

l

NEURAL NETWORKS AND
THEIR INTERNAL PRO-
CESSES: FROM THE
GROUND UP

Thesis – Bachelor's Degree Programme

Technology, Communication and Transport

A U T H O R / S :

Ilia Kutenkov

SAVONIA UNIVERSITY OF APPLIED SCIENCES THESIS

Abstract

Field of Study

Technology, Communication and Transport
 Degree Programme

Bachelor's Degree Programme in Information Technology, Internet of Things

Author(s)

Ilia Kutenkov

Title of Thesis

Neural Networks and Their Internal Processes: From The Ground Up

Date 30 June 2022 Pages/Appendices 64/1

Client Organisation /Partners

University of Turku

Abstract

The theses’ aim is to explain and practically show the operation of different types of neural networks. Thesis

will prove that they all have the same main idea at the core but have different goals, methods and

components. The thesis also shows a process of preparing a custom object detection dataset that could be

used for training neural networks.

Author decided to show the neural networks from the ground up. First, he is explaining an abstract

operation of a chosen tool. Then, a mathematical explanation is written. Finally, the code implementation or

use case of a tool is shown.

As a result, thesis has a lot of information about neural networks with a code examples associated. It also

contains an explanation of processes that happen in neural network during their forward and backward

operations. 3 different datasets were used to train neural networks. The thesis’ goals were successfully

achieved.

Keywords

Neural network, convolution, image classification, object detection, ANN, CNN, dataset, Python, NumPy,
TensorFlow

 3 (64)

CONTENTS

1 INTRODUCTION .. 5

2 ARTIFICIAL NEURAL NETWORKS .. 6

2.1 Overview .. 6

2.1.1 Architecture .. 6

2.1.2 Similarity to actual neuron .. 6

2.2 Components ... 7

2.2.1 Neuron ... 7

2.2.2 Layer .. 8

2.2.3 Network ... 11

2.3 Mathematical representation of operation .. 12

2.3.1 Forward operation ... 12

2.3.2 Backward operation ... 13

2.4 Code implementation... 15

2.4.1 Library .. 16

2.4.2 MNIST database .. 22

2.4.3 Architecture .. 23

2.4.4 Code .. 24

3 CONVOLUTIONAL NEURAL NETWORKS ... 30

3.1 Overview .. 30

3.2 Components ... 30

3.2.1 Network ... 30

3.2.2 Convolutional layer .. 31

3.2.3 Pooling layer ... 32

3.3 Representation of operation ... 32

3.3.1 Abstract .. 32

3.3.2 Mathematical .. 34

3.4 Practical example .. 36

3.4.1 Image classification ... 36

3.4.2 Object detection .. 46

4 DISCUSSION ... 61

 4 (64)

FIGURE 1. Artificial neural network ... 6

FIGURE 2. Depicture of an actual neuron inside of human brain .. 7

FIGURE 3. Depicture of an artificial neuron ... 8

FIGURE 4. A neural network layer consisting of 4 artificial neurons .. 8

FIGURE 5. A graph of ReLu .. 9

FIGURE 6. A graph of linear function .. 10

FIGURE 7. A graph of a Sigmoid activation function ... 10

FIGURE 8. A bar plot of Sigmoid activation function. X-axis is an entry index.. 11

FIGURE 9. Neural network ... 11

FIGURE 10. Example subset of 100 MNIST database pictures in grayscale representation (LeCun et al. 1998, 10)

 ... 23

FIGURE 11. Architecture of a Convolutional Neural Network (Kang, Song and Sun 2019, 4) 30

FIGURE 12. An example picture of a deer in CIFAR-10 dataset .. 37

FIGURE 13. Popular Dataset References Over Time (Ben Hamner 2017) .. 37

FIGURE 14. A depicture of statistical information that is outputted to the terminal. 43

FIGURE 15. A graph of train set accuracy throughout training the model for more than 2000 batches 44

FIGURE 16. Depicture of example test subset results on the epoch #103 ... 44

FIGURE 17. Original picture of a car ... 45

FIGURE 18. Cropped picture of a car .. 46

FIGURE 19. Resized picture of a car ... 46

FIGURE 20. Output of a pretrained network .. 46

FIGURE 21. A visual representation of an object detection neural network’s operation (Redmon 2018) 47

FIGURE 22. Prediction timing of different architectures on the VOC 2007 dataset (Redmond et al. 2015, 7) 48

FIGURE 23. A depicture of YOLOv1’s architecture. (Redmon et al. 2015, 3) .. 49

FIGURE 24. Zoning in Kdenlive ... 50

FIGURE 25. Extracting a zone to a separate video .. 51

FIGURE 26. Results of an automatic annotation. .. 58

FIGURE 27. Labeling process in LabelImg ... 59

 5 (64)

1 INTRODUCTION

For many years people have been automating their jobs using programming. At the beginning, com-

puters were used to automatically compute massive amounts of mathematical operations, such as

addition, subtraction, multiplication and division at an incomparable speed as compared to human

beings. As time passed, people were able to increase computational speeds a lot. Despite this, pro-

gramming techniques were also evolving. As a result, the computer won a chess game against world

champion, Garry Kasparov, on February 10, 1996 (Dennis DeCoste 1997, 1).

However, computers have been only following instructions given by a human. This has been limiting

possibilities a lot. People were haunting a solution for computers to actually “learn” to solve a prob-

lem without a predefined plan. This resulted in the creation of a whole new world inside of computer

science: neural computations. Later, it will progress to a field, currently known as machine learning.

The main idea of this thesis is to take a look at the processes that happen inside of different neural

networks. First, the thesis will show a process of creating an artificial neural network using only

mathematical functions. The model will be able to classify 28x28 pixel grayscale pictures of hand-

written digits. Second, it will exhibit a way to use ready-made building blocks in order to create a

convolutional neural network that is going to be able to classify a 32x32 pixel RGB image into 10

different classes: car, cat, dog, frog, etc. Third, it will show a process of creating and preparing

complex datasets for training neural networks using already existing network.

 6 (64)

2 ARTIFICIAL NEURAL NETWORKS

2.1 Overview

2.1.1 Architecture

Artificial neural networks are the simplest form of neural networks. It consists of three parts (see

Figure 1): input nodes, hidden nodes, and output nodes. All nodes of subsequent layers are inter-

connected between each other. Each connection has a special parameter, called “weight”. Each

node has a special parameter called “bias”. Normally, each layer is assigned its own activation func-

tion that is giving them a preferred logic.

 FIGURE 1. Artificial neural network

2.1.2 Similarity to actual neuron

The artificial neural network node is very similar to the actual neuron (see Figure 2) in a human

brain: inputs to a soma (node/artificial neuron) are provided by dendrites (input connections), which

are connected to the axon terminals (output connections) via synapses (adjacent weighting/biasing)

of previous neurons. The axon itself may be represented as an activation function.

Actual neurons do not have a perfectly similar structure as an artificial neural network. Some neu-

rons are connected recursively. Some axon terminals and dendrites are not connected to anything at

all. New data (irritation) may be inputted to different parts of a network, the signal may come asyn-

chronously, and so on. (Sidiropoulou, Kyriaki and Poirazi 2006, 3(888)-4(889))

 7 (64)

FIGURE 2. Depicture of an actual neuron inside of human brain

2.2 Components

All the neural networks consist of small parts that communicate in a specified way. In this section

there is going to be explained the main parts that artificial neural networks are made of.

2.2.1 Neuron

The main part of a neural network is called a neuron. It may be represented as a mathematical

function that takes some input, applies some logic to it, and produces an output. Most of the neu-

rons inside of a neural network are getting inputs from the output of another neuron. In artificial

neural networks, only the input layer neurons are getting information from different type of source.

Neural network learns to predict by changing its internal parameters: input weights and biases

(Schmidhuber 2014, 4).

2.2.1.1 Weights

All the inputs to a neuron are multiplied with the corresponding weights. The bigger the weight, the

more impact will the corresponding input produce on behalf of the neuron’s output.

2.2.1.2 Bias

Each neuron has its own single bias. The bias is simply added to the weighted input’s sum. It helps

to adjust neuron’s behaviour separately from inputs.

 8 (64)

FIGURE 3. Depicture of an artificial neuron

2.2.2 Layer

Artificial neural networks have a layered structure. It means that neurons are held and connected in

batches. A layer may consist of 1 or more neurons. The main idea of adding more layers is to make

a neural network to learn more complicated relationships inside of the input data. It could be corre-

lated to nature: on average, the bigger the brain, the more complicated behaviour an animal has.

Neural network engineers do not really understand which function does each layer accomplishes in a

huge neural network, same as in a real human brain. In modern approach, developers are using

layers as building blocks of a neural network.

FIGURE 4. A neural network layer consisting of 4 artificial neurons

 9 (64)

2.2.2.1 Activation function

Each layer has its own activation function. It is applied to every single neuron’s output. It is mainly

used to normalise the neuron’s output and/or add nonlinearity to the whole model (Szandała 2010,

1-2). The most widely used activation functions nowadays are: ReLu, LeakyReLu, Linear, SoftMax

and Sigmoid.

The code that was used for generating the graphs could be found in appendix #1.

2.2.2.1.1 ReLu

ReLu activation function simply passes further the input if it is bigger than 0, or 0 if the input value

is <0. It is a very simple, yet effective activation function that is used to add nonlinearity to the net-

work.

The formula is: 𝑅𝑒𝐿𝑢(𝑥) = {
𝑥, 𝑖𝑓 𝑥 > 0
0, 𝑖𝑓 𝑥 ≤ 0

 (Nwankpa et al. 2018, 8).

FIGURE 5. A graph of ReLu

2.2.2.1.2 Linear

Linear activation is the simplest activation function. It outputs the input value multiplied by prede-

fined constant. As the name suggests, it does not introduce nonlinearity to the system. The formula

is: 𝑓(𝑥) = 𝑎 ∗ 𝑥 (Szandała 2020, 4).

 10 (64)

FIGURE 6. A graph of linear function

2.2.2.1.3 Sigmoid

The function of a Sigmoid is
1

1+𝑒−𝑥
 (Nwankpa, et al. 2018, 5). It ensures that the output is always in

bounds of 0 and 1. The output is 0.5 at x = 0, 1 at x = ∞, and 0 at x = - ∞. It is mainly used to

normalise the output.

FIGURE 7. A graph of a Sigmoid activation function

2.2.2.1.4 SoftMax

SoftMax is mainly implemented in the output layer. It is used to produce confidence-type output in

classifying neural networks. The formal name for this type of output is called probability distribution.

For example, an output layer may have two neurons: cat and dog. SoftMax will normalize and scale

 11 (64)

outputs so that they represent fraction of an exponentiated total sum, e.g. certainty if the input is a

cat or a dog. All the output values will sum up to 1. The function is 𝑆(𝑦𝑖) =
𝑒𝑦𝑖

∑ 𝑒
𝑦𝑗

𝑗
 . (Nwankpa et al.

2018, 8)

FIGURE 8. A bar plot of Sigmoid activation function. X-axis is an entry index

2.2.3 Network

A network consists of two or more layers connected to each other. In Figure 9 it is shown that each

neuron of the first layer is connected to all the neurons in the second layer.

FIGURE 9. Neural network

 12 (64)

2.3 Mathematical representation of operation

This section shows the actual operation of a neural network. Batching will not be considered for the

sake of simplicity.

2.3.1 Forward operation

Everything in a neural network is represented as scalars (single numbers), vectors (1-dimensional

arrays), matrices (2-dimensional arrays), and n-dimensional tensors (3 and more dimensional ar-

rays).

The input to a neural network’s dense layer is put into a 1-dimensional array. So, the input is going

to be a vector, where each element is an input value. Example: [1, 2, 3].

Weights are stored in a 2-dimensional matrix, where each row is a set of weights for one single neu-

ron in a layer. Example: [[1,2,3], [4,5,6], [7,8,9]].

Biases are stored in a 1-dimensional vector, where each element represents a bias for certain neu-

ron. Example: [4,2,3]

First, the layer gets an input from the previous layer. Then, all the input values are multiplied with

the corresponding weights and summed up as per neuron. This is achieved by applying a widely

used matrix operation named dot-product. It simply multiplies each element in 1st matrix’s row by

each element in 2nd matrix’s column, and then sums up all the resulting numbers as per 1st ma-

trix’s row. The output shape is going to be a number of rows in 1st matrix × number of columns in

2nd matrix. Example:(
1 2 3
4 5 6

) ⋅ (
1 2
3 4
5 6

) = (
1 ∗ 1 + 2 ∗ 3 + 3 ∗ 5 1 ∗ 2 + 2 ∗ 4 + 3 ∗ 6
4 ∗ 1 + 5 ∗ 3 + 6 ∗ 5 4 ∗ 2 + 5 ∗ 4 + 6 ∗ 6

) = (
22 28
49 64

).

Since the nature of dot product (and because it is needed to get weights as per neuron), a trans-

pose of a weights matrix is taken.

Example of transpose operation on a vector: (1 2 3)𝑇 = (
1
2
3
).

Example of transpose operation on a matrix: (
1 2 3
4 5 6

)
𝑇

= (
1 4
2 5
3 6

).

Example using defined numbers: (1 2 3) ⋅ (
1 2 3
4 5 6
7 8 9

)

𝑇

= (1 2 3) ⋅ (
1 4 7
2 5 8
3 6 9

) =

(14 32 50).

After that, it is needed to add a corresponding bias to every neuron. This is accomplished by simply

adding biases element-wise to a result: (14 32 50) + (4 2 3) = (14 + 4 32 + 2 50 + 3) =

(18 34 53).

 13 (64)

The next step is applying an activation function. Let’s consider that this is the output layer, and its

activation function is Softmax.

The formula is: 𝑆(𝑦𝑖) =
𝑒𝑦𝑖

∑ 𝑒
𝑦𝑗

𝑗
, where y is the output of neurons, i is index of certain neuron, and j is

amount of neurons. ∑ 𝑒𝑦𝑗𝑗 is going to be : 𝑒18 + 𝑒34 + 𝑒53 ≈ 65659969.1373 + 5.8346174 ∗ 1014 +

1.0413759 ∗ 1023 ≈ 1.0413759 ∗ 1023.

The numbers became irrationally large. That is why normalization is required throughout the whole

neural network. The general idea of normalization is keeping values in certain bounds. The most

common boundaries are -1 and 1. Another scenario: input values are multiplied by 0.01, and now

are (0.01 0.02 0.03). Applying calculations, node’s values are now also 1000 times smaller than

they were before: (0.18 0.34 0.53). Now, ∑ 𝑒𝑦𝑗𝑗 = 𝑒0.18 + 𝑒0.34 + 𝑒0.53 = 1.19721736312 +

1.40494759056 + 1.69893230862 = 4.3010972623. This makes much more sense. The sigmoid acti-

vation function for the local case now looks like this: 𝑆(𝑦𝑖) =
𝑒𝑦𝑖

4.3010972623
. Applying activation func-

tion: 𝑆(𝑜𝑢𝑡𝑝𝑢𝑡) = (
𝑒0.18

4.3010972623

𝑒0.34

4.3010972623

𝑒0.53

4.3010972623
) =

(
1.19721736312

4.3010972623

1.40494759056

4.3010972623

1.69893230862

4.3010972623
) = (0.27835161357 0.32664864449 0.39499974192) ≈

 (0.28 0.33 0.40).

This is an output of a layer. It could be sent to the next layer if needed or be used as an output of a

network. The network predicts 1st class with 28% certainty, 2nd class with 33% certainty, and 3rd

class with 40% certainty.

2.3.2 Backward operation

2.3.2.1 Loss

Loss shows how much the obtained output differs from predefined target values. There are many

loss functions, but in this thesis, there will be implemented and used the most common one: Cate-

gorical Cross Entropy Loss (Feng et al. 2020, 2(2207)). It measures the deviation of a classifying

neural network. Cross Entropy Loss requires the input values to be in range of 0-1 and represent

probability distribution. The formula is: 𝐶𝐸𝐿𝑜𝑠𝑠(𝑦, 𝑦̂) = −∑ 𝑦𝑖
𝑙𝑒𝑛(𝑦)
𝑖=0 ∗ 𝑙𝑜𝑔10(𝑦𝑗̂), where y are target

values, and 𝑦̂ are predicted values. The bigger the deviation, the bigger the loss value. 𝑙𝑜𝑔10(𝑛) is

negative when n is smaller than 1, so the sum must be multiplied by -1 in the end in order to get a

positive loss value. If target values are one-hot encoded, and there is only one correct target class,

then it is possible to simplify the function a lot: 𝐶𝐸𝐿𝑜𝑠𝑠(𝑦right, ŷright) = −1 ∗ 𝑙𝑜𝑔10(𝑦̂𝑟𝑖𝑔ℎ𝑡).

Let’s say that the target class for the described previously forward pass was class #2. In one-hot

encoded form, it is going to be represented as: 𝑦 = (0 1 0). Now, using a simplified formula, the

loss value is: 𝐶𝐸𝐿𝑜𝑠𝑠(1, 0.33) = −1 ∗ 𝑙𝑜𝑔10(0.33) = −1 ∗ (−0.48148606012) ≈ 0.48.

 14 (64)

2.3.2.2 Gradient propagation

The purpose of neural network’s learning is to give more correct outputs, e.g. decrease the loss

value. In order to do that, the network needs to find out how does every single changeable parame-

ter (weights and biases) is affecting the loss. This is done by taking derivatives of every parameter

over the loss value. The gradient, e.g. derivatives, are propagated in reverse order, so it is needed

to derivate the loss function’s inputs first. The derivative of a categorical cross entropy loss is as fol-

lows:
𝑑𝑖𝑛𝑝𝑢𝑡

𝑑𝑙𝑜𝑠𝑠
= −1 ∗ (

𝑦

𝑦̂
) (Feng et al. 2020, 2(2207)). Applying it to the obtained loss value:

𝑑𝑖𝑛𝑝𝑢𝑡

𝑑𝑙𝑜𝑠𝑠
=

(0 −1 ∗ (
1

0.33
) 0) = (0 −3.03 0).

The next step is to propagate the gradient back to the previous action. The last step of a layer oper-

ation was an activation function. It is needed to propagate derivation through it, since it takes effect

on the final output. The derivative of a SoftMax function is:

𝑑𝑜𝑢𝑡𝑝𝑢𝑡𝑖

𝑑𝑖𝑛𝑝𝑢𝑡𝑗
= {

𝑜𝑢𝑡𝑝𝑢𝑡𝑖 ∗ (1 − 𝑜𝑢𝑡𝑝𝑢𝑡𝑗) 𝑖𝑓 𝑖 = 𝑗

−𝑜𝑢𝑡𝑝𝑢𝑡𝑗 ∗ 𝑜𝑢𝑡𝑝𝑢𝑡𝑖 𝑖𝑓 𝑖 ≠ 𝑗
 (Bendersky 2016). Applying it to the local case values,

a matrix is obtained:

𝑑𝑜𝑢𝑡𝑝𝑢𝑡

𝑑𝑖𝑛𝑝𝑢𝑡
=

= (
0.28 ∗ (1 − 0.28) −0.34 ∗ 0.28 −0.40 ∗ 0.28
−0.28 ∗ 0.33 0.33 ∗ (1 − 0.33) −0.40 ∗ 0.33
−0.28 ∗ 0.40 −0.33 ∗ 0.40 0.40 ∗ (1 − 0.40)

) = (
0.2016 −0.0924 −0.1120
−0.0924 0.2211 −0.1320
−0.1120 −0.1320 0.2400

)

This is an output gradient for every output value. Then, it is needed to apply a dot product between

an obtained Jacobean matrix and the next gradient in order to get a gradient as per neuron for the

whole set:

𝑑𝑜𝑢𝑡𝑝𝑢𝑡

𝑑𝑙𝑜𝑠𝑠
= (

0.2016 −0.0924 −0.1120
−0.0924 0.2211 −0.1320
−0.1120 −0.1320 0.2400

) ⋅ (0 −3.03 0)𝑇=

=(
0.2016 −0.0924 −0.1120
−0.0924 0.2211 −0.1320
−0.1120 −0.1320 0.2400

) ⋅ (
0

−3.03
0

) = (0.279972 −0.669933 0.39996)

The next step is to derivate weights and biases. Derivation rules say that the derivative of a multipli-

cation that involves variable in 1st power and a constant is a constant itself. E.g. 𝑦 = 5𝑥𝑧;
𝑑𝑥

𝑑𝑦
= 5 ∗ 1 ∗

 𝑥1−1 ∗ 𝑧 = 5𝑧. Derivative of a constant is 0. Applying derivation rules to the neuron function, the

equations are: 𝑦 = 𝑓(𝑥, 𝑤, 𝑏) = 𝑥 ∗ 𝑤 + 𝑏;
𝑑𝑥

𝑑𝑦
= 𝑤;

𝑑𝑤

𝑑𝑦
= 𝑥;

𝑑𝑏

𝑑𝑦
= 1 ∗ 𝑏0 = 1, where 𝑦 is the output (in-

put of the activation function), 𝑥 is an input of a neuron, 𝑤 are weights and 𝑏 is a bias. It is also

needed to propagate the gradient from the activation function down to this level. Applying formulas

and gradients to the local case:

 15 (64)

𝑑𝑤

𝑑𝑙𝑜𝑠𝑠
= 𝑥 ∗ 𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡𝑎𝑐𝑡𝑓𝑢𝑛 = (0.1 0.2 0.3)𝑇 ∙ (0.279972 −0.669933 0.39996)

= (
0.0279972 −0.0669933 0.039996
0.0559944
0.0839916

−0.1339866 0.07992
−0.2009799 0.119988

)

𝑑𝑏

𝑑𝑦
= (1);

𝑑𝑏

𝑑𝑙𝑜𝑠𝑠
= (1) ∙ (0.279972 −0.669933 0.39996) = (0.279972 −0.669933 0.39996)

𝑑𝑥

𝑑𝑙𝑜𝑠𝑠
= 𝑤 ∗ 𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡𝑎𝑐𝑡𝑓𝑢𝑛

𝑇 = (
1 2 3
4 5 6
7 8 9

) ∙ (
0.279972
−0.669933
0.39996

) = (
0.139986
0.169983
0.19998

)

The input gradient should be a row vector, so the transpose of an obtained vector should be taken:

𝑑𝑥

𝑑𝑙𝑜𝑠𝑠
= (

0.139986
0.169983
0.19998

)

𝑇

= (0.139986 0.169983 0.19998).

Now the process may be repeated on all the preceding layers using an obtained input gradient.

2.3.2.3 Optimization

When neural network learns, it is changing its internal parameters based on the obtained gradient.

The gradient descent algorithm will be used to optimize this demonstrational network. Gradient de-

scent is the simplest optimization method for neural networks. It simply multiplies an obtained gra-

dient by a negative of predefined learning rate value, and then adds it up to the network’s attribute

itself. Learning rate of 2 will be used here. Normally, learning rate’s value is in range 0-1. This

demonstration seeks to get an instant result, so it will use an enormously huge learning rate. Adding

a product of gradient and a negative learning rate to the original values, the results are:

𝑤𝑛𝑒𝑤 = 𝑤𝑜𝑙𝑑 +
𝑑𝑤

𝑑𝑙𝑜𝑠𝑠
∗ (−𝑙𝑟) = (

1 2 3
4 5 6
7 8 9

) + (
0.0279972 −0.0669933 0.039996
0.0559944
0.0839916

−0.1339866 0.07992
−0.2009799 0.119988

) ∗ (−2)

= (
1 2 3
4 5 6
7 8 9

) + (
−0.0559944 0.1339866 −0.079920
−0.1119888 0.2679732 −0.159984
−0.1679832 0.4019598 −0.239976

) ≈ (
0.94 2.13 2.92
3.89 5.27 5.84
6.83 8.40 8.76

)

𝑏𝑛𝑒𝑤 = 𝑏𝑜𝑙𝑑 +
𝑑𝑏

𝑑𝑙𝑜𝑠𝑠
∗ (−𝑙𝑟) = (0.4 0. 2 0.3) + (0.279972 −0.669933 0.39996) ∗ (−2) =

(0.4 0.2 0.3) + (−0.559944 1.339866 −0.7992) ≈ (−0.16 1.54 −0.50).

Now, a test forward pass on the optimized network could be made to see the results: 𝑦 = 𝑥 ∗ 𝑤𝑇 +

𝑏 = (0.1 0.2 0.3) ∙ (
0.94 3.89 6.83
2.13 5.27 8.40
2.92 5.84 8.76

) + (−0.16 1.54 −0.50) = (1.40 3.20 5.00) +

(−0.16 1.54 −0.50) = (1.24 4.74 4.5). Applying activation function, the output is: 𝑜𝑢𝑡𝑝𝑢𝑡 =

(
𝑒1.24

207.91

𝑒4.74

207.91

𝑒4.5

207.91
) = (0.016 0.550 0.433). After optimization, the network is predicting class

#2 with 55% certainty. Comparing it to the 33% in an unoptimized network, the result is clearly

closer to the desired one.

2.4 Code implementation

This chapter contains the code solution for an artificial neural network python library. It will be im-

plemented using NumPy library. This library contains the needed tools for working with matrices:

 16 (64)

dot product, transpose, etc. The code will be made to work with data in batches. When the data is

batched, optimization steps are smoothed out. This lets the network to not to take extreme changes

every training input, but rather slowly progress towards the ideal operation. The input data is now in

such a matrix form, that there is a single data entry per row:

𝑖𝑛𝑝𝑢𝑡 = (
𝑖𝑛1𝑣𝑎𝑙1 𝑖𝑛1𝑣𝑎𝑙2 ⋯ 𝑖𝑛1𝑣𝑎𝑙𝑛

⋮ ⋱ ⋮
𝑖𝑛𝑚𝑣𝑎𝑙1 𝑖𝑛𝑚𝑣𝑎𝑙2 ⋯ 𝑖𝑛𝑚𝑣𝑎𝑙𝑛

). Minibatch Stochastic Gradient Descent will be used

for optimizing the neural network.

2.4.1 Library

2.4.1.1 layer.py

This file will contain the logic of a layer. It will also store the momentums for Minibatch Stochastic

Gradient Descent.

import numpy as np

class Dense:

 # Layer initialization

 def __init__(self, inputs, outputs, actfun):

 #1 column - weight set per neuron e.g. transposed from the initialization

 #We need to have small weights at initialization. This will ease the training

process, since the changes made during initial training will make a considerable effect

on output

 self.weights = 0.01 * np.random.randn(inputs, outputs)

 #row - 1, since there's 1 bias per neuron, column - amount of neurons

 self.biases = np.zeros((1, outputs))

 #Activation function pointer

 self.actfun = actfun()

 #Initialize the weight momentum for the optimization

 self.weight_momentum = np.zeros_like(self.weights)

 #Initialize the bias momentum for the optimization

 self.bias_momentum = np.zeros_like(self.biases)

 # Forward pass

 def forward(self, inputs):

 #Memorize input values for the backpropagation

 self.inputs = inputs

 #Multipy inputs by corresponding weights, add bias. Memorize output for the

backpropagation

 self.output = np.dot(inputs, self.weights) + self.biases

 #Send the neurons’ output to the activation function

 self.actfun.forward(self.output)

 # Backward pass

 def backward(self, actfun_next_grad):

 #Backpropagate through the activation function first

 17 (64)

 self.actfun.backward(actfun_next_grad)

 #The derivative of a neuron: f(wei,inp,bias) = inp * wei + bias

 #di/df(w,i,b) = w. inp is also a function, so f' = w * f'(i,w,b)

 #This means that di for each neuron is going to be a matrix of weights:

[[w1,w2,w3]]

 #self.actfun.input_gradient - gradient obtained from the layer's activation

function

 #It is a matrix of derivatives as per neuron output

 #Each row is a vector of derivatives for each training set in a batch

 #Set the weight and bias gradients for the neurons

 #We need to transpose weights so that we are matching the shape of inputs(they

are not transposed from the initialization)

 self.weight_gradient = np.dot(self.inputs.T, self.actfun.input_gradient)

 #Derivative of a bias calculation is always 1. By the chain rule, we just need

to get the overall gradient that we got from the next layer and multiply it by 1.

 #We also need to add another dimension since we have lost one in the np.sum()

function

 self.bias_gradient = np.array([np.sum(self.actfun.input_gradient, axis=0)])

 #Set the input gradient for further backpropagation

 #The operation is a bit different from the mathematical representation due to

batching

 #We need to transpose weights so that we are matching the shape of inputs(they

are not transposed from the initialization)

 self.input_gradient = np.dot(self.actfun.input_gradient, self.weights.T)

2.4.1.2 actfun.py

This file contains 2 activation functions: ReLu and Softmax. They iteratively transform outputs from

neurons.

import numpy as np

#max(0, x)

class ReLu:

 def forward(self, inputs):

 #Remember input values

 self.inputs = inputs

 #Replace all the negative values in inputs with 0

 self.output = np.maximum(0, inputs)

 def backward(self, next_grad):

 #dReLU/dx = 1 if x > 0, 0 if x <= 0

 #Make a copy of next_grad to not to overwrite original values

 self.input_gradient = next_grad.copy()

 #Change each value at index i to 0 where actfun's inputs[i] was < 0

 self.input_gradient[self.inputs <= 0] = 0

 18 (64)

#e^i/sum(e^0-len)

class Softmax:

 def forward(self, inputs):

 #Memorize inputs for the backpropagation

 self.inputs = inputs

 #Get an exponintiated array

 exponents = np.exp(inputs)

 #Get the dimensions

 dims = np.shape(inputs)

 #Get a vector of sums(as per output set in a batch)

 expsum = np.sum(exponents, axis=1)

 #Reshape the output, so that each value is a vector

 expsum = expsum.reshape(dims[0], 1)

 #Divide exponentiated values by the sum of each exponentiated output set(dim 1)

 self.output = exponents / expsum

 def backward(self, next_grad):

 #Gradient placeholder

 self.input_gradient = np.zeros_like(next_grad)

 #For each grad set in a batch

 for index, (out, grad) in enumerate(zip(self.output, next_grad)):

 #Flatten the output

 out = out.reshape(-1, 1)

 #Calculate the Jacobian matrix

 #Jacobian matrix used to decrease the computations amount

 #Diagflat - matrix which is one-hot encoded by the values at indices(puts

all the values diagonally)

 jacobian = np.diagflat(out) - np.dot(out, out.T)

 #Append the gradient list with propagated values

 self.input_gradient[index] = np.dot(jacobian, grad)

2.4.1.3 lossfun.py

The file contains just one loss function: categorical cross entropy loss. It is able to receive target

values in 2 forms: index-encoded and one-hot encoded. It is differentiated by looking at the dimen-

sionality of an array: if it is a vector, then the values are index-encoded (due to batched form of op-

eration). If the target array is a 2-dimensional matrix, then algorithm assumes that targets are one-

hot encoded.

import numpy as np

 19 (64)

class CategoricalCrossEntropy():

 def forward(self, result, target):

 #Check if target values are one-hot encoded.

 #If it is, convert it to index vector form

 if len(target.shape) == 2:

 #Get a 1-dimensional array with indexes of "hot"(1) values

 target_idx = np.argmax(target, axis=1)

 elif len(target.shape) == 1:

 target_idx = target

 #Array of resulting values as per target

 needed_vals =[]

 #Fill the vals array with results at "right" indexes

 for i in range(len(target_idx)):

 needed_vals.append(result[i, target_idx[i]])

 #Convert an array to numpy array

 needed_vals = np.array(needed_vals)

 #Replace all 0 and negative values in the array to prevent division by 0

 needed_vals = np.where(needed_vals <= 0, 1e-10, needed_vals)

 #Replace all 1(full match) and bigger values in the array to prevent overflowing

(log(x) < 0 when x > 1)

 needed_vals = np.where(needed_vals >= 1, 1 - 1e-10, needed_vals)

 #Apply natural logarithm to the values. Smaller value -> bigger abs(output)

 #Multiply the result by -1

 loss = -1 * np.log(needed_vals)

 #Get an average value of array

 avg_loss = np.mean(loss)

 #Return the average loss value

 return avg_loss

 def backward(self, result, target):

 #Input derivative of a cross entropy loss is -1 * (target/result), elementwise

 #Check if target values are index encoded

 #Convert them to one-hot encoded form

 if len(np.shape(target)) == 1:

 target_one_hot = []

 #Go through each set in a batch

 for sample in target:

 #Create empty array of the same size as result

 one_hot = np.zeros(len(result[0]))

 #Encode value at needed index to 1

 one_hot[sample] = 1

 #Append new set to the array

 target_one_hot.append(one_hot)

 else:

 target_one_hot = target

 20 (64)

 #Get the input gradients

 self.input_gradient = -1 * (target_one_hot/result)

 #Normalize the gradient. This is needed since we are working with batches

 self.input_gradient = self.input_gradient / len(result)

2.4.1.4 model.py

This file introduces the model level of abstraction. It is used to chain and automate layer-layer pro-

cesses. It also greatly eases the initialization of a neural network.

import numpy as np

class Model():

 def __init__(self, loss_function):

 #Initialize the array that will hold layer objects

 self.layers = []

 #Initialize the loss function

 self.lossfun = loss_function()

 #Add layer to the model

 def addLayer(self, layer):

 #Add layer to the holder array

 self.layers.append(layer)

 def forward(self, inputs):

 #Transform inputs to the numpy array

 inputs = np.array(inputs)

 #If the inputs are just 1 sample outside the batch, add 1 more dimension

 if inputs.shape == 1:

 inputs = np.reshape(inputs, (1, inputs.shape))

 #Go throug the whole network, starting at index 0

 for layer in self.layers:

 #Do a forward pass on the neuron (actfun(x*w + b))

 layer.forward(inputs)

 #Memorize activation function's output for next step/returning the predic-

tion

 inputs = layer.actfun.output

 #Return last layer's activation function's output as the network prediction

 return inputs

 #Calculate the loss value using a provided dataset

 def calculate_loss(self, inputs, targets):

 #Convert arrays to numpy arrays

 inputs = np.array(inputs)

 targets = np.array(targets)

 #Return the average loss value

 return(self.lossfun.forward(self.forward(inputs), targets))

 21 (64)

 #This function is used to find gradient of a whole network

 def backward(self, inputs, targets):

 #Transform inputs to needed form(batched)

 inputs = np.array(inputs)

 if inputs.shape == 1:

 inputs = np.reshape(inputs, (1, inputs.shape))

 #Transform targets to needed form(batched)

 targets = np.array(targets)

 if targets.shape == 1:

 targets = np.reshape(targets, (1, targets.shape))

 #Do a forward pass so that inputs and outputs of each layer are memorized

 self.forward(inputs)

 #Calculate the loss gradient using output of the last layer's activation func-

tion and targets

 self.lossfun.backward(self.layers[len(self.layers) - 1].actfun.output, targets)

 #The main operation is to find gradients of weights and biases for each of the

neurons.

 #Backpropagate lossfun's unput gradient through the last layer

 self.layers[len(self.layers) - 1].backward(self.lossfun.input_gradient)

 #Go through each layer and backpropagate the gradient

 #Order: last -> first layer

 for lay in range(len(self.layers)-2, -1, -1):

 #Backpropagate through layer using next layer's input gradient

 self.layers[lay].backward(self.layers[lay+1].input_gradient)

 #This function is used to save the trained model(weights and biases) to a file

 def save_model(self, filename):

 with open(filename, 'wb') as f:

 for layer in self.layers:

 np.save(f, layer.weights)

 np.save(f, layer.biases)

 #This function is used to load the trained model attributes from a file

 def load_model(self, filename):

 with open(filename, 'rb') as f:

 for layer in self.layers:

 layer.weights = np.load(f)

 layer.biases = np.load(f)

2.4.1.5 optimizer.py

This file contains the SGD (Stochastic Gradient Descent) class, which is responsible for tweaking the

network’s attributes. It has 3 parameters: learning rate, decay and momentum. Decay is used to

decrease the learning rate on every optimization step. It lets the network to tweak its parameters

 22 (64)

using a really small learning rate in the end, so that the loss gets closer to the actual minimum. Mo-

mentum is used to follow the trend, e.g. “jump over” the local minimums. It does so by memorizing

changes that were made in the previous optimizations.

import numpy as np

class SGD:

 def __init__(self, model, learning_rate, decay = 0.01, momentum = 0.5):

 #Set the model to be optimized

 self.model = model

 #Initialize starting learning rate

 self.learning_rate = learning_rate

 #Initialize actual learning rate

 self.lr = learning_rate

 #Set the decay

 self.decay = decay

 #Set the momentum

 self.momentum = momentum

 #Initialize "step" counter for updating the learning rate

 self.step = 0

 def forward(self):

 #Decay the current learning rate

 #When decay is 0, it doesen't affect the learning rate at all

 self.lr = self.learning_rate * (1. / (1. + self.decay * self.step))

 #Go through each layer in the model

 for lay in self.model.layers:

 #Calculate and set new momentums for the layer

 #When momentum is 0, it doesen't affect the learning rate at all

 lay.weight_momentum = self.momentum * lay.weight_momentum - self.lr *

lay.weight_gradient

 lay.bias_momentum = self.momentum * lay.bias_momentum - self.lr *

lay.bias_gradient

 #Update layer's parameters based on the calculated momentums

 lay.weights += lay.weight_momentum

 lay.biases += lay.bias_momentum

 #Update step counter

 self.step += 1

2.4.2 MNIST database

MNIST is one of the most common datasets for testing different architectures of neural networks. It contains

70000 grayscale images that depict handwritten Arabic numerals. An example except is shown in Figure 10. Every

image has a special class assigned to it, representing the associated number 0-9. It consists of two separate un-

ions: train and test. Train set contains 60000 evenly distributed images, and test set has 10000 images in it.

(LeCun et al. 1998, 9–10). This is a common structure of a dataset. It lets programmers to test the network on

data that was not used for training the network, thus identifying the problem of overfitting (neural network memo-

rized an input-output pairs instead of learning features).

 23 (64)

FIGURE 10. Example subset of 100 MNIST database pictures in grayscale representation (LeCun

et al. 1998, 10)

2.4.3 Architecture

MNIST is a very simple dataset, so the neural network may be minimal, but still be able to have a good ac-

curacy. Thesis will show a 4-layered neural network for a demonstration purpose. The input layer will receive

an individual pixel from an image, so it is going to be 28 * 28 = 784 neurons. The first hidden layer will have

20 neurons. This will result in 784 * 20 = 15680 weighted connections. The second hidden layer will consist

of 15 neurons, which results in 20 * 15 = 300 weighted connections. The output layer will have 10 neurons,

where each neuron is going to be responsible for representing a single number (0-9). This results in 15 * 10

= 150 weighted connections. This architecture has a total of 784 + 20 + 15 + 10 = 829 neurons, thus, 829

biases and 15680 + 300 + 150 = 16130 weights. The architecture will use ReLu activation function on the

hidden layers. Since MNIST is a classification problem, the model will have a SoftMax activation function on

the output layer. This will provide a probability distribution of an image’s class as an output. A Categorical

Cross Entropy loss will be used as this is a categorical problem. Minibatch Stochastic Gradient Descent with

capability of momentum and decay calculations will be used to optimize the attributes.

 24 (64)

2.4.4 Code

2.4.4.1 main.py

Main file will have a logic that will be operating on the parts that are taken from a custom library.

The input layer is emulated, so there is no initialization for it. This code is made just for demonstra-

tion purposes.

import layer

import model

import lossfun

import optimizer

import actfun

import os

import numpy as np

def mnist_train(model_to_use=0, learning_rate=0.5):

 #If model is not provided

 if model_to_use == 0:

 #Initialize the model with cross entropy loss

 model_to_use = model.Model(lossfun.CategoricalCrossEntropy)

 #Create layers

 dense1 = layer.Dense(784, 15, actfun.ReLu)

 dense2 = layer.Dense(15, 20, actfun.ReLu)

 dense3 = layer.Dense(20, 10, actfun.Softmax)

 #Add layers to the model

 model_to_use.addLayer(dense1)

 model_to_use.addLayer(dense2)

 model_to_use.addLayer(dense3)

 # Create optimizer

 opt = optimizer.SGD(model_to_use, learning_rate=learning_rate, decay=0.01, momen-

tum=0.5)

 #Open the mnist train csv file

 mnist_file = open(os.sys.path[0] + "\\mnist_train.csv")

 #Read each line as row into the mnist_data array

 mnist_data = mnist_file.readlines()

 #Close the mnist file

 mnist_file.close()

 #Split each line(row(string) in mnist data) by comma

 for img in mnist_data:

 img = np.array(img.split(","))

 #Array of class(target) values

 classes = []

 25 (64)

 #Go through each image in mnist_data

 for image in range(len(mnist_data)):

 #Append new class value(see the mnist dataset structure)

 classes.append(int(mnist_data[image][0]))

 #Append new image(indexes 1:785)

 #We want to have neural network's inputs in the range of 0.00001 - 0.99999

 mnist_data[image] = ((np.asfarray(mnist_data[image].split(",")[1:]) / 255.0 *

0.99999) + 0.00001)

 #Set the batch size

 batch_size = 50

 #Set the desired amount of epochs

 epochs_amount = 10

 #Find amount of batches

 batch_amount = (len(mnist_data)/batch_size)

 # Train in loop

 for epoch in range(epochs_amount):

 #Variable for calculating accuracy as per whole epoch

 accuracy_epoch = 0

 #Variable for calculating loss as per whole epoch

 loss_epoch = 0

 #Go through all images using step of batch size

 for image_number in range(0,(len(mnist_data)),batch_size):

 #Get the arrays of images and classes

 batch = mnist_data[image_number:image_number+batch_size]

 class_batch = classes[image_number:image_number+batch_size]

 #Check for last entry overflow

 if len(mnist_data) <= image_number+batch_size:

 batch = mnist_data[image_number:len(mnist_data)-1]

 class_batch = classes[image_number:len(classes)-1]

 #Get the network's predictions

 result = model_to_use.forward(batch)

 #Get the most certain prediction

 predictions = np.argmax(result, axis=1)

 #Convert classes to numpy array

 target = np.array(class_batch)

 #Find the accuracy

 accuracy = np.mean(predictions==target) * 100

 #Add batch accuracy to epoch accuracy

 accuracy_epoch += accuracy

 #Uncomment to see the amount of correct guesses

 #strike = 0

 #for a,b in zip(predictions, target):

 # if a == b:

 26 (64)

 # strike += 1

 #print("Amount of correct answers in batch: ", strike, "/", bsize)

 #Find the gradient

 model_to_use.backward(batch, target)

 #Add loss to the whole loss

 loss_epoch += model_to_use.calculate_loss(batch, target)

 #Optimize network's parameters

 opt.forward()

 #Print the information about an epoch pass

 print("Epoch: {}\tAccuracy in the last batch: {:.3f} %\tAverage accuracy in

epoch: {:.3f} %\tLast batch loss: {:.5f}\tAverage loss in epoch: {:.5f}".format\

 (epoch, accuracy, accuracy_epoch/batch_amount, model_to_use.calcu-

late_loss(batch, target),loss_epoch/batch_amount))

 #Accuracy may be 100% while loss is not 0.

 #This is due to the network being "uncertain"

 #Return the trained model

 return model_to_use

def test_model(model):

 #Open the mnist test csv file

 mnist_file = open(os.sys.path[0] + "\\mnist_test.csv")

 #Read each line as row into the mnist_data array

 mnist_data = mnist_file.readlines()

 #Close the mnist file

 mnist_file.close()

 #Split each line(row(string) in mnist data) by comma

 for img in mnist_data:

 img = np.array(img.split(","))

 #Array of class(target) values

 classes = []

 #Go through each image in mnist_data

 for image in range(len(mnist_data)):

 #Append new class value(see the mnist dataset structure)

 classes.append(int(mnist_data[image][0]))

 #We want to have neural network's inputs in the range of 0.00001 - 0.99999

 mnist_data[image] = ((np.asfarray(mnist_data[image].split(",")[1:]) / 255.0 *

0.99999) + 0.00001)

 #Make a forward pass using all the images

 test_result = model.forward(mnist_data)

 #Convert the results to index form

 test_result = np.argmax(test_result, axis=1)

 #Find accuracy

 accuracy = np.mean(test_result == np.array(classes)) * 100

 27 (64)

 #Print the testing results

 print("Accuracy in the test batch: {:.6f} %\tLoss: {:.6f}".format(accuracy,

model.calculate_loss(mnist_data, classes)))

 #Accuracy may be 100% while loss is not 0.

 #This is due to the network being "uncertain"

def load_model(filename='params.npy'):

 #Loading the model may be encapsulated to another layer of complexity(architecture),

but i think it is enough for the demonstration purposes

 #Initialize the model

 loaded_model = model.Model(lossfun.CategoricalCrossEntropy)

 #Create layers

 dense1 = layer.Dense(784, 15, actfun.ReLu)

 dense2 = layer.Dense(15, 20, actfun.ReLu)

 dense3 = layer.Dense(20, 10, actfun.Softmax)

 #Add layers to the model

 loaded_model.addLayer(dense1)

 loaded_model.addLayer(dense2)

 loaded_model.addLayer(dense3)

 #Load parameters to the model

 loaded_model.load_model(filename)

 #Return the loaded model

 return loaded_model

def main():

 #Create and train a model

 model = mnist_train()

 #Do a test on a model using mnist_test dataset

 test_model(model)

 #Train a model 2nd time

 model = mnist_train(model, learning_rate=0.01)

 #Do a test on a model using mnist_test dataset

 print("Testing the final model:")

 test_model(model)

 #Save the model to a file

 model.save_model('mnist_model_params.npy')

 #Load the model from a file

 loaded_model = load_model('mnist_model_params.npy')

 #Do a test on a loaded model using mnist_test dataset

 print("Testing the loaded model:")

 test_model(loaded_model)

if __name__ == "__main__":

 main()

 28 (64)

2.4.4.2 Function list

2.4.4.2.1 mnist_train()

This function is used to train the network using MNIST train set. It could either create the described

model from the ground up or continue training the existing model object. It makes predefined num-

ber of passes through the whole dataset. This pass is called an epoch. Normally, the more epochs a

network has learned, the better the resulting accuracy. Also, it uses batched inputs. That means

that it is taking multiple entries as a single input in order to smooth out the learning process.

At the end of operation, the function returns a trained model.

2.4.4.2.2 test_model()

This function is used to test the network using MNIST test set. It takes a model as an argument,

forwards the testing dataset and then calculates and prints the resulting accuracy and loss values.

2.4.4.2.3 load_model()

This function is used to create a model object, and then load all the parameters stored in a NumPy

binary file. The model is then returned.

2.4.4.2.4 main()

The main function is the one that gets executed first. In it, the model is obtained by calling an

mnist_train() function. After that, it shows the results using test_model(). Then, the model is further

trained in mnist_train() function. The final result is shown, and then the model is saved. After that,

the saved model is loaded and tested to demonstrate saving capabilities.

2.4.4.3 Loading a dataset

The MNIST dataset in .csv format could be taken from https://pjreddie.com/projects/mnist-in-csv/.

The format is such that each row in a table is a single data entry, e.g. picture. The first value in a

row is a label, and the next 784 values are pixels’ values. The pixel values are in such a form, that a

batch of first 28 entries is 1st pixel row, next batch is 2nd pixel row, and so on.

2.4.4.4 Results

After 200 attempts using this architecture and algorithm (1 pass @ learning rate = 0.5, momentum

= 0.5, decay = 0.01, batch size = 50, epochs = 10; 2 pass @ learning rate = 0.01, momentum =

0.5, decay = 0.01, batch size = 50, epochs = 10), the best accuracy obtained was

92.929044930027%.

https://pjreddie.com/projects/mnist-in-csv/

 29 (64)

Experimentally the biggest accuracy obtained was 98.380199 at epoch#102. All the properties, ex-

cept for epochs amount and a base architecture, were the same. Epochs amount was increased to

let the neural network learn for longer. The architecture was:

 dense1 = layer.Dense(784, 40, actfun.ReLu)

 dense2 = layer.Dense(40, 20, actfun.ReLu)

 dense3 = layer.Dense(20, 10, actfun.Softmax)

 30 (64)

3 CONVOLUTIONAL NEURAL NETWORKS

3.1 Overview

Artificial neural networks have a problem when working with huge and diverse images. For example,

if an image is RGB, and its size is 32*32 pixels, the model needs to have 3072 weights at the first

layer. If RGB image has a size of 416*416 pixels, the initial weight amount is equal to 519168. This

leads to overfitting and a large amount of computational power consumption. (Gogul and Kumar

2017, 3). Also, artificial neural networks are not able to find patterns in different parts of an image.

In image classification problems, they are simply applying masks to find which class is the most

probable one.

Convolutional neural networks are made to solve these problems. They are sequentially applying

special mathematical filters that are extracting different patterns of either image itself, or the fea-

ture map received from the previous filter. The network learns to give correct outputs by optimizing

internal parameters of filters. CNNs are spatially invariant, meaning that the feature may be found

on any part of an image.

The operation of machine vision convolutional neural network is very similar to the vision of a hu-

man. Humans are also able to extract and compile many different features from any part of received

visual information. (Carandini 2006, 1(463)-3(465)).

3.2 Components

3.2.1 Network

Normally, convolutional neural networks are made up of 2 parts: convolutional part, e.g. feature ex-

traction, at the beginning and fully connected part, e.g. classification, at the end. (Kang, Song and

Sun 2019, 3-4).

FIGURE 11. Architecture of a Convolutional Neural Network (Kang, Song and Sun 2019, 4)

 31 (64)

Convolutional part normally consists of convolutional and pooling layers. Each convolutional layer

consists of 1 or more filters. Layers are connected sequentially, so that the output (feature set) of

the first layer is the input to a second.

Fully connected part may be represented as a simple artificial neural network which has a flattened

convolutional layer’s output as input. Its main goal is to compile and mask many different features

to a required output.

3.2.1.1 Common sliding window operation

Both convolution and pooling operations are sliding window algorithms. It means that there is a spe-

cial window, e.g. kernel, that slides through the data and applies special logic to a scope. The kernel

has two properties: width and height. Commonly, the kernel’s size is represented as a single num-

ber, representing both width and height. The algorithm itself also has two properties: stride and

padding. Sometimes, it could have up to four properties due to different horizontal and vertical

strides and paddings. Stride means the amount of data entries a window will move in a single step.

Padding means the amount of additional data entries that are added to the “sides” of an original

data. Commonly, padding is adding specified number of zeroes. This is called a zero padding. The

sliding window operation flow is as follows:

1. The padding is applied to the data

2. The window is put to the first position, e.g. top-left corner, of an image or feature set

3. The logic is applied

4. The window is horizontally slided further, e.g. right, by the stride amount of data en-

tries. If window gets out of bounds, it moves vertically, e.g. down, by the specified

stride amount of data entries

5. The process is finished when the last scope was processed (the window finished hori-

zontal stride, but there are no more entries in vertical domain)

If the algorithm returns a single value from a scope, then a special formula could be used to find

output’s spatial size (dimensions) of a sliding window operation:

ℎ𝑒𝑖𝑔ℎ𝑡 =
𝑖𝑛𝑝𝑢𝑡 ℎ𝑒𝑖𝑔ℎ𝑡–𝑘𝑒𝑟𝑛𝑒𝑙 ℎ𝑒𝑖𝑔ℎ𝑡+2∗𝑝𝑎𝑑𝑑𝑖𝑛𝑔

𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙 𝑠𝑡𝑟𝑖𝑑𝑒
+ 1; 𝑤𝑖𝑑𝑡ℎ =

𝑖𝑛𝑝𝑢𝑡 𝑤𝑖𝑑𝑡ℎ–𝑘𝑒𝑟𝑛𝑒𝑙 𝑤𝑖𝑑𝑡ℎ+2∗𝑝𝑎𝑑𝑑𝑖𝑛𝑔

ℎ𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙 𝑠𝑡𝑟𝑖𝑑𝑒
+ 1 (Dumoulin

and Visin 2018, 15). Later these two formulae are going to be referred to as “spatial extent for-

mula”.

3.2.2 Convolutional layer

A convolutional layer may be represented as a set of filters that are applied to the input. Each filter

in a layer will add 1 channel to the output. All filters are applied to the input, and the result is for-

warded further.

 32 (64)

3.2.2.1 Filter

A filter may be represented as a 2-dimensional matrix that has a multiplier in each cell. There are

more dimensional filters present. They have similar logic but are out of the scope of this thesis. Each

filter is seeking for one particular feature in an input.

For example, here is a 3x3 filter kernel that seeks for a horizontal line: (
0 0 0
1
0

1
0

1
0
).

The dimensions of a kernel are predefined, and normally have a size of 3x3 up to 5x5.

3.2.3 Pooling layer

A pooling layer is used to decrease the spatial dimensionality of processed data. It applies a special

kernel that is extracting important information from multiple “pixels” and puts the compressed result

to only 1 cell. As a result, it outputs compressed version of input. This process is also called

“downsampling”.

3.2.3.1 MaxPool

MaxPool is one of the most common pooling methods. It simply takes the biggest number in a scope

and sets it as a region output.

3.2.3.2 AvgPool

As the name suggests, AvgPool is taking an average of a scope. Then, the value is put to a corre-

sponding output’s cell.

3.3 Representation of operation

3.3.1 Abstract

3.3.1.1 Convolution

In this part, there is going to be shown an abstract representation of a convolution operation. Such

representation is human-friendly due to visual abstraction.

Example filter that is seeking for a descending diagonal line:

1 -0.5

-0.5 1

Example input (each value could be seen as pixel’s grayscale intensity, so that if value is 1, the pixel

is black, and if the value is 0, the pixel is white):

 33 (64)

0.1 0.9 0.3 0.4

0.15 0.25 0.9 0.45

0.25 0.35 0.9 0.55

0.3 0.4 0.5 0.9

This demo layer has only 1 filter. Attributes of a layer: vertical stride = 2, horizontal stride = 1, pad-

ding = 0.

The filter is slided from top-left corner of an input down to bottom-right corner. It first slides hori-

zontally, taking a step of horizontal stride. When it runs to an edge, it is moved down by vertical

stride amount, and starts the process again at the left edge.

The first scope is going to be:

0.1 0.9

0.15 0.25

The second scope is going to be:

0.9 0.3

0.25 0.9

The fourth scope is going to be:

0.25 0.35

0.3 0.4

Applying stride and filter size, 6 scopes are obtained (purple and light green are both the filter and a

part of a filter):

0.1 0.9 0.3 0.4

0.15 0.25 0.9 0.45

0.25 0.35 0.9 0.55

0.3 0.4 0.5 0.9

 34 (64)

Applying a filter to a scope is done by multiplying corresponding cell values, and then summing up

all the resulting products.

For example, an output of a first scope is going to be: 1 ∗ 0.1 − 0.5 ∗ 0.9 − 0.5 ∗ 0.15 + 1 ∗ 0.25 =

 −0.175.

This is going to be the first value (top left) in an output. Processing every scope, the result is:

-0.175 1.525 0.1

0.325 0.2 1.275

This is an output of a convolution. Now, an activation function is applied. Applying ReLu:

0 1.525 0.1

0.325 0.2 1.275

3.3.1.2 Pooling

Normally, after the convolutional layer there is a pooling layer that is used to save computational

power. Applying 1x2 MaxPool with a stride of 1 and padding of 0 to the output:

0 1.525 0.1

0.325 0.2 1.275

max(0, 0.325) = 0.325;max(1.525, 0.2) = 1.525;max(0.1, 1.275) = 1.275

Result:

0.325 1.525 1.275

3.3.2 Mathematical

If the input is an RGB image, a model receives 3-dimensional data. In this example, there will be

used 1-channeled input so that the channel dimension is removed for the sake of simplicity. 𝑖𝑛𝑝𝑢𝑡 =

(

0.30 0.90 0.30 0.90
0.15 0.00 0.90 0.45
0.55
0.90

0.90
0.15

0.00 0.45
0.50 0.90

); 𝑓𝑖𝑙𝑡𝑒𝑟 = (
−1 1
1 −1

). The vertical stride is 2 and horizontal stride is 2.

Padding = 1.

 35 (64)

The first step is to apply padding. This is done by placing a number of 0 values at edges of a matrix.

𝑖𝑛𝑝𝑢𝑡 =

(

0.00 0.00
0.00 0.30

0.00
0.90

0.00
0.30

0.00
0.90

0.00
0.00

0.00 0.15 0.00 0.90 0.45 0.00
0.00 0.55
0.00 0.90
0.00 0.00

0.90
0.15
0.00

0.00 0.45 0.00
0.50
0.00

0.90 0.00
0.00 0.00)

. The goal is to make a dot product on kernel and

every possible scope. For that, it is needed to get a matrix, where each column is going to be a sin-

gle scope. 𝑖𝑛𝑝𝑢𝑡𝑠𝑐𝑜𝑝𝑒𝑑 = (

0.00 0.00 0.00 0.00 0.00 0.45 0.00 0.15 0.90
0.00
0.00
0.30

0.00 0.00 0.15 0.90 0.00 0.90 0.50 0.00
0.90 0.90 0.00 0.90 0.45 0.00 0.00 0.00
0.30 0.00 0.55 0.00 0.00 0.00 0.00 0.00

). Now the dot

product between the flattened filter kernel and a scoped input may be taken. 𝑓𝑖𝑙𝑡𝑒𝑟𝑓𝑙𝑎𝑡𝑡𝑒𝑛𝑒𝑑 =

(−1 1 1 −1).

𝑜𝑢𝑡𝑝𝑢𝑡 = (−1 1 1 −1) ∙ (

0.00 0.00 0.00 0.00 0.00 0.45 0.00 0.15 0.90
0.00
0.00
0.30

0.00 0.00 0.15 0.90 0.00 0.90 0.50 0.00
0.90 0.90 0.00 0.90 0.45 0.00 0.00 0.00
0.30 0.00 0.55 0.00 0.00 0.00 0.00 0.00

) =

(−0.30 0.6 0.9 −0.40 1.80 0.00 0.9 0.35 −0.9).

The output of this convolutional operation, according to the spatial extent formula, is going to be:

ℎ =
4−2+2∗1

2
+ 1 = 3;𝑤 =

4−2+2∗1

2
+ 1 = 3 .

Now, the output could be reshaped to known needed dimensions of 3x3:

𝑜𝑢𝑡𝑝𝑢𝑡 = (
−0.30 0.60 0.90
−0.40
0.90

1.80
0.35

0.00
−0.90

). Applying a ReLu activation function to an output:

𝑜𝑢𝑡𝑝𝑢𝑡𝑎𝑐𝑡𝑓𝑢𝑛 = (
0.00 0.60 0.90
0.00
0.90

1.80
0.35

0.00
0.00

).

The next step is going to be a pooling layer. Properties: AvgPool, padding=0, stride=1, kernel size =

2x2. There are a couple of ways to achieve this, but the thesis will show a convolutional approach.

The goal is to make a dot product on every possible scope using a reciprocal of the kernel size. The

first step is to create a row matrix, consisting of n values that are equal to kernel size. It is going to

be: 𝑘𝑒𝑟𝑛𝑒𝑙 = (0.25 0.25 0.25 0.25). Now, it is needed to get a matrix, where each column is a

scope: 𝑖𝑛𝑝𝑢𝑡𝑠𝑐𝑜𝑝𝑒𝑑 = (

0.00
0.60

0.60 0.00 1.80
0.90 1.80 0.00

0.00
1.80

1.80 0.90 0.35
0.00 0.35 0.00

). Applying kernel: 𝑜𝑢𝑡𝑝𝑢𝑡𝑠𝑐𝑜𝑝𝑒𝑑 =

(0.25 0.25 0.25 0.25) ∙ (

0.00
0.60

0.60 0.00 1.80
0.90 1.80 0.00

0.00
1.80

1.80 0.90 0.35
0.00 0.35 0.00

) = (0.60 0.825 0.7625 0.5375). Shaping

back to complex form: 𝑜𝑢𝑡𝑝𝑢𝑡 = (
0.60 0.825
0.7625 0.5375

). Now, the output could be sent to either next

convolutional/pooling layer or to the flattening and dense layers.

 36 (64)

Flattening is done by placing all the values to a row vector. The operation is such that each chan-

nel’s rows are subsequently placed one after another, and then the resulting vectors are also suc-

cessively concatenated together to form a final vector. Example of 2-channelled input:

𝑓𝑙𝑎𝑡𝑡𝑒𝑛(((
0.00 0.60 0.90
0.00
0.90

1.80
0.35

0.00
0.00

) (
−0.30 0.60 0.90
−0.40
0.90

1.80
0.35

0.00
−0.90

))) = 𝑓𝑙𝑎𝑡𝑡𝑒𝑛((
0.00 0.60 0.90
0.00
0.90

1.80
0.35

0.00
0.00

)) +

𝑓𝑙𝑒𝑡𝑡𝑒𝑛((
−0.30 0.60 0.90
−0.40
0.90

1.80
0.35

0.00
−0.90

)) = (0.00 0.60 0.90 0.00 1.80 0.00 0.90 0.35 0.00) +

(−0.3 0.60 0.90 −0.4 1.80 0.00 0.90 0.35 −0.90) =

(0.00 0.60 0.90 0.00 1.80 0.00 0.90 0.35 0.00−0.30 0.60 0.90 ⋯ −0.9) .

It is now possible to send this vector to a regular dense layer.

The optimization is done by automatically tweaking the convolutional filters’ multipliers. The core

idea stays the same: find a derivative of every single multiplier with respect to the loss value and

tweak them in needed direction.

3.4 Practical example

TensorFlow library will be used for implementing a practical example. It is much faster than self-

made tools since it could use GPU powers for computations. TensorFlow is made with simplicity in

mind, so the code is going to be easy to read, write and understand. (Abadi et al. 2016, 1).

3.4.1 Image classification

Convolutional neural networks are the most used tool in image classification problems. Example

classification problems that CNN could be used to solve: cat or dog, damaged or not damaged car,

fox’s species, etc.

3.4.1.1 CIFAR 10

CIFAR 10 is an image classification dataset. It consists of 60000 32x32 pixel colored images. All the

images are break into 10 classes. The classes are: airplane, automobile (but not truck or pickup

truck), bird, cat, deer, dog, frog, horse, ship, and truck (but not pickup truck). The dataset is split to

two subsets: 50000 images in training set, and 10000 in testing set. (Krizhevsky 2009, 32).

 37 (64)

FIGURE 12. An example picture of a deer in CIFAR-10 dataset

The best accuracy achieved at the time of writing this thesis was 99.4% (Touvron et al. 2021, 16).

CIFAR 10 is one of the most referenced datasets. Figure 13 shows the graph of the most referenced

datasets in scientific papers over time.

FIGURE 13. Popular Dataset References Over Time (Ben Hamner 2017)

3.4.1.2 Code

The code contains an example solution for the CIFAR-10 dataset. It is provided with the architecture

that has achieved the best results throughout thesis research process.

import os

os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' #Disable unnecessary logging

import tensorflow as tf

from tensorflow.keras.layers import Dense, Flatten, Conv2D, MaxPooling2D, Activation

 38 (64)

from tensorflow.keras import datasets, Model

import numpy as np

import matplotlib.pyplot as plt

import random

from datetime import datetime

#Print the amount of usable GPUs

print("Num GPUs Available: ", len(tf.config.list_physical_devices('GPU')))

#List of indexed labels.

cifar_labels = ['airplane', 'auto', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse',

'ship', 'truck']

#Batch size for training process. This value was obtained experimentally

BATCH_SIZE = 8

#Batch size for testing process. This is needed for reducing memory consumption

TEST_BATCH_SIZE = 100

#Length of an image. Needed for scoping in test pass

IMG_LEN = 32 * 32

#Amount of epochs to be trained

EPOCHS = 30

#Variable that is used for timing of updating predictions

CHECK_EVERY = 100

#Length of subdataset. This is needed for reducing memory consumption

DEN = 1000

#Grid of pictures to show in the test step

IMG_ROWS = 3

IMG_COLS = 10

#Load the CIFAR10 dataset from the keras

(x_train, y_train), (x_test, y_test) = datasets.cifar10.load_data()

#Normalize the inputs to be on the scale 0.0-1.0

x_train, x_test = x_train / 255.0, x_test / 255.0

#Put test pictures in batches. Shuffling will not take any effect, so it may be skipped

test_ds = tf.data.Dataset.from_tensor_slices((x_test, y_test)).batch(TEST_BATCH_SIZE)

#Define the class for custom model

class MDL(Model):

 def __init__(self):

 #Call the parent class initialization

 super(MDL, self).__init__()

 #An array, where the convolutional part will be stored

 self.conv_part = []

 #Append needed layers one by one

 #SAME padding means that the padding will be toggled to make output's spatial

size the same as input's one.

 self.conv_part.append(Conv2D(64, 3, padding="SAME"))

 self.conv_part.append(Activation("relu"))

 self.conv_part.append(MaxPooling2D((2,2)))

 self.conv_part.append(Conv2D(128, 3, padding="SAME"))

 39 (64)

 self.conv_part.append(Activation("relu"))

 self.conv_part.append(MaxPooling2D((2,2)))

 self.conv_part.append(Conv2D(256, 3, padding="SAME"))

 self.conv_part.append(Activation("relu"))

 self.conv_part.append(MaxPooling2D((2,2)))

 self.conv_part.append(Conv2D(512, 3, padding="SAME"))

 self.conv_part.append(Activation("relu"))

 self.conv_part.append(MaxPooling2D((2,2)))

 #An array, where the fully connected part is stored

 self.fconn_part = []

 self.fconn_part.append(Flatten()) #Flatten the input to a batch of vectors

 self.fconn_part.append(Dense(4096, activation='relu'))

 self.fconn_part.append(Dense(1000, activation='relu'))

 self.fconn_part.append(Dense(10, activation='softmax')) #Final layer with clas-

sifying activation function

 #Make a forward pass

 def call(self, x):

 #Forward through convolutional part first

 for lay in self.conv_part:

 x = lay(x)

 #Forward through fully connected part second

 for lay in self.fconn_part:

 x = lay(x)

 #Return the model's predictions

 return x

Create an instance of the model

model = MDL()

#Initialize the loss object

loss_object = tf.keras.losses.SparseCategoricalCrossentropy()

#Initialize a basic Stochastic gradient descent optimizer

optimizer = tf.keras.optimizers.SGD()

#The metrics that will show the loss during training process

train_loss = tf.keras.metrics.Mean(name='train_loss')

#The metrics that will show the batch accuracy during training process

train_accuracy = tf.keras.metrics.SparseCategoricalAccuracy(name='train_accuracy')

#The metrics that will show the loss during testing process

test_loss = tf.keras.metrics.Mean(name='test_loss')

#The metrics that will show the batch accuracy during testing process

test_accuracy = tf.keras.metrics.SparseCategoricalAccuracy(name='test_accuracy')

#Train the model 1 time using inputs and labels

@tf.function

def train_step(images, labels):

 #Gradient tape is used for automatic derrivation of the whole model

 40 (64)

 with tf.GradientTape() as tape:

 #Do a forward pass. Remember the inputs on each step

 predictions = model(images, training=True)

 #Calculate the resulting loss

 loss = loss_object(labels, predictions)

 #Automatically calculate gradients

 gradients = tape.gradient(loss, model.trainable_variables)

 #Optimize the model using resulting gradients

 optimizer.apply_gradients(zip(gradients, model.trainable_variables))

 #Get the loss after applying optimization

 train_loss(loss)

 #Get the accuracy after applying optimization

 train_accuracy(labels, predictions)

#Test the model

@tf.function

def test_step(images, labels):

 #Do a forward pass. Memorizing input values is not needed

 predictions = model(images, training=False)

 #Calculate the resulting loss

 t_loss = loss_object(labels, predictions)

 #Get the loss

 test_loss(t_loss)

 #Get the accuracy

 test_accuracy(labels, predictions)

 #Return model's predictions

 return predictions

#Define memory arrays for plotting

accuracy_history_full = []

accuracy_history_epoch = []

xdata_full = []

xdata_epoch = []

#Create plotting canvases

fig, (ax1, ax2) = plt.subplots(1, 2)

fig_imgs, imgs = plt.subplots(IMG_ROWS, IMG_COLS)

#Set the size for image plots

fig_imgs.set_size_inches(20, 20)

#Add titles and labels

fig.suptitle('Horizontally stacked subplots')

ax1.set_title("Overall progress")

ax1.set_xlabel("Batches processed")

ax1.set_ylabel("Accuracy")

#Train the model $EPOCHS times

for epoch in range(EPOCHS):

 41 (64)

 #Clear the epoch accuracy plot

 ax2.clear()

 ax2.set_title("Epoch progress")

 ax2.set_xlabel("Batches processed")

 ax2.set_ylabel("Accuracy")

 #Arrays of accuracy history in epoch

 accuracy_history_epoch = []

 #Indices for accuracy points

 xdata_epoch = []

 #Reset the batch counter

 batch_index = 0

 # Reset the metrics at the start of the next epoch

 train_loss.reset_states()

 train_accuracy.reset_states()

 test_loss.reset_states()

 test_accuracy.reset_states()

 #Let's divide the datasets into subdatasets, len/den each

 #This is needed for memory usage reduction

 for subdataset_index in range(int(len(x_train)/DEN)-1):

 #Get subdatasets, length = DEN

 x_train_sub = x_train[subdataset_index*DEN:(subdataset_index+1)*DEN]

 y_train_sub = y_train[subdataset_index*DEN:(subdataset_index+1)*DEN]

 #Shuffle the inputs and put them in batches of 32 images per batch

 #Merge inputs and labels

 train_ds = tf.data.Dataset.from_tensor_slices((x_train_sub, y_train_sub))

 #Shuffle pairs 10000 times

 train_ds = train_ds.shuffle(10000)

 #Make batches of BATCH_SIZE

 train_ds = train_ds.batch(BATCH_SIZE)

 #Go through every batch

 for images, labels in train_ds:

 #Make a train step

 train_step(images, labels)

 #Update batch counter

 batch_index += 1

 #Update every n batches

 if batch_index % CHECK_EVERY == 0:

 #Get loss and accuracy values from the last batch processed

 loss = train_loss.result().numpy()

 accuracy = train_accuracy.result().numpy() * 100

 #Print the info. Return the carriage, but don't go to the next line

 print("Epoch: ", epoch, "\tCurrent loss: {:.3f}".format(loss), "\tCur-

rent accuracy: {:.3f}%".format(accuracy), "\tImages processed: {:.0f}".format((batch_in-

dex-1) * BATCH_SIZE), end="\r")

 #Append new values to memory

 accuracy_history_epoch.append(accuracy)

 xdata_epoch.append(int(batch_index/CHECK_EVERY))

 42 (64)

 accuracy_history_full.append(accuracy)

 #Append the global indexing array

 if len(xdata_full) == 0:

 #Begin from 0

 xdata_full.append(0)

 else:

 #Append incremented last number

 xdata_full.append(xdata_full[-1]+1)

 #Plot the global accuracy graph

 ax1.plot(xdata_full, accuracy_history_full, color='r')

 #Plot the in-batch accuracy graph

 ax2.plot(xdata_epoch, accuracy_history_epoch, color='b')

 #Make a small pause to let matplotlib to render

 plt.pause(1)

 #Training is done

 predicts = [] #Array of batched predictions from test dataset

 #Go through every test batch

 for test_images, test_labels in test_ds:

 #Append predictions from a batch

 predicts.append(test_step(test_images, test_labels))

 #Go through every row in canvas

 for idx_row in range(len(imgs)):

 #Go through every column in canvas

 for idx_col in range(len(imgs[idx_row])):

 #Pick a random batch

 batch_idx_pred = random.randint(0, len(predicts)-1)

 #Pick a random image in that batch

 img_id_pred = random.randint(0, len(predicts[batch_idx_pred])-1)

 #Plot a picture to a cell. The calculations are needed to find corresponding

image

 imgs[idx_row][idx_col].imshow(x_test[batch_idx_pred * TEST_BATCH_SIZE +

img_id_pred])

 #Disable axes for the image plot

 imgs[idx_row][idx_col].axis('off')

 #Find the most certain answer in corresponding prediction

 idx_of_max_prob_prediction = np.argmax(pre-

dicts[batch_idx_pred][img_id_pred])

 #Make a guess/target pair

 pair = cifar_labels[idx_of_max_prob_prediction] + "\n" + cifar_la-

bels[y_test[batch_idx_pred * TEST_BATCH_SIZE + img_id_pred][0]]

 #If the prediction is right, print the name of predicted and target classes

in green

 if y_test[batch_idx_pred * TEST_BATCH_SIZE + img_id_pred] ==

idx_of_max_prob_prediction:

 imgs[idx_row][idx_col].set_title(pair, color="green")

 #If the prediction is not right, print the name of predicted and target

classes in red

 else:

 43 (64)

 imgs[idx_row][idx_col].set_title(pair, color="red")

 #Update epoch number in super title

 fig_imgs.suptitle('Test results at epoch ' + str(epoch))

 #Save the image subset plot

 fig_imgs.savefig('epoch' + str(epoch) + '.png')

 #Print the results of an epoch

 print(f'\nEpoch {epoch + 1}, Train Loss: {train_loss.result()}, Train Accuracy:

{train_accuracy.result() * 100}, Test Loss: {test_loss.result()}, Test Accuracy:

{test_accuracy.result() * 100}')

 #Get the original filename using current datetime

 dateTimeObj = datetime.now()

 checkpoint_name = "checkpoint_" + dateTimeObj.strftime("%d_%m_%Y__%H_%M_%S")

 #Save the model using generated name

 model.save('./checkpoints/' + checkpoint_name)

3.4.1.2.1 Code explanation

At the beginning the code loads the CIFAR-10 dataset in an appropriate format. Then the code cre-

ates a model from the predefined inherited class MDL, which is a child of keras’ Model superclass.

The model’s architecture is predefined inside of an MDL class. Then, the code creates special tools

for communicating with the model. After that, the model trains the neural network specified amount

of times. During the training process, it is providing the statistical information on the terminal, and

in visual form using Matplotlib. The model is saved after passing an epoch, so that it is possible to

use the best pretrained model later on.

FIGURE 14. A depicture of statistical information that is outputted to the terminal.

 44 (64)

FIGURE 15. A graph of train set accuracy throughout training the model for more than 2000

batches

FIGURE 16. Depicture of example test subset results on the epoch #103

3.4.1.2.2 Results

After 20 different architectures tested, the best one was found. Each architecture was trained for 25

epochs 10 times to neglect local minimums. The research started from a sample architecture. Then,

the best and average results were collected and analyzed. The decision was then made as of how to

 45 (64)

tweak the architecture. The best architecture obtained had a peak test accuracy of 78.82% at 45th

epoch.

The biggest problem was overfitting. In most runs, the train set accuracy was over 99%, while final

test results were no more than 70%. There are a couple of ways to address this problem: batch

normalization, dropout layers, etc. Due to overfitting, the model could be shrinked down to be less

than a quarter as big and lose no more than 8% of best test accuracy.

Trained model could be tested using a custom picture. First, it is needed to obtain an image (see

Figure 17). Then, crop a needed part of it (see Figure 18). After that, the image should be resized to

the same spatial extent as it was trained on (see Figure 19). That is 32x32 pixels. Then a picture

may be forwarded through the network:

#Load an image

img = tf.io.read_file('./custom_image_resized.png')

#Decode

img = tf.io.decode_png(img)

#Cast image's values as float32

img = tf.tensorflow.cast(img, tensorflow.float32)

#Normalize pixel values

img = img/255

#Add batch dimension

img = img[None, :, :, :]

#Forward the image through the network and print an output

print("Result: ", model_to_use(img, training=False))

FIGURE 17. Original picture of a car

 46 (64)

FIGURE 18. Cropped picture of a car

FIGURE 19. Resized picture of a car

The resulting output is shown in Figure 20. The pretrained model is predicting 2nd class, which is a

car, with 99.97% certainty.

FIGURE 20. Output of a pretrained network

3.4.2 Object detection

Object detection is a step further from image classification tasks. It is aimed at positions and classes

of objects that are present in a picture. The object detection models require a lot of computational

power. Due to this reason, the first object detection neural networks have started to be created in

the 1990s. (Rowley, Baluja & Kanade 1998, 1(23)).

The ground-braking algorithm was named “Viola-Jones object detection framework”. It is able to

localize multiple faces on the input image with a detection rate of 95% with a false positive rate at 1

in 14084. In 1998, the execution took only 0.7 seconds to scan a 384 by 288-pixel image. (Viola,

 47 (64)

Jones 2001, 4). The operation is such that a window, consisting of set of pretrained detectors, is

slided through the whole image. Then, if the output’s masking value was bigger than threshold, the

detection was made.

FIGURE 21. A visual representation of an object detection neural network’s operation (Red-

mon 2018)

3.4.2.1 Region Based Convolutional Neural Networks

In 2013, a group of researchers have presented a new concept in object detection models. It was

named “region based convolutional neural networks”. Its operation was much faster as compared to

the previous generation of solutions because of breaking a problem into two parts: region extraction

and region classification. The system was called R-CNN – Regions with CNN features. The model

uses selective search to first identify regions that have a high probability of containing an object in

them. The number of regions generated for a single picture is approximately 2000. Then, all the re-

gions are resized to a 224 by 224-pixel images and fed to a trained convolutional neural network for

extracting convolutional features. The convolutional part typically produces 4096 different feature

values. Then, all the feature sets are sent to a support vector machine that is classifying regions

based on the feature set. After that, a threshold may be applied to remove uncertain regions. As the

result, the model returns region coordinates and an associated class probability distributions.

(Girshick et al. 2013, 1-3).

The original paper shows that it took about 13 seconds to compute a single image on GPU and

about 53 seconds on CPU. The maximum achieved mean average precision on VOC 2007 dataset

was 48%. (Girshick et al. 2013, 3).

 48 (64)

The precision of object detection solutions may differ a lot from the accuracy of image classification

tasks due to not perfectly sized or placed regions. Perfect scoring is not needed in plenty of tasks,

so the fast-computing models are very popular in modern development.

3.4.2.2 You Only Look Once model

The YOLOv1 (You Only Look Once version one) architecture was created in 2015. Figure 22 shows

that YOLOv1 was orders of magnitude faster as compared to similar models at the cost of insignifi-

cant mean average precision decrease. As the name implies, YOLO makes only 1 run through an

image.

FIGURE 22. Prediction timing of different architectures on the VOC 2007 dataset (Redmond et

al. 2015, 7)

3.4.2.2.1 Operation

First, an algorithm resizes the image to a spatial extent of 448 by 448 pixels. Then, the image is di-

vided into a seven by seven grid. If the center of an object is inside of a grid cell, then that cell is

responsible for detecting, providing a bounding box, and classifying that object. Resized image is

then sent to a single convolutional neural network. Instead of max pooling, YOLO’s CNN uses stride

in convolutional layers to decrease the spatial size of data. Since there are 24 convolutional layers, it

is needed to reduce the number of channels throughout an operation. Otherwise, the memory con-

sumption would drastically increase. One by one kernel-sized filters are used for reducing a feature

space. After the convolutions are done, the data is flattened out and sent to two last fully-connected

layers. The first one has 4096 neurons. The second one consists of 1176 neurons. Between the two,

there is a dropout layer (Srivastava et al. 2014, 1(1929)-2(1930)) with rate = 0.5 that prevents co-

adaptation between these layers. The output from a second dense layer is then shaped in such a

way, that it is a 3-dimensional matrix of size 7x7x24, where the first 20 values in an entry are class

probability distribution, and the latter 4 are center x, center y, width and height. All the resulting

region values are relative to an image and are on a scale of 0-1. The model uses LeakyReLu (Szan-

dała 2020, 14) in every inner layer, and a (linear) logistic activation function in the output layer to

produce predictions. (Redmon et al. 2015, 2-4).

 49 (64)

FIGURE 23. A depicture of YOLOv1’s architecture. (Redmon et al. 2015, 3)

A sum-square error loss is used in the original model due to its simplicity. However, it was tweaked

from the simple form: 𝑙𝑜𝑠𝑠 = ∑ (𝜆1𝑖
𝑜𝑏𝑗
((𝑥𝑖 − 𝑥̂𝑖)

2 + (𝑦𝑖 − ŷi)
2 + (√𝑤𝑖 −√ŵi)

2
+ (√ℎ𝑖 −√ĥi)

2

) +48
𝑖=0

∑ (𝑝𝑖(𝑐) − p̂i(𝑐))
2

𝑐∈𝑐𝑙𝑎𝑠𝑠𝑒𝑠), where 𝑖 – cell number, λ – constant scaling factor, 𝑥𝑖- predicted center x

value, 𝑥̂𝑖- target center x value, 𝑦𝑖- predicted center y value, 𝑦̂𝑖- target center y value, 𝑤𝑖- predicted

bounding box’s width, 𝑤̂𝑖- target bounding box’s width, ℎ𝑖- predicted bounding box’s height, ℎ̂𝑖- tar-

get bounding box’s height, 𝑝𝑖(𝑐)- predicted probability of class c, 𝑝̂𝑖(𝑐)- target probability of class c.

1𝑖
𝑜𝑏𝑗
= {
1, if object is present in a cell
0, if object is not present in a cell

. Lambda is used to increase the impact of a bounding

box’s parameters on a final loss. In original paper, the model used λ = 4. If there is no object in a

cell, the model does not need to calculate bounding box’s error, but rather focus on a class probabil-

ities. Therefore 1𝑖
𝑜𝑏𝑗

is used. The squre root is taken from width and height to increase relative influ-

ence of errors in small bounding boxes as compared to the bigger ones. (Redmon et al. 2015, 4).

3.4.2.3 Dataset preparation

In this section, there will be shown a way to create a custom object detection dataset. The dataset

is going to be in a special YOLO format, but it could be easily converted to different format using

specialized software. Special tools will be created and used to fasten the process. The thesis shows

a practical way of using neural networks in custom scripts.

3.4.2.3.1 Format

The YOLO model’s authors have introduced a new dataset format. Each picture has its own .txt file,

in which there is 1 labeled bounding box set of values per line. The format is:

<object-class> <x> <y> <width> <height>

<object-class> <x> <y> <width> <height>

 50 (64)

<object-class> <x> <y> <width> <height>

Object class is a class number. X and y are bounding box’s center position values relative to an im-

age, e.g. pixel number / total amount of width or height pixels. Width and height are bounding box’s

width and height values. They are also relative to an image. (Redmon 2018).

Example:

img_0001.png: an image in .png format.

img_0001.txt:

2 0.3 0.6 0.02 0.09

5 0.8 0.1 0.3 0.06

3.4.2.3.2 Original data

The visual dataset is taken from publicly available live camera footage from Helsinki’s port harbor.

The livestream is hosted on a popular video streaming website. Since the video is too long, it is

needed to download only a part of it. A free and open-source tool ffmpeg could be used for extract-

ing and downloading a specified timeframe of a video stream. The first step is to acquire the video

stream link using specialized tools. Then, download a 15-minute part of a stream using ffmpeg:

ffmpeg -ss 00:10:00.00 -i "stream link" -t 00:15:00.00 -c copy dataset_video.mp4. Since the camera is mov-

ing, a video needs to be split into multiple parts. This could be done in many ways but using a visual

video editor is the simplest solution. Kdenlive is a free and open-source video editing software that

will be used here. First, it is needed to import a video. Then, set zone ticks on the time scale (Figure

24). After that, a part of the video could be saved as a separate video (Figure 25).

FIGURE 24. Zoning in Kdenlive

 51 (64)

FIGURE 25. Extracting a zone to a separate video

3.4.2.3.3 Automatic annotation

Since humanity have already created and trained huge neural networks, it is possible to use one to

automatically annotate the data. The pretrained YOLOv3 model will be used for that. OpenCV’s DNN

tools will be used as the base system for loading a pretrained YOLOv3 network.

There are a couple of goals that the script will accomplish:

1. Create a dataset that consists of only the needed classes.

2. Detect objects on a picture that are small enough to be not detected via normal pretrained YOLO

operation (due to original 416x416 input resizing).

3. Save the results in an appropriate format.

3.4.2.3.3.1 Code

import cv2

import numpy as np

#Load a pretrained yolo network

#YOLO-608 works best

#Link: https://pjreddie.com/darknet/yolo/

#Save config as cfg.cfg and weights as yolov3.weights in the folder containing this

script

model = cv2.dnn.readNetFromDarknet("cfg.cfg", "yolov3.weights")

model.setPreferableBackend(cv2.dnn.DNN_BACKEND_OPENCV)

#Path to the directory with video file in it

#NOTE: It gets really messy

dir_path = "./frames/"

#Name of the video file

 52 (64)

video_name = "input_video.mp4"

#Array of COCO classes that we are interested in

#Person, car, truck, boat

interested_classes = [1, 3, 8, 9]

#Array of COCO class names for generating new class list

coco_names_indexed = ["person","bicycle","car","motorcycle","air-

plane","bus","train","truck","boat","traffic light","fire hydrant","stop sign","parking

meter","bench","bird","cat","dog","horse","sheep","cow","elephant","bear","zebra","gi-

raffe","backpack","umbrella","handbag","tie","suitcase","frisbee","skis","snow-

board","sports ball","kite","baseball bat","baseball glove","skateboard","surf-

board","tennis racket","bottle","wine glass","cup","fork","knife","spoon","bowl","ba-

nana","apple","sandwich","orange","broccoli","carrot","hot dog","pizza","do-

nut","cake","chair","couch","potted plant","bed","dining table","toilet","tv","lap-

top","mouse","remote","keyboard","cell phone","microwave","oven","toaster","sink","re-

frigerator","book","clock","vase","scissors","teddy bear","hair drier","toothbrush"]

#Counter of processed frames. Used for file naming

frame_number_file = 0

#Define thresholds for the subframe level

probability_threshold_subframe = 0.01

nms_threshold_subframe = 0.2

#Define thresholds for the frame level

probability_threshold_whole = 0.02

nms_threshold_whole = 0.2

#Returns 9 subframes of a frame: left-mid-right, top-mid-bot

def getNineSubframes(frame):

 #Find frame's dimensions

 frame_height, frame_width, frame_channels = frame.shape

 #Array for storing subframes

 subframes = []

 #Now we need to get parts of the image

 #There will be 9 subframes total

 #The subframe step is going to be 1 quarter of a whole image for both width and

height

 for height_pos in np.arange(0.25,1.0,0.25):

 for width_pos in np.arange(0.25,1.0,0.25):

 #Append a new subframe to an array

 subframes.append(frame[int(frame_height * (height_pos-

0.25)):int(frame_height * (height_pos + 0.25)), int(frame_width * (width_pos-

0.25)):int(frame_width * (width_pos + 0.25))])

 #Return the resulting array of subframes

 return subframes

#Function for processing the whole frame

def process_frame(frame, model):

 #Operation:

 #1. Divide each frame into 9 same-sized parts

 #2. Process each subframe

 #3. Mathematically process each bounding box to be relative to the whole frame

 #4. Apply NMS on the resulting data

 53 (64)

 #Frame counter for saving results

 global frame_number_file

 #Output layers of the YOLO network

 global output_layers

 #Save the frame itself

 cv2.imwrite(dir_path + str(frame_number_file) + ".jpg", frame)

 #String for storing the output values. It is going to be printed in a file

 frame_boxes = ""

 #Find frame's dimensions

 frame_height, frame_width, frame_channels = frame.shape

 #Array of frame's subframes

 subframes = getNineSubframes(frame)

 #Conver all subframes into YOLO-specific blobs

 for idx, subframe in enumerate(subframes):

 subframes[idx] = cv2.dnn.blobFromImage(subframe, 1/255, (416, 416), [0,0,0], 1,

crop=False)

 #A holder for the subframes' bbox outputs(same order)

 bboxes_from_subframes = []

 #A holder for the subframes' class outputs(same order)

 classes_from_subframes = []

 #A holder for the subframes' confidences outputs(same order)

 confidences_from_subframes = []

 #Process each subframe, e.g. forward each subframe through YOLO and store the re-

sults

 for subframe in subframes:

 #Feed the blob to the neural network

 model.setInput(subframe)

 #Run forward the neural network and get the outputs from the output layers

 out = model.forward(output_layers)

 #Process the outputs and store classes, bboxes and confidences arrays for the

subframe

 subframe_classes, subframe_bboxes, subframe_confidences = process_subframe(out)

 #Everything is stored in the original format: Left-mid-right, top-mid-bot

 bboxes_from_subframes.append(subframe_bboxes)

 classes_from_subframes.append(subframe_classes)

 confidences_from_subframes.append(subframe_confidences)

 #Now, we have to process bboxes, since they are relative to the subframe, not the

whole frame

 #There are 3 subframes in each row. The width relative offsets are: 0, 0.25, 0.5

 #There are 3 rows of subframes. The height relative offsets are: 0, 0.25, 0.5

 #Each subframe's width and height is 1/2 of the whole frame. Thus, we only need to

scale the bbox's width and height by 1/2

 #Initialize offsets

 cx = 0

 54 (64)

 cy = 0

 #Go through each subframe

 for idx, bboxes in enumerate(bboxes_from_subframes):

 #Go through each subframe's bbox

 for idx1, bbox in enumerate(bboxes):

 #Bbox is : x,y,width,height

 #Scale bbox to be relative to the whole frame

 bboxes[idx1][0] = bbox[0] * 0.5 + cx

 bboxes[idx1][1] = bbox[1] * 0.5 + cy

 bboxes[idx1][2] = bbox[2] * 0.5

 bboxes[idx1][3] = bbox[3] * 0.5

 #No need to save new bbox since we were working with pointers

 #Shift the width offset

 cx += 0.25

 #If the width offset is bigger than 0.5, change to the next row

 if cx > 0.5:

 #Restart at the beginning

 cx = 0

 #Change the height offset

 cy += 0.25

 #Now it's time to apply non-maxima surpression. It will delete bboxes of objects

that were detected on multiple subframes

 #But before that, we need to flatten the bboxes, classes and confidences arrays to

not to have a subframe dimension

 #Array of frame's bounding boxes

 global_bboxes = []

 #Go through each subframe

 for subframe_bboxes in bboxes_from_subframes:

 #Go through each bbox

 for bbox in subframe_bboxes:

 #Append bbox to the global bbox array

 global_bboxes.append(bbox)

 #Array of frame's classes

 global_classes = []

 #Go through each subframe

 for subframe_classes in classes_from_subframes:

 #Go through each class

 for box_class in subframe_classes:

 #Append class to the global class array

 global_classes.append(box_class)

 #Array of frame's confidences

 confidencess = []

 #Go through each subframe

 for subframe_confidencess in confidences_from_subframes:

 #Go through each confidence

 for confidence in subframe_confidencess:

 #Append confidence to the global confidences array

 confidencess.append(confidence)

 #Apply the non maxima surpression on all of the bounding boxes.

 55 (64)

 #This will remove all the excessive bboxes that were foung on the sides of subframes

 nms_indexes = cv2.dnn.NMSBoxes(global_bboxes, confidencess, probability_thresh-

old_whole, nms_threshold_whole)

 #Go through each index that was chosen via NMS

 for i in nms_indexes:

 #Get the bounding box

 box = global_bboxes[i]

 #Get the class

 box_class = global_classes[i]

 #Convert the class to custom index

 box_class = interested_classes.index(box_class)

 #Add new entry to the string that will be written as an annotation to the frame

 frame_boxes += str(box_class) + " "

 frame_boxes += str(box[0]) + " "

 frame_boxes += str(box[1]) + " "

 frame_boxes += str(box[2]) + " "

 frame_boxes += str(box[3]) + " "

 frame_boxes += '\n'

 #I also want to show the bounding boxes for visual inspection during processing

 #First step is to scale them(values are in 0-1 format, need to multiply by orig-

inal w and h)

 #Reformat center coordinates from relative format to pixel format

 cx = int(box[0] * frame_width)

 cy = int(box[1] * frame_height)

 #Reformat width and height from relative format to pixel format

 w = int(box[2] * frame_width)

 h = int(box[3] * frame_height)

 #Get top left corner

 #To get to the left, we need to substract width/2 from the center coordinate

 x = int(cx - w/2)

 #To get to the top, we need to substract height/2 from the center coordinate

 y = int(cy - h/2)

 #Get bottom right corner

 #To get to the right, we need to add width/2 to the center coordinate

 x1 = int(cx + w/2)

 #To get to the bottom, we need to add height/2 to the center coordinate

 y1 = int(cy + h/2)

 #Draw a bounding box using resulting coordinates

 cv2.rectangle(frame, (x,y), (x1, y1), (0,255,0), 2)

 #Now i want to save the file that contains generated annotations

 #Open/create a new txt file with a processed frame's number as name

 f = open(dir_path + str(frame_number_file) + ".txt", 'w')

 #Write all the detections to the file

 f.write(frame_boxes)

 #Close the file

 f.close

 #Increment processed frames counter

 frame_number_file += 1

 56 (64)

 #Show the image with all the resulting bounding boxes

 cv2.imshow("test", frame)

#A function for processing subframes. Returns bboxes, corresponding classes and confi-

dences

def process_subframe(out):

 #Array of subframe's bboxes

 bboxes = []

 #Array of subframe's bboxes' confidences

 confidences = []

 #Array of subframe's bboxes' classes

 classes = []

 #Go through each YOLO's output layer

 for layerOut in out:

 #Go through each detection

 for detection in layerOut:

 #Find the most probable class

 max_prob = 0

 max_class = 0

 #We only want to know certain classes

 for class_interested in interested_classes:

 #We need to add 4 to the index, since first 5 values are the bounding

box properties(cx,cy,w,h,probability that there is an object at all)

 #Indexsing of arrays start from 0, and indexing of COCO classes starts

from 1, which gives index of 5 for the first class(person)

 if(detection[class_interested + 4] > max_prob):

 #Update if new max

 max_prob = detection[class_interested]

 max_class = class_interested

 #If threshold is passed

 if max_prob > probability_threshold_subframe:

 #Append a new class entry

 classes.append(max_class)

 #Append a new bbox entry(in the subframe-relative format)

 bboxes.append([detection[0], detection[1], detection[2], detection[3]])

 #Append a new confidence entry

 confidences.append(max_prob)

 #Apply NMS on the subframe level

 nms_indexes = cv2.dnn.NMSBoxes(bboxes, confidences, probability_threshold_subframe,

nms_threshold_subframe)

 #Holders for the remaining bboxes, classes and their confidences

 nms_bboxes = []

 nms_classes = []

 nms_confidences = []

 #Pick only the ones that have passed NMS

 for i in nms_indexes:

 #Append them to corresponding arrays

 nms_bboxes.append(bboxes[i])

 nms_classes.append(classes[i])

 57 (64)

 nms_confidences.append(confidences[i])

 #Return resulting arrays

 #We also need to return the confidences for further NMS process

 return nms_classes,nms_bboxes, nms_confidences

#Write a new class names file

f = open(dir_path + "classes.txt", 'w')

for label in interested_classes:

 #Insert a corresponding indexed label name

 f.write(coco_names_indexed[label-1] + "\n")

f.close()

#Get a video capture

cap = cv2.VideoCapture(dir_path + video_name)

#Get output layer names. They may differ from model to model.

layers = model.getLayerNames()

output_layers = []

#Get output layers' indexes from the yolo's built-in method

for i in model.getUnconnectedOutLayers():

 #Append the output layer. Built-in method's indexing starts from one, so need to

substract 1

 output_layers.append(layers[i-1])

while cap.isOpened():

 #Read a new frame

 ret, frame = cap.read()

 #Check if video is over

 if not ret:

 print("The file was processed.")

 break

 #Process the frame

 process_frame(frame, model)

 #Check if interrupted

 if cv2.waitKey(1) == ord('q'):

 print("Keyboard interrupt. Exiting...")

 break

#End the job

cap.release()

cv2.destroyAllWindows()

3.4.2.3.3.2 Code explanation

The code first breaks input video into frames. Then, it is breaking a frame into 9 equally sized sub-

frames. Each subframe is one half of frame’s width and height in spatial dimensions. The middle row

 58 (64)

and column subframes are overlapping half of the corner ones. This is done to prevent missing de-

tections on the sides of subframes. After that, each subframe is processed using pretrained YOLOv3

darknet model. Then, all the collected bounding boxes are mathematically processed in such a way,

that their spatial properties are relative to the whole frame. The next thing that the script does is

deleting bounding boxes of objects that were detected on multiple subframes simultaneously, e.g.

duplicates. The script also generates a file with verbal class names that were defined. The line num-

ber is an index of a class. Example:

classes.txt:

person

car

truck

The code breaks image to subframes in order to increase the resolution of input image. The original

image size is 1920x1080 pixels. When it is resized to 416x416 pixels, a lot of objects are squished to

the point, where pretrained neural network would not correctly detect them. Fully covering a picture

using a 1/3-sized subframes would result in 21 + 4 = 25 subframes, which would drastically in-

crease computational time.

3.4.2.3.3.3 Results

On average, it takes about 1600 milliseconds to process a single frame on Intel Core i7-11800H pro-

cessor, and 350 milliseconds on an NVIDIA GeForce RTX 3050 TI Laptop GPU. As could be seen

from Figure 26, the automatic annotation is not perfect. There are many artefacts and missing la-

bels. Due to this reason, it is needed to manually correct the resulting labels.

FIGURE 26. Results of an automatic annotation.

 59 (64)

3.4.2.3.4 Manual annotation using LabelImg

LabelImg is a free and open-source software that is made for annotating data. It could be used for

object detection dataset creation. It is capable of exporting the results in a number of different for-

mats: PASCAL VOC, YOLO and CreateML (Lin 2015). The YOLO format is the needed one. Another

reason to use LabelImg is the fact that it can open a folder with images and load all the predefined

labels. The custom workflow consists of a couple of steps:

1. Check the correctness of automatically labeled bounding boxes. Delete excessive ones.

3. Resize present bounding boxes.

4. Manually add missing labels.

FIGURE 27. Labeling process in LabelImg

3.4.2.3.5 Static bounding boxes

3.4.2.2.5.1 Process

There are many steady objects (parked cars, moored ships, sitting people, etc.) in a picture, so it is

possible to ease labeling process by propagating static bounding boxes. For doing so, it is needed to

annotate only steady objects in the first frame. Then, rename the resulting file to static_labels.txt.

After that, run the script that will propagate first frame’s labels to all the present label files.

3.4.2.2.5.2 Code

static_label_propogation.py:

 60 (64)

from os import listdir

#USAGE: Save the static bboxes as dir_path/static_labels.txt

#Path to the frames/labels directory

dir_path = "./frames/"

#Load the static labels

f = open(dir_path + "static_labels.txt", "r")

#Read the contents

bboxes = f.read()

f.close()

#Get all file names in the directory

all_files = listdir(dir_path)

#Array of label text files

text_files = []

#Go through each filename in the directory

for filename in all_files:

 #If file has a name ending with .txt

 if filename.endswith(".txt"):

 #Add filename to the text files array

 text_files.append(filename)

#Go through each file

for frame_labels in text_files:

 #We don't need to change classes file

 if frame_labels == "classes.txt":

 continue

 #Path to the frame label file

 fname = dir_path + frame_labels

 #Append static labels at the end of the file

 f = open(fname, "a")

 f.write(bboxes)

 f.close()

3.4.2.2.5.3 Code explanation

The code is fairly simple: it takes the contents of a static_labels.txt file and appends it to all of the

present .txt files in a frames directory. The only exception is a classes.txt file which stores indexed

class’ names.

 61 (64)

4 DISCUSSION

The thesis has shown the basic processes of modern vision-based neural networks. It has started

from mathematically computing an abstract artificial neural network’s operation. Then, the same

logic was implemented in code using a Python programming language and a NumPy library. The

custom model was able to learn to differentiate 9 dissimilar handwritten digits. It took a lot of effort

to implement it.

The second part of the thesis have presented a walk-through of convolutional neural network pro-

cesses. It got started from explaining convolutional tools’ workflow in an abstract and mathematical

way. Then, the author used a modern library TensorFlow for creating a custom image classification

model for the CIFAR-10 dataset. During the creation, an author got an understanding of how to op-

timize model’s architecture in such a way, that it is giving the best accuracy/performance results.

The program was also using a Matplotlib library for visual observation during the training process.

Then, an author explained a different type of problem: object detection. He decided to not to imple-

ment and train the network itself, but rather develop a special workflow for creating custom da-

tasets. Author used pretrained YOLO model for automating a labeling process. This could save a lot

of time during the process of creating a custom dataset. Since the input image has a very high reso-

lution, a pretrained model was not capable of detecting many objects. The author made an elegant

work-around for this problem. As a result, the author was able to create a dataset for training a spe-

cific neural network that would, for example, detect and differentiate a car from a truck represented

by only a little number of pixels.

In my opinion, neural networks are becoming an integral part of human life. In the last 30 years,

neural networks have made a huge leap from being able to detect human faces to safely driving a

car in a traffic. Neural networks could be used for almost anything: medicine, autopilots, advisors,

seismological predictors, weather forecasts, stocks trading, and many more. So, being able to create

working solutions would give me a great basis for future life. I may continue working on my custom

library later on. Implementing convolutional layer would be a good challenge, which would open an

opportunity to create and test a lot of different architectures.

Although my signature programming language is C, I have decided to use Python for this thesis. I

have faced a lot of high-level interpreted language’s sugar, and it is motivating me to learn more

different languages.

 62 (64)

REFERENCES

Dennis DeCoste 1997, The Future of Chess-Playing Technologies and the Significance of Kasparov

Versus Deep Blue

Kyriaki Sidiropoulou, Eleftheria Kyriaki Pissadaki and Panayiota Poirazi 2006. EMBO Reports vol.

7(9); 2006 Sep. Inside the brain of a neuron.

Jürgen Schmidhuber 2014. Deep Learning in Neural Networks: An Overview.

Chigozie Enyinna Nwankpa, Winifred Ijomah, Anthony Gachagan, and Stephen Marshall 2018, Acti-

vation Functions: Comparison of Trends in Practice and Research for Deep Learning

Tomasz Szandała 2020, Review and Comparison of Commonly Used Activation Functions for Deep

Neural Networks.

Eli Bendersky 2016. The Softmax function and its derivative. Eli Bendersky’s website.

https://eli.thegreenplace.net/2016/the-softmax-function-and-its-derivative. Accessed 10.06.2022.

Lei Feng, Senlin Shu, Zhuoyi Lin, Fengmao Lv, Li Li, Bo An 2020. International Joint Conference on

Artificial Intelligence. Can Cross Entropy Loss Be Robust to Label Noise?

Yann LeCun, Leon Bottou, Yoshua Bengio, Patrick Haffner 1998. Gradient-Based Learning Applied to

Document Recognition

Ilango Gogul, Sathiesh Kumar 2017. Flower Species Recognition System using Convolution Neural

Networks and Transfer Learning.

Matteo Carandini 2006. The Journal of Physiology vol. 577(Pt 2). What simple and complex cells

compute.

Xu Kang, Bin Song and Fengyao Sun 2019. A Deep Similarity Metric Method Based on Incomplete

Data for Traffic Anomaly Detection in IoT.

Vincent Dumoulin and Francesco Visin 2018. A guide to convolution arithmetic for deep learning.

Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, Matthieu Devin,

Sanjay Ghemawat, Geoffrey Irving, Michael Isard, Manjunath Kudlur, Josh Levenberg, Rajat Monga,

Sherry Moore, Derek G. Murray, Benoit Steiner, Paul Tucker, Vijay Vasudevan, Pete Warden, Martin

Wicke, Yuan Yu, and Xiaoqiang Zheng 2016. TensorFlow: A System for Large-Scale Machine Learn-

ing.

Alex Krizhevsky 2009. Learning Multiple Layers of Features from Tiny Images.

Hugo Touvron, Matthieu Cord, Alexandre Sablayrolles, Gabriel Synnaeve, Hervé Jégou 2021. Going

deeper with Image Transformers.

Hamner Ben 2017. Popular Datasets Over Time. Kaggle. https://www.kaggle.com/code/ben-

hamner/popular-datasets-over-time/data?select=popular_data_references_by_year.png. Accessed

14.06.2022.

Henry A. Rowley, Shumeet Baluja, and Takeo Kanade 1998. Neural network-based face detection.

IEEE Transactions on Pattern Analysis and Machine Intelligence (Volume: 20, Issue: 1, Jan 1998).

Paul Viola, Michale Jones 2001. Rapid Object Detection using a Boosted Cascade of Simple

Features.

https://eli.thegreenplace.net/2016/the-softmax-function-and-its-derivative
https://www.kaggle.com/code/benhamner/popular-datasets-over-time/data?select=popular_data_references_by_year.png
https://www.kaggle.com/code/benhamner/popular-datasets-over-time/data?select=popular_data_references_by_year.png
https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=34
https://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=14286

 63 (64)

Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik 2013. Rich feature hierarchies for

accurate object detection and semantic segmentation.

Joseph Redmon 2018. YOLO: Real-Time Object Detection. Object detection image example.

https://pjreddie.com/darknet/yolo/. Accessed 20.06.2022.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, Ruslan Salakhutdinov 2014.

Journal of Machine Learning Research 15. Dropout: A Simple Way to Prevent Neural Networks

from Overfitting.

Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi 2015. You Only Look Once:

Unified, Real-Time Object Detection.

Joseph Redmon 2018. YOLO: Real-Time Object Detection. Training YOLO on VOC. https://pjred-

die.com/darknet/yolo/. Accessed 20.06.2022.

TzuTa Lin 2015. LabelImg. GitHub. https://github.com/tzutalin/labelImg. Accessed 20.06.2022.

https://arxiv.org/search/cs?searchtype=author&query=Girshick%2C+R
https://arxiv.org/search/cs?searchtype=author&query=Donahue%2C+J
https://arxiv.org/search/cs?searchtype=author&query=Darrell%2C+T
https://arxiv.org/search/cs?searchtype=author&query=Malik%2C+J
https://pjreddie.com/darknet/yolo/
https://arxiv.org/search/cs?searchtype=author&query=Redmon%2C+J
https://arxiv.org/search/cs?searchtype=author&query=Divvala%2C+S
https://arxiv.org/search/cs?searchtype=author&query=Girshick%2C+R
https://arxiv.org/search/cs?searchtype=author&query=Farhadi%2C+A
https://pjreddie.com/darknet/yolo/
https://pjreddie.com/darknet/yolo/
https://github.com/tzutalin/labelImg.%20Accessed%2020.06.2022

 64 (64)

APPENDIX 1: A CODE FOR GENERATING ACTIVATION FUNCTION PLOTS

import numpy as np

from matplotlib import pyplot

import math

def relu(x):

 if x > 0:

 return x

 else:

 return 0

def linear(x):

 return x*3

def sigmoid(x):

 return 1/(1 + math.e ** (-1 * x))

def softmax(x):

 result = []

 for i in x:

 result.append(i/sum(x))

 return result

#x = np.arange(-5, 5, 0.1)

#y = list(map(sigmoid, x))

#pyplot.plot(x,y)

#pyplot.xlabel("input")

#pyplot.ylabel("output")

#pyplot.title("Sigmoid")

#pyplot.grid()

x = [0.6, 0.88, 9, 2, 0.11, 0.4, 5]

y = softmax(x)

space = [1,2,3,4,5,6,7]

pyplot.bar(space,y)

pyplot.xlabel("entry")

pyplot.ylabel("output")

pyplot.title("Softmax of [0.6, 0.88, 9, 2, 0.11, 0.4, 5]")

pyplot.grid(axis='y')

pyplot.show()

