis.com/auth/cloud-platform"

jwt_token=$(./jwttoken.sh "$key_json_file" "$scope")

GCP_ACCESS_TOKEN=$(curl -s -X POST https://www.goog-
leapis.com/oauth2/v4/token \

 --data-urlencode 'grant_type=urn:ietf:params:oauth:grant-type:jwt-
bearer' \

 --data-urlencode "assertion=$jwt_token" |

29

 jq -r .access_token)

Code Snippet 5. Get access token

The code shown in Code Snippet 5 use the service’s account key JSON file to get

an access token to call Google APIs. We will save the access token to the

GCP_ACCESS_TOKEN variable and later use it in the Jenkins pipeline.

5.1.3 Jenkins Pipeline to Deploy Grafana

Below is the structure of the folder that contains the code for deploying Grafana

on the GKE cluster.

Figure 15. Deploy Grafana structure

The folder has six files kubernetes.tf, variables.tf, versions.tf, variables.tf,

helm_release.tf, Grafana-values.yaml, and Jenkinsfile.

provider "google" {

 project = "syndeno"

 region = var.region

 access_token = var.access_token

}

data "google_client_config" "provider" {}

data "google_container_cluster" "my_cluster" {

30

 name = "syndeno"

 location = "europe-west4"

}

provider "kubernetes" {

 host = "https://${data.google_container_cluster.my_cluster.endpoint}"

 token = data.google_client_config.provider.access_token

 cluster_ca_certificate = base64decode(

 data.google_container_cluster.my_cluster.master_auth[0].clus-
ter_ca_certificate,

)

}

Code Snippet 6. kubernetes.tf

The provider “google” is used to configure the credentials to authenticate with

GCP. The provider “kubernetes” provides credentials to connect to the Kuber-

netes cluster.

variable "region" {

 default = "europe-west4"

}

variable "access_token" {

 type = string

}

Code Snippet 7. variables.tf

The file variables.tf contains variables to use in kubernetes.tf. Having a variable

file is a good way to avoid repetitiveness in the code.

provider "helm" {

 kubernetes {

 host = "https://${data.google_container_cluster.my_cluster.end-
point}"

 token = data.google_client_config.provider.access_token

 cluster_ca_certificate = base64decode(

 data.google_container_cluster.my_cluster.master_auth[0].clus-
ter_ca_certificate,

31

)

 }

}

resource "helm_release" "grafana" {

 name = "my-grafana-release"

 repository = "https://charts.bitnami.com/bitnami"

 chart = "grafana"

 namespace = "viet"

 values = [

 file("${path.module}/grafana-values.yaml")

]

}

Code Snippet 8. helm_release.tf

We can release a Helm chart and customer it with Terraform.

fullnameOverride: "viet-grafana"

Code Snippet 9. grafana-values.yaml

The YAML file is used to override the default settings.

terraform {

 required_providers {

 helm = {

 source = "hashicorp/helm"

 version = "~> 2.0.1"

 }

 google = {

 source = "hashicorp/google"

 version = ">=3.52.0"

 }

 kubernetes = {

 source = "hashicorp/kubernetes"

 version = ">= 2.0.0"

 }

32

 }

 backend "gcs" {

 bucket = "tf-viet-testing"

 prefix = "tfstate-kubernetes"

 }

}

Code Snippet 10. versions.tf

Code snippet 10 provides the version that we need for the tools.

5.2 Order Fulfillment Manager

Order Fulfillment Manager is divided to four parts: simulate new order, order

new consumer, order validated process, order processing process. The function-

ality, file structure, and code snippet are described below to give further details

of the thesis.

5.2.1 Simulate New Order

The Simulate_new_OrderInstall image simulates an Apache Kafka order. This or-

der will be used in other process of the application.

Figure 16 below shows the file structure.

Figure 16. The simulate_new_OrderInstall file structure

There is one python file simulate_new_OrderInstall.py which contains the code.

The Dockerfile and requirements.txt file is used to create docker image.

33

producer = KafkaProducer(bootstrap_servers=['172.17.0.1:9092'],

 client_id='producer',

 value_serializer=lambda x: dumps(x).en-
code('utf8'),

 api_version=(0, 10, 1))

Code Snippet 11. Initialize new Kafka producer

Code Snippet 11 will initialize a new Kafka producer. The “bootstrap_servers”

sets the host and port the producer should contact to bootstrap initial cluster

metadata. “value_serializer” tells how the data should be serialized before send-

ing to the broker. Here, we convert the data to json file and encode it to utf-8.

data = {

#the example of Apache Kafka order will be inserted here

}

producer.send('new_order_install', key=b'1003', value=data)

sleep(1)

Code Snippet 12. Send message to consumer

Code Snippet 12 will send the “Apache Kafka order” (save in “data” variable)

message to the topic called “new_order_install”. A Kafka consumer will fetch the

same message from the same topic name.

5.2.2 Order New Consumer

The order_NEW_consumer image will receive and pre-validate the Apache Kafka

order that we simulate in simulate_new_OrderInstall. If the pre-validation is suc-

cessful, the order is saved with state “NEW” to the database.

Figure 17 shows the file structure of order_NEW_consumer.

34

Figure 17. File structure of order_NEW_consumer

There are a total of nine files in the folder “order_NEW_consumer”.

if __name__ == "__main__":

 kafka = Consumer()

 Consumer.save_kafka_order_to_db()

Code Snippet 13. order_NEW_consumer.py

Code Snippet 13 shows the main program of order_NEW_consumer process.

class Consumer:

 def save_kafka_order_to_db():

 consumer = KafkaConsumer(

 'new_order_install',

 bootstrap_servers=['localhost:9092'],

 auto_offset_reset='earliest',

 enable_auto_commit=True,

 group_id='consumer',

 client_id='pythonOFM',

 value_deserializer=lambda x: x.decode('utf-8'),

35

api_version=(0, 10, 2))

Code Snippet 14. Consuming the data

Code Snippet 14 will consume the data that we send in Code Snippet 12.

“auto_offset_reset” handles where the consumer restarts reading after breaking

down or being turned off. When set to “earliest”, the consumer starts reading at

the latest committed offset.

 for message in consumer:

 message = message.value

 orderOrg = json.loads(

 message, object_hook=lambda d: SimpleNamespace(**d))

Code Snippet 15. Convert JSON to Python object

Code Snippet 15 will convert JSON data to Python object so we can handle data

easily in the future.

class Order:

 def __init__(self):

 self.orderID = ""

 self.accountCustomerID = ""

 self.accountProviderID = ""

 self.state = ""

 self.orderStatus = ""

 self.products = []

 def serialize(self):

 obj = {}

 obj['orderID'] = self.orderID

 obj['accountCustomerID'] = self.accountCustomerID

 obj['accountProviderID'] = self.accountProviderID

 obj['state'] = self.state

 obj['orderStatus'] = self.orderStatus

 obj['products'] = []

 for product in self.products:

 obj['products'].append(product.serialize())

36

 return obj

Code Snippet 16. Class Order

Code Snippet 16 shows constructor and serialize().

order = Order()

order.orderID = orderOrg.orderID

order.accountCustomerID = orderOrg.accountCustomerID

order.accountProviderID = orderOrg.accountProviderID

order.state = orderOrg.state

order.orderStatus = orderOrg.orderStatus

Code Snippet 17. Initialize order object

Code Snippet 17 initializes order object from Order class and assign attributes.

class OrderManagement:

 def preValidateOrder(self, order):

 if order.orderID == "":

 print("Missing order ID! Please enter it.")

 order.state = OrderStateEnum.INVALID

 return False

 else:

 print('Prevalidate is successful.\nYour OrderID is "' +

 order.orderID + '".')

 return True

Code Snippet 18. preValidateOrder()

Code Snippet 18 shows preValidateOrder method. This will check if the order ID

is filled or not. If the order ID is missing, the state will be set to INVALID and re-

turn False. If the order ID is filled, the program will return True.

Class OrderManagement:

 def saveOrder(self, order):

 client = pymongo.MongoClient(CONNECTION_STRING)

 db = client['SyndenoDB']

 orders_collection = db['orders']

 if self.preValidateOrder(order) == True:

37

 order['state'] = OrderStateEnum.NEW

 orders_collection.insert_one(order.serialize())

 print('The order "' + order.orderID +

 '" has been saved to MongoDB!')

 else:

 print("Prevalidation is failed. Please fill in the order
ID!")

Code Snippet 19. saveOrder()

Code Snippet 19 will check if preValidateOrder true or not. If it is true, the order

will have state NEW, and it is saved to the “orders” collection in database.

5.2.3 Order validated process

The order_VALIDATED_process image will check if the order is valid and then

trigger the needed pipeline to deploy application on GKE cluster.

38

Figure 18. File structure of order_VALIDATED_process

There are eleven files in this process.

if __name__ == "__main__":

 process = OrderProcess()

 while(True):

 all_NEW_orders = process.fetch_NEW_order()

 print("Starting NEW order processing")

 for order in all_NEW_orders:

 validate = process.validate_NEW_order(order)

 if(validate):

 process.process_VALIDATED_order(order)

 print("Sleeping until next iteration\n")

39

 sleep(3)

Code Snippet 20. order_VALIDATED_process.py

Order_VALIDATED_process is the main Python file of the process. It will fetch all

NEW orders in database, validate and trigger the needed Jenkins pipeline.

class OrderProcess:

 def validate_NEW_order(self, order):

 self.notify_VALIDATING_order(order)

 o = OrderManagement()

 self.order_state = o.validateOrder(order["orderID"])

 if self.order_state == OrderStateEnum.VALIDATED:

 self.notify_VALIDATED_order(order)

 elif self.order_state == OrderStateEnum.INVALID:

 self.notify_INVALID_order(order)

 return self.order_state

Code Snippet 21. validate_NEW_order method

Code Snippet 21 describes how the validate_NEW_order method works. It will use

validateOrder method, which checks if all attributes of the order is filled. If that is

true, the order will have VALIDATED state. If that is not the case, the order will

have INVALID state and the program terminates.

class OrderProcess:

 def process_VALIDATED_order(self, order):

 if self.order_state == OrderStateEnum.VALIDATED:

 self.notify_PROCESSING_order(order)

 self.trigger_jobs(order)

Code Snippet 22. process_VALIDATED_order method

Code snippet 22 checks if the order has VALIDATED state or not. If it is true, the

state will change to PROCESSING and then trigger Jenkins pipeline.

class OrderProcess:

 def trigger_jobs(self, order):

 db = DAO()

40

 jenkins_server = db.getJenkinsServer("jenkins-01")

 jenkins_obj = Jenkins(jenkins_server)

 jobs = jenkins_obj.get_job_and_parameters_from_MongoDB(order)

 for job_name in jobs.keys():

 parameters = jobs[job_name]

 self.run_jobs_and_save_build_data_to_MongoDB(

 job_name, parameters, jenkins_obj, jenkins_server, or-
der)

 print("All jobs has been triggered!")

Code Snippet 23. trigger_jobs method

Code Snippet 23 will get the credentials to Jenkins server from database. After

that, it will get the job name from MongoDB and use it as parameter for

run_jobs_and_save_build_data_to_MongoDB method. The pipeline will be trig-

gered after that method.

5.2.4 Order processing process

The order_PROCESSING_process image will get the build status and stage status

after the pipeline finished and save them to “builds” collection in MongoDB.

if __name__ == "__main__":

process = OrderProcess()

while(True):

print("Starting PROCESSING order processing")

all_PROCESSING_orders = process.fetch_PROCESSING_order()

for order in all_PROCESSING_orders:

process.get_status_PROCESSING_order(order)

print("Sleeping until next iteration\n")

sleep(3)

Code Snippet 24. Main function order_PROCESSING_process

Code Snippet 24 will fetch all PROCESSING orders in database and get the build

data of each order.

class OrderProcess(Jenkins):

41

 def check_order_status(self, order, all_buildstatus):

 if 'FAIL' not in all_buildstatus:

 self.notify_COMPLETE_order(order)

 elif 'SUCCESS' not in all_buildstatus:

 self.notify_FAIL_order(order)

 elif 'SUCCESS' in all_buildstatus and 'FAIL' in all_buildstatus:

 self.notify_FAIL_PARTIAL_order(order)

Code Snippet 25. check_order_status() method

Code Snippet 25 will check if any order has SUCCESS or FAIL. If none, the order

will get FAIL_PARTIAL state. The state will decide next step of the application in

the flow chart.

self.check_order_status(order, all_buildstatus)

if self.order_state == OrderStateEnum.FAIL or self.order_state == Order-
StateEnum.FAIL_PARTIAL:

for job_name in all_fail_job_name:

self.retry_fail_job(job_name, jenkins_obj, jenkins_server,order)

Code Snippet 26. Retry FAIL/FAIL_PARTIAL order

After checking status of order, if it has FAIL or FAIL_PARTIAL state, the program

will rerun the pipeline with parameters.

42

6 TESTING

This section will show the output of the project and the testing. The result,

change of order state, and collection in database of each process is described ad-

ditional details.

6.1 Simulate New Order

The image below describes the output when we run simulate_new_OrderInstall

process.

Figure 19. Simulate Apache Kafka order

The order could be seen through “value”.

6.2 Order New Consumer

The output of order_NEW_consumer will be described below.

Figure 20. The order_NEW_cosumer output

Figure 20 shows the output of the order_NEW_consumer. It pre-validates the or-

der, displays the value of OrderID in the terminal and saves the order to data-

base.

43

Figure 21. Orders collection

The order was saved to Orders collection with state NEW.

6.3 Order Validated Process

The output of order_VALIDATED_process will be described below.

Figure 22. The order_VALIDATED_process output

The state of the order changes: NEW -> VALIDATING -> VALIDATED -> PRO-

CESSING. The program will trigger deploy-grafana pipeline. After that, the build

of order is saved to database.

44

Figure 23. Incomplete build data saved in Builds collection

The incomplete build data is saved in Builds collection in MongoDB. The build

status and stage status are empty now, but we will save those data in next pro-

cess.

Figure 24. State change to PROCESSING

The state of the order changes to PROCESSING.

6.4 Order Processing Process

The output of order_PROCESSING_process will be described in the figure below.

45

Figure 25. The order_PROCESSING_process output

The build status and stage status were shown in the terminal. The duration, esti-

mated duration and job status results is in Build Status section. The stage status

includes name of each step, the status, and the time it takes for each step. In the

end, the order status changes to COMPLETE.

Figure 26. Build and stage status in database

Figure 26 shows that the build and stage status has been saved to database.

46

Figure 27. State changes to COMPLETE

The state of the order has changed to COMPLETE.

47

7 CONCLUSIONS

The main objective of the thesis was to develop a module that enables the user

to install needed tools and software on a Kubernetes cluster through the data

given by the customer. The implemented application succeeded in receiving

Apache Kafka order, processing, and saving the output to the database. Besides,

the resources were deployed properly on the GKE cluster.

Each process of the application has a docker file so it will be convenient to build

and run a docker image. This ensures that the software is easy to move and

maintain in the future.

The most challenging part in the project was the vast number of technologies.

Each tool had to be learnt to find out how they work and how to apply them in

the thesis work. However, thanks to lots of detailed tutorial on the Internet, this

was done successfully. In addition, security was also a complicated task. A deci-

sion had to be made to choose the best way to authenticate to GCP, Jenkins, and

MongoDB and make sure that no one could see the credentials for malicious pur-

pose.

7.1 Future work

Although the application has achieved the needed requirements, there are many

ways to improve the application. Firstly, a subtle GUI should be implemented so

that users can run each process in the same program. That will enhance the usa-

bility of the application. The user could use the GUI to display output and collec-

tions in the database.

Furthermore, there should be more Jenkins pipelines to deploy more applica-

tions, such as MongoDB, MySQL, and other types of databases. The users could

select the resources they like to deploy.

48

REFERENCES

1. Salesforce. Benefit of clouds. Accessed 13.11.2022.

https://www.salesforce.com/ca/hub/technology/benefits-of-cloud/.

2. Syndeno. Accessed 25.10.2022.

https://www.syndeno.com/en/about-us/

3. Coursera. What is Python used for? Accessed 13.09.2022.

https://www.coursera.org/articles/what-is-python-used-for-a-beginners-

guide-to-using-python

4. Whizlabs. Introduction to Google Cloud Platform. Accessed 13.09.2022.

https://www.whizlabs.com/blog/google-cloud-platform/

5. Google Cloud. GKE overview. Accessed 14.09.2022.

https://cloud.google.com/kubernetes-engine/docs/concepts/kubernetes-

engine-overview

6. Bigelow, Stephen J. 2015. Google Kubernetes Engine (GKE). Accessed

25.10.2022

https://www.techtarget.com/searchitoperations/definition/Google-Con-

tainer-Engine-GKE

7. Taylor, David. 2022. What is MongoDB? Accessed 24.10.2022

https://www.guru99.com/what-is-mongodb.html

8. Saurabh. 2022. What is Jenkins? Accessed 14.09.2022.

https://www.edureka.co/blog/what-is-jenkins/

9. Terraform. What is Terraform? Accessed 14.09.2022.

https://www.terraform.io/intro

10. Terraform. Terraform use cases. Accessed 15.09.2022.

https://www.terraform.io/intro/use-cases

https://www.coursera.org/articles/what-is-python-used-for-a-beginners-guide-to-using-python
https://www.coursera.org/articles/what-is-python-used-for-a-beginners-guide-to-using-python
https://www.whizlabs.com/blog/google-cloud-platform/
https://cloud.google.com/kubernetes-engine/docs/concepts/kubernetes-engine-overview
https://cloud.google.com/kubernetes-engine/docs/concepts/kubernetes-engine-overview
https://www.edureka.co/blog/what-is-jenkins/
https://www.terraform.io/intro
https://www.terraform.io/intro/use-cases

49

11. Kozlovski, Stanislav. 2017. A Thorough Introduction to Apache Kafka. Ac-

cessed 15.09.2022.

https://betterprogramming.pub/thorough-introduction-to-apache-kafka-

6fbf2989bbc1

12. Docker overview. Accessed 15.09.2022.

https://docs.docker.com/get-started/overview/

13. Jordan, Jeremy. 2019. An introduction to Kubernetes. Accessed 16.09.2022.

https://www.jeremyjordan.me/kubernetes/

14. Onyszko, Tomasz. 2021. Why should you use Kubernetes in 2022? Accessed

16.09.2022.

 https://www.predicagroup.com/blog/why-kubernetes-2022/

15. Santos, Lucas. 2021. What is Helm Chart? A tutorial for Kubernetes Begin-

ners. Accessed 16.09.2022.

https://www.freecodecamp.org/news/what-is-a-helm-chart-tutorial-for-ku-

bernetes-beginners/

16. Terraform. Provision a GKE cluster. Accessed 13.11.2022.

https://learn.hashicorp.com/tutorials/terraform/gke

https://betterprogramming.pub/thorough-introduction-to-apache-kafka-6fbf2989bbc1
https://betterprogramming.pub/thorough-introduction-to-apache-kafka-6fbf2989bbc1
https://docs.docker.com/get-started/overview/
https://www.jeremyjordan.me/kubernetes/
https://www.predicagroup.com/blog/why-kubernetes-2022/
https://www.freecodecamp.org/news/what-is-a-helm-chart-tutorial-for-kubernetes-beginners/
https://www.freecodecamp.org/news/what-is-a-helm-chart-tutorial-for-kubernetes-beginners/
https://learn.hashicorp.com/tutorials/terraform/gke

	1 Introduction
	1.1 Objective
	1.2 Syndeno

	2 Relevent Technologies
	2.1 Python
	2.2 Google Cloud Platform
	2.2.1 Google Kubernetes Engine

	2.3 MongoDB
	2.4 Jenkins
	2.5 Terraform
	2.6 Apache Kafka
	2.7 Docker
	2.8 Kubernetes
	2.8.1 Basic Object in Kubernetes
	2.8.2 Benefits of Kubernetes

	2.9 Helm

	3 APPLICATION DESCRIPTION
	3.1 Objective and Function
	3.2 Prerequisite
	3.3 Requirements Analysis
	3.3.1 Must-have Requirements
	3.3.2 Should-have Requirements
	3.3.3 Nice-to-have Requirements

	3.4 Main Processes
	3.4.1 Simulate Apache Kafka Order
	3.4.2 Pre-validate order
	3.4.3 Validate and Process order
	3.4.4 Save Output

	4 DATABASE
	4.1 Entity Diagram
	4.2 Collection
	4.2.1 Servers Collection
	4.2.2 Products Collection
	4.2.3 Orders Collection
	4.2.4 Builds Collection

	5 IMPLEMENTATION
	5.1 Setting up before Running the Application
	5.1.1 Deploy GKE cluster
	5.1.2 Get GCP access token
	5.1.3 Jenkins Pipeline to Deploy Grafana

	5.2 Order Fulfillment Manager
	5.2.1 Simulate New Order
	5.2.2 Order New Consumer
	5.2.3 Order validated process
	5.2.4 Order processing process

	6 TESTING
	6.1 Simulate New Order
	6.2 Order New Consumer
	6.3 Order Validated Process
	6.4 Order Processing Process

	7 CONCLUSIONS
	7.1 Future work

	REFERENCES

