

Ing. Patricie Suppala

FinOps in SaaS platform within
hybrid, multi-cloud, multi-tenant,
multi-region environments

Metropolia University of Applied Sciences

Bachelor of Engineering

Information Technology

Bachelor’s Thesis

2 April 2022

Abstract

Author: Ing. Patricie Suppala

Title: FinOps in SaaS platform within hybrid, multi-cloud, multi-

tenant, multi-region environments

Number of Pages: 66 pages

Date: 2 April 2022

Degree: Bachelor of Engineering

Degree Programme: Information Technology

Professional Major: Mobile Solutions

Supervisors: Tommi Olavi Lundell, R&D Squad Group Lead

Anand Adhiappan, Head of Advanced Solutions

 Erik Pätynen, M.Sc., Senior Lecturer

Throughout the past decade, Software as a Service (SaaS) has been growing

significantly. As traditional industries are preparing an entrance to SaaS, they

must consider which approaches to adopt. Transfer to SaaS includes adopting

tools and processes for managing expenses, including aspects of Cloud Financial

Operations (FinOps), which aims to ensure a return on every spend in the public

cloud. Managing expenses also means going beyond FinOps and striving for

cost-effective SaaS offerings and cost optimisation on a functionality level.

This project researches the environment and tools that could be used for FinOps

and other SaaS cost optimisations. It strives to answer the following questions:

• What are the required capabilities for managing costs?

• What are the major cost contributors?

• What are the possible solutions?

Solutions should be suitable for hybrid cloud, multi-cloud, multi-tenant and multi-

region environments. This project has been conducted with research performed

for an international company, a major leader in its industry.

As a result of this research, three main solution types have been identified:

commercial, public cloud-native and open source. The open-source solution was

investigated in great detail and a toolchain has been proposed based solely on

open-source tools. The main pitfalls of open source have been highlighted. It is

also suggested that commercial solutions be taken into consideration.

Keywords: Cloud Computing, Software as a Service, Public Cloud, Costs, Multi-

cloud, Hybrid Cloud, Multi-Tenant, KPI, FinOps

Contents

Contents

1 Introduction 1

2 Overview of the current SaaS monitoring landscape 3

2.1 SaaS history and definition 3

2.2 SaaS driving forces 4

2.3 Cloud computing 7

2.4 Kubernetes 9

2.5 Monitoring 9

2.6 Alerts 9

2.7 Architectural styles 10

2.8 Microservices in Kubernetes 11

2.9 Single-tenant vs multi-tenant 13

2.10 Key performance indicators 14

2.11 Open-source 16

3 Tools 18

3.1 Monitoring and logging 18

3.1.1 Prometheus 18

3.1.2 Graphite 20

3.1.3 Thanos 22

3.1.4 Cortex 22

3.1.5 Zabbix 23

3.1.6 Telegraf 25

3.1.7 Elasticsearch 26

3.1.8 Logstash 27

3.2 Visualisation 28

3.2.1 Grafana 28

3.2.2 Kibana 29

3.2.3 Chronograph 30

3.2.4 Weave Scope 31

3.3 Stacks 32

3.3.1 TICK – Telegraf, Chronograph, InfluxDB, Kapacitor 32

3.3.2 ELK – Elasticsearch, Logstash, Kibana 34

3.3.3 EFK – Elasticsearch, Fluentd, Kibana 34

3.4 Commercial solutions 35

4 Problem analysis and proposed solution 37

4.1 Key cost contributors 38

4.2 Required capabilities 40

4.2.1 Anomaly detection 41

4.2.2 Cost allocation 42

4.2.3 Planning and budgeting 43

4.2.4 Resource management 44

4.2.5 Billing 45

4.3 Solutions 47

5 Conclusions 52

References 53

List of Terms and Abbreviations

FinOps Cloud Financial Operations

ASP Application Service Provider

VPN virtual private network

SLA service quality agreement

LAN local area network

AWS Amazon Web Services

ECS Amazon Elastic Container Service

GKE Google Kubernetes Engine

OCP Red Hat OpenShift Container Platform

ACK Alibaba Cloud Container Service for Kubernetes

AKS Azure Kubernetes Service

SOA service-oriented architecture

MOA microservice-oriented architecture

ESB enterprise service bus

API application programming interface

KPI key performance indicator

B2B business to business

MRR monthly recurring revenue

ARPU average revenue per user

CLTV customer lifetime value

CNCF Cloud Native Computing Foundation

JDBC Java Database Connectivity

ICMP Internet Control Message Protocol

TCP Transmission Control Protocol

ETL extract, transform, load

EMG Elasticsearch, Metricbeat, Grafana stack

LOC lines of code (LOC)

TBM Technology Business Management

Hybrid cloud – combination of private and public cloud.

Multi-cloud – combination of several public clouds. For example, some services

may be running on AWS. The same services for the same customer

may run on Google Cloud, depending on the availability to deliver the

service under contracted conditions. The ability to work in multi-cloud

is especially relevant for services running on the edge and in multiple

regions. [1]

Multi-tenant – discussed in detail in Chapter 2.

Multi-region – one service running in multiple regions [2]

SaaS Software as a Service

CAPEX capital expenditures

OPEX operating expenses

ERP enterprise resource planning

1 (66)

1 Introduction

A shift towards Software as a Service (SaaS) can be seen across industries.

Pricing models, deployment, and business operation models are changing to

allow customers more flexible use of services and offer additional features

which cannot be available on-premise. Due to its numerous advantages, it is

anticipated that many of these services will be managed and delivered using

Kubernetes-orchestrated environments. As a result, infrastructure for these

services will be entirely abstracted. Before this becomes a reality, many vital

challenges remain. These challenges include metering, allocating, and

calculating costs related to these services for cost management and billing.

This thesis aims to analyse options for cost-related metering per service usage,

preferably using open-source tools. Ideally, the solution would be a modular,

flexible toolchain for all possible payment models and applications that is usable

across multiple public cloud providers.

SaaS products are marketed as more economical. Therefore, managing costs is

a significant concern for development companies, who need to ensure that their

affordable products are also profitable.

This research has been performed on demand for an international company, a

major leader in its industry. While conducting this research, the company was

also running other parallel research and initialising pilot projects. The

company’s market is worldwide in multiple industries with a high level of

competition and a strong focus on cost efficiency. The competition includes

major established players of comparable size, market disruptors, and innovative

customers in the supply chain. The concept of SaaS was considered at the start

of the project. A fast-paced and high-stakes working environment could not be

2 (66)

successful without everyone’s willingness to quickly evaluate and re-evaluate

any options and possibilities.

Beyond rapid changes in the understanding of related matters within the

company, SaaS options are also changing rapidly. Although some actors might

be considered established in the commercial sphere and many more are

emerging, when concentrating on open-source possibilities, the options are not

stable. Although new and interesting open-source tools continue emerging, the

dynamics of open source itself cause some communities to grow quickly and

others to slowly fade away. All of this must be weighed when seeking suitable

tools and solutions. Therefore, also this thesis reflects the current best possible

understanding of relevant matters at the time it was written.

3 (66)

2 Overview of the current SaaS monitoring landscape

SaaS is undergoing rapid development, and terminology may carry different

meanings depending on industry or application. The purpose of the following

chapters is to define terminology and context and explain SaaS and cloud

computing broadly.

2.1 SaaS history and definition

SaaS history started in the 1990s with the gradual centralisation of enterprise

servers. Businesses discovered that they could achieve savings by centralising

computing resources. Another supporting factor was the proliferation of the

internet, which is based on the client/server model. However, there were no

changes in the ownership or the way of managing application resources. [3, 4]

The first SaaS-resembling model that provided application services was

Application Service Provider (ASP)–hosted software with a client/server

architecture. The client mainly used a virtual private network (VPN) via the

internet. Businesses that used a vendor’s ASP services connected to a

dedicated server-specific application client or, later, to a more universally-used

remote desktop. This model brought changes in licensing policy and ownership.

The customer company no longer had to own the software and resources; they

simply rented a service and paid for it at regular intervals. With the operator

service, a service quality agreement (SLA) is established, which specifies

application availability, the scope of support, rental prices, and other details. [4,

5]

A SaaS distribution model can be presented as an IT service with the goal of

providing application functionality for the end customer. SaaS is defined with the

following characteristics, presented by the SaaS Executive Council [6]:

• SaaS uses a one-to-many model or multi-tenant mode of operation.
The same application environment serves more than one user. This
architecture is the prerogative of the SaaS model.

4 (66)

• The application is managed centrally by the operator. The customer
connects using a client that, in most cases, is based on web
browsers.

• SaaS applications are based on the internet and its protocols. SaaS
is closely tied to web application development.

• The application is usually data-bound. Similarly to ASP, the model
assumes the storage of all data by the service provider.

• For SaaS, the application provider is also the manufacturer of the
application.

The above definition is from 2006. Research shows that, in 2021, there is no

one clear definition of SaaS. The SaaS model, unlike ASP, is not compatible

with the model of perpetual license pricing. For the case of a service run on a

private cloud for a single user based on a perpetual license or a subscription

longer than one year, we would refer to managed service, not SaaS. [7]

2.2 SaaS driving forces

Sometimes SaaS is defined as a commercial model in which software is sold as

a subscription rather than a perpetual license [8]. However, subscription model

itself cannot define SaaS, as non-SaaS applications can also be billed as

subscriptions [9], while SaaS applications can use completely different

monetisation and billing strategies [10].

SaaS is a software product for which the developing company takes responsibility

not only for application development and data management but also runtime,

middleware, O/S, virtualisation, servers, storage, networking, maintenance, and

so forth. In other words, all the customer has to do, for many services, is create

a username and provide a valid e-mail address and credit card. This provides

significant simplification and flexibility for the customer. [11]

There are several reasons why companies that develop software consider SaaS:

• For established companies, SaaS is another potential monetisation
market – it offers the possibility of targeting users that cannot afford
to buy a license for an on-premise solution.

5 (66)

• Less-customised software is gaining acceptance.

• SaaS has become popular even among major customers.

• SaaS is what the competition is investing in, and the concept has
already been proven in some industries.

• SaaS is a way to offer solutions directly to customers without re-
sellers claiming part of the profit.

• Cloud computing enables the introduction of new functionalities, for
example, in areas of collaboration.

• SaaS does not have to consider legacy.

SaaS customers have their own motivations:

• SaaS solutions are new and offer a fresh look and feel; limited
functionality at early stages of development adds to the simplicity. An
interactive web interface allows for more intuitive navigation. Or, as
some say, ‘SaaS is cool.’

• The current trend is to move from capital expenditures (CAPEX) to
operating expenses (OPEX). This change brings value on several
levels:

– Customers are reaching out to OPEX to free capital for further
investment.

– Decisions can be made on the managerial level at which the tool is
needed without permission from higher levels of the hierarchy.

– No significant upfront investment is needed.

– The bureaucracy required for large investments can be avoided.

• Currently, in some companies, the traditional review of terms and
conditions can be bypassed, as processes are not set to prevent
employees from accepting any terms and conditions while
incorporation new SaaS/based tools into their daily work.

• The buying experience is smoother, as customers are spared the
necessity of being pressured by salespeople for information about
their use case and asking for demos and evaluation licenses.
Evaluation can be conducted at one’s own time and pace.

• On-demand billing is an attractive alternative to subscriptions.

• Service level agreements are standardised and available online.

• Customers can still request custom development.

• SaaS is often accompanied by online documentation and a support
community, which helps to lower the usage barrier significantly.

• SaaS is available from anywhere and for any device type and model.

6 (66)

• SaaS is scalable.

• SaaS offers to save costs, if not on the price of the product itself,
then on the infrastructure and resources needed to deploy and
maintain an on-premise solution.

• Upgrades are included in the price; that is, one always has the latest
version.

• Fixes are deployed continually without service interruption, and
customers do not need to wait for the next release.

• SaaS solutions tend to create a network of solutions offered by
different companies that provide significant additional value. One
example is the connection between Salesforce, ZenDesk, and Jira,
through which even a small company can afford a full-fledged
enterprise resource planning (ERP).

• Some SaaS solutions provide access to a plug-in marketplace to
which anyone can contribute with add-on-type modular functionality.

Above is an extensive list of motivators for trying SaaS. It is thus fair to list the

disadvantages and explain why companies leave SaaS and return to on-premise

software. Among the most prominent disadvantages are the following:

• Costs that are potentially too high to maintain the same level of
security.

• A lack of essential features that were present in on-premise solutions
but have not yet been developed for SaaS versions.

• An extensive customisation and support come with additional costs.

• the loss of control over development (the interests of another
customer with a different use-case may be prioritised).

• non-compliance with privacy laws; for example, Russian law forbids
the storage of data about its citizens by datacentres outside of
Russia.

7 (66)

2.3 Cloud computing

There are four deployment models recognised in cloud computing: the public

cloud, private cloud, hybrid cloud, and community cloud.

Public cloud – This group of cloud services is publicly available to many users

who represent end consumers or organisations. The use of public clouds almost

always occurs via the internet.

Private cloud – A private cloud is a cloud computing environment dedicated to a

single customer. As for public clouds, individual services can be available

through the internet; however, private clouds often use a local area network

(LAN) or another type of private network. [12]

Community cloud – This type of cloud solution expands the above-described

private cloud. As its name suggests, the user base consists of users with

common interests or shared concerns (such as security requirements or data

privacy). In practice, this type of solution can be applied to different

geographical areas or business communities, such as the BRIC community

cloud, the community cloud of the European Union. [13]

Hybrid cloud – This final category represents a special cloud environment that

encapsulates two or more other deployment models. This method is typically

used by companies that already run a private cloud but need access to public

services. [12]

A significant change was brought to SaaS by public cloud providers that offer

the option to rent server capacity and accompany it by a portfolio of services

that enable different functionalities, such as data storage, access, or

processing. Figure 1 shows the leading public cloud providers and about 10% of

the services they offer. It briefly illustrates the scale and competitiveness of this

environment.

8 (66)

Figure 1 Public cloud services by public cloud provider [14]

9 (66)

2.4 Kubernetes

Kubernetes is an open-source tool that allows docker orchestration. Another

tool offering similar functionality is , for example, Docker Swarm. However,

Kubernetes has managed to gain significant traction. It was adopted by all

major public cloud providers (AWS, Google Cloud, RedHat, Microsoft Azure) in

their commercial versions: Amazon Elastic Container Service (Amazon ECS),

Mirantis Kubernetes Engine (former UCP), Google Kubernetes Engine (GKE),

Red Hat OpenShift Container Platform (OCP), Alibaba Cloud Container Service

for Kubernetes (ACK) and Azure Kubernetes Service (AKS). [15, 16, 17, 18, 19,

20, 21, 22, 23]

2.5 Monitoring

Monitoring refers to the process of collecting, storing, processing, analysing, and

visualising data obtained with a monitoring system. The goal is to create a picture

of the current state of the monitored environment, with the additional aims of

forecasting the system’s future behaviours, anticipating the behaviour of similar

systems, or evaluating a system’s behaviour against its past. The next chapter

will show that when monitoring costs in SaaS, it is desirable to have a granularity,

at least on the microservice level.

2.6 Alerts

Sending alerts is the aspect of a monitoring system responsible for carrying out

actions based on changes in measured values. An alert definition always consists

of two components:

• Threshold – A threshold is the value above which an action is performed.

• Action – An action is performed after exceeding the given threshold value.

An action is usually sent to predefined employees or user groups and

contains information about where and when the event arises. [24]

The primary purpose of an alert is to warn of a change in the status of monitored

systems, usually to notify a human for further evaluation. Alerts are triggered

10 (66)

when a metric exceeds a predefined or calculated threshold. Thresholds can be

based on past values or they can be forecast. Thresholds can be defined

manually or with the help of machine learning.

2.7 Architectural styles

The gradual evolution of programming paradigms in information systems began

by promoting object-oriented languages instead of procedural languages.

However, object/oriented programming on its own could not solve all problems,

and applications continued to grow to the point at which they were too large and

difficult to maintain. Moreover, any changes made to one module affected the

behaviour of other parts of the system, and testing thus took much time. For this

reason, architectural styles appeared, especially service-oriented architecture

(SOA) and microservice-oriented architecture (MOA).

SOA first appeared in 2000. The motivation for this approach was the need for

more flexible architecture and configuration depending on clients’ needs. SOA

can therefore be described as an architectural model in which individual

components offer services to other components through communication

protocols within a computer network. This solution’s advantages lie in

interconnecting the various parts of an application, its central administration,

and the reusability of already-established services. Enterprise service bus

(ESB) mediates communication between all participants. However, due to using

a central control point, the system is also more prone to failure. For example, if

one service is slow, it will affect other system parts.

MOA brings more power and less fragmentation to the system. It is typically

used, for example, in banking applications. It is different from SOA in that it

shares databases across all services. Communication occurs through

messaging, the format of which depends on the specific implementation; but

XML is used most often. The most important part of the service is its application

interface (API), through which interactions with other parts of the system occur.

Whether the communication between services is asynchronous or synchronous,

11 (66)

as well as other aspects of communication, depends on the specific case. Most

often, HTTP is used as a communication protocol together with the REST

architectural model. The format for data exchange is, in most cases, JSON.

Regarding the mutual communication of microservices, there is a delay in

sending messages over the network. [25, 26, 27]

2.8 Microservices in Kubernetes

Microservice is one way of offering SaaS. It is an architectural style, as

discussed in the previous section. Microservices together create what would in

traditional computing be called an ‘application’. For example, Netflix consists of

around 1000 microservices, including movie encoding [28]. What seems from

the customer side to be one service is, from the perspective of the service

provider, a service mesh, layer, or architecture that facilitates communication

between microservices. [29, 30]

Figure 2 shows a simple service that consists of only one microservice running

on Kubernetes on three pods simultaneously. The traffic to these pods is

managed with a load balancer.

Figure 2 One service consisting of one microservice and running on three pods
[31]

12 (66)

An example of a service consisting of two microservices and running on two

pods, with Ingress providing external access and load balancing, can be seen in

Figure 3.

Figure 3 One service consisting of two microservices and running on two pods
[32]

The matter becomes more complex when adding microservices, combining

services, and running services in multiple clusters or over multiple regions.

Figure 4 shows a very simplified example of such a scenario. The tools required

to make this possible will be discussed in Chapter 3.

Figure 4 Managing multiple regions with Ingress [33]

To limit the possible number of combinations between service, region, latency,

and any other aspects of the service level agreement, the service provider may

choose to predefine viable scenarios and make service available in a service

13 (66)

catalogue. A customer’s selection is then deployed using the service broker,

which again contains a predefined guide on how to deploy a given scenario.

Figure 5 shows the high level architecture of a service broker that provides

services to an application based on a service catalogue.

Figure 5 Offering and deploying services with a service catalogue and service
broker [34]

2.9 Single-tenant vs multi-tenant

When providing software as a service, there are two basic approaches: single-

tenant and multi-tenant. These terms define the number of tenants using one

instance of the application.

In the single-tenant model, a custom application instance exists for each tenant.

Each of these copies is then run on a separate infrastructure, shielded from

other systems. In practice, this is most often the provider’s server or individual

hosting of the relevant tenant. All instances, for example, contain an

independent database and possibly other supporting tools. This model is shown

in Figure 6, which illustrates, in a simplified way, the challenge of defining multi-

14 (66)

tenancy. A fourth scenario is missing from figure 6, specifically, a single-tenant

application with a multi-tenant database.

Figure 6 Single-tenant vs multi-tenant [35]

The multi-tenant model, in this case, means that one instance of the application

serves all of the provider’s customers. Such a system is operated centrally and

contains some shared parts, for example, administration. At the same time,

however, every tenant has its own views or modules visible only to its users and

not available to other parts of the system. All clients can also use settings to

customise the application to their preferences. Leased systems typically include

user management or the option to add or remove tables in the database.

2.10 Key performance indicators

Key performance indicators (KPIs) are metrics used to evaluate a system over a

period of time and plan its future behaviour. The selection of SaaS-specific KPIs

depends on a company’s business, cost, and pricing models. For example, a

15 (66)

B2C service with a pure consumption character and tier pricing will require

different KPIs than a B2B service that creates business dependency and

requires support services to onboard or to leave, or one priced based on usage.

An overview of the most commonly cited cost-related KPIs is below. [36, 37]

Monthly recurring revenue

Monthly recurring revenue (MRR) is one of the most significant indicators for

companies using a subscription business model, a model based on regular

payments from customers who pay the (usually monthly or annual) subscription

fee. MRR represents the income that the company can depend on each month.

Changes in customer structure (newly acquired. and lost customers) must be

addressed when evaluating MRR.

Churn rate

Churn Rate determines the percentage of customers who are lost in each

period (cancelled subscriptions). If a company has ten subscribers and one

customer has cancelled their subscription in the last month, the churn rate is

10%. The churn rate indicates customer dissatisfaction with the company.

Average revenue per user

Average revenue per user (ARPU) indicates the company’s average income

from one customer. The formula divides the total revenue for a certain period by

the number of subscribers in the same period. To increase the ARPU,

companies can upsell (offer a more expensive premium product) or cross-sell

(offer a complementary product).

Customer lifetime value

Customer lifetime value (CLTV) measures the revenue that a customer will

bring to the company for the entire period of trading with the company. The

funds spent on acquiring new customers should be smaller than CLTV. CLTV is

16 (66)

a prediction; it is not an exact number for a specific customer group. CLTV

shows the revenue that can be expected when acquiring a new customer. This

expectation is based on past data.

Quick ratio

The quick ratio is an indicator of short-term liquidity. It measures the ability to

cover short-term liabilities with the most liquid assets. In the SaaS environment,

the quick ratio is the ratio of revenue growth to losses. The quick ratio provides

a view into how much and how fast the company is growing. For a company to

prosper, the quick ratio must be kept above 1. A quick ratio above 4 means that

a company is growing quite quickly and efficiently, making it easier to attract

investors.

2.11 Open-source

When considering open source for a large-scale commercial project by a

company that is not one of the major open-source contributors, it is important to

consider the following issues:

- The viability of the open-source tools and how likely they are to persist in

the future. If a critical open-source component loses traction or ceases to

be open source, the company would need to take over its development,

whether as open-source or as a fork (if the license enables it).

- The license of the open-source solution. Some licenses may require that

parts of code are also open source, that the code of the solution must be

available to the customer, or even that the final product must be open

source.

Compared to in-house development, using open source involves a loss of

power over the final product. This power ultimately goes to the companies

actively contributing to (paying for) the development of the open-source product.

Information about which companies are currently in charge of open-source

17 (66)

projects is not readily available. This information can be inferred from the Cloud

Native Computing Foundation website by analysing the foundation project

partners or the contributors’ e-mail addresses. [38, 39, 40, 41, 42, 43, 44, 45,

46, 47, 48, 49, 50]

18 (66)

3 Tools

The following subchapters describe some of the available tools and solutions

that can monitor cost-related metrics in SaaS. With the overview in Table 1,

each project’s size and future potential can be quickly compared with others.

Tool Website

GitHub

Year

start

ed

Contribut

ors

ElasticSea

rch

https://www.elastic.co/elasticsearch/

https://github.com/elastic/elasticsearch

2010 1641

Telegraf https://www.influxdata.com/time-series-

platform/telegraf/

https://github.com/influxdata/telegraf

2015 887

Prometheus https://prometheus.io/

https://github.com/prometheus/prometheus

2012 593

Logstash https://www.elastic.co/logstash/

https://github.com/elastic/logstash

2010 464

Thanos https://thanos.io/

https://github.com/thanos-io/thanos

2017 359

Prometheus

AlertManag

er

https://prometheus.io/docs/alerting/latest/a

lertmanager/

https://github.com/prometheus/alertmanager

2013 222

Jaeger https://www.jaegertracing.io/

https://github.com/jaegertracing

2016 216

Metricbeat https://www.elastic.co/beats/metricbeat

https://github.com/elastic/beats/tree/master

/metricbeat

2014 100

Weave

Scope

https://www.weave.works/oss/scope/

https://github.com/weaveworks/scope

2015 97

Graphite https://graphiteapp.org/

https://github.com/graphite-project

2008 23

Zabbix https://www.zabbix.com/

https://github.com/zabbix/zabbix

2011 7

Cortex https://cortexmetrics.io/

https://github.com/cortexproject

2016 5

Table 1 Open-source projects relevant to cost monitoring, the year when the
project was started, and the number of contributors in June 2021

3.1 Monitoring and logging

3.1.1 Prometheus

Prometheus is an open-source service monitoring system used to monitor

events, trigger aggregation operations on collected data, evaluate monitoring

rules, and send warning / alert notifications. It is easy to use and supports a

large number of possible integrations. It has become one of the most widely

used monitoring tools. It has incorporated a simple and straightforward

graphical user interface, allowing graph creation, editing configuration, and rule

https://www.elastic.co/elasticsearch/
https://github.com/elastic/elasticsearch
https://www.influxdata.com/time-series-platform/telegraf/
https://www.influxdata.com/time-series-platform/telegraf/
https://github.com/influxdata/telegraf
https://prometheus.io/
https://github.com/prometheus/prometheus
https://www.elastic.co/logstash/
https://github.com/elastic/logstash
https://thanos.io/
https://github.com/thanos-io/thanos
https://prometheus.io/docs/alerting/latest/alertmanager/
https://prometheus.io/docs/alerting/latest/alertmanager/
https://github.com/prometheus/alertmanager
https://www.jaegertracing.io/
https://github.com/jaegertracing
https://www.elastic.co/beats/metricbeat
https://github.com/elastic/beats/tree/master/metricbeat
https://github.com/elastic/beats/tree/master/metricbeat
https://www.weave.works/oss/scope/
https://github.com/weaveworks/scope
https://graphiteapp.org/
https://github.com/graphite-project
https://www.zabbix.com/
https://github.com/zabbix/zabbix
https://cortexmetrics.io/
https://github.com/cortexproject

19 (66)

creation. Prometheus is based on the Go programming language, which

guarantees high search performance. Prometheus is one of the so-called time

series monitoring systems. This means that all acquired data are time-stamped.

Figure 7 shows the architecture of Prometheus. [51, 52]

Figure 7 Prometheus architecture [53]

The following section describes the architecture of the Prometheus monitoring

tool in more detail.

• The Prometheus server scrapes and stores time series data from
monitored targets. Prometheus provides its own local database for
time storage organised data and an interface that can be used for
integration with other databases. TSDB stands for ‘time series
database’.

• The Pushgateway supports short-lived jobs that may not exist long
enough to be scraped. By default, Prometheus retrieves data using
the ‘pull’ method, meaning that it is configured so that it knows when
to scrape the data. However, some tasks or processes may be so
short that they are not caught at runtime. For these cases, it is
possible to use the so-called ‘push’ method, where the running
process provides data to the component Pushgateway, which will
then expose the data for Prometheus.

20 (66)

• Exporters are third-party tools designed to obtain information about
the running application and then adapt its format for further
processing. Most exporters are available for download for use as
Docker containers. Special-purpose exporters are used when it is not
feasible to instrument a given system with Prometheus metrics
directly. Service Discovery is a tool used to detect components that
should be monitored automatically. [54]

• Alertmanager is an intermediary between the monitoring system and
the user. Alertmanager is used for the processing and subsequent
management of alert notifications. Notifications are then distributed
according to the configuration. Some supported communication
channels are e-mail, HipChat, PagerDuty, Slack, and Webhook. [55,
56]

Prometheus is available on Docker Hub. It uses the PromQL query language.

Exporters have been made available by numerous applications. The support

community is large, and guidance is up-to-date and readily available. It is a

popular tool that is undergoing rapid development. However, Prometheus does

not support storage and subsequent analysis of logs; neither it supports

collection and work with non-numerical data. In itself, it is not suitable for long-

term data storage. A significant strength of Prometheus is the out-of-the-box

possibility for federation when a Prometheus server scrapes metrics from

another Prometheus server. This feature allows for the hierarchical collection of

data necessary for multi-region and multi-cloud environments. [57]

An example implementation is the monitoring of service meshes on separate

Kubernetes clusters, each of which has its own Prometheus instance that is

then linked to a global Prometheus instance. [58]

3.1.2 Graphite

Graphite stores numeric time series data and renders graphs of this data. It is

programmed in Python 2 (the version of Python available in 2021 is 3.9), which

does not require expensive and powerful hardware to start and operate.

Graphite does not actively collect data, like Prometheus does, but instead

passively waits for data provided by an external tool. The monitoring application

must be configured to send data directly to Graphite. Graphite is merely a

21 (66)

database with query language and graphing features. Graphite has value when

storing cluster data in the long term. It is used together with StatsD, a network

daemon that listens for statistics. [59, 60, 61, 62, 63, 64]

The architecture of the Graphite monitoring tool is demonstrated in Figure 8.

Figure 8 Graphite architecture [63]

Figure 9 shows the Graphite monitoring tool and its division into three main

parts that handle data receipt, processing, and recording.

• Carbon is a service used primarily for receiving data and preparing
data for storage. An optional carbon-delay component can write
incoming data to two or more repositories as duplicates and sort
incoming data.

• Whisper is a database based on the principle of the round-robin
database. It provides fast and reliable data storage.

• Graphite-web is a graphical user interface for retrieving data from a
Whisper database and display of the data.

22 (66)

According to its documentation, Graphite scales horizontally but does not

provide functionality for federation, unlike Prometheus. [59, 63]

3.1.3 Thanos

Thanos and Cortex are Prometheus setups aiming to address some of the

needs that arise from monitoring real-life production applications. Like

Prometheus, Thanos and Cortex are also Cloud Native Computing Foundation

(CNCF) projects, but they are in the so-called incubating stage. CNCF projects

might be considered the most advanced open-source projects in cloud

development. They create the basis for many commercial solutions. Therefore,

the fact that setups like Thanos and Cortex are in the incubation stage may well

indicate what is now possible to achieve in the cloud.

Thanos aims to overcome the short-term data storage of Prometheus. Thanos

allows the storage of historical data in such a way that metrics can be queried

globally across all Prometheus servers. It allows the storage of Prometheus

time series data in object storage. Thanos can be added on top of existing

Prometheus deployments and aims to work in situations where cross-cluster

federation is used. Further, Thanos can aggregate data from Prometheus

replicas. This is Thanos’s solution to data gaps created when a Prometheus

server becomes unavailable and data cannot be pulled. Another Prometheus

instance is running in parallel, and Thanos claims to be able to aggregate the

data without duplicates or errors. [65, 66, 67]

3.1.4 Cortex

As described in the previous chapter, Cortex is another CNCF incubation

project. It aims to provide multi-tenant Prometheus as a service with

authentication and authorisation functionality. This means that Cortex collects

data across multiple machines in one cluster as illustrated in Figure 9.

Furthermore, Cortex aggregates data centrally and uses a push-based method.

This makes data available even when an edge location becomes unreachable.

23 (66)

This is an advantage compared to Thanos, which relies on pulling data and has

nothing to pull if a Prometheus server becomes unavailable unless there is an

unaffected duplicate Prometheus server. [68, 69, 70, 71]

Figure 9 Cortex architecture [72]

3.1.5 Zabbix

Zabbix is a monitoring tool that promises metric collection, anomaly detection

with alerts, visualisation, easy deployment and distributed monitoring. It is

maintained by the GitHub community, counting eight contributors (June 2021).

Its fork, Zabbix Docker Monitoring, counts 13 contributors and had its last

commit in February 2021. As such, Zabbix serves as an example of an open-

source project that has not received enough traction and seems to be

disappearing under the shadow of larger and more successful communities.

However, as the forces of open-source change very quickly, it may be an

advantage to know all alternatives. [73, 74]

Zabbix architecture

24 (66)

The Zabbix monitoring system can be deployed and operated by installation on

a server.

Figure 10 Zabbix architecture [75]

As shown in Figure 10, the Zabbix server is the central component responsible

for managing the entire monitoring process. The server is responsible for

processing incoming data, defining monitoring tasks, defining alert triggers, and

sending notifications. Zabbix supports several types of databases: MySQL,

Oracle, PostgreSQL, TimescaleDB, IBM DB2, SQLite. [75, 76]

A Zabbix proxy collects incoming data sent from one or more monitored

devices. The data are stored in the cache and only then transferred to the

Zabbix server. The Zabbix agent can be configured to work in two modes:

• Passive – Passive mode works on the request/response principle.
The agent responds to a data request sent from a Zabbix server.

• Active – In the case of an active configuration at predetermined
intervals, the agent periodically sends information about monitored
items.

Zabbix was originally developed for monitoring servers. Zabbix, unlike

Prometheus, can provide out-of-the-box functionality for storing and analysing

25 (66)

text values and trigger alerts with advanced functionality as alert escalation.

According to Metricfire, Zabbix is the best choice in the following scenarios:

• There is a need for open-source software with a C back end and PHP
front end.

• The data are stored in MySQL, MariaDB, PostgreSQL, SQLite,
Oracle, or IBM DB2.

• There are less than 1000 devices.

• There is a need for monitoring but not necessarily for outstanding
visualisation. [77]

Zabbix claims that it can monitor multi-tenant environments and can be used

together with Grafana for visualisation. It is possible to add custom agent

checks, but there is nothing equivalent to the portfolio of Prometheus exporters.

Altogether, no evidence could be found that Zabbix is suitable for anything

beyond network monitoring. [78]

3.1.6 Telegraf

Figure 11 highlights how Telegraf monitoring agent is used to collect, process

and aggregate time series data from a variety of sources. Telegraf collects

metrics from multiple devices, systems, or IoT sensors. It is written in the GO

language and is plug-in based. This allows the collection and output of data

without further modification. [79, 80]

https://en.wikipedia.org/wiki/MySQL
https://en.wikipedia.org/wiki/MariaDB
https://en.wikipedia.org/wiki/PostgreSQL
https://en.wikipedia.org/wiki/SQLite
https://en.wikipedia.org/wiki/Oracle_database
https://en.wikipedia.org/wiki/IBM_DB2

26 (66)

Figure 11 Telegraf architecture [79]

3.1.7 Elasticsearch

Elasticsearch is an analytical, searchable, NoSQL database programmed in

Java. It is currently one of the most popular available database systems. Its main

domains include searching, analysing, and processing large amounts of data in

a short time. The search is based on the open-source technology Apache

Lucene. [81, 82] Since Elasticsearch is used to collect logs and it is not certain

whether this feature is useful for cost-related metering, there will be no further

analysis of this tool.

Elasticsearch was relicensed in 2021 from an open-source license [38, 39, 43].

More on the topic of open source is briefly discussed in Chapter 2.11, including

references to other projects that abandoned the open-source strategy and

discussions of their reasoning.

27 (66)

3.1.8 Logstash

A tool designed to collect data from several sources at once. Logstash supports

a large number of possible inputs, such as Beats. Data are then sent to the

configured source, most often to the Elasticsearch database. Other available

targets for data collection include the following:

• Graphite

• JDBC (Java Database Connectivity)

• Unix

Beats – Logstash extension: These are lightweight agents used to collect data

and send data. It is possible to use several types of collection agents from

different parts of the infrastructure:

• Filebeat retrieves data from files. It can be used effectively for
collecting application logs.

• Metricbeat is a lightweight metric collector. It collects metrics from
the system and services on the server. After collecting and sending
metrics to Elasticsearch or Logstash, Kibana can be used for
visualisation.

• Packbeat is a lightweight agent used to analyse network protocols.

• Winlogbeat is an agent designed for retrieving system logs from the
Windows operating log.

• Auditbeat uses the same principle as Winlogbeat, except that it is
designed for Unix operating systems.

• Heartbeat is an agent used to monitor other components using
repeated inquiries. Queries can be performed using ICMP (Internet
Control Message Protocol), TCP (Transmission Control Protocol),
and HTTP. [83, 84]

28 (66)

3.2 Visualisation

Tool Website

GitHub

Year

started

Contributors

Grafana https://grafana.com/

https://github.com/grafana/

2013 1500

Kibana https://www.elastic.co/kibana

https://github.com/elastic/kibana

2013 700

Chronograph https://www.influxdata.com/time-series-

platform/chronograf/

https://github.com/influxdata/chronograf

2016 81

Weave Scope https://www.weave.works/oss/scope/

https://github.com/weaveworks/scope

2015 97

3.2.1 Grafana

Grafana is an open-source tool used to visualise and create dashboards over

already acquired data. Grafana does not store the collected data but only draws

data from the configured source, over which it is then possible to perform

visualisations, analysis, and alerts. Grafana’s significant advantage is database

independence. The graphic design is at a very high level, as can be seen on

Figure 12. It is easy to use, and intuitive. Another advantage is the possibility of

exporting already-created dashboards and visualisations and their subsequent

sharing between projects, provided they use the same types of metrics.

However, the platform does not allow full-text data querying and cannot,

therefore, fully replace Kibana. Grafana Loki is a suitable tool for logging.

Instead of indexing logs, it uses labels that make it suitable for the Kubernetes

environment. [85, 86]

https://grafana.com/
https://github.com/grafana/
https://www.elastic.co/kibana
https://github.com/elastic/kibana
https://www.influxdata.com/time-series-platform/chronograf/
https://www.influxdata.com/time-series-platform/chronograf/
https://github.com/influxdata/chronograf
https://www.weave.works/oss/scope/
https://github.com/weaveworks/scope

29 (66)

Figure 12 A showcase of dashboards in Grafana [85]

3.2.2 Kibana

Kibana is an open-source log analysis platform that allows the exploring,

visualising, and building of dashboards on top of the log data stored in

Elasticsearch clusters. It allows the creation of new views, tables, maps, and

graphs over stored data as shown in Figure 13. Data can be plotted in real time.

Unlike Grafana, Kibana Is used primarily for analysing log messages (full-text

data querying) and offers functionality for troubleshooting, forensics,

development, and security. Similar to Prometheus, Kibana has extensive alert

management. [87, 88, 89]

30 (66)

Figure 13 A showcase of dashboards in Kibana [87]

3.2.3 Chronograph

Chronograph is a real-time visualisation tool for data stored in the InfluxDB

database. Chronograph is used to create new views, as shown in Figure 14, on

data and start-up rules. The application is programmed in the GO programming

language and provides fast writing, availability, and data reading. [90, 91]

31 (66)

Figure 14 A showcase of dashboards in Chronograph [92]

3.2.4 Weave Scope

A visualisation and monitoring tool for Kubernetes and Docker, Weave Scope

offers a top-down view of an entire infrastructure, as shown in Figure 15.

Developed by Weaveworks, Weave Scope generates a map of processes,

containers, and hosts in a Kubernetes cluster. Its graphical user interface allows

the management and running of diagnostic commands on containers. [93, 94,

95]

32 (66)

Figure 15 A showcase of dashboards in Weave Scope [96]

3.3 Stacks

Many open-source tools were built with the primary intention of being used with

specific other tools. Such tools have evolved together, and as a result, it is

considerably easier to begin using a complete stack rather than using random

tools together. Complementing functionality and easy deployment are

advantages of using stacks. The most prominent stack on the open-source

market is the TICK stack.

3.3.1 TICK – Telegraf, Chronograph, InfluxDB, Kapacitor

The TICK Stack provides storage and visualisation of timed data and

subsequent notifications. Its high level architecture is on figure 16. The main

component of the architecture is Telegraf, the TICK stack uses the push

method, which is suitable for IoT monitoring and real-time analysis. A Telegraf

monitoring agent is used to collect time series data from a variety of sources.

InfluxDB stores time series data. Chronograph visualises time series data from

the InfluxDB database.

33 (66)

InfluxDB, like Telegraf, is written in the GO language and is a database

designed for storing chronological data. Some functionality is reserved for the

InfluxDB Enterprise.

Kapacitor is an InfluxDB data-processing tool implemented in the GO

programming language. Kapacitor triggers warnings, runs the extract, transform

and load processes (ETL), provides anomaly detection, and responds to events.

It can be used for real-time data processing and analysis before data are saved

to the InfluxDB database. Alternatively, it can be used for system integration to

detect anomalies. Notifications can be sent using the following communication

channels: HipChat, Alert, Sensu, and PagerDuty. [97]

Figure 16 TICK stack architecture [97]

34 (66)

3.3.2 ELK – Elasticsearch, Logstash, Kibana

ELK is a monitoring solution for data processing and analysis, mainly for

application logs. The combination of components is used for storage,

processing, retrieval, and visualisation. Individual components are illustrated in

Figure 17. Data are collected through Beats, Elastic Agents, or Logstash. All

mentioned components are open source and are available on the Docker Hub.

The ELK stack offers over 200 integrations with other tools and is offered by

AWS and Google Cloud as a managed service and integrates with Azure. [98,

99, 100, 101]

Figure 17 Example of an ELK stack toolchain [102]

An example variation of the ELK stack is the Elasticsearch, Metricbeat, Grafana

(EMG) stack. Metricbeat is the Beat with which metrics are collected. Data are

visualised with Grafana instead of Kibana. [103]

3.3.3 EFK – Elasticsearch, Fluentd, Kibana

The EFK stack replaces Logstash with Fluentd. A detailed comparison of both is

discussed here [104]. The main difference between the ELK and EFK stacks is

that EFK does not seem to be maintained by any commercial party. Further,

EFK is currently an implementation meant to work mainly with Kubernetes

35 (66)

rather than a complex environment that readily collects data from multiple

sources. Elastic actively maintains the ELK stack. The EFK stack is centred

around Fluentd, which offers multiple integrations for data collection. Still, it

does not look as though Fluentd takes ownership of the maintenance of the

stack as a complete logging solution. Users must thus rely on separate helm

charts or solutions prepared by independent parties. [105, 106, 107] Figure 18

illustrates collecting of data from Docker containers, and their further processing

in Elasticsearch, Fluentd and Kibana.

Figure 18 EFK stack [108]

3.4 Commercial solutions

There are many commercial cloud monitoring tools and platforms available.

These include the following tools, among others:

• Splunk [109]

• AppDynamics [110]

• Dynatrace [111]

• Instana [112]

• Sensu [113]

• Puppet [114]

• Azure Monitor [115]

36 (66)

• CloudWatch [116]

• Cloud Monitoring [117]

The list below is provides an overview of the commercial solutions that offer out-

of-the-box capability for cost-related metering:

• CloudZero [118]

• Harness Cloud Cost Management [119, 120]

• Apptio [121]

• CloudCheckr [122]

• Cloudhealth [123]

• Computesoftware [124]

• Parkmycloud [125]

• AWS Cost Explorer and AWS Budget [126]

• GCP Billing [127]

• Azure Cost Management [128]

• Kubecost [129]

• Spot.io [130]

• Turbonomic [131]

• Yotascale [132]

It is beyond the scope of this thesis to analyse the commercial offerings in

detail. However, their overall advantages will be briefly discussed in the next

chapter.

37 (66)

4 Problem analysis and proposed solution

The following subchapters describe the key cost contributors in SaaS, explain in

detail the kind of information a company might need to gather, and presents

viable approaches for gathering and processing the necessary data.

It should be mentioned that the further proposed solutions are meant to create

an integrated part of a SaaS platform. In this case, the SaaS platform is not

meant to be a cloud solution that can be adapted to different needs but rather a

central point of access, control, monitoring, and management of services. An

example can be seen in Figure 19, which shows OKD, the community

distribution of Kubernetes that powers Red Hat OpenShif. OKD does not

include cost metering but illustrates many of the other possible metering needs

of Kubernetes-based business. Other parts of such a platform beyond cost

metering depend on the service provider but would likely at least include

functionality as a service catalogue, non-cost related service monitoring, access

management, and so forth.

 Figure 19 OKD example [133]

When monitoring costs, part of the data used to generate the final reports is

common with other monitoring, for example with workload monitoring. Cost-

38 (66)

related data collection and reporting may take different approaches when it

comes to integration into the platform. On a high level, the following approaches

illustrated in Figures 20 and 21 are possible:

a) The base tools, data collection, and data processing can be the same for

all other monitoring needs. The only unique feature for cost analysis is

the final dashboard as an output of the collected data.

Figure 20 SaaS monitoring common for all reports

b) Cost analysis can be a self-standing module that is not connected to

other types of monitoring. However, this approach would lead to much

higher costs for monitoring as parts of the collected data are the same for

all monitoring.

Figure 21 SaaS cost-related monitoring separate from other monitoring

4.1 Key cost contributors

There are three main cost contributors in the hybrid cloud: public cloud costs,

private cloud costs, and third party solution costs.

39 (66)

Figure 22 Key cost contributors and key capabilities

On the left side of Figure 22 above are listed the main cost contributors of

SaaS. The main costs are those paid for the public cloud, a private cloud, and

possibly third-party costs for any application.

This project does not consider the following costs:

• costs for research and development

• costs of human resources

• costs for the transfer to the public cloud, whether a price charged by
the public cloud provider or the time costs of employees that conduct
the transfer

The objective of this analysis is to look at the costs of a service that is ready to

be sold to customers and to allocate these costs to customers, the public cloud

service, functionality, or a team within the developing company. This may

include both fixed and variable costs as:

• Storage fee.

• Transaction costs (costs for access to one’s own data). For most
public providers, these costs are in the range of cents, but they can
rise to higher numbers for many applications and customers.

40 (66)

• Data transfer charges, incurred mostly through outbound data
transfer sand transfers between regions and zones.

• Costs for the transfer of a solution from one public cloud to another.

It is cheap or free to start with or transfer data to the public cloud. As a business

grows and data are more frequently accessed or transferred, public cloud costs

rise beyond expectations. The added value is that if a service is not proven

viable, it can be pulled away from a public cloud. One still must ensure that

there are no unused assets left behind that would generate costs.

The public cloud cost structure is available online, and all public providers offer

cost calculators. However, for cost calculators to provide reliable information,

one must accurately know the consumption details of all the necessary

individual tools. There is no practical way of accurately estimating these details

for complex applications with high volumes. Furthermore, in the public cloud, as

elsewhere, prices are negotiable for large customers. Current prices can be

seen online for major public cloud providers:

• Amazon Web Services Pricing Calculator [134]

• Google Cloud Platform Pricing Calculator [135]

• Microsoft Azure Pricing Calculator [136]

• IBM Cloud Cost Estimator [137]

• Alibaba Cloud Pricing [138]

Private cloud costs include the price of hardware, software, and human

resources, assuming that servers can be set in-house. Whether the private or

the public cloud is cheaper is influenced by many variables. Perhaps the most

informative analysis was made by VMware [139].

4.2 Required capabilities

There are several different customers and use cases for cost-related data in a

business.

41 (66)

4.2.1 Anomaly detection

There is a strong need for companies to quickly recognise when anything in a

service they provide is becoming out of the ordinary. This need also applies to

cost management. Anomaly detection, as shown on example in Figure 23,

searches for unexpected spikes in costs and sends out warnings. To

significantly increase service reliability, anomaly detection is generally expected

to occur in real time. Further, when managing a whole portfolio of services

across several clouds and multiple regions, alerts must be set so that operators

are not overwhelmed by unnecessary or false-positive warnings. This would

lower the attention given to such messages very quickly. On the other hand, a

lack of attention when setting alerts could easily lead to false negatives, that is,

to completely missing important alerts. Artificial intelligence and machine

learning are therefore used to adapt thresholds in the ever-evolving system.

Figure 23 Anomaly detection by Anodot [140]

42 (66)

4.2.2 Cost allocation

Cost allocation is a tool for product managers and developers. In this context, it

refers mainly to the allocation of costs to products and functionality, as

illustrated in Figure 24. When developing a service that is expected to compete

in price, it is essential to optimise costs. Before data can be optimised, it must

be analysed with a sufficient level of detail. The data analysis must provide

granularity at the levels of service, microservice, customer, region, time, and

public cloud product. Then it is possible to find the places where spending

occurs. Analysing data with such granularity makes it possible to see the costs

of a new version of software before it is deployed into production (if possible

and practical), but mainly allows one to quickly see the costs of canary

deployments. Canary deployment refers to the deployment of a new version of

a service into a small percentage of pods, for the purpose of obtaining

production data on a sample of users.

To summarise, costs that have sufficient granularity will enable allocation that

enables:

• find the biggest cost contributors,

• make a connection between the microservice and the public cloud
product contributes to costs,

• provide a base of data for anomaly detection, and

• verify the costs of new service versions.

To achieve such an analysis, it is necessary to track costs and usage and

combine them. The relationship between usage and cost data can be tracked

with tags. In Kubernetes, tags are necessary for container orchestration

allowing interaction between pods and containers. To obtain reliable and

consistent data, it is necessary to use tagging consistently across all services

and customers.

43 (66)

Figure 24 Example of allocation of costs per product feature [141]

4.2.3 Planning and budgeting

Another customer for SaaS cost information is management and top

management, who need past data to forecast future expenses and earnings. An

example of information presented on such level is in Figure 25. Again, the data

should be granular to the level of product, customer, region, and cost centre. The

data do not need to be real-time, but there should be functionality for generating

forecasts and connecting to the corporate budget structure.

44 (66)

Figure 25 Budgets and forecasts example by Apptio [142]

4.2.4 Resource management

The previous subchapter discussed that product managers should know the

costs their products generate, and top management needs the same information

on a higher level to oversee all services. Beyond this, team managers need to

know how much their team spends on the cloud, and deployment managers need

to consider deployment from a cost-saving perspective. Therefore, data should

be granular at the levels of teams, services, public cloud products, and time. An

example of such implementation is shown on figure 26. The objective is to ensure

that cloud resources beyond those used for running production code are used

efficiently. Many other needs in a company require the public cloud beyond just

running production code, including learning, research and development, and

testing.

The goal is to make sure that resources are not being spent unnecessarily on the

following costs:

• unused and non-responsive instances, that is, instances of public
cloud services that have been requested but are no longer actively
used

• unattached persistent volumes

45 (66)

• orphaned volume snapshots

• costs for testing and deployment

• unused static IP addresses

• underutilised reserved capacity

• any other spending that does not directly relate to the product

Figure 26 Cloud costs reports by ParkMyCloud [143]

4.2.5 Billing

Billing on its own may or may not be a consumer of cost-related information. The

case of on-demand billing is the same as the cost analysis mentioned in Chapter

4.3.2; that is, it is a consumer of data about usage. In the case of billing, ‘costs’

refer to costs for the business customer, that is, the price customers pay for the

service in the cloud. This chapter explores whether costs to the service provider

relate to costs for the customer.

According to Iveroth et al. [10], the pricing model that a company chooses for its

service has several parameters: scope, base, influence, formula, temporal rights,

degree of discrimination (different prices for different customers), and dynamic

pricing strategy. Therefore, management has many options for how to position

46 (66)

their pricing strategy. In addition, there can be volume discounts and on-demand

vs reserved capacity pricing. According to the research, some of these options

are more popular than others.

Figure 27 Current pricing models in the cloud industry [144]

As can be seen in Figure 27 above, the most popular pricing model for SaaS is

tiered subscriptions, that is, a pricing model in which a customer pays a fixed

monthly fee based on a pre-agreed volume that has been allocated to the

customer. There are no separate reports needed for this kind of pricing, as all

prices are likely to be set with data from planning and budgeting (see Chapter

4.3.3). However, there is about a 15% chance that the price will be pay-per-use.

Charging based on actual usage means that customers pay nothing if they use

nothing (and usually customers pay nothing up to a certain volume, the so-called

‘free tier’). In practice, usage is expressed as a volume of selected metric(s) or a

measurable added value delivered to the customer (e.g., savings). Therefore, it

is not justified to link price directly to the provider’s costs. The reason for this is

that costs can change suddenly when a changed service is deployed. For

47 (66)

example, when a provider introduces new monitoring functionality, public cloud

costs increase because of the extra data that need processing. Further, shifts in

consumption of public cloud services may move the provider into a different

pricing tier. When it comes to usage, the following types of metrics are common:

• Number of requests, items (hosts, cluster, etc.), instances, queries,
and users

• Number of something per instance

• Amount of something per instance

• Type of request/item

• Average size of request/item

• Average duration of connection/instance

• Average connection rate

• Data amount per query/item

• Number of hours of connection days users access the product

• Percentage of users who use (some) functionality X days per month

• Lines of code (LOC) in one file

In addition, price is specified per product, functionality, region, and time.

4.3 Solutions

In Chapter 3, a portfolio of different potential tools was introduced. The goal is to

find a suitable service, toolchain, or architecture that would enable metering in a

cloud that provides the capabilities described in Chapter 4.2 and would work in

multiple environments:

• multi-cloud

• hybrid-cloud

• multi-tenant

• multi-region

• Kubernetes-based.

There are three basic approaches when choosing tools for cost metering: a

combination of open-source tools; a paid service; or a special case of the latter,

a custom solution consisting of public cloud services.

48 (66)

Commercial solutions

Commercial solution providers have the advantage of know-how and

experience. Their portfolios can range from including one required capability, as

listed in the previous subchapter, up to including complete Technology

Business Management (TBM) [145].

The reasons to consider commercial solutions, even when the primary focus is

on open source, are as follows:

• The ability to start cost metering early. When a company is in an early
stage of providing SaaS and employees are still learning basic
functionality, cost management can easily fall out of focus.

• The possibility of learning from the service provider.

• Access to best practices

Public cloud solution

A special case of commercial solutions are services from public cloud providers.

Public cloud cost analysis tools currently only allow the analysis of data from

their own clouds; for instance, AWS Cost Explorer and AWS Budget, Google

Cloud Billing, and Azure Cost Management only manage costs in AWS, Google

Cloud, and Azure, respectively. The advantage is that basic functionality is

available as a free part of other subscriptions. To combine cost metrics from

different clouds, cloud providers only offer generic monitoring solutions. These

solutions are not meant for cost analysis but for metering or data processing in

general. Google Cloud provides a complete recipe for processing data in the

cloud. Its schema can be seen in Figure 28, which lays out the full portfolio of

tools that can be used for advanced data analytics. [146]

49 (66)

Figure 28 Public cloud data analysis toolchains [146, 147]

Open-source solution

Since Docker and Kubernetes are open-source tools. The challenges of

committing to the open-source route were discussed in Chapter 2.12. However,

one indisputable advantage is that open source is currently not just a pool of

isolated tools but a whole ecosystem of interrelated solutions. However, a

prerequisite for using open source is the willingness to contribute to the open

source in cases of significant changes in ‘offerings’ or continuing developments

in-house, in the case of relicensing.

After careful consideration of all the positive and negative aspects of the

selected monitoring tools and their usability for this work, Prometheus appears

to be the best monitoring tool. It is an open-source technology, so it is

affordable and economically undemanding. It is easy to use and has high

community support (contributions to future solutions), and many exporters are

available. Combined with the visualisation tool Grafana, Prometheus provides a

powerful tool that can process and display almost any kind of metrics, not only

cost-related metrics. An additional tool that stands out is Kiali, which provides

an easy-to-understand overview of microservices and therefore helps one to

understand service structures at a glance. The Prometheus alert manager

50 (66)

stands out with its efficiency optimisation algorithms. As for metrics collection,

data about Kubernetes go to Prometheus straight from the Kubernetes exporter,

and data from services come from the services´ own exporters. These data

contain usage information. Regarding data about costs, public clouds also

readily integrate with Prometheus. For a private cloud, a combination of

Prometheus and Fluentd could be used. It is more complex to collect data from

edge devices. Here, tools such as CollectD and RabbitMQ are useful. Other

tools that are part of the deployment of microservices, such as gRPC or Istio,

also readily integrate with Prometheus. Furthermore, Prometheus can be

deployed using the same methods as any other service, for example, with

Terraform (open-source infrastructure as code software tool) and Helm

(Helm Charts define, install, and upgrade Kubernetes applications). Figure 29

shows the toolchain for gathering data from public and private clouds up to

visualisation, using the tools described above.

51 (66)

Figure 29 Proposed open-source-based architecture

52 (66)

5 Conclusions

As a result of this project, the following has been achieved for the company:

• Possible tools capable of performing cost-related monitoring in
specified environments have been identified.

• The users and uses of cost monitoring and analysis have been
identified and their needs have been defined, including specific
dashboards, graphs, KPIs, and metrics that must be obtained.

• The main cost contributors have been identified, and cost-generating
factors have been defined.

Based on the information in Chapter 3 and analysis made in Chapter 4, the

following can be concluded:

1) Considering the state of development of the cloud, both open source and

commercial alternatives should be further explored, as each offers

unique opportunities. Currently, the most successful open-source

projects (or ecosystems) are overseen by the Cloud Native Computing

Foundation and financially backed by some of the largest corporations.

2) The ultimate tool for monitoring is Prometheus. It is an open-source tool,

and its license is not in dispute with its use in commercial products. The

community is extensive, support is readily available, there is an

impressive number of integrations within the open-source ecosystem,

and, most importantly, there is no comparable alternative.

3) The open-source ecosystem is evolving and changing at a very fast

pace. This includes not only product development (or lack of it) but also

relicensing. It is advisable for companies to plan for such scenarios.

53 (66)

References

https://www.citethisforme.com/

[1] Hybrid cloud vs. Multi-cloud [Internet]. VMware. 2021 [cited 16 September

2021]. Available from: https://www.vmware.com/topics/glossary/content/hybrid-

cloud-vs-multi-cloud

[2] Geography and regions | Documentation | Google Cloud [Internet]. Google

Cloud. 2021 [cited 16 September 2021]. Available from:

https://cloud.google.com/docs/geography-and-regions

[3] The Needlessly Complex History of SaaS, Simplified | Process Street |

Checklist, Workflow and SOP Software [Internet]. Process Street. 2021 [cited 16

September 2021]. Available from: https://www.process.st/history-of-saas/

[4] History of Cloud Computing - Interprise Software [Internet].

Interprisesoftware.com. 2021 [cited 16 September 2021]. Available from:

http://www.interprisesoftware.com/cloud_history.html

[5] Jungck K, Rahman, PhD S. Cloud Computing Avoids Downfall of Application

Service Providers [Internet]. International Journal of Information Technology

Convergence and Services (IJITCS) Vol.1, No.3, June 2011; 2021 [cited 16

September 2021]. Available from:

https://arxiv.org/ftp/arxiv/papers/1512/1512.00061.pdf

[6] Software-as-a-Service Executive Council. Software-as-a-Service; A

Comprehensive Look at the Total Cost of Ownership of Software Applications

[Internet]. Software & Information Industry Association; 2006 [cited 16 September

2021]. Available from:

https://www.plantservices.com/assets/wp_downloads/pdf/yardstick_wp_saas_tc

o.pdf

[7] Miller J. Difference Between SaaS and Managed Services | BitLyft

Cybersecurity [Internet]. Bitlyft.com. 2021 [cited 16 September 2021]. Available

from: https://www.bitlyft.com/resources/what-is-the-difference-between-saas-

and-managed-services

https://www.vmware.com/topics/glossary/content/hybrid-cloud-vs-multi-cloud
https://www.vmware.com/topics/glossary/content/hybrid-cloud-vs-multi-cloud
https://cloud.google.com/docs/geography-and-regions
https://www.process.st/history-of-saas/
http://www.interprisesoftware.com/cloud_history.html
https://arxiv.org/ftp/arxiv/papers/1512/1512.00061.pdf
https://www.plantservices.com/assets/wp_downloads/pdf/yardstick_wp_saas_tco.pdf
https://www.plantservices.com/assets/wp_downloads/pdf/yardstick_wp_saas_tco.pdf
https://www.bitlyft.com/resources/what-is-the-difference-between-saas-and-managed-services
https://www.bitlyft.com/resources/what-is-the-difference-between-saas-and-managed-services

54 (66)

[8] Software as a service - Wikipedia [Internet]. En.wikipedia.org. 2021 [cited 17

September 2021]. Available from:

https://en.wikipedia.org/wiki/Software_as_a_service

[9] Software as a Subscription, not as a Service [Internet]. Sia-partners.com. 2021

[cited 17 September 2021]. Available from: https://www.sia-

partners.com/en/news-and-publications/from-our-experts/software-subscription-

not-service

[10] Iveroth, E., Westelius, A., Petri, C.J., Olve, N.G., Coster, M., Nilsson, F.: How

to differentiate by price: Proposal for a five-dimensional model. European

Management Journal (2012)

[11] iaas-paas-saas [Internet]. Ibm.com. 2021 [cited 17 September 2021].

Available from: https://www.ibm.com/cloud/learn/iaas-paas-saas

[12] Public Cloud vs Private Cloud vs Hybrid Cloud | Microsoft Azure [Internet].

Azure.microsoft.com. 2021 [cited 17 September 2021]. Available from:

https://azure.microsoft.com/en-us/overview/what-are-private-public-hybrid-

clouds/

[13] Definition of Community Cloud - Gartner Information Technology Glossary

[Internet]. Gartner. 2021 [cited 17 September 2021]. Available from:

https://www.gartner.com/en/information-technology/glossary/community-cloud

[14] Sting. Public Cloud Services Comparison | @Sting (atSting.com) [Internet].

Atsting.com. 2021 [cited 17 September 2021]. Available from:

https://www.atsting.com/archives/1580

[15] Production-Grade Container Orchestration [Internet]. Kubernetes. 2021

[cited 19 October 2021]. Available from: https://kubernetes.io/

[16] Swarm mode overview [Internet]. Docker Documentation. 2021 [cited 19

October 2021]. Available from: https://docs.docker.com/engine/swarm/

[17] Nomad vs. Yarn vs. Kubernetes vs. Borg vs. Mesos vs… you name it!

[Internet]. Medium. 2021 [cited 19 October 2021]. Available from:

https://medium.com/@arsenyspb/nomad-vs-yarn-vs-kubernetes-vs-borg-vs-

mesos-vs-you-name-it-7f15a907ece2

[18] Fully Managed Container Solution – Amazon Elastic Container Service

(Amazon ECS) - Amazon Web Services [Internet]. Amazon Web Services, Inc.

2021 [cited 19 October 2021]. Available from: https://aws.amazon.com/ecs/

https://en.wikipedia.org/wiki/Software_as_a_service
https://www.sia-partners.com/en/news-and-publications/from-our-experts/software-subscription-not-service
https://www.sia-partners.com/en/news-and-publications/from-our-experts/software-subscription-not-service
https://www.sia-partners.com/en/news-and-publications/from-our-experts/software-subscription-not-service
https://www.ibm.com/cloud/learn/iaas-paas-saas
https://azure.microsoft.com/en-us/overview/what-are-private-public-hybrid-clouds/
https://azure.microsoft.com/en-us/overview/what-are-private-public-hybrid-clouds/
https://www.gartner.com/en/information-technology/glossary/community-cloud
https://www.atsting.com/archives/1580
https://kubernetes.io/
https://docs.docker.com/engine/swarm/
https://medium.com/@arsenyspb/nomad-vs-yarn-vs-kubernetes-vs-borg-vs-mesos-vs-you-name-it-7f15a907ece2
https://medium.com/@arsenyspb/nomad-vs-yarn-vs-kubernetes-vs-borg-vs-mesos-vs-you-name-it-7f15a907ece2
https://aws.amazon.com/ecs/

55 (66)

[19] Mirantis Kubernetes Engine | Formerly Docker Enterprise | Mirantis [Internet].

Mirantis | Ship Code Faster. 2021 [cited 19 October 2021]. Available from:

https://www.mirantis.com/software/mirantis-kubernetes-engine/

[20] Kubernetes - Google Kubernetes Engine (GKE) | Google Cloud [Internet].

Google Cloud. 2021 [cited 19 October 2021]. Available from:

https://cloud.google.com/kubernetes-engine

[21] Red Hat OpenShift Container Platform [Internet]. 2021 [cited 19 October

2021]. Available from: https://www.redhat.com/en/technologies/cloud-

computing/openshift/container-platform

[22] Azure Kubernetes Service (AKS) | Microsoft Azure [Internet].

Azure.microsoft.com. 2021 [cited 19 October 2021]. Available from:

https://azure.microsoft.com/en-us/services/kubernetes-service/

[23] Container Service for Kubernetes - Alibaba Cloud [Internet]. AlibabaCloud.

2021 [cited 19 October 2021]. Available from:

https://www.alibabacloud.com/product/kubernetes

[24] An Introduction to Metrics, Monitoring, and Alerting | DigitalOcean [Internet].

DigitalOcean. 2021 [cited 19 October 2021]. Available from:

https://www.digitalocean.com/community/tutorials/an-introduction-to-metrics-

monitoring-and-alerting

[25] What Is Service-Oriented Architecture? [Internet]. Medium. 2021 [cited 19

October 2021]. Available from:

https://medium.com/@SoftwareDevelopmentCommunity/what-is-service-

oriented-architecture-fa894d11a7ec

[26] SOA vs. Microservices: What’s the Difference? [Internet]. Ibm.com. 2021

[cited 19 October 2021]. Available from: https://www.ibm.com/cloud/blog/soa-vs-

microservices

[27] Education I. Service Oriented Architecture [Internet]. Ibm.com. 2021 [cited

21 October 2021]. Available from: https://www.ibm.com/cloud/learn/soa

[28] Why You Can’t Talk About Microservices Without Mentioning Netflix

[Internet]. SmartBear.com. 2015 [cited 21 October 2021]. Available from:

https://smartbear.com/blog/why-you-cant-talk-about-microservices-without-

ment/

https://www.mirantis.com/software/mirantis-kubernetes-engine/
https://cloud.google.com/kubernetes-engine
https://www.redhat.com/en/technologies/cloud-computing/openshift/container-platform
https://www.redhat.com/en/technologies/cloud-computing/openshift/container-platform
https://azure.microsoft.com/en-us/services/kubernetes-service/
https://www.alibabacloud.com/product/kubernetes
https://www.digitalocean.com/community/tutorials/an-introduction-to-metrics-monitoring-and-alerting
https://www.digitalocean.com/community/tutorials/an-introduction-to-metrics-monitoring-and-alerting
https://medium.com/@SoftwareDevelopmentCommunity/what-is-service-oriented-architecture-fa894d11a7ec
https://medium.com/@SoftwareDevelopmentCommunity/what-is-service-oriented-architecture-fa894d11a7ec
https://www.ibm.com/cloud/blog/soa-vs-microservices
https://www.ibm.com/cloud/blog/soa-vs-microservices
https://www.ibm.com/cloud/learn/soa
https://smartbear.com/blog/why-you-cant-talk-about-microservices-without-ment/
https://smartbear.com/blog/why-you-cant-talk-about-microservices-without-ment/

56 (66)

[29] Service meshes in a microservices architecture [Internet]. Google Cloud.

2021 [cited 21 October 2021]. Available from:

https://cloud.google.com/architecture/service-meshes-in-microservices-

architecture

[30] What’s a service mesh? [Internet]. 2018 [cited 21 October 2021]. Available

from: https://www.redhat.com/en/topics/microservices/what-is-a-service-mesh

[31] Load Balancer Service type for Kubernetes [Internet]. Medium. 2020 [cited

21 October 2021]. Available from: https://medium.com/avmconsulting-

blog/external-ip-service-type-for-kubernetes-ec2073ef5442

[32] Microservices with Kubernetes and Docker - Piotr's TechBlog [Internet].

Piotr’s TechBlog. 2017 [cited 21 October 2021]. Available from:

https://piotrminkowski.com/2017/03/31/microservices-with-kubernetes-and-

docker/

[33] MSV J. Deploy a Multicluster Ingress on Google Kubernetes Engine - The

New Stack [Internet]. The New Stack. 2018 [cited 21 October 2021]. Available

from: https://thenewstack.io/deploy-a-multicluster-ingress-on-google-

kubernetes-engine/

[34] Service Catalog [Internet]. Kubernetes. 2021 [cited 21 October 2021].

Available from: https://kubernetes.io/docs/concepts/extend-kubernetes/service-

catalog/

[35] Single-Tenant vs Multi-Tenant: Which Path Should You Take? |

OroCommerce [Internet]. OroCommerce. 2021 [cited 21 October 2021]. Available

from: https://oroinc.com/b2b-ecommerce/blog/single-tenant-vs-multi-tenant/

[36] Madsen C. The 10 best KPIs for every SaaS business [Internet]. Plecto. 2019

[cited 23 October 2021]. Available from: https://www.plecto.com/blog/sales-

performance/10-saas-kpis-you-should-focus/

[37] SaaS Metrics & KPIs [Internet]. Klipfolio.com. 2021 [cited 23 October 2021].

Available from: https://www.klipfolio.com/resources/kpi-examples/saas-metrics

[38] Doubling down on open, Part II [Internet]. Elastic Blog. 2021 [cited 24

October 2021]. Available from: https://www.elastic.co/blog/licensing-change

[39] Elasticsearch and Kibana are now business risks [Internet]. 2021 [cited 24

October 2021]. Available from:

https://cloud.google.com/architecture/service-meshes-in-microservices-architecture
https://cloud.google.com/architecture/service-meshes-in-microservices-architecture
https://www.redhat.com/en/topics/microservices/what-is-a-service-mesh
https://medium.com/avmconsulting-blog/external-ip-service-type-for-kubernetes-ec2073ef5442
https://medium.com/avmconsulting-blog/external-ip-service-type-for-kubernetes-ec2073ef5442
https://piotrminkowski.com/2017/03/31/microservices-with-kubernetes-and-docker/
https://piotrminkowski.com/2017/03/31/microservices-with-kubernetes-and-docker/
https://thenewstack.io/deploy-a-multicluster-ingress-on-google-kubernetes-engine/
https://thenewstack.io/deploy-a-multicluster-ingress-on-google-kubernetes-engine/
https://kubernetes.io/docs/concepts/extend-kubernetes/service-catalog/
https://kubernetes.io/docs/concepts/extend-kubernetes/service-catalog/
https://oroinc.com/b2b-ecommerce/blog/single-tenant-vs-multi-tenant/
https://www.plecto.com/blog/sales-performance/10-saas-kpis-you-should-focus/
https://www.plecto.com/blog/sales-performance/10-saas-kpis-you-should-focus/
https://www.klipfolio.com/resources/kpi-examples/saas-metrics
https://www.elastic.co/blog/licensing-change

57 (66)

https://anonymoushash.vmbrasseur.com/2021/01/14/elasticsearch-and-kibana-

are-now-business-risks

[40] Signal Messenger is no longer open source - World Today News [Internet].

World Today News. 2021 [cited 24 October 2021]. Available from:

https://www.world-today-news.com/signal-messenger-is-no-longer-open-source/

[41] [Internet]. Reddit.com. 2017 [cited 24 October 2021]. Available from:

https://www.reddit.com/r/changelog/comments/6xfyfg/an_update_on_the_state_

of_the_redditreddit_and/

[42] Mapbox GL JS Is No Longer Open Source [Internet]. WP Tavern. 2020 [cited

24 October 2021]. Available from: https://wptavern.com/mapbox-gl-js-is-no-

longer-open-source

[43] Not So Open Any More: Elasticsearch Relicensing and Implications for Open

Source Search [Internet]. reworked.co. 2021 [cited 24 October 2021]. Available

from: https://www.reworked.co/knowledge-findability/not-so-open-any-more-

elasticsearch-relicensing-and-implications-for-open-source-search/

[44] MongoDB now released under the Server Side Public License | MongoDB

Blog [Internet]. MongoDB. 2018 [cited 24 October 2021]. Available from:

https://www.mongodb.com/blog/post/mongodb-now-released-under-the-server-

side-public-license

[45] Licenses & Standards | Open Source Initiative [Internet]. Opensource.org.

2021 [cited 24 October 2021]. Available from: https://opensource.org/licenses

[46] Why We're Relicensing CockroachDB [Internet]. Cockroach Labs. 2019

[cited 24 October 2021]. Available from:

https://www.cockroachlabs.com/blog/oss-relicensing-cockroachdb/

[47] Redis Labs’ Modules License Changes - Redis [Internet]. Redis. 2019 [cited

24 October 2021]. Available from: https://redis.com/blog/redis-labs-modules-

license-changes/

[48] Building a self-sustaining open-source business in the cloud era [Internet].

Timescale Blog. 2020 [cited 24 October 2021]. Available from:

https://blog.timescale.com/blog/building-open-source-business-in-cloud-era-v2/

[49] Graylog v4.0 Licensing SSPL | Graylog [Internet]. Graylog.org. 2020 [cited

24 October 2021]. Available from: https://www.graylog.org/post/graylog-v4-0-

licensing-sspl

https://anonymoushash.vmbrasseur.com/2021/01/14/elasticsearch-and-kibana-are-now-business-risks
https://anonymoushash.vmbrasseur.com/2021/01/14/elasticsearch-and-kibana-are-now-business-risks
https://www.world-today-news.com/signal-messenger-is-no-longer-open-source/
https://www.reddit.com/r/changelog/comments/6xfyfg/an_update_on_the_state_of_the_redditreddit_and/
https://www.reddit.com/r/changelog/comments/6xfyfg/an_update_on_the_state_of_the_redditreddit_and/
https://wptavern.com/mapbox-gl-js-is-no-longer-open-source
https://wptavern.com/mapbox-gl-js-is-no-longer-open-source
https://www.reworked.co/knowledge-findability/not-so-open-any-more-elasticsearch-relicensing-and-implications-for-open-source-search/
https://www.reworked.co/knowledge-findability/not-so-open-any-more-elasticsearch-relicensing-and-implications-for-open-source-search/
https://www.mongodb.com/blog/post/mongodb-now-released-under-the-server-side-public-license
https://www.mongodb.com/blog/post/mongodb-now-released-under-the-server-side-public-license
https://opensource.org/licenses
https://www.cockroachlabs.com/blog/oss-relicensing-cockroachdb/
https://redis.com/blog/redis-labs-modules-license-changes/
https://redis.com/blog/redis-labs-modules-license-changes/
https://blog.timescale.com/blog/building-open-source-business-in-cloud-era-v2/
https://www.graylog.org/post/graylog-v4-0-licensing-sspl
https://www.graylog.org/post/graylog-v4-0-licensing-sspl

58 (66)

[50] License Changes for Confluent Platform [Internet]. 2018 [cited 24 October

2021]. Available from: https://www.confluent.io/blog/license-changes-confluent-

platform/

[51] Prometheus - Monitoring system & time series database [Internet].

Prometheus.io. 2021 [cited 24 October 2021]. Available from:

https://prometheus.io/

[52] GitHub - prometheus/prometheus: The Prometheus monitoring system and

time series database. [Internet]. GitHub. 2021 [cited 24 October 2021]. Available

from: https://github.com/prometheus/prometheus

[53] Overview | Prometheus [Internet]. Prometheus.io. 2021 [cited 24 October

2021]. Available from: https://prometheus.io/docs/introduction/overview/

[54] Exporters and

integrations | Prometheus [Internet]. Prometheus.io. 2021 [cited 24 October

2021]. Available from: https://prometheus.io/docs/instrumenting/exporters/

[55] Alertmanager | Prometheus [Internet]. Prometheus.io. 2021 [cited 24 October

2021]. Available from: https://prometheus.io/docs/alerting/latest/alertmanager/

[56] GitHub - prometheus/alertmanager: Prometheus Alertmanager [Internet].

GitHub. 2021 [cited 24 October 2021]. Available from:

https://github.com/prometheus/alertmanager

[57] Federation | Prometheus [Internet]. Prometheus.io. 2021 [cited 24 October

2021]. Available from:

https://prometheus.io/docs/prometheus/latest/federation/#hierarchical-federation

[58] Monitoring Multicluster Istio with Prometheus [Internet]. Istio. 2021 [cited 24

October 2021]. Available from:

https://istio.io/latest/docs/ops/configuration/telemetry/monitoring-multicluster-

prometheus/

[59] FAQ — Graphite 1.2.0 documentation [Internet]. Graphite.readthedocs.io.

2021 [cited 24 October 2021]. Available from:

https://graphite.readthedocs.io/en/latest/faq.html

[60] Comparison to alternatives | Prometheus [Internet]. Prometheus.io. 2021

[cited 24 October 2021]. Available from:

https://prometheus.io/docs/introduction/comparison/

https://www.confluent.io/blog/license-changes-confluent-platform/
https://www.confluent.io/blog/license-changes-confluent-platform/
https://prometheus.io/
https://github.com/prometheus/prometheus
https://prometheus.io/docs/introduction/overview/
https://prometheus.io/docs/instrumenting/exporters/
https://prometheus.io/docs/alerting/latest/alertmanager/
https://github.com/prometheus/alertmanager
https://prometheus.io/docs/prometheus/latest/federation/#hierarchical-federation
https://istio.io/latest/docs/ops/configuration/telemetry/monitoring-multicluster-prometheus/
https://istio.io/latest/docs/ops/configuration/telemetry/monitoring-multicluster-prometheus/
https://graphite.readthedocs.io/en/latest/faq.html
https://prometheus.io/docs/introduction/comparison/

59 (66)

[61] Monitoring Kubernetes with Graphite | MetricFire Blog [Internet].

Metricfire.com. 2021 [cited 24 October 2021]. Available from:

https://www.metricfire.com/blog/monitoring-kubernetes-with-graphite/

[62] GitHub - statsd/statsd: Daemon for easy but powerful stats aggregation

[Internet]. GitHub. 2021 [cited 24 October 2021]. Available from:

https://github.com/statsd/statsd

[63] Graphite [Internet]. Graphiteapp.org. 2021 [cited 24 October 2021]. Available

from: https://graphiteapp.org/

[64] Graphite Project [Internet]. GitHub. 2021 [cited 24 October 2021]. Available

from: https://github.com/graphite-project

[65] Thanos [Internet]. Thanos.io. 2021 [cited 24 October 2021]. Available from:

https://thanos.io/

[66] GitHub - thanos-io/thanos: Highly available Prometheus setup with long term

storage capabilities. A CNCF Incubating project. [Internet]. GitHub. 2021 [cited

24 October 2021]. Available from: https://github.com/thanos-io/thanos

[67] Pracucci M. How the Cortex and Thanos projects collaborate to make scaling

Prometheus better for all [Internet]. Grafana. 2020 [cited 24 October 2021].

Available from: https://grafana.com/blog/2020/07/16/how-the-cortex-and-thanos-

projects-collaborate-to-make-scaling-prometheus-better-for-all/

[68] Cortex [Internet]. Cortex. 2021 [cited 24 October 2021]. Available from:

https://cortexmetrics.io/

[69] Cortex [Internet]. GitHub. 2021 [cited 24 October 2021]. Available from:

https://github.com/cortexproject

[70] Wilkie T. [PromCon Recap] Two Households, Both Alike in Dignity: Cortex

and Thanos [Internet]. Grafana. 2019 [cited 24 October 2021]. Available from:

https://grafana.com/blog/2019/11/21/promcon-recap-two-households-both-alike-

in-dignity-cortex-and-thanos/

[71] Perkins L. Cortex: a multi-tenant, horizontally scalable Prometheus-as-a-

Service | Cloud Native Computing Foundation [Internet]. Cloud Native Computing

Foundation. 2018 [cited 24 October 2021]. Available from:

https://www.cncf.io/blog/2018/12/18/cortex-a-multi-tenant-horizontally-scalable-

prometheus-as-a-service/

https://www.metricfire.com/blog/monitoring-kubernetes-with-graphite/
https://github.com/statsd/statsd
https://graphiteapp.org/
https://github.com/graphite-project
https://thanos.io/
https://github.com/thanos-io/thanos
https://grafana.com/blog/2020/07/16/how-the-cortex-and-thanos-projects-collaborate-to-make-scaling-prometheus-better-for-all/
https://grafana.com/blog/2020/07/16/how-the-cortex-and-thanos-projects-collaborate-to-make-scaling-prometheus-better-for-all/
https://cortexmetrics.io/
https://github.com/cortexproject
https://grafana.com/blog/2019/11/21/promcon-recap-two-households-both-alike-in-dignity-cortex-and-thanos/
https://grafana.com/blog/2019/11/21/promcon-recap-two-households-both-alike-in-dignity-cortex-and-thanos/
https://www.cncf.io/blog/2018/12/18/cortex-a-multi-tenant-horizontally-scalable-prometheus-as-a-service/
https://www.cncf.io/blog/2018/12/18/cortex-a-multi-tenant-horizontally-scalable-prometheus-as-a-service/

60 (66)

[72] Cortex Architecture [Internet]. Cortex. 2021 [cited 24 October 2021].

Available from: https://cortexmetrics.io/docs/architecture/

[73] Zabbix :: The Enterprise-Class Open Source Network Monitoring Solution

[Internet]. Zabbix.com. 2021 [cited 24 October 2021]. Available from:

https://www.zabbix.com/

[74] GitHub - zabbix/zabbix: Real-time monitoring of IT components and services,

such as networks, servers, VMs, applications and the cloud. [Internet]. GitHub.

2021 [cited 24 October 2021]. Available from: https://github.com/zabbix/zabbix

[75] What's in Zabbix 5.0 LTS [Internet]. Zabbix.com. 2021 [cited 24 October

2021]. Available from: https://www.zabbix.com/cz/whats_new_5_0

[76] PostgreSQL monitoring using Zabbix Agent 2: easy and extensible [Internet].

Postgrespro.com. 2020 [cited 24 October 2021]. Available from:

https://postgrespro.com/blog/pgsql/5967895

[77] Campion N. Prometheus vs. Zabbix | MetricFire Blog [Internet].

Metricfire.com. 2020 [cited 24 October 2021]. Available from:

https://www.metricfire.com/blog/prometheus-vs-zabbix/#span-stylefontweight-

400Zabbix-short-overviewspanspan-stylefontweight-400span

[78] Lambert D. Multi-tenant monitoring: how to achieve that using free Zabbix

open-source monitoring software [Internet]. Zabbix Blog. 2020 [cited 24 October

2021]. Available from: https://blog.zabbix.com/multi-tenant-monitoring-how-to-

achieve-that-using-free-zabbix-open-source-monitoring-software/12024/

[79] Telegraf [Internet]. Influxdata. 2021 [cited 24 October 2021]. Available from:

https://www.influxdata.com/time-series-platform/telegraf/

[80] GitHub - influxdata/telegraf: The plugin-driven server agent for collecting &

reporting metrics. [Internet]. GitHub. 2021 [cited 24 October 2021]. Available

from: https://github.com/influxdata/telegraf

[81] Elasticsearch: The Official Distributed Search & Analytics Engine | Elastic

[Internet]. Elastic. 2021 [cited 24 October 2021]. Available from:

https://www.elastic.co/elasticsearch/

[82] GitHub - elastic/elasticsearch: Free and Open, Distributed, RESTful Search

Engine [Internet]. GitHub. 2021 [cited 24 October 2021]. Available from:

https://github.com/elastic/elasticsearch

https://cortexmetrics.io/docs/architecture/
https://www.zabbix.com/
https://github.com/zabbix/zabbix
https://www.zabbix.com/cz/whats_new_5_0
https://postgrespro.com/blog/pgsql/5967895
https://www.metricfire.com/blog/prometheus-vs-zabbix/#span-stylefontweight-400Zabbix-short-overviewspanspan-stylefontweight-400span
https://www.metricfire.com/blog/prometheus-vs-zabbix/#span-stylefontweight-400Zabbix-short-overviewspanspan-stylefontweight-400span
https://blog.zabbix.com/multi-tenant-monitoring-how-to-achieve-that-using-free-zabbix-open-source-monitoring-software/12024/
https://blog.zabbix.com/multi-tenant-monitoring-how-to-achieve-that-using-free-zabbix-open-source-monitoring-software/12024/
https://www.influxdata.com/time-series-platform/telegraf/
https://github.com/influxdata/telegraf
https://www.elastic.co/elasticsearch/
https://github.com/elastic/elasticsearch

61 (66)

[83] Logstash: Collect, Parse, Transform Logs | Elastic [Internet]. Elastic. 2021

[cited 24 October 2021]. Available from: https://www.elastic.co/logstash/

[84] GitHub - elastic/logstash: Logstash - transport and process your logs, events,

or other data [Internet]. GitHub. 2021 [cited 24 October 2021]. Available from:

https://github.com/elastic/logstash

[85] [Internet]. Grafana. 2021 [cited 25 October 2021]. Available from:

https://grafana.com/

[86] Grafana Labs [Internet]. GitHub. 2021 [cited 25 October 2021]. Available

from: https://github.com/grafana/

[87] Kibana: Explore, Visualize, Discover Data | Elastic [Internet]. Elastic. 2021

[cited 25 October 2021]. Available from: https://www.elastic.co/kibana

[88] GitHub - elastic/kibana: Your window into the Elastic Stack [Internet]. GitHub.

2021 [cited 25 October 2021]. Available from: https://github.com/elastic/kibana

[89] Kibana Alerting: Alerts & Actions for Elasticsearch data [Internet]. Elastic.

2021 [cited 25 October 2021]. Available from: https://www.elastic.co/what-

is/kibana-alerting

[90] Chronograf [Internet]. Influxdata. 2021 [cited 25 October 2021]. Available

from: https://www.influxdata.com/time-series-platform/chronograf/

[91] GitHub - influxdata/chronograf: Open source monitoring and visualization UI

for the TICK stack [Internet]. GitHub. 2021 [cited 25 October 2021]. Available

from: https://github.com/influxdata/chronograf

[92] Create Chronograf dashboards [Internet]. Influxdata. 2021 [cited 25 October

2021]. Available from: https://docs.influxdata.com/chronograf/v1.9/guides/create-

a-dashboard/

[93] Weave Scope [Internet]. Weave.works. 2021 [cited 25 October 2021].

Available from: https://www.weave.works/oss/scope/

[94] GitHub - weaveworks/scope: Monitoring, visualisation & management for

Docker & Kubernetes [Internet]. GitHub. 2021 [cited 25 October 2021]. Available

from: https://github.com/weaveworks/scope

[95] Osborne C. Weave Scope is now being exploited in attacks against cloud

environments | ZDNet [Internet]. ZDNet. 2021 [cited 25 October 2021]. Available

from: https://www.zdnet.com/article/weave-scope-is-now-being-exploited-in-

attacks-against-cloud-environments/

https://www.elastic.co/logstash/
https://github.com/elastic/logstash
https://grafana.com/
https://github.com/grafana/
https://www.elastic.co/kibana
https://github.com/elastic/kibana
https://www.elastic.co/what-is/kibana-alerting
https://www.elastic.co/what-is/kibana-alerting
https://www.influxdata.com/time-series-platform/chronograf/
https://github.com/influxdata/chronograf
https://docs.influxdata.com/chronograf/v1.9/guides/create-a-dashboard/
https://docs.influxdata.com/chronograf/v1.9/guides/create-a-dashboard/
https://www.weave.works/oss/scope/
https://github.com/weaveworks/scope
https://www.zdnet.com/article/weave-scope-is-now-being-exploited-in-attacks-against-cloud-environments/
https://www.zdnet.com/article/weave-scope-is-now-being-exploited-in-attacks-against-cloud-environments/

62 (66)

[96] Issue #3046 · weaveworks/scope [Internet]. GitHub. 2018 [cited 25 October

2021]. Available from: https://github.com/weaveworks/scope/issues/3046

[97] InfluxDB 1.x [Internet]. 2021 [cited 25 October 2021]. Available from:

https://www.influxdata.com/time-series-platform/

[98] ELK Stack: Elasticsearch, Logstash, Kibana [Internet]. Elastic.co. 2021 [cited

25 October 2021]. Available from: https://www.elastic.co/what-is/elk-stack

[99] The ELK stack [Internet]. Amazon Web Services, Inc. 2021 [cited 25 October

2021]. Available from: https://aws.amazon.com/elasticsearch-service/the-elk-

stack/

[100] Elastic Cloud (Elasticsearch managed service) [Internet]. Google Cloud

Platform. 2021 [cited 25 October 2021]. Available from:

https://console.cloud.google.com/marketplace/product/endpoints/elasticsearch-

service.gcpmarketplace.elastic.co

[101] Elastic on Azure | Microsoft Azure [Internet]. Azure.microsoft.com. 2021

[cited 25 October 2021]. Available from: https://azure.microsoft.com/en-

us/overview/linux-on-azure/elastic/

[102] SIEM ELK Stack | What is SIEM ELK Stack - HKR Trainings [Internet].

Hkrtrainings.com. 2021 [cited 25 October 2021]. Available from:

https://hkrtrainings.com/siem-elk-stack

[103] Gungor U. Kubernetes Monitoring and Logging Solution: EMG and EFK

Stack (Part 1) [Internet]. Medium. 2020 [cited 25 October 2021]. Available from:

https://itnext.io/kubernetes-monitoring-and-logging-solution-emg-and-efk-stack-

part-1-8aa58339e7a4

[104] Peri N. Fluentd vs Logstash: A Comparison of Log Collectors [Internet].

Logz.io. 2020 [cited 25 October 2021]. Available from: https://logz.io/blog/fluentd-

logstash/

[105] GitHub - cdwv/efk-stack-helm: Helm chart to deploy a working logging

solution using the ElasticSearch - Fluentd - Kibana stack on Kubernetes

[Internet]. GitHub. 2021 [cited 25 October 2021]. Available from:

https://github.com/cdwv/efk-stack-helm

[106] Hanif J. How To Set Up an Elasticsearch, Fluentd and Kibana (EFK)

Logging Stack on Kubernetes | DigitalOcean [Internet]. DigitalOcean. 2020 [cited

25 October 2021]. Available from:

https://github.com/weaveworks/scope/issues/3046
https://www.influxdata.com/time-series-platform/
https://www.elastic.co/what-is/elk-stack
https://aws.amazon.com/elasticsearch-service/the-elk-stack/
https://aws.amazon.com/elasticsearch-service/the-elk-stack/
https://console.cloud.google.com/marketplace/product/endpoints/elasticsearch-service.gcpmarketplace.elastic.co
https://console.cloud.google.com/marketplace/product/endpoints/elasticsearch-service.gcpmarketplace.elastic.co
https://azure.microsoft.com/en-us/overview/linux-on-azure/elastic/
https://azure.microsoft.com/en-us/overview/linux-on-azure/elastic/
https://hkrtrainings.com/siem-elk-stack
https://itnext.io/kubernetes-monitoring-and-logging-solution-emg-and-efk-stack-part-1-8aa58339e7a4
https://itnext.io/kubernetes-monitoring-and-logging-solution-emg-and-efk-stack-part-1-8aa58339e7a4
https://logz.io/blog/fluentd-logstash/
https://logz.io/blog/fluentd-logstash/
https://github.com/cdwv/efk-stack-helm

63 (66)

https://www.digitalocean.com/community/tutorials/how-to-set-up-an-

elasticsearch-fluentd-and-kibana-efk-logging-stack-on-kubernetes

[107] Jagadeesalu B. ELK/EFK compare with Splunk [Internet]. Medium. 2019

[cited 25 October 2021]. Available from: https://medium.com/@balajijk/elk-efk-

compare-with-splunk-4c18fc362fd6

[108] aesher9o1. EFK Stack: Elasticsearch, Fluentd and Kibana on Docker

[Internet]. Medium. 2020 [cited 25 October 2021]. Available from:

https://aesher9o1.medium.com/efk-stack-elasticsearch-fluentd-and-kibana-on-

docker-be60597fa99

[109] Introducing the World’s First Modern Cloud-Based SecOps Platform:

Splunk Security Cloud [Internet]. Splunk-Blogs. 2021 [cited 25 October 2021].

Available from: https://www.splunk.com/en_us/blog/security/introducing-the-

world-s-first-modern-cloud-based-secops-platform-splunk-security-cloud.html

[110] The world's # 1 APM solution [Internet]. AppDynamics. 2021 [cited 25

October 2021]. Available from: https://www.appdynamics.com/

[111] Kubernetes monitoring | Dynatrace [Internet]. Dynatrace. 2021 [cited 25

October 2021]. Available from:

https://www.dynatrace.com/technologies/kubernetes-monitoring/

[112] Instana - Enterprise Observability and APM for Cloud-Native Applications

[Internet]. Instana. 2021 [cited 25 October 2021]. Available from:

https://www.instana.com/

[113] Sensu | Observability Pipeline [Internet]. Sensu.io. 2021 [cited 25 October

2021]. Available from: https://sensu.io/

[114] Comprehensive Automation for DevOps [Internet]. 2021 [cited 25 October

2021]. Available from: https://puppet.com/

[115] Azure Monitor | Microsoft Azure [Internet]. Azure.microsoft.com. 2021 [cited

25 October 2021]. Available from: https://azure.microsoft.com/en-

us/services/monitor/

[116] Amazon CloudWatch - Application and Infrastructure Monitoring [Internet].

Amazon Web Services, Inc. 2021 [cited 25 October 2021]. Available from:

https://aws.amazon.com/cloudwatch/

https://www.digitalocean.com/community/tutorials/how-to-set-up-an-elasticsearch-fluentd-and-kibana-efk-logging-stack-on-kubernetes
https://www.digitalocean.com/community/tutorials/how-to-set-up-an-elasticsearch-fluentd-and-kibana-efk-logging-stack-on-kubernetes
https://medium.com/@balajijk/elk-efk-compare-with-splunk-4c18fc362fd6
https://medium.com/@balajijk/elk-efk-compare-with-splunk-4c18fc362fd6
https://aesher9o1.medium.com/efk-stack-elasticsearch-fluentd-and-kibana-on-docker-be60597fa99
https://aesher9o1.medium.com/efk-stack-elasticsearch-fluentd-and-kibana-on-docker-be60597fa99
https://www.splunk.com/en_us/blog/security/introducing-the-world-s-first-modern-cloud-based-secops-platform-splunk-security-cloud.html
https://www.splunk.com/en_us/blog/security/introducing-the-world-s-first-modern-cloud-based-secops-platform-splunk-security-cloud.html
https://www.appdynamics.com/
https://www.dynatrace.com/technologies/kubernetes-monitoring/
https://www.instana.com/
https://sensu.io/
https://puppet.com/
https://azure.microsoft.com/en-us/services/monitor/
https://azure.microsoft.com/en-us/services/monitor/
https://aws.amazon.com/cloudwatch/

64 (66)

[117] Cloud Monitoring | Google Cloud [Internet]. Google Cloud. 2021 [cited 25

October 2021]. Available from: https://cloud.google.com/monitoring/

[118] CloudZero: Cloud Cost Intelligence [Internet]. Cloudzero.com. 2021 [cited

26 October 2021]. Available from: https://www.cloudzero.com/

[119] Cloud Cost Management [Internet]. Harness. 2021 [cited 26 October 2021].

Available from: https://harness.io/platform/cloud-cost-management/

[120] The Cloud Cost Management Buyer’s Guide [Internet]. Harness. 2021 [cited

26 October 2021]. Available from: https://harness.io/ccm-buyers-guide-

ebook/?utm_source=Internal&utm_medium=drift&utm_campaign=ccm-targeted-

pb#flex-columns-block-form

[121] Trusted Technology Investment Decisions | Apptio [Internet]. Apptio. 2021

[cited 26 October 2021]. Available from: https://www.apptio.com/

[122] Total Visibility Cloud Management Platform | CloudCheckr [Internet].

CloudCheckr. 2021 [cited 26 October 2021]. Available from:

https://cloudcheckr.com/

[123] Cloud Financial Management [Internet]. CloudHealth by VMware. 2021

[cited 26 October 2021]. Available from:

https://www.cloudhealthtech.com/solutions/cloud-financial-management

[124] Deep Cloud Cost Optimization [Internet]. Computesoftware.com. 2021

[cited 26 October 2021]. Available from: https://www.computesoftware.com/

[125] ParkMyCloud - Reduce Cloud Costs Automatically with ParkMyCloud

[Internet]. ParkMyCloud. 2021 [cited 26 October 2021]. Available from:

https://www.parkmycloud.com/

[126] AWS Budgets – Amazon Web Services [Internet]. Amazon Web Services,

Inc. 2021 [cited 26 October 2021]. Available from:

https://aws.amazon.com/ru/aws-cost-management/aws-budgets/

[127] Cloud Billing documentation | Google Cloud [Internet]. Google Cloud. 2021

[cited 26 October 2021]. Available from: https://cloud.google.com/billing/docs

[128] Cloud Cost Management | Microsoft Azure [Internet]. Azure.microsoft.com.

2021 [cited 26 October 2021]. Available from: https://azure.microsoft.com/en-

us/services/cost-management/#overview

https://cloud.google.com/monitoring/
https://www.cloudzero.com/
https://harness.io/platform/cloud-cost-management/
https://harness.io/ccm-buyers-guide-ebook/?utm_source=Internal&utm_medium=drift&utm_campaign=ccm-targeted-pb#flex-columns-block-form
https://harness.io/ccm-buyers-guide-ebook/?utm_source=Internal&utm_medium=drift&utm_campaign=ccm-targeted-pb#flex-columns-block-form
https://harness.io/ccm-buyers-guide-ebook/?utm_source=Internal&utm_medium=drift&utm_campaign=ccm-targeted-pb#flex-columns-block-form
https://www.apptio.com/
https://cloudcheckr.com/
https://www.cloudhealthtech.com/solutions/cloud-financial-management
https://www.computesoftware.com/
https://www.parkmycloud.com/
https://aws.amazon.com/ru/aws-cost-management/aws-budgets/
https://cloud.google.com/billing/docs
https://azure.microsoft.com/en-us/services/cost-management/#overview
https://azure.microsoft.com/en-us/services/cost-management/#overview

65 (66)

[129] Kubecost | Kubernetes cost monitoring and management [Internet].

Kubecost.com. 2021 [cited 26 October 2021]. Available from:

https://www.kubecost.com

[130] Integrated visibility & automation for cloud optimization [Internet]. Spot |

Cloud Analyzer. 2021 [cited 26 October 2021]. Available from:

https://spot.io/products/cloud-analyzer/

[131] Application Resource Management for Digital Business Transformation

[Internet]. Turbonomic.com. 2021 [cited 26 October 2021]. Available from:

https://www.turbonomic.com/

[132] Yotascale - Dynamic Cloud Cost Management [Internet]. Yotascale. 2021

[cited 26 October 2021]. Available from: https://yotascale.com/

[133] OKD - The Community Distribution of Kubernetes that powers Red Hat

OpenShift. [Internet]. Okd.io. 2021 [cited 26 October 2021]. Available from:

https://www.okd.io/

[134] AWS Pricing Calculator [Internet]. Calculator.aws. 2021 [cited 26 October

2021]. Available from: https://calculator.aws/#/addService

[135] Google Cloud Platform Pricing Calculator [Internet]. Google Cloud. 2021

[cited 26 October 2021]. Available from:

https://cloud.google.com/products/calculator

[136] Pricing Calculator | Microsoft Azure [Internet]. Azure.microsoft.com. 2021

[cited 26 October 2021]. Available from: https://azure.microsoft.com/en-

us/pricing/calculator/

[137] IBM Cloud cost estimator [Internet]. Ibm.com. 2021 [cited 26 October 2021].

Available from: https://www.ibm.com/cloud/cloud-calculator

[138] Price Calculator [Internet]. Alibabacloud.com. 2021 [cited 26 October 2021].

Available from: https://www.alibabacloud.com/pricing-

calculator#/commodity/vm_intl

[139] Can private cloud be cheaper than public cloud? [Internet]. 451

RESEARCH; 2017 [cited 26 October 2021]. Available from:

https://www.vmware.com/content/dam/digitalmarketing/vmware/en/pdf/products/

vrealize-suite/vmware-paper1-can-private-cloud-be-cheaper-than-public-

cloud.pdf

https://www.kubecost.com/
https://spot.io/products/cloud-analyzer/
https://www.turbonomic.com/
https://yotascale.com/
https://www.okd.io/
https://calculator.aws/#/addService
https://cloud.google.com/products/calculator
https://azure.microsoft.com/en-us/pricing/calculator/
https://azure.microsoft.com/en-us/pricing/calculator/
https://www.ibm.com/cloud/cloud-calculator
https://www.alibabacloud.com/pricing-calculator#/commodity/vm_intl
https://www.alibabacloud.com/pricing-calculator#/commodity/vm_intl
https://www.vmware.com/content/dam/digitalmarketing/vmware/en/pdf/products/vrealize-suite/vmware-paper1-can-private-cloud-be-cheaper-than-public-cloud.pdf
https://www.vmware.com/content/dam/digitalmarketing/vmware/en/pdf/products/vrealize-suite/vmware-paper1-can-private-cloud-be-cheaper-than-public-cloud.pdf
https://www.vmware.com/content/dam/digitalmarketing/vmware/en/pdf/products/vrealize-suite/vmware-paper1-can-private-cloud-be-cheaper-than-public-cloud.pdf

66 (66)

[140] Monitoring that understands business [Internet]. Anodot.com. 2021 [cited

26 October 2021]. Available from: https://www.anodot.com/

[141] CloudZero [Internet]. Capterra. 2021 [cited 26 October 2021]. Available

from: https://www.capterra.ie/software/200498/cloudzero

[142] Budgets and Forecasts - Apptio Cloudability [Internet]. Apptio. 2021 [cited

26 October 2021]. Available from:

https://www.apptio.com/products/cloudability/budgets-forecasts/

[143] Cloud Management FAQs [Internet]. ParkMyCloud. 2021 [cited 26 October

2021]. Available from: https://www.parkmycloud.com/faqs/

[144] Currently used pricing models in the cloud industry [Internet]. 2021 [cited

26 October 2021]. Available from: https://www.researchgate.net/figure/Currently-

used-pricing-models-in-the-cloud-industry_fig2_270958130

[145] What is Technology Business Management? TBM Explained [Internet].

BMC Blogs. 2021 [cited 26 October 2021]. Available from:

https://www.bmc.com/blogs/tbm-technology-business-management/

[146] Analytics - Overview of Amazon Web Services [Internet].

Docs.aws.amazon.com. 2021 [cited 26 October 2021]. Available from:

https://docs.aws.amazon.com/whitepapers/latest/aws-overview/analytics.html

[147] Compare AWS and Azure services to Google Cloud [Internet]. Google

Cloud. 2021 [cited 26 October 2021]. Available from:

https://cloud.google.com/free/docs/aws-azure-gcp-service-comparison

https://www.anodot.com/
https://www.capterra.ie/software/200498/cloudzero
https://www.apptio.com/products/cloudability/budgets-forecasts/
https://www.parkmycloud.com/faqs/
https://www.researchgate.net/figure/Currently-used-pricing-models-in-the-cloud-industry_fig2_270958130
https://www.researchgate.net/figure/Currently-used-pricing-models-in-the-cloud-industry_fig2_270958130
https://www.bmc.com/blogs/tbm-technology-business-management/
https://docs.aws.amazon.com/whitepapers/latest/aws-overview/analytics.html
https://cloud.google.com/free/docs/aws-azure-gcp-service-comparison

