

Augustine Igbinidu-Uwuigbe

Agnet Object-Detection and Alert

System with TensorFlow-Serving

and Agnet-API

Metropolia University of Applied Sciences

Bachelor of Engineering

Information Technology

Bachelor’s Thesis

30 August 2022

Abstract

Author: Augustine Igbinidu-Uwuigbe

Title: Agnet Object-Detection and Alert System with

TensorFlow-Serving and Agnet-API

Number of Pages: 45 pages

Date: 30 August 2022

Degree: Bachelor of Engineering

Degree Programme: Information Technology

Professional Major: Internet of Things and Cloud Computing

Supervisors: Serge Delmas, System Integration Specialist

 Marko Uusitalo, Senior Lecturer

Recently, Machine Learning has played a major role in the field of science and

technology. Object detection in Computer vision systems has gained a lot of use in

many industries and is still being developed for many use cases today. It is now an

essential technology for many monitoring systems, especially for detecting threats or

tracking items.

Agnet as a secure end-to-end communication solution for Airbus can be used as a

monitoring system for cameras and drones. Having an integrated and deployable smart

monitoring system powered by computer vision technology for risk reporting will bring

value to Agnet.

This thesis aimed to investigate the usage of Computer Vision to create a smart

monitoring and risk-reporting system for Agnet. To achieve these objectives the

theoretical structure will include every step taken in building this computer vision and

alerting system: acquisition, processing, model training, model deployment, inference,

and risk reporting. This will give an extensive perspective of the key parts and their

application. This is followed by the description of Agnet-API, which is the application

programming interface for Agnet. Finally, a proof-of-concept Computer Vision and

riskreporting system to demonstrate its practicality in a production environment.

Based on the studies illustrated in this paper, it can be concluded that Computer Vision

through Agnet-API is a viable and cheap smart-monitoring solution for Organizations.

The desired objectives were fulfilled and the applicability of this solution to several

communication systems is provided.

Keywords: Computer Vision, Agnet-API, Smart-monitoring, Risk-reporting

Contents

List of Abbreviations 4

1 introduction 1

2 Background Knowledge 1

2.1 Machine-Learning 1

2.1.1 Supervised-Learning 2

2.1.2 Unsupervised-Learning 3

2.1.3 Semi-supervised Learning 3

2.1.4 Reinforcement-Learning 3

2.2 Neural networks 3

2.3 Deep Learning 5

2.4 Computer Vision 5

2.4.1 Image-Acquisition 6

2.4.2 Pre-Processing 6

2.4.3 Feature Extraction 6

2.4.4 Classification 7

2.5 TensorFlow 7

2.5.1 What are Tensors? 7

2.5.2 Why Choose TensorFlow? 8

2.6 Rest-API 10

2.7 Docker 10

2.7.1 What are Containers? 10

2.7.2 Advantages of Docker Containers 11

2.7.3 Components of Docker 12

2.7.4 Docker Deployment and Orchestration 12

3 Implementation 13

3.1 Implementation Tools 14

3.2 Solution Implementation 15

3.2.1 Building The Model 15

3.2.2 The Computer Vision system 28

3.2.3 Integrating The App with Agnet 30

4 Performance 36

5 Conclusion 39

References 40

List of Abbreviations

SMS: Smart Monitoring System. A Computer-vision based system that acts

as a monitoring solution for video devices.

API: Application Programming Interface.

ML:

Machine Learning. The act of machines learning from past data in

other to make smart decisions without being implicitly programmed.

CV:

Computer Vision. Defines the tracking and detecting of objects within

video sources or Images.

TFS:

TensorFlow Serving. A Rest-API-based service offered by

TensorFlow for easy Model deployment.

NN:

Neural Networks. Network of neurons and nodes that transmit

information through signals.

REST:

Representational State Transfer. Communication protocol for API

services based on HTTP (Hypertext Transfer Protocol)

TPU:

Tensor Processing Unit. Dedicated unit built by Google developers

specifically for neural network machine learning. Performs optimally

on Google’s TensorFlow software.

CPU:

Central Processing Unit. A core processing unit that performs basic

operations within a computer.

GPU: Graphics Processing Unit. An electronic circuit designed to render

graphic images at a more rapid rate. It is meant to process several data

simultaneously which makes it useful for machine learning.

VM: Virtual Machine. Allows the execution of an Operating system that acts as

a separate computer system within an application window on a

desktop or host. Several of these instances can be run on a single

host with each acting as a separate computer system.

MC: Mission Critical. This describes all necessary services or operations that are

required for normal operations to be executed either in businesses

or in any mission.

MCPTT: Mission Critical Push to Talk. Mission-critical voice and audio

transmission using the Push to Talk service.

MCDATA: Mission Critical Data. Data services (multimedia, message, video,

 etc.) for Mission-critical use.

SSD: Single Shot Detector. A Machine Learning model architecture.

TP:

True Positives. The number of correct detections identified by a

model.

FP:

False Positives. The number of correct detections not identified by a

model.

MaP:

Mean Average Precision. This is the mean value for the average

precision of each class of object to be detected.

AP: Average Precision. This means how well a Machine Learning model

can identify True Positives (TP) out of all positive predictions across a

range of different classes.

Appendix 1

1 (42)

1 introduction

Machine Learning (ML) has been very active in the technology industries and

every day more innovative ideas are developed to further advance the potential

it brings to modern-day technology. Deep learning as an aspect of ML has made

it possible for machines to learn similarly to how the brain works.

Deep Learning (DL) technology has made it possible to build Computer Vision

solutions which are essential for many monitoring systems, especially for

detecting threats or tracking items. Having an integrated and deployable smart

monitoring system powered by machine learning algorithms for risk reporting can

be a relevant asset for large enterprises.

Agnet as a secure end-to-end Mission-critical broadband solution could benefit

from having an integrated Smart Monitoring System (SMS), which utilizes

Computer Vision Technology.

The objective of this thesis is as follows: (1) Explore the different components of

a simple computer vision application (2) Detail how TensorFlow and OpenCV can

be used in Machine Learning, deep learning, and Neural Networks to create a

smart monitoring and alerting system (3) Detail and Demonstrate how to Integrate

a computer vision system into other solutions using Rest-API.

2 Background Knowledge

The development of the Agnet SMS (Smart Monitoring System) would be

impossible without the necessary theoretical knowledge of the technologies

involved. Some of the major topics involved are discussed in the chapter as

follows.

2.1 Machine-Learning

Machines generally are not intelligent. They were originally designed to perform

a designated task without being able to learn from their experience.

Appendix 1

2 (42)

Machine Learning is the aspect of artificial intelligence that aims to enable

machines to do designated tasks and learn from the mistakes made without being

explicitly programmed. They can learn using intelligent software. This intelligent

software comprises algorithms and models that define the structure or patterns

at which the machine learns or behaves.[3]

ML gives computers the ability to learn from data.

Figure 1. Different machine learning models and their required data [3]

2.1.1 Supervised-Learning

Supervised Learning as the name implies requires the supervision of the ML

processes involved when training the model. This involves feeding the model with

past data and providing the recorded outcomes(labels) of those data. The model

function formed will be able to predict future outcomes based on the patterns it

learned from the previously labeled data. This is the most common method of ML

that involves predicting certain outcomes based on inputs.

Machine Learning Techniq ues

Supervised

Learning

Uns upervised

Learning

Semi - Supervised

Learning

Reinforcement

Learning

Concerned with

Labelled data

Concerned with

unlabelled data

Concerned with

mixture of labelled

and un labelled data

No data

Appendix 1

3 (42)

2.1.2 Unsupervised-Learning

Unsupervised Learning deals with the aspect of ML, where the algorithm is only

provided with data only. In this process, there is no teacher to instruct the model,

and no desired output is provided during the training phase. The algorithm is

meant to extract knowledge from the data. A common use case is in clustering of

data with similar features.

2.1.3 Semi-supervised Learning

This is a type of ML that is between supervised and unsupervised learning. It

deals with problems where only a few labeled data are available, with a large

portion of unlabelled data. It is mostly used when the data with labeling examples

are difficult or expensive to produce.

2.1.4 Reinforcement-Learning

This is an area of ML where the algorithm involves a factor that must determine

the best course of action in a situation or environment. These series of decisions

come with a reward or punishment. This form of ML helps decide the best series

of actions to maximize reward. Like Unsupervised Learning, it does not require

any teaching or instruction.

2.2 Neural networks

Neural Networks (NN) include a common way to represent (slightly complex)

algorithms connecting input data to output data. It involves several similar units

called neurons, performing simple mathematical tasks, and aligned in connected

layers. Each neuron takes as input different outputs from the previous layer.

Figure 2 illustrates the transmission of signals in the human cell.

Appendix 1

4 (42)

Figure 2. Nerve cells receive incoming signals and produce output signals

through the axon [16]

As displayed in Figure 2, the human cell consists of an axon and several

dendrites. The dendrites receive a signal and the axon transmit the output to other

cell body.

In Artificial Neural Networks the nodes are the dendrites while the Neuron is the

Axon. Several inputs are passed into the neuron where the Neuron produces

output based on those inputs using some mathematical function(algorithm).

The figure below shows how a simple Artificial Neural Network model receives

several inputs and produces some output.

 Figure 3. Artificial Neuron with several inputs and a single output [16]

Appendix 1

5 (42)

2.3 Deep Learning

DL (Deep Learning) consists of an advanced form of neural network that involves

a more complex network of interconnected layers that comprises different nodes.

In a Neural Network, thousands to millions of neurons in the hidden layer of a

network are broken down and processed into fewer output neurons. This form of

NN (Neural Network) is called Deep Learning. [3]

The figure below shows the structure of a Deep Neural Network.

 Figure 4. Structure of a Deep NN (Neural Network) [16]

A Neural Network with Three or more layers is usually referred to as DL (Deep

Learning) or Deep Neural Network.

2.4 Computer Vision

CV (Computer Vision) utilizes deep learning technology to extract valuable

information from images, videos, and other visual inputs.

This technology is used in Image recognition, object detection, object tracking,

and more.

A simple form of Computer Vision is the detection of objects in images. This

technology utilizes a process called ‘Feature Extraction’ to understand objects

within an image.

Appendix 1

6 (42)

Steps Involved in a Basic Computer Vision System

• Image-Acquisition

• Pre-Processing

• Feature Extraction

• Classification

2.4.1 Image-Acquisition

As the name implies, this stage involves gathering necessary image Data

required for training and evaluating the classifier which would be used for

detecting objects or classifying images.

The quality of the Data used in training a classifier is essential for its performance.

The Data used in the Image-Acquisition process is referred to as Training-Data.

2.4.2 Pre-Processing

This stage involves all the modifications performed on the Data before any other

form of data processing (e.g., Feature-Extraction) to boost performance of the

Machine Learning Process. This is to avoid using garbage data which would

result to a bad ML model. The type of Technique performed during this stage

depends on the type of data and the kind of model that will be used. [3] Some of

the Modifications during this phase are

• Image labeling

• Image-Augmentation

• Resizing

• Grayscale

2.4.3 Feature Extraction

During the processing of an image, a series of conversions is performed on an

image to extract the important features that the algorithm will use for making

Appendix 1

7 (42)

predictions. It is the transformation of raw data into numerical values that can be

processed while retaining the information contained in the original data.

The figure below shows an Image and its processed form showing some

extracted features.

2.4.4 Classification

This is the final step of the computer vision system process. Several computations

involving algorithms and patterns are applied to the processed data. These

algorithms and patterns will generate outputs called Models. The model

generated is based on the meaningful information gathered by the algorithm

which is used to classify future unseen data (Images).

2.5 TensorFlow

TensorFlow is an Open-Source framework that provides various researchers and

Engineers, with easy access to ML tools and services to enable them to build

their ML-based applications. It helps form an easy Model-Building and Robust

Model deployment to Enable powerful experimentation. TensorFlow is built on the

Tensor Framework [8].

This framework was released by Google and backed by google engineers.

TensorFlow takes data in multi-dimensional arrays called tensors, which makes

for faster computation on systems with high-computation power.

2.5.1 What are Tensors?

A tensor is a multi-dimensional array of data used in mathematical models that

expresses neural networks. It is usually a higher-dimension generalization of

matric or vector.[7] It is a more complex form of NumPy arrays with a variable

number of dimensions.

The figure below suitably describes tensors.

Appendix 1

8 (42)

Figure 5. Different representations of tensors [9]

2.5.2 Why Choose TensorFlow?

• Convenient API: TensorFlow has an easy-to-use API architecture that

enables python developers to use TensorFlow raw, low-level API, or the

core API in developing their models. They also can use high-level API

libraries for built-in models.[7]

• Flexible architecture: One of the best parts of using TensorFlow is the

ability to distribute models across CPU, GPU, or TPU processors with

minimal code alteration. The framework allows for developers to not only

provide large-scale distributed training and inference but also test with

other ML models and increase the performance of existing models.[7]

• Computational Graph model: TensorFlow uses computational graphs

(also called graphs) to represent a series of operations arranged into a

Appendix 1

9 (42)

graph of nodes to help developers visualize what is going on within the

neural network layers. It simply means a combination of nodes that

represents the operations being carried out by a model. [7]

Figure 6: TensorFlow computational Graph [8]

• Shared Processing: TensorFlow was designed to support the

distribution of processes on different servers. This will help reduce the

load by transferring processes from a system with small computational

power to another system with higher computational power. Parts of a

computational graph can be shared across a cluster of servers with GPUs

or with larger memory all on the same network. [7]

• Performance: The performance of a deep learning framework is

dependent on the fundamental hardware to run optimally at its top

performance with lower energy costs. Usually, the original development

platform of any framework would obtain the best optimization.

TensorFlow performs best on Google TPUs, but it also obtains high

performance on other platforms ranging from servers, desktops, mobile

devices, and embedded systems. [7]

Appendix 1

10 (42)

2.6 Rest-API

The Restful API is an application programming interface that allows data

exchange between a client and a server using commonly HTTP protocol. REST

(Representational State Transfer) API follows the architecture of a web service

by utilizing the Client-Server protocol.

 Figure 7. Common REST API Model [17]

As shown in the Figure above, the Web browser or application makes requests

for data or commands using the REST-API protocol and receives a response from

the server.

2.7 Docker

Docker is an open-source platform that allows for building, deploying, and

managing containerized applications (Docker Containers) [11]. The Docker tool

packages several applications and services into a containerized environment.

2.7.1 What are Containers?

Containers are a form of virtual machines that consists of isolated

processes/resources built into the Linux kernel. Some of the features that make

containers virtual-like machines are:

• Control groups - For allocating resources among several processes.

• Namespace – For limiting process access or visibility into other areas or

resources within the system. Enabling multiple application elements to

distribute the resources of a single instance of the host operating system

Appendix 1

11 (42)

(the same way as a hypervisor allows multiple virtual machines to share

the host CPU)

Figure 8: Comparison of containers and virtual machines [12]

2.7.2 Advantages of Docker Containers

1. Lighter weight: Containers do not have full-blown Operating systems,

unlike Virtual machines. They encompass only the Operating System

processes and dependencies required to execute the code. The size of

containers is measured in Megabytes (vs. gigabytes in VMS). Hence

containers have faster runtime and have optimized start-up times.

2. Larger Resource Efficiency: Due to its lightweight, several instances of

an application can run simultaneously on the same hardware(host) with

minimal resource intensity than VMs. This helps for better efficiency.

3. Improved Productivity: Compared to Virtual Machines (VMs), docker

containers are faster, and easier to deploy, provision, and restart. These

make development operations easier and more agile. It is ideal for the

continuous integration and deployment practiced by development

engineers.[9]

Appendix 1

12 (42)

2.7.3 Components of Docker

1. Docker-File: The docker file is a simple text file that defines a list of

instructions used in building a docker image.

2. Docker Images: This is a read-only executable file that contains all the

instructions for creating a docker container. It is like a snapshot in the VM

world. It includes all source code as well as the tools and libraries that the

application needs to run as a container.

3. Docker daemon: This is a service that runs on the operating system. It

listens for commands or requests and performs operations accordingly. It

is responsible for managing docker objects like docker images, containers,

networks, etc.

4. Docker Hub: This is a public repository that stores docker images. It is

arguably the largest platform for container images.

5. Docker Compose: This is a tool that is used to run multi-container docker

applications. It allows the creation and running of multiple containers

defined within a YAML file. These containers can share resources and

communicate with each other. (Dependent containers). [9]

2.7.4 Docker Deployment and Orchestration

Containers can be managed and deployed by several tools, but there are a few

tools that are more viable and used by developers.

Docker-compose allows for managing and deploying several docker containers

on the same host. While this might solve the challenge of multi-container

operations, it does not help in deploying and managing containers across several

servers.

While docker has its tool(docker-swarm) used for container orchestration across

many servers, Kubernetes has proven to be a more viable solution than

dockerswarm. What is Kubernetes?

Kubernetes: This is an open-source container orchestration platform that

automates the management, scaling, and deployment of several applications

[13].

Appendix 1

13 (42)

3 Implementation

The theoretical process that was undertaken before building this computer vision

project (proof of concept) has been addressed in the preceding chapters. This

chapter aims to show how this knowledge was implemented and to give a better

view of the development of the project.

The figure below represents the entire architecture and workflow of this project.

Figure 9. Agnet Computer Vision System Architecture

The project includes the development of a computer vision application that can

interact with other applications via API.

Building a CV system follows the same process as many other software systems.

There are a few questions that were considered before building an Agnet CV

system.

The table below answers some of these questions.

 Question Answer

Project - Architecture

Appendix 1

14 (42)

 What is the purpose of the

software?

To detect Threats like weapons and

send alerts based on detected

threats.

 What technologies would be

used?

Technologies like TensorFlowGPU,
OpenCV, Docker, REST-
API, etc.

• What environment will this

software be built on?

The prototype will be built on

UBUNTU Linux and future

prototypes would use other

platforms like Raspberry-Pi,

RHEL8+(To reduce cost of

production and facilitate easy

deployment)

3.1 Implementation Tools

• TensorFlow-GPU: TensorFlow supports the use of a Graphics card for

additional computation power in the model training phase. TensorFlow

GPU was installed on the hardware used for training the model. The

hardware specifications can be found in section 3.2.1.3.

• Tensor board: This tool is used to help provide detailed measurements

and make visualizations during the machine learning workflow. It is used

to measure metrics like accuracy and loss. It provides all the necessary

tools needed for ML experimentation and model evaluation. Below is a

snippet of the Tensor board during model training.

Appendix 1

15 (42)

Snippet 1. TensorFlow Visualization Board

• Docker-compose: This tool is used to manage and deploy both the server

application (TensorFlow serving) and the client application.

3.2 Solution Implementation

This project consists of Three major steps defined below.

1. Building the Model

2. Developing the application

3. Integrating the application with Agnet

A detailed analysis of each of these steps will be provided as this chapter

progresses.

3.2.1 Building The Model

Many Computer vision systems being developed today follow Similar processes.

The various steps applied when building this application are described in the

following subsections.

Appendix 1

16 (42)

Image Acquisition

As described in the earlier chapters of this document, any ML or CV application

uses a model. This model requires specific data (Training data), which it will learn

from.

The Images used to train this computer vision system were acquired from Kaggle.

Kaggle is an online platform that consists of a community of machine learning

enthusiasts and data scientists to collaborate and share ideas.[1]

Since the Computer vision system aims for detecting threats like weapons

(Pistols, Assault-rifles, etc.) therefore, the necessary Images needed for training

this system will consist of fire and guns.

Figure 10. Fire-Gun Dataset Kaggle [1]

The dataset consisted of 7784 images and their respective labels making about

15700 files.

Image Processing

The Dataset were, however, labeled with text files. Since the computer vision

system model is going to be based on TensorFlow, some series of conversions

and pre-processing was needed to achieve the right data format.

 An online ML tool called Robo-flow is used to achieve this.[2]

Appendix 1

17 (42)

Roboflow allowed for converting and creating XML labels for each image as

shown in the figure below.

Figure 11. Bounding box images and their respective XML labels [2]

After creating the labels for the Images, the data was split into 75% Training set,

15% Validation set, and 10% Test set. Some data annotations were done to the

Training data to increase the number of Images from 5800 to 17000 as shown in

figure 12 below.

Appendix 1

18 (42)

Figure 12. Image Pre-processing and Augmentation with Roboflow [2] As seen in

figure 12 several pre-processing and augmentation techniques were used to

provide about 3 times more training data like rotation, vertical flip, blur, etc.

These newly generated data are then exported as TensorFlow records

(TFRecord), which would be used to train the TensorFlow model as shown in

figure 13 below.

Figure 13. Exporting TensorFlow records via Roboflow [2]

Model Training

To give a more detailed and accurate description, it is important to Describe what

kind of hardware was used for building the models used for this project.

The table below describes the Hardware specifications for the machine used in

training the model.

Specification Details

Hardware Name ROG-Strix-G15-G513 Laptop

Model G513QM-HF225T

Processor AMD-Ryzen™ 7 5800H Mobile

Processor (8-core/16-thread, 20MB

cache, up to 4.4 GHz max boost)

Appendix 1

19 (42)

Graphics card NVIDIA® GeForce RTX™ 3060 Laptop

GPU

With ROG Boost up to 1802MHz at

115W (130W with Dynamic Boost)

6GB GDDR6

Two of the fastest single-shot detector (640 x 640 pixeled) models in terms of

response time were chosen for the application. The models are.

• SSD MobileNet V1 FPN 640X640

• SSD ResNet50 V1 FPN 640X640

Why is Single-Shot detector?

The SSD model uses the VG-16 model as the feature map extractor and then

series of convolutional filters in addition for the object detection. The single-shot

detector aims to optimize speed and accuracy. It runs several convolutional layers

of different scales, which makes it able to detect objects of different sizes.

Figure 14. SSD Model Architecture [12]

What is Single-Shot Detection?

This means that the task for classifying and localizing objects within an image is

done with just one pass across the network. Hence its speed compared to other

model architectures.

Model 1: SSD MobileNet FPNlite.

Appendix 1

20 (42)

MobileNet as the name implies is a lightweight convolutional network designed to

run on mobile devices. It uses the depth wise separable convolutional layer

instead of the standard convolutional layer. Since the SSD model is independent

of its base model, the MobileNet architecture is used as its base model in this

case.

It consists of Three Layers as shown in the figure below.

Figure 15. MobileNet V2 Architecture [14]

Like the MobileNet version 1 it maintains the 3x3 DepthWise Convolution layer,

but the Projection Layer reduces the dimension of the input channel unlike the

Pointwise Layer of the Version 1 which does the opposite.[14]

This model template was found in the official TensorFlow GitHub repo.

Training the model

Appendix 1

21 (42)

The model takes images of size 640 x 640 pixels with a batch size of 2 due to

computing power limitation. A batch size of 3 or more resulted in memory

allocation error. After training this model for over 1.9 million steps, some inference

graphs were derived. Four accuracy metrics were used to determine the

performance of the model.

1. Classification Loss: This describes how well the model correctly classifies

the images. If 2000 images were processed, how many images are

correctly classified, and how many were wrongly classified?

2. Localization Loss: This describes how well the model correctly locates the

object within the image. A bounding box is constructed to precisely point

out the object within the processed frame.

3. Total Loss: This combines the loss derived from classification and

localization. It enables better inference and evaluation of the model.

4. Mean Average Precision: This is the mean value for the average precision

of each class of object to be detected. The precision of a model simply

means how well the model can identify True Positives (TP) out of all

positive predictions. It is given by Precision = (TP)/ (TP + FP) where FP

is False Positives and TP is True Positives.

The graph showing how the model has performed during the training process is

displayed below.

The vertical axis describes the loss value ranging from 0 to 1

The Horizontal axis describes the number of steps ranging from 0 to 1.9 million.

These graphs are displayed in the figures below.

Appendix 1

22 (42)

Figure 16. Localization Loss Graph

Figure 17. Classification Loss Graph

Appendix 1

23 (42)

Figure 18. Total Loss Graph

As seen from the graphs above the loss gradually reduced over time with the

fastest learning curve between step 0 to step 1000000(one million). The total time

taken to train this model was 75.23 hours (3.14 days).

Model Evaluation

There were 622 test images used to evaluate the model. After running the

evaluation, the following results were obtained as displayed in the snippet below.

Snippet 2. Model 1 Evaluation Results

From the Image above the model produced a MaP of 0.388526 based on 3

classes (Fire, pistol, and Weapon). However, one of the classes had an Average

Appendix 1

24 (42)

precision Value of 0.0041 which is very much lower than the other classes which

produced an AP of 0.52 and 0.642 respectively.

This means the model fails to recognize a lot of True Positives for class 0

compared to other classes. It is Important to mention that the amount of Image

data for class 0 was much higher than other classes (Imbalanced Training Data).

The quality of the Images was poor in some cases which affects the evaluation

performance.

The image below shows the quality of images that was occasionally tested and

how the model fails to detect objects in this image.

Figure 19. Model Performance on Animated Images

As seen in the Figure above, the image with no detection appears to be an

animated image, which is not viable for our test as the solution is to be used for

real-life cases.

However, in the image below it is visible that the detection was made on an image

captured by a camera.

Appendix 1

25 (42)

Figure 20. Model Performance on Normal Images

Model 2: SSD ResNet50 Fpn.

Residual Networks 50 or ResNet50 is a Convolutional network that is 50 layers

deep. The pretrained ResNet50 is used as base model for the feature extractor

layer performing the object detection (SSD layer).

The batch size of the images used by the algorithm was also reduced to 2 due to

the computing power limitation. The total training time for this model after 1.7

million steps was 107.216 hours (4.47 days)

After training the following accuracy graphs below were derived for evaluation

purposes.

Appendix 1

26 (42)

Figure 21. Resnet-Model Classification Loss Graph

Figure 22. Resnet-Model Localization Loss Graph

Figure 23. Resnet-Model Total Loss Graph

Model Evaluation

Appendix 1

27 (42)

After running the evaluation for the 622 test Images, the following results for this

model were obtained as displayed in the snippet below.

Snippet 3. Model2 Evaluation results

From the Image above the model produced a MaP of 0.371 based on 3 classes

(Fire, pistol, and Weapon). The same behaviour was noticed as one of the

classes has an Average precision Value of 0.0041 which is very much lower than

the other classes which produced an AP of 0.46 and 0.648 respectively.

This can confirm that our Training data is imbalanced.

Comparing Results of Model1 and Model2

Model Batch-

Size

Number of

steps

Total time Evaluation

MaP (623

images)

Model-

Size

Model 1 2 1900000 3.14 days 0.389 17.9

Megabytes

Model 2 2 1700000 4.47 days 0.371 128

Megabytes

From the above table, model 1 yielded a better result and was the best model of

the two.

Appendix 1

28 (42)

3.2.2 The Computer Vision system

This system is a TensorFlow serving object detection model using REST-API for

risk identification and reporting.

The application consists of two docker containers as follows.

• Server: This container runs the TensorFlow Service that makes the object

detection model available via a network for inference purposes. The model

is accessed by clients that have access to the network.

• Client: This container runs the script which periodically scans a video

source and passes each frame (Image) to the model on the server

application. The client application receives a response from the server

about the predicted item.

Below is an architecture of this Computer Vision system built with Docker.

Figure 24. Computer Vision system architecture within Docker-compose

From the figure above, it is visible that there are two main docker

containers.

The Server container runs the TensorFlow serving tool which takes the

trained ML model and makes it available via the REST-API.

Appendix 1

29 (42)

The Client container uses all necessary libraries like OpenCV and Pillow

to process videos from various sources as individual frames and send

each frame to the server via a POST request for processing.

The server returns a response to the client app containing possible

detections. All these automated processes are managed with the

dockercompose tool.

The snippet below shows the code used in building both docker

containers.

Snippet 4. Definition of Server and Client applications in docker-compose

YAML file.

• The TensorFlow-Serving docker image: This image is provided by

TensorFlow and can be pulled directly from the docker repository.

• The trained ML models: This model is mounted to the server application

so that the container can provide it to the client application.

Appendix 1

30 (42)

Snippet 5. Custom model mounted into client docker application.

• Object detection folder: The necessary files have been mounted into the

container using docker volumes.

The client application uses OpenCV to process frames and send each

frame to the TensorFlow server for prediction.

• Docker link: This is a way to link the network namespace of one container

with another. When a container is built, it creates its network environment

and cannot be accessed by the outside world or from other containers.

The network environment can be accessed by opening a port between the

external network to the container network or by linking several containers

with each other.

3.2.3 Integrating The App with Agnet

The goal of the project is to detect objects within a video source and then send

this information to the Agnet Server. It is therefore important to know what Agnet

means. The below subsection will further explain what Agnet means.

Appendix 1

31 (42)

What is Agnet?

Agnet is a secure group collaboration solution. It brings secure professional

communications to your smart devices and offers the capability to bring your radio

and smart device users to the same groups. Hence, smart device users become

part of the professional world. Voice, data, video, and location services are all at

hand with the reliability and security that professional users expect. [15]

Tactilon Agnet extends flexibly from a simple push-to-talk (PTT) to an extensive

group collaboration solution that makes use of smart device capabilities in a

secure and controlled way. It offers a full variety of different communication

methods from instant PTT to video and location sharing, and the ability to

professionally manage users and groups.

It meets the requirements of public safety organizations as well as transport,

utility, and industry users. The data necessary for an operation can be easily and

securely accessed, even when using different devices and technologies.

Features of Agnet

• Push to talk group calls (MCPTT)

• Private Voice Call

• Messaging (Multimedia)

• End-to-end encryption

• MCDATA: Secure messaging and data collaboration, also from 3rd party

systems.

• MC Video: video calls and streaming

• Emergency calls

• Lifeguard

(advanced man-down)

• Real-time location tracking

• Operational status

Appendix 1

32 (42)

The figure below gives a brief overview of the features of Agnet

Figure 25. Features of Agnet.

Agnet-Api

This is a developer program for applications and accessories to help extend the

functionalities of Agnet using innovative solutions. It acts as an API gateway for

integrating new solutions to the agnet backend.

Appendix 1

33 (42)

Figure 26. Agnet-API Service model from Third Party Applications.

As seen from the figure above, the AgnetAPI service can be reached via the

REST API protocol. This service can then trigger a series of actions on the Agnet

Platform. Actions like Emergency message triggers can alert the end-user of

incidents.

The Agnet-API program will be used to integrate the computer vision system into

the Agnet platform.

The client application of the Computer Vision system contains most of the code

and data orchestration from Image processing to constructing post messages to

Agnet containing detected objects.

There are 3 main steps involved within the client application from image

processing to triggering of alerts on the Agnet platform. These steps are listed

below.

• Video capture and processing: The video is captured with OpenCV and is

processed frames by frames. These frames are then parsed as JSON

Appendix 1

34 (42)

objects and posted to the TensorFlow Service for inference. The below

code snippet shows how the video is being processed with OpenCV

Snippet 6. Capturing frames from video source and sending it to

TensorFlow-Server for inference.

• TensorFlow object detection: The TensorFlow service which runs the

custom-trained model will take these frames as input and return a JSON

object containing predictions. Snippet 6 shows the frames being sent as

post messages to the TensorFlow Service.

• Event trigger based on detection: The predictions are further passed into

a function that constructs a posted message to the Agnet services. An

emergency message event is triggered and the Agnet client user receives

an image with the detected item. This post message uses the REST-API.

The snippets below show how this returned JSON data is parsed and used

to trigger events via the Agnet-API.

Appendix 1

35 (42)

Snippet 7. Visualizing the detected objects and passing it to the Database

function.

Appendix 1

36 (42)

Snippet 8. A report Database function that communicates with Agnet via

the API interface.

4 Performance

The application aimed to trigger emergency messages, geo-location, and

multimedia messages (containing Images of Detected Items from video

sources).

The below figures display images of the events being triggered and sent to

the Agnet users.

Appendix 1

37 (42)

Figure 27: Emergency message to Agnet Dispatcher (Agnet web application

client).

Appendix 1

38 (42)

Figure 28: Emergency message to Agnet Mobile Client.

The performance of the project was measured on several metrics listed

below.

• Response time: The time between the object’s appearance on the

video footage to the trigger of the emergency message is in

Appendix 1

39 (42)

milliseconds. This shows that the application is very time-critical and

can make detections faster than the human eye.

• Bandwidth required to run the application: The application does not

perform any heavy job. It reads the frame from an already existing

video server or video source and performs detection on it. This makes

the network requirement much less demanding. The application would

run on a 3G, 4G LTE network. The application also runs behind a

Secure VPN (Virtual Private Network).

• System requirements: The application is lightweight and will run on

any 64bit ubuntu system. A basic ubuntu system requires 1 Gigahertz

CPU, 1 Gigabyte RAM (Random Access Memory), and 2.5gigabytes

of storage.

5 Conclusion

The project builds a complete object detection system that reads video

sources (camera, cctv etc.) and triggers emergency alerts via the Agnet

platform. The entire system runs on docker ubuntu. This was achieved by

constructing two applications using docker-compose. The server application

utilizes TensorFlow-Serving for deploying the model and the client application

utilizes Agnet-API for triggering alerts. The application can be easily deployed

to several systems efficiently using the docker-compose tool. The Goal of this

Thesis project was successfully achieved. This means the object-detection

Software was integrated into the Agnet Platform in other to build a smart

monitoring solution Proof of Concept for Public Safety. The project

application does prove that Agnet can be integrated with any third-party

software through Agnet-API.

Further developments for this project include running the system on smaller

computing units like the raspberry pi 3b+.

Appendix 1

40 (42)

References

1. Atulya Kumar. Fire and Gun Dataset. June 2020.

URL:https://www.kaggle.com/datasets/atulyakumar98/fire-and-

gunhttps://www.kaggle.com/datasets/atulyakumar98/fire-and-gun-

datasetdataset

2. Bharath Ramsundar and Reza Bosagh Zadeh. TensorFlow for Deep

 Learning. O’Reilly Media, Inc. March 2018.

URL:https://learning.oreilly.com/library/view/tensorflowfordeep/97814919

80446/

3. Eihab Mohammed Bashier, Muhammad Badruddin Khan, Mohssen

Mohammed. Machine Learning. O’Reilly Media, Inc. August
2016.

URL:https://learning.oreilly.com/library/view/machinelearning/978131535

4415/x HTMLch01

4. Nick McClure. TensorFlow Machine Learning Cookbook. O’Reilly Media,

Inc. February 2017.

URL:https://learning.oreilly.com/library/view/TensorFlow+Machine+Learni

ng+Co okbook/9781786462169/ch01s02.htm

5. Samaya Madhavan, Sidra Ahmed, Vinay Rao, Anto John. Compare Deep

Learning Frameworks. IBM Developer. March 2021.

URL:https://developer.ibm.com/articles/compare-deep-

learninghttps://developer.ibm.com/articles/compare-deep-learning-

frameworks/frameworks/

6. Pranshu Sharma. A basic introduction to TensorFlow in Deep Learning

Analytics. Vidhya. March 2022.

URL: https://www.analyticsvidhya.com/blog/2022/03/a-basic-

introductionhttps://www.analyticsvidhya.com/blog/2022/03/a-basic-

introduction-to-tensorflow-in-deep-learning/to-tensorflow-in-deep-learning/

7. Sayak Paul. Investigating Tensors with Pytorch. DataCamp. September

2018.

URL: https://www.datacamp.com/tutorial/investigating-tensors-pytorch

8. Scott Carey. What is Docker? The Spark for the container revolution.

InfoWorld. August 2021.

URL: https://www.infoworld.com/article/3204171/what-is-docker-

thespark-for-the-container-revolution.html

9. IBM Cloud Education. Docker. IBM. June 2021. URL:

https://www.ibm.com/cloud/learn/docker

https://www.kaggle.com/datasets/atulyakumar98/fire-and-gun-dataset
https://www.kaggle.com/datasets/atulyakumar98/fire-and-gun-dataset
https://www.kaggle.com/datasets/atulyakumar98/fire-and-gun-dataset
https://www.kaggle.com/datasets/atulyakumar98/fire-and-gun-dataset
https://www.kaggle.com/datasets/atulyakumar98/fire-and-gun-dataset
https://www.kaggle.com/datasets/atulyakumar98/fire-and-gun-dataset
https://www.kaggle.com/datasets/atulyakumar98/fire-and-gun-dataset
https://www.kaggle.com/datasets/atulyakumar98/fire-and-gun-dataset
https://www.kaggle.com/datasets/atulyakumar98/fire-and-gun-dataset
https://www.kaggle.com/datasets/atulyakumar98/fire-and-gun-dataset
https://learning.oreilly.com/library/view/tensorflow-for-deep/9781491980446/
https://learning.oreilly.com/library/view/tensorflow-for-deep/9781491980446/
https://learning.oreilly.com/library/view/tensorflow-for-deep/9781491980446/
https://learning.oreilly.com/library/view/tensorflow-for-deep/9781491980446/
https://learning.oreilly.com/library/view/tensorflow-for-deep/9781491980446/
https://learning.oreilly.com/library/view/tensorflow-for-deep/9781491980446/
https://learning.oreilly.com/library/view/tensorflow-for-deep/9781491980446/
https://learning.oreilly.com/library/view/tensorflow-for-deep/9781491980446/
https://learning.oreilly.com/library/view/tensorflow-for-deep/9781491980446/
https://learning.oreilly.com/library/view/tensorflow-for-deep/9781491980446/
https://learning.oreilly.com/library/view/tensorflow-for-deep/9781491980446/
https://learning.oreilly.com/library/view/tensorflow-for-deep/9781491980446/
https://learning.oreilly.com/library/view/tensorflow-for-deep/9781491980446/
https://learning.oreilly.com/library/view/tensorflow-for-deep/9781491980446/
https://learning.oreilly.com/library/view/tensorflow-for-deep/9781491980446/
https://learning.oreilly.com/library/view/tensorflow-for-deep/9781491980446/
https://learning.oreilly.com/library/view/tensorflow-for-deep/9781491980446/
https://learning.oreilly.com/library/view/tensorflow-for-deep/9781491980446/
https://learning.oreilly.com/library/view/machine-learning/9781315354415/xhtml/ch01.xhtml#ch01
https://learning.oreilly.com/library/view/machine-learning/9781315354415/xhtml/ch01.xhtml#ch01
https://learning.oreilly.com/library/view/machine-learning/9781315354415/xhtml/ch01.xhtml#ch01
https://learning.oreilly.com/library/view/machine-learning/9781315354415/xhtml/ch01.xhtml#ch01
https://learning.oreilly.com/library/view/machine-learning/9781315354415/xhtml/ch01.xhtml#ch01
https://learning.oreilly.com/library/view/machine-learning/9781315354415/xhtml/ch01.xhtml#ch01
https://learning.oreilly.com/library/view/machine-learning/9781315354415/xhtml/ch01.xhtml#ch01
https://learning.oreilly.com/library/view/machine-learning/9781315354415/xhtml/ch01.xhtml#ch01
https://learning.oreilly.com/library/view/machine-learning/9781315354415/xhtml/ch01.xhtml#ch01
https://learning.oreilly.com/library/view/machine-learning/9781315354415/xhtml/ch01.xhtml#ch01
https://learning.oreilly.com/library/view/machine-learning/9781315354415/xhtml/ch01.xhtml#ch01
https://learning.oreilly.com/library/view/machine-learning/9781315354415/xhtml/ch01.xhtml#ch01
https://learning.oreilly.com/library/view/machine-learning/9781315354415/xhtml/ch01.xhtml#ch01
https://learning.oreilly.com/library/view/machine-learning/9781315354415/xhtml/ch01.xhtml#ch01
https://learning.oreilly.com/library/view/machine-learning/9781315354415/xhtml/ch01.xhtml#ch01
https://learning.oreilly.com/library/view/machine-learning/9781315354415/xhtml/ch01.xhtml#ch01
https://learning.oreilly.com/library/view/TensorFlow+Machine+Learning+Cookbook/9781786462169/ch01s02.html
https://learning.oreilly.com/library/view/TensorFlow+Machine+Learning+Cookbook/9781786462169/ch01s02.html
https://learning.oreilly.com/library/view/TensorFlow+Machine+Learning+Cookbook/9781786462169/ch01s02.html
https://learning.oreilly.com/library/view/TensorFlow+Machine+Learning+Cookbook/9781786462169/ch01s02.html
https://learning.oreilly.com/library/view/TensorFlow+Machine+Learning+Cookbook/9781786462169/ch01s02.html
https://learning.oreilly.com/library/view/TensorFlow+Machine+Learning+Cookbook/9781786462169/ch01s02.html
https://learning.oreilly.com/library/view/TensorFlow+Machine+Learning+Cookbook/9781786462169/ch01s02.html
https://learning.oreilly.com/library/view/TensorFlow+Machine+Learning+Cookbook/9781786462169/ch01s02.html
https://learning.oreilly.com/library/view/TensorFlow+Machine+Learning+Cookbook/9781786462169/ch01s02.html
https://learning.oreilly.com/library/view/TensorFlow+Machine+Learning+Cookbook/9781786462169/ch01s02.html
https://learning.oreilly.com/library/view/TensorFlow+Machine+Learning+Cookbook/9781786462169/ch01s02.html
https://learning.oreilly.com/library/view/TensorFlow+Machine+Learning+Cookbook/9781786462169/ch01s02.html
https://learning.oreilly.com/library/view/TensorFlow+Machine+Learning+Cookbook/9781786462169/ch01s02.html
https://developer.ibm.com/articles/compare-deep-learning-frameworks/
https://developer.ibm.com/articles/compare-deep-learning-frameworks/
https://developer.ibm.com/articles/compare-deep-learning-frameworks/
https://developer.ibm.com/articles/compare-deep-learning-frameworks/
https://developer.ibm.com/articles/compare-deep-learning-frameworks/
https://developer.ibm.com/articles/compare-deep-learning-frameworks/
https://developer.ibm.com/articles/compare-deep-learning-frameworks/
https://developer.ibm.com/articles/compare-deep-learning-frameworks/
https://developer.ibm.com/articles/compare-deep-learning-frameworks/
https://developer.ibm.com/articles/compare-deep-learning-frameworks/
https://www.analyticsvidhya.com/blog/2022/03/a-basic-introduction-to-tensorflow-in-deep-learning/
https://www.analyticsvidhya.com/blog/2022/03/a-basic-introduction-to-tensorflow-in-deep-learning/
https://www.analyticsvidhya.com/blog/2022/03/a-basic-introduction-to-tensorflow-in-deep-learning/
https://www.analyticsvidhya.com/blog/2022/03/a-basic-introduction-to-tensorflow-in-deep-learning/
https://www.analyticsvidhya.com/blog/2022/03/a-basic-introduction-to-tensorflow-in-deep-learning/
https://www.analyticsvidhya.com/blog/2022/03/a-basic-introduction-to-tensorflow-in-deep-learning/
https://www.analyticsvidhya.com/blog/2022/03/a-basic-introduction-to-tensorflow-in-deep-learning/
https://www.analyticsvidhya.com/blog/2022/03/a-basic-introduction-to-tensorflow-in-deep-learning/
https://www.analyticsvidhya.com/blog/2022/03/a-basic-introduction-to-tensorflow-in-deep-learning/
https://www.analyticsvidhya.com/blog/2022/03/a-basic-introduction-to-tensorflow-in-deep-learning/
https://www.analyticsvidhya.com/blog/2022/03/a-basic-introduction-to-tensorflow-in-deep-learning/
https://www.analyticsvidhya.com/blog/2022/03/a-basic-introduction-to-tensorflow-in-deep-learning/
https://www.analyticsvidhya.com/blog/2022/03/a-basic-introduction-to-tensorflow-in-deep-learning/
https://www.analyticsvidhya.com/blog/2022/03/a-basic-introduction-to-tensorflow-in-deep-learning/
https://www.analyticsvidhya.com/blog/2022/03/a-basic-introduction-to-tensorflow-in-deep-learning/
https://www.analyticsvidhya.com/blog/2022/03/a-basic-introduction-to-tensorflow-in-deep-learning/
https://www.analyticsvidhya.com/blog/2022/03/a-basic-introduction-to-tensorflow-in-deep-learning/
https://www.analyticsvidhya.com/blog/2022/03/a-basic-introduction-to-tensorflow-in-deep-learning/
https://www.analyticsvidhya.com/blog/2022/03/a-basic-introduction-to-tensorflow-in-deep-learning/

Appendix 1

41 (42)

10. Burak Karakan. What exactly is Docker? January 2020.

URL: https://medium.com/swlh/what-exactly-is-docker-1dd62e1fde38

11. IBM Cloud Education. Kubernetes. IBM. July 2021.

URL: https://www.ibm.com/cloud/learn/kubernetes

12. Lilian Weng. Object Detection:Fast Detection Models. December 27 2018.

URL: https://lilianweng.github.io/posts/2018-12-27-object-

recognitionpart-4/

13. Eddie Forson. Understanding SSD MultiBox: Realtime Detection

Learning.

November 18 2017. URL:

https://towardsdatascience.com/understanding-ssd-multibox-real-

timeobject-detection-in-deep-learning-495ef744fab

URL:https://learning.oreilly.com/library/view/tensorflowhttps://learning.oreilly.com

/library/view/tensorflow-for-

dummies/9781119466215/fordummies/9781119466215/

17. Rahul, Panchal. What is REST API vs. Web API (vs SOAP API)? August 2021.

URL: https://www.rlogical.com/blog/what-is-rest-api-vs-web-api-vs-soap-api

 14. Matthijs Hollemans. MobileNet Version 2. April 22

URL: https://machinethink.net/blog/mobilenet-v2/

2018.

 15. Airbus SLC. Tactilon-Agnet. August 30

URL: https://www.securelandcommunications.com/tactilo

2022.

 16. Scarpino, Matthew. TensorFlow for Dummies. April 2018.

https://medium.com/swlh/what-exactly-is-docker-1dd62e1fde38
https://medium.com/swlh/what-exactly-is-docker-1dd62e1fde38
https://medium.com/swlh/what-exactly-is-docker-1dd62e1fde38
https://medium.com/swlh/what-exactly-is-docker-1dd62e1fde38
https://medium.com/swlh/what-exactly-is-docker-1dd62e1fde38
https://medium.com/swlh/what-exactly-is-docker-1dd62e1fde38
https://medium.com/swlh/what-exactly-is-docker-1dd62e1fde38
https://medium.com/swlh/what-exactly-is-docker-1dd62e1fde38
https://medium.com/swlh/what-exactly-is-docker-1dd62e1fde38
https://medium.com/swlh/what-exactly-is-docker-1dd62e1fde38
https://www.ibm.com/cloud/learn/kubernetes
https://www.ibm.com/cloud/learn/kubernetes
https://www.ibm.com/cloud/learn/kubernetes
https://learning.oreilly.com/library/view/tensorflow-for-dummies/9781119466215/
https://learning.oreilly.com/library/view/tensorflow-for-dummies/9781119466215/
https://learning.oreilly.com/library/view/tensorflow-for-dummies/9781119466215/
https://learning.oreilly.com/library/view/tensorflow-for-dummies/9781119466215/
https://learning.oreilly.com/library/view/tensorflow-for-dummies/9781119466215/
https://learning.oreilly.com/library/view/tensorflow-for-dummies/9781119466215/
https://learning.oreilly.com/library/view/tensorflow-for-dummies/9781119466215/
https://learning.oreilly.com/library/view/tensorflow-for-dummies/9781119466215/
https://learning.oreilly.com/library/view/tensorflow-for-dummies/9781119466215/
https://learning.oreilly.com/library/view/tensorflow-for-dummies/9781119466215/
https://learning.oreilly.com/library/view/tensorflow-for-dummies/9781119466215/
https://learning.oreilly.com/library/view/tensorflow-for-dummies/9781119466215/
https://learning.oreilly.com/library/view/tensorflow-for-dummies/9781119466215/
https://www.securelandcommunications.com/tactilo
https://www.securelandcommunications.com/tactilo
https://www.securelandcommunications.com/tactilo

Appendix

2

1 (1)

