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Recently, Machine Learning has played a major role in the field of science and 

technology. Object detection in Computer vision systems has gained a lot of use in 

many industries and is still being developed for many use cases today. It is now an 

essential technology for many monitoring systems, especially for detecting threats or 

tracking items.   

  

Agnet as a secure end-to-end communication solution for Airbus can be used as a 

monitoring system for cameras and drones. Having an integrated and deployable smart 

monitoring system powered by computer vision technology for risk reporting will bring 

value to Agnet.   

  

This thesis aimed to investigate the usage of Computer Vision to create a smart 

monitoring and risk-reporting system for Agnet.  To achieve these objectives the 

theoretical structure will include every step taken in building this computer vision and 

alerting system: acquisition, processing, model training, model deployment, inference, 

and risk reporting. This will give an extensive perspective of the key parts and their 

application. This is followed by the description of Agnet-API, which is the application 

programming interface for Agnet. Finally, a proof-of-concept Computer Vision and 

riskreporting system to demonstrate its practicality in a production environment.  

  

Based on the studies illustrated in this paper, it can be concluded that Computer Vision 

through Agnet-API is a viable and cheap smart-monitoring solution for Organizations. 

The desired objectives were fulfilled and the applicability of this solution to several 

communication systems is provided.  
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List of Abbreviations  

SMS:  Smart Monitoring System. A Computer-vision based system that acts 

as a monitoring solution for video devices.  

API:  Application Programming Interface.  

ML:  

Machine Learning. The act of machines learning from past data in 

other to make smart decisions without being implicitly programmed.  

CV:  

Computer Vision. Defines the tracking and detecting of objects within 

video sources or Images.  

TFS:  

TensorFlow Serving. A Rest-API-based service offered by 

TensorFlow for easy Model deployment.  

NN:  

Neural Networks. Network of neurons and nodes that transmit 

information through signals.  

REST:  

Representational State Transfer. Communication protocol for API 

services based on HTTP (Hypertext Transfer Protocol)  

TPU:  

Tensor Processing Unit. Dedicated unit built by Google developers 

specifically for neural network machine learning. Performs optimally 

on Google’s TensorFlow software.  

CPU:  

Central Processing Unit. A core processing unit that performs basic 

operations within a computer.  



 

GPU:      Graphics Processing Unit.  An electronic circuit designed to render  

graphic images at a more rapid rate. It is meant to process several data 

simultaneously which makes it useful for machine learning.  

VM:  Virtual Machine. Allows the execution of an Operating system that acts as 

a separate computer system within an application window on a 

desktop or host. Several of these instances can be run on a single 

host with each acting as a separate computer system.  

MC:  Mission Critical. This describes all necessary services or operations that are 

required for normal operations to be executed either in businesses 

or in any mission.  

MCPTT: Mission Critical Push to Talk. Mission-critical voice and audio 

transmission using the Push to Talk service.    

MCDATA: Mission Critical Data. Data services (multimedia, message, video,  

 etc.) for Mission-critical use.  

SSD:  Single Shot Detector. A Machine Learning model architecture.  

TP:  

True Positives. The number of correct detections identified by a 

model.  

FP:  

False Positives. The number of correct detections not identified by a 

model.  

MaP:  

Mean Average Precision. This is the mean value for the average 

precision of each class of object to be detected.   

AP:   Average Precision. This means how well a Machine Learning model  

can identify True Positives (TP) out of all positive predictions across a 

range of different classes.   
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1 introduction  

Machine Learning (ML) has been very active in the technology industries and 

every day more innovative ideas are developed to further advance the potential 

it brings to modern-day technology. Deep learning as an aspect of ML has made 

it possible for machines to learn similarly to how the brain works.   

Deep Learning (DL) technology has made it possible to build Computer Vision 

solutions which are essential for many monitoring systems, especially for 

detecting threats or tracking items. Having an integrated and deployable smart 

monitoring system powered by machine learning algorithms for risk reporting can 

be a relevant asset for large enterprises.  

Agnet as a secure end-to-end Mission-critical broadband solution could benefit 

from having an integrated Smart Monitoring System (SMS), which utilizes 

Computer Vision Technology.   

The objective of this thesis is as follows: (1) Explore the different components of 

a simple computer vision application (2) Detail how TensorFlow and OpenCV can 

be used in Machine Learning, deep learning, and Neural Networks to create a 

smart monitoring and alerting system (3) Detail and Demonstrate how to Integrate 

a computer vision system into other solutions using Rest-API.  

2 Background Knowledge  

The development of the Agnet SMS (Smart Monitoring System) would be 

impossible without the necessary theoretical knowledge of the technologies 

involved. Some of the major topics involved are discussed in the chapter as 

follows.  

2.1 Machine-Learning  

Machines generally are not intelligent. They were originally designed to perform 

a designated task without being able to learn from their experience.   
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Machine Learning is the aspect of artificial intelligence that aims to enable 

machines to do designated tasks and learn from the mistakes made without being 

explicitly programmed. They can learn using intelligent software. This intelligent 

software comprises algorithms and models that define the structure or patterns 

at which the machine learns or behaves.[3]  

ML gives computers the ability to learn from data.  

  

 

Figure 1. Different machine learning models and their required data [3]  

2.1.1 Supervised-Learning  

Supervised Learning as the name implies requires the supervision of the ML 

processes involved when training the model. This involves feeding the model with 

past data and providing the recorded outcomes(labels) of those data. The model 

function formed will be able to predict future outcomes based on the patterns it 

learned from the previously labeled data. This is the most common method of ML 

that involves predicting certain outcomes based on inputs.  

  

  

  

  

     

Machine Learning Techniq ues   

Supervised  

Learning   

Uns upervised  

Learning   

  

Semi - Supervised  

Learning   

Reinforcement  

Learning   

Concerned with  

Labelled data   

  

Concerned with  

unlabelled data   

  

Concerned with  

mixture of  labelled  

and un labelled   data   

No data   



Appendix 1  

3 (42)  

2.1.2 Unsupervised-Learning  

Unsupervised Learning deals with the aspect of ML, where the algorithm is only 

provided with data only. In this process, there is no teacher to instruct the model, 

and no desired output is provided during the training phase. The algorithm is 

meant to extract knowledge from the data. A common use case is in clustering of 

data with similar features.  

2.1.3 Semi-supervised Learning  

This is a type of ML that is between supervised and unsupervised learning. It 

deals with problems where only a few labeled data are available, with a large 

portion of unlabelled data. It is mostly used when the data with labeling examples 

are difficult or expensive to produce.  

2.1.4 Reinforcement-Learning  

This is an area of ML where the algorithm involves a factor that must determine 

the best course of action in a situation or environment. These series of decisions 

come with a reward or punishment. This form of ML helps decide the best series 

of actions to maximize reward. Like Unsupervised Learning, it does not require 

any teaching or instruction.  

  

2.2 Neural networks  

Neural Networks (NN) include a common way to represent (slightly complex) 

algorithms connecting input data to output data. It involves several similar units 

called neurons, performing simple mathematical tasks, and aligned in connected 

layers. Each neuron takes as input different outputs from the previous layer.  

Figure 2 illustrates the transmission of signals in the human cell.  
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Figure 2. Nerve cells receive incoming signals and produce output signals 

through the axon [16]  

  

As displayed in Figure 2, the human cell consists of an axon and several 

dendrites. The dendrites receive a signal and the axon transmit the output to other 

cell body.   

In Artificial Neural Networks the nodes are the dendrites while the Neuron is the 

Axon. Several inputs are passed into the neuron where the Neuron produces 

output based on those inputs using some mathematical function(algorithm).  

  

The figure below shows how a simple Artificial Neural Network model receives 

several inputs and produces some output.  

  

             Figure 3. Artificial Neuron with several inputs and a single output [16]  
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2.3 Deep Learning  

DL (Deep Learning) consists of an advanced form of neural network that involves 

a more complex network of interconnected layers that comprises different nodes. 

In a Neural Network, thousands to millions of neurons in the hidden layer of a 

network are broken down and processed into fewer output neurons. This form of  

NN (Neural Network) is called Deep Learning. [3]  

The figure below shows the structure of a Deep Neural Network.  

  

  

  

                Figure 4. Structure of a Deep NN (Neural Network) [16]  

  

A Neural Network with Three or more layers is usually referred to as DL (Deep 

Learning) or Deep Neural Network.  

2.4 Computer Vision  

CV (Computer Vision) utilizes deep learning technology to extract valuable 

information from images, videos, and other visual inputs.  

This technology is used in Image recognition, object detection, object tracking, 

and more.  

A simple form of Computer Vision is the detection of objects in images. This 

technology utilizes a process called ‘Feature Extraction’ to understand objects 

within an image.  
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Steps Involved in a Basic Computer Vision System  

• Image-Acquisition  

• Pre-Processing  

• Feature Extraction  

• Classification  

2.4.1 Image-Acquisition   

As the name implies, this stage involves gathering necessary image Data 

required for training and evaluating the classifier which would be used for 

detecting objects or classifying images.  

The quality of the Data used in training a classifier is essential for its performance.  

The Data used in the Image-Acquisition process is referred to as Training-Data.  

  

2.4.2 Pre-Processing  

This stage involves all the modifications performed on the Data before any other 

form of data processing (e.g., Feature-Extraction) to boost performance of the 

Machine Learning Process. This is to avoid using garbage data which would 

result to a bad ML model. The type of Technique performed during this stage 

depends on the type of data and the kind of model that will be used. [3] Some of 

the Modifications during this phase are  

• Image labeling  

• Image-Augmentation  

• Resizing  

• Grayscale  

  

  

2.4.3 Feature Extraction  

During the processing of an image, a series of conversions is performed on an 

image to extract the important features that the algorithm will use for making 
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predictions.  It is the transformation of raw data into numerical values that can be 

processed while retaining the information contained in the original data.  

The figure below shows an Image and its processed form showing some 

extracted features.  

2.4.4 Classification  

This is the final step of the computer vision system process. Several computations 

involving algorithms and patterns are applied to the processed data. These 

algorithms and patterns will generate outputs called Models. The model 

generated is based on the meaningful information gathered by the algorithm 

which is used to classify future unseen data (Images).  

  

2.5 TensorFlow  

TensorFlow is an Open-Source framework that provides various researchers and 

Engineers, with easy access to ML tools and services to enable them to build 

their ML-based applications. It helps form an easy Model-Building and Robust 

Model deployment to Enable powerful experimentation. TensorFlow is built on the 

Tensor Framework [8].  

This framework was released by Google and backed by google engineers. 

TensorFlow takes data in multi-dimensional arrays called tensors, which makes 

for faster computation on systems with high-computation power.  

2.5.1 What are Tensors?  

A tensor is a multi-dimensional array of data used in mathematical models that 

expresses neural networks. It is usually a higher-dimension generalization of 

matric or vector.[7] It is a more complex form of NumPy arrays with a variable 

number of dimensions.  

The figure below suitably describes tensors.  
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Figure 5. Different representations of tensors [9]  

  

  

  

2.5.2 Why Choose TensorFlow?  

• Convenient API: TensorFlow has an easy-to-use API architecture that 

enables python developers to use TensorFlow raw, low-level API, or the 

core API in developing their models. They also can use high-level API 

libraries for built-in models.[7]  

• Flexible architecture: One of the best parts of using TensorFlow is the 

ability to distribute models across CPU, GPU, or TPU processors with 

minimal code alteration. The framework allows for developers to not only 

provide large-scale distributed training and inference but also test with 

other ML models and increase the performance of existing models.[7]  

• Computational Graph model: TensorFlow uses computational graphs 

(also called graphs) to represent a series of operations arranged into a 
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graph of nodes to help developers visualize what is going on within the 

neural network layers. It simply means a combination of nodes that 

represents the operations being carried out by a model. [7]  

  

Figure 6: TensorFlow computational Graph [8]  

• Shared Processing: TensorFlow was designed to support the 

distribution of processes on different servers. This will help reduce the 

load by transferring processes from a system with small computational 

power to another system with higher computational power. Parts of a 

computational graph can be shared across a cluster of servers with GPUs 

or with larger memory all on the same network. [7]  

• Performance: The performance of a deep learning framework is 

dependent on the fundamental hardware to run optimally at its top 

performance with lower energy costs. Usually, the original development 

platform of any framework would obtain the best optimization.  

TensorFlow performs best on Google TPUs, but it also obtains high 

performance on other platforms ranging from servers, desktops, mobile 

devices, and embedded systems. [7]  



Appendix 1  

10 (42)  

2.6 Rest-API  

The Restful API is an application programming interface that allows data 

exchange between a client and a server using commonly HTTP protocol. REST 

(Representational State Transfer) API follows the architecture of a web service 

by utilizing the Client-Server protocol.  

  

  

  Figure 7. Common REST API Model [17]  

As shown in the Figure above, the Web browser or application makes requests 

for data or commands using the REST-API protocol and receives a response from 

the server.  

2.7 Docker  

Docker is an open-source platform that allows for building, deploying, and 

managing containerized applications (Docker Containers) [11]. The Docker tool 

packages several applications and services into a containerized environment.  

2.7.1 What are Containers?  

Containers are a form of virtual machines that consists of isolated 

processes/resources built into the Linux kernel. Some of the features that make 

containers virtual-like machines are:  

• Control groups - For allocating resources among several processes.  

• Namespace – For limiting process access or visibility into other areas or 

resources within the system. Enabling multiple application elements to 

distribute the resources of a single instance of the host operating system 



Appendix 1  

11 (42)  

(the same way as a hypervisor allows multiple virtual machines to share 

the host CPU)  

  

  

  

Figure 8: Comparison of containers and virtual machines [12]  

2.7.2 Advantages of Docker Containers  

1. Lighter weight: Containers do not have full-blown Operating systems, 

unlike Virtual machines. They encompass only the Operating System 

processes and dependencies required to execute the code. The size of 

containers is measured in Megabytes (vs. gigabytes in VMS). Hence 

containers have faster runtime and have optimized start-up times.  

2. Larger Resource Efficiency: Due to its lightweight, several instances of 

an application can run simultaneously on the same hardware(host) with 

minimal resource intensity than VMs. This helps for better efficiency.  

3. Improved Productivity: Compared to Virtual Machines (VMs), docker 

containers are faster, and easier to deploy, provision, and restart. These 

make development operations easier and more agile. It is ideal for the 

continuous integration and deployment practiced by development 

engineers.[9]  



Appendix 1  

12 (42)  

2.7.3 Components of Docker  

1. Docker-File: The docker file is a simple text file that defines a list of 

instructions used in building a docker image.  

2. Docker Images: This is a read-only executable file that contains all the 

instructions for creating a docker container. It is like a snapshot in the VM 

world. It includes all source code as well as the tools and libraries that the 

application needs to run as a container.  

3. Docker daemon: This is a service that runs on the operating system. It 

listens for commands or requests and performs operations accordingly. It 

is responsible for managing docker objects like docker images, containers, 

networks, etc.  

4. Docker Hub: This is a public repository that stores docker images. It is 

arguably the largest platform for container images.  

5. Docker Compose: This is a tool that is used to run multi-container docker 

applications. It allows the creation and running of multiple containers 

defined within a YAML file. These containers can share resources and 

communicate with each other. (Dependent containers). [9]  

2.7.4 Docker Deployment and Orchestration  

Containers can be managed and deployed by several tools, but there are a few 

tools that are more viable and used by developers.   

Docker-compose allows for managing and deploying several docker containers 

on the same host. While this might solve the challenge of multi-container 

operations, it does not help in deploying and managing containers across several 

servers.  

While docker has its tool(docker-swarm) used for container orchestration across 

many servers, Kubernetes has proven to be a more viable solution than 

dockerswarm.  What is Kubernetes?  

Kubernetes: This is an open-source container orchestration platform that 

automates the management, scaling, and deployment of several applications  

[13].  
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3 Implementation  

The theoretical process that was undertaken before building this computer vision 

project (proof of concept) has been addressed in the preceding chapters. This 

chapter aims to show how this knowledge was implemented and to give a better 

view of the development of the project.  

The figure below represents the entire architecture and workflow of this project.  

 

                 

  

Figure 9. Agnet Computer Vision System Architecture  

The project includes the development of a computer vision application that can 

interact with other applications via API.  

Building a CV system follows the same process as many other software systems. 

There are a few questions that were considered before building an Agnet CV 

system.  

The table below answers some of these questions.  

  

  

  

 Question  Answer  

Project - Architecture   
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 What is the purpose of the 

software?  

To detect Threats like weapons and 

send alerts based on detected 

threats.  

 What  technologies would be 

used?  

Technologies like TensorFlowGPU, 
OpenCV, Docker, REST- 
API, etc.  

•  What environment will this 

software be built on?  

The prototype will be built on 

UBUNTU Linux and future 

prototypes would use other 

platforms like Raspberry-Pi, 

RHEL8+(To reduce cost of 

production and facilitate easy 

deployment)  

  

3.1 Implementation Tools  

• TensorFlow-GPU: TensorFlow supports the use of a Graphics card for 

additional computation power in the model training phase. TensorFlow 

GPU was installed on the hardware used for training the model. The 

hardware specifications can be found in section 3.2.1.3.  

• Tensor board: This tool is used to help provide detailed measurements 

and make visualizations during the machine learning workflow. It is used 

to measure metrics like accuracy and loss. It provides all the necessary 

tools needed for ML experimentation and model evaluation. Below is a 

snippet of the Tensor board during model training.  



Appendix 1  

15 (42)  

  

Snippet 1. TensorFlow Visualization Board  

• Docker-compose:  This tool is used to manage and deploy both the server 

application (TensorFlow serving) and the client application.    

3.2 Solution Implementation  

This project consists of Three major steps defined below.  

1. Building the Model  

2. Developing the application   

3. Integrating the application with Agnet  

A detailed analysis of each of these steps will be provided as this chapter 

progresses.  

  

  

3.2.1 Building The Model  

Many Computer vision systems being developed today follow Similar processes. 

The various steps applied when building this application are described in the 

following subsections.  
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Image Acquisition  

As described in the earlier chapters of this document, any ML or CV application 

uses a model. This model requires specific data (Training data), which it will learn 

from.  

The Images used to train this computer vision system were acquired from Kaggle.  

Kaggle is an online platform that consists of a community of machine learning 

enthusiasts and data scientists to collaborate and share ideas.[1]  

Since the Computer vision system aims for detecting threats like weapons 

(Pistols, Assault-rifles, etc.) therefore, the necessary Images needed for training  

this system will consist of fire and guns.   

  

  

  

Figure 10. Fire-Gun Dataset Kaggle [1]  

The dataset consisted of 7784 images and their respective labels making about 

15700 files.  

Image Processing  

  

The Dataset were, however, labeled with text files. Since the computer vision 

system model is going to be based on TensorFlow, some series of conversions 

and pre-processing was needed to achieve the right data format.  

 An online ML tool called Robo-flow is used to achieve this.[2]  
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Roboflow allowed for converting and creating XML labels for each image as 

shown in the figure below.  

  

Figure 11. Bounding box images and their respective XML labels [2]  

  

After creating the labels for the Images, the data was split into 75% Training set,  

15% Validation set, and 10% Test set. Some data annotations were done to the 

Training data to increase the number of Images from 5800 to 17000 as shown in 

figure 12 below.  
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Figure 12. Image Pre-processing and Augmentation with Roboflow [2] As seen in 

figure 12 several pre-processing and augmentation techniques were used to 

provide about 3 times more training data like rotation, vertical flip, blur, etc.  

These newly generated data are then exported as TensorFlow records 

(TFRecord), which would be used to train the TensorFlow model as shown in 

figure 13 below.  

  

  
Figure 13. Exporting TensorFlow records via Roboflow [2]  

Model Training  

To give a more detailed and accurate description, it is important to Describe what 

kind of hardware was used for building the models used for this project.  

  

The table below describes the Hardware specifications for the machine used in 

training the model.  

Specification  Details  

Hardware Name  ROG-Strix-G15-G513 Laptop  

Model  G513QM-HF225T  

Processor  AMD-Ryzen™  7  5800H  Mobile  

Processor (8-core/16-thread, 20MB 

cache, up to 4.4 GHz max boost)  
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Graphics card  NVIDIA® GeForce RTX™ 3060 Laptop  

GPU  

With ROG Boost up to 1802MHz at  

115W (130W with Dynamic Boost)  

6GB GDDR6  

  

  

  

Two of the fastest single-shot detector (640 x 640 pixeled) models   in terms of 

response time were chosen for the application. The models are.  

• SSD MobileNet V1 FPN 640X640  

• SSD ResNet50 V1 FPN 640X640   

  

Why is Single-Shot detector?  

The SSD model uses the VG-16 model as the feature map extractor and then 

series of convolutional filters in addition for the object detection. The single-shot 

detector aims to optimize speed and accuracy. It runs several convolutional layers 

of different scales, which makes it able to detect objects of different sizes.  

  

Figure 14. SSD Model Architecture [12]  

  

What is Single-Shot Detection?  

This means that the task for classifying and localizing objects within an image is 

done with just one pass across the network. Hence its speed compared to other 

model architectures.  

  

Model 1: SSD MobileNet FPNlite.  
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MobileNet as the name implies is a lightweight convolutional network designed to 

run on mobile devices. It uses the depth wise separable convolutional layer 

instead of the standard convolutional layer. Since the SSD model is independent 

of its base model, the MobileNet architecture is used as its base model in this 

case.  

It consists of Three Layers as shown in the figure below.  

  

  

Figure 15. MobileNet V2 Architecture [14]  

  

Like the MobileNet version 1 it maintains the 3x3 DepthWise Convolution layer, 

but the Projection Layer reduces the dimension of the input channel unlike the  

Pointwise Layer of the Version 1 which does the opposite.[14]  

This model template was found in the official TensorFlow GitHub repo.  

Training the model  
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The model takes images of size 640 x 640 pixels with a batch size of 2 due to 

computing power limitation. A batch size of 3 or more resulted in memory 

allocation error. After training this model for over 1.9 million steps, some inference 

graphs were derived. Four accuracy metrics were used to determine the 

performance of the model.  

1. Classification Loss: This describes how well the model correctly classifies 

the images. If 2000 images were processed, how many images are 

correctly classified, and how many were wrongly classified?  

2. Localization Loss: This describes how well the model correctly locates the 

object within the image. A bounding box is constructed to precisely point 

out the object within the processed frame.  

3. Total Loss: This combines the loss derived from classification and 

localization. It enables better inference and evaluation of the model.  

4. Mean Average Precision: This is the mean value for the average precision 

of each class of object to be detected. The precision of a model simply 

means how well the model can identify True Positives (TP) out of all 

positive predictions.  It is given by Precision = (TP)/ (TP + FP) where FP 

is False Positives and TP is True Positives.  

  

  

The graph showing how the model has performed during the training process is 

displayed below.   

The vertical axis describes the loss value ranging from 0 to 1  

The Horizontal axis describes the number of steps ranging from 0 to 1.9 million.  

These graphs are displayed in the figures below.  
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Figure 16. Localization Loss Graph  

  

  

  

  

  

Figure 17. Classification Loss Graph  
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Figure 18. Total Loss Graph  

  

  

As seen from the graphs above the loss gradually reduced over time with the 

fastest learning curve between step 0 to step 1000000(one million). The total time 

taken to train this model was 75.23 hours (3.14 days).  

  

Model Evaluation  

There were 622 test images used to evaluate the model. After running the 

evaluation, the following results were obtained as displayed in the snippet below.  

  

Snippet 2. Model 1 Evaluation Results  

From the Image above the model produced a MaP of 0.388526 based on 3 

classes (Fire, pistol, and Weapon). However, one of the classes had an Average 
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precision Value of 0.0041 which is very much lower than the other classes which 

produced an AP of 0.52 and 0.642 respectively.   

This means the model fails to recognize a lot of True Positives for class 0 

compared to other classes. It is Important to mention that the amount of Image 

data for class 0 was much higher than other classes (Imbalanced Training Data).  

  

The quality of the Images was poor in some cases which affects the evaluation 

performance.  

The image below shows the quality of images that was occasionally tested and 

how the model fails to detect objects in this image.  

  

  

  

  

  

Figure 19. Model Performance on Animated Images  

  

  

As seen in the Figure above, the image with no detection appears to be an 

animated image, which is not viable for our test as the solution is to be used for 

real-life cases.  

However, in the image below it is visible that the detection was made on an image 

captured by a camera.  
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Figure 20. Model Performance on Normal Images  

  

  

Model 2: SSD ResNet50 Fpn.  

Residual Networks 50 or ResNet50 is a Convolutional network that is 50 layers 

deep. The pretrained ResNet50 is used as base model for the feature extractor 

layer performing the object detection (SSD layer).  

  

The batch size of the images used by the algorithm was also reduced to 2 due to 

the computing power limitation. The total training time for this model after 1.7 

million steps was 107.216 hours (4.47 days)  

After training the following accuracy graphs below were derived for evaluation 

purposes.  
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Figure 21. Resnet-Model Classification Loss Graph  

  

  

Figure 22. Resnet-Model Localization Loss Graph  

  

  

Figure 23. Resnet-Model Total Loss Graph  

  

Model Evaluation  
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After running the evaluation for the 622 test Images, the following results for this 

model were obtained as displayed in the snippet below.  

  

Snippet 3. Model2 Evaluation results  

  

From the Image above the model produced a MaP of 0.371 based on 3 classes 

(Fire, pistol, and Weapon). The same behaviour was noticed as one of the 

classes has an Average precision Value of 0.0041 which is very much lower than 

the other classes which produced an AP of 0.46 and 0.648 respectively.   

This can confirm that our Training data is imbalanced.  

Comparing Results of Model1 and Model2  

  

Model  Batch- 

Size  

Number of 

steps  

Total time  Evaluation  

MaP  (623  

images)  

Model- 

Size  

Model 1  2  1900000  3.14 days  0.389   17.9 

Megabytes  

Model 2  2  1700000  4.47 days  0.371  128  

Megabytes  

  

From the above table, model 1 yielded a better result and was the best model of 

the two.   
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3.2.2 The Computer Vision system  

This system is a TensorFlow serving object detection model using REST-API for 

risk identification and reporting.  

The application consists of two docker containers as follows.  

• Server: This container runs the TensorFlow Service that makes the object 

detection model available via a network for inference purposes. The model 

is accessed by clients that have access to the network.  

• Client: This container runs the script which periodically scans a video 

source and passes each frame (Image) to the model on the server 

application. The client application receives a response from the server 

about the predicted item.  

  

Below is an architecture of this Computer Vision system built with Docker.  

  

  

Figure 24. Computer Vision system architecture within Docker-compose  

  

From the figure above, it is visible that there are two main docker 

containers.  

The Server container runs the TensorFlow serving tool which takes the 

trained ML model and makes it available via the REST-API.  
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The Client container uses all necessary libraries like OpenCV and Pillow 

to process videos from various sources as individual frames and send 

each frame to the server via a POST request for processing.  

The server returns a response to the client app containing possible 

detections. All these automated processes are managed with the 

dockercompose tool.  

The snippet below shows the code used in building both docker 

containers.  

  

Snippet 4. Definition of Server and Client applications in docker-compose 

YAML file.  

• The TensorFlow-Serving docker image: This image is provided by 

TensorFlow and can be pulled directly from the docker repository.  

• The trained ML models: This model is mounted to the server application 

so that the container can provide it to the client application.  
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Snippet 5. Custom model mounted into client docker application.  

  

  

• Object detection folder: The necessary files have been mounted into the 

container using docker volumes.  

The client application uses OpenCV to process frames and send each 

frame to the TensorFlow server for prediction.  

  

  

• Docker link: This is a way to link the network namespace of one container 

with another. When a container is built, it creates its network environment 

and cannot be accessed by the outside world or from other containers. 

The network environment can be accessed by opening a port between the 

external network to the container network or by linking several containers 

with each other.  

3.2.3 Integrating The App with Agnet  

The goal of the project is to detect objects within a video source and then send 

this information to the Agnet Server. It is therefore important to know what Agnet 

means. The below subsection will further explain what Agnet means.  
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What is Agnet?  

Agnet is a secure group collaboration solution. It brings secure professional 

communications to your smart devices and offers the capability to bring your radio 

and smart device users to the same groups. Hence, smart device users become 

part of the professional world. Voice, data, video, and location services are all at 

hand with the reliability and security that professional users expect. [15]  

Tactilon Agnet extends flexibly from a simple push-to-talk (PTT) to an extensive 

group collaboration solution that makes use of smart device capabilities in a 

secure and controlled way. It offers a full variety of different communication 

methods from instant PTT to video and location sharing, and the ability to 

professionally manage users and groups.  

It meets the requirements of public safety organizations as well as transport, 

utility, and industry users. The data necessary for an operation can be easily and 

securely accessed, even when using different devices and technologies.  

  

  

Features of Agnet  

• Push to talk group calls (MCPTT)  

• Private Voice Call  

• Messaging (Multimedia)  

• End-to-end encryption   

• MCDATA: Secure messaging and data collaboration, also from 3rd party 

systems.  

• MC Video: video calls and streaming  

• Emergency calls  

• Lifeguard   

(advanced man-down)  

• Real-time location tracking  

• Operational status  
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The figure below gives a brief overview of the features of Agnet  

  

  

Figure 25. Features of Agnet.  

  

  

Agnet-Api  

This is a developer program for applications and accessories to help extend the 

functionalities of Agnet using innovative solutions. It acts as an API gateway for 

integrating new solutions to the agnet backend.    
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Figure 26. Agnet-API Service model from Third Party Applications.  

  

As seen from the figure above, the AgnetAPI service can be reached via the 

REST API protocol. This service can then trigger a series of actions on the Agnet 

Platform. Actions like Emergency message triggers can alert the end-user of 

incidents.  

The Agnet-API program will be used to integrate the computer vision system into 

the Agnet platform.  

  

The client application of the Computer Vision system contains most of the code 

and data orchestration from Image processing to constructing post messages to 

Agnet containing detected objects.  

There are 3 main steps involved within the client application from image 

processing to triggering of alerts on the Agnet platform. These steps are listed 

below.  

  

• Video capture and processing: The video is captured with OpenCV and is 

processed frames by frames. These frames are then parsed as JSON 
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objects and posted to the TensorFlow Service for inference. The below 

code snippet shows how the video is being processed with OpenCV  

  

Snippet 6. Capturing frames from video source and sending it to 

TensorFlow-Server for inference.  

  

• TensorFlow object detection: The TensorFlow service which runs the 

custom-trained model will take these frames as input and return a JSON 

object containing predictions. Snippet 6 shows the frames being sent as 

post messages to the TensorFlow Service.  

  

• Event trigger based on detection: The predictions are further passed into 

a function that constructs a posted message to the Agnet services. An 

emergency message event is triggered and the Agnet client user receives 

an image with the detected item. This post message uses the REST-API. 

The snippets below show how this returned JSON data is parsed and used 

to trigger events via the Agnet-API.  
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Snippet 7. Visualizing the detected objects and passing it to the Database 

function.   
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Snippet 8. A report Database function that communicates with Agnet via 

the API interface.  

    

  

  

  

  

  

  

4 Performance  

The application aimed to trigger emergency messages, geo-location, and 

multimedia messages (containing Images of Detected Items from video 

sources).  

The below figures display images of the events being triggered and sent to 

the Agnet users.  
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Figure 27: Emergency message to Agnet Dispatcher (Agnet web application 

client).  
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Figure 28: Emergency message to Agnet Mobile Client.  

  

The performance of the project was measured on several metrics listed 

below.  

• Response time: The time between the object’s appearance on the 

video footage to the trigger of the emergency message is in 
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milliseconds. This shows that the application is very time-critical and 

can make detections faster than the human eye.  

• Bandwidth required to run the application: The application does not 

perform any heavy job. It reads the frame from an already existing 

video server or video source and performs detection on it. This makes 

the network requirement much less demanding. The application would 

run on a 3G, 4G LTE network. The application also runs behind a 

Secure VPN (Virtual Private Network).  

• System requirements: The application is lightweight and will run on 

any 64bit ubuntu system. A basic ubuntu system requires 1 Gigahertz 

CPU, 1 Gigabyte RAM (Random Access Memory), and 2.5gigabytes 

of storage.  

5 Conclusion  

The project builds a complete object detection system that reads video 

sources (camera, cctv etc.) and triggers emergency alerts via the Agnet 

platform. The entire system runs on docker ubuntu.  This was achieved by 

constructing two applications using docker-compose. The server application 

utilizes TensorFlow-Serving for deploying the model and the client application 

utilizes Agnet-API for triggering alerts. The application can be easily deployed 

to several systems efficiently using the docker-compose tool. The Goal of this 

Thesis project was successfully achieved. This means the object-detection 

Software was integrated into the Agnet Platform in other to build a smart 

monitoring solution Proof of Concept for Public Safety. The project 

application does prove that Agnet can be integrated with any third-party 

software through Agnet-API.  

Further developments for this project include running the system on smaller 

computing units like the raspberry pi 3b+.   
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