

Bachelor’s thesis

Information and Communications Technology

2022

Tuan Nghia Tran

Eye-tracking data visualization to

analyze player behavior

Bachelor’s Thesis | Abstract

Turku University of Applied Sciences

Information and Communications Technology

2022 | 57 pages

Tuan Nghia Tran

Eye-tracking data visualization to analyze player

behavior

The thesis project is a part of a sea captain training project. The purpose of this project was to

research and develop an immersive way to stimulate maritime operations. By using VR and

eye-tracking technology, the stimulation collected player's behavior data. The collected data can

be analysed so that the player’s performance can be assessed.

The objective of this was to develop a tool for analysts to analyze the collected data. The data

collected every frame from the game-play is raw data in different forms. It includes 3D

coordinates such as eyes and player position, Vector3 of the gaze vectors, floating values of

pupil sizes, focus distance, etc. With massive raw data of different types analysts face the

challenging task of analyzing and comparing how the player behavior changes over time. So the

thesis aimed to research and produce a tool to visualize all the raw data into analyzable data for

analysts. The analysis methods used for this tool are graph, heatmap, and scan-path. The

graph method handles the change of data over time. The heatmap presents how the player

spends their time on specific areas, and show the size of the event as color while the scan-path

method shows how the gaze travels through different objects over time. The tool built in C#

programming language and Unity game engine. The result was a tool that visualized the

collected data by utilizing the above methods. The tool received positive feedback from Calin

Calbureanu-Popescu for fulfill his requiment and valuable for his further research. Furthermore,

the tool will be improved, optimized, and built-in into the main project.

Keywords:Game development, VR, Eyetracking, Data Visualization, Varjo

headset, Marisot, Heatmap, Scanpath, Graphing, C#, Unity Engine

Contents

List of abbreviations 5

1 Introduction 7

2 Background of research studies 10

3 MarISOT application 13

4 Data 15

5 Navigation 20

6 Methods 22

7 Results 51

8 Discussion 53

9 Conclusion 54

References 55

Figures

Figure 1. Example of 2D heatmap from other studies Error! Bookmark not

defined.1

Figure 2. Varjo Base data. 15

Figure 3. Varjo Base analytics window. 16

Figure 4. LogGazeData function. 18

Figure 5. iMotions feature. 19

Figure 6. DetectEnvironmentWithVarjoGaze function. 20

Figure 7. DetectEnvironment script variable from Unity Inspector. 21

Figure 8. Graph layout. 22

Figure 9. AnalyticGraph class. Error! Bookmark not defined.3

Figure 10. GraphManager subfunction 24

Figure 11. AnalyticPoint class. 25

Figure 12. Graph in VR. 26

Figure 13. GraphObject subfunction. 27

Figure 14. HeatMapGenerate script properties. 30

Figure 15. HeatMapGenerate script variables from Unity Inspector. 30

Figure 16. HeatmapGenerate Unity’s base function. 32

Figure 17. DrawListHeatmap function. 33

Figure 18. Heatmap outcome. 34

Figure 19. Object’s collider 36

Figure 20. DetectGazeTargetWithVarjoGaze function. 37

Figure 21. ScanpathPoint class. 38

Figure 22. DetectEnvironment subfunction. 38

Figure 23. ScanpathManager script varibles from Unity Inspector. 40

Figure 24. ScanpathManager Unity base function. 41

Figure 25. ScanpathAnimation Coroutine. 42

Figure 26. ScanpathAnimation Coroutine. 43

Figure 27. Log function. 45

Figure 28. Scanpath outcome 46

Figure 29. TakeScreenshotEquirectangular script properties. 48

Figure 30. CaptureScreenshot360 function. 49

List of abbreviations (or) symbols

2D: Two-dimensional

3D: Three-dimensional

CSV: Comma-separated values

Jpg: Joint photographic group

Marisot: Maritime Immersive Safe Ocean Technologies

Png: Portable network graphic

VR: Virtual reality

7

Turku University of Applied Sciences Thesis | Tran Tuan Nghia

1 Introduction

After decades of development, the gaming industry has become the largest

among all the other entertainment industries. With an estimated 3.2 billion

gamers worldwide and around $178.73 billion[1] revenue in 2021, the gaming

industry surpassed other traditional entertainment industries like Broadcast TV,

Radio & Music, Mobile phone, and Newspapers & Magazines[2]. That is

remarkable and impressive for a forty-year-old industry to achieve this title. To

continue with this massive growth over the years, the technology to go with the

games also has to be rapidly developed. It changed speedily from arcade to

console, PC, and mobile games. Recently, the technologies that have the most

significant influence and potential for the gaming industry's future are Motion

Capture and VR. Especially VR is opening a whole new chapter for game

development. By using hand-tracking and eye-tracking, the experiences given

to the player are immersive and as realistic as possible. Furthermore, VR

technology is not just applied to game development but also to many other

industries like healthcare, education, etc. Many large companies invest money

into developing VR environments to support their product and future

development. The MarISOT project is no exception. This thesis project is a part

of the MarISOT project whose aim is to research and develop an immersive

way to stimulate maritime operation[3]. By transforming maritime operation into

a VR world, the training program for seafarers, sea captains, etc will be held

handily in the form of application. The objective of this thesis is to develop a tool

for the analyst to visualize eye-tracking data in analyzable forms and forward it

to a solution for grading the training performance. With the overwhelming

amount of raw data, analysts have a hard time figuring out what is going on with

player behavior over time. With a tool that provides them with visualized data,

analysts can access an overview of player behavior throughout the gameplay

along with critical occasions that stood out in the performance. Even though

other studies about the same topic exist, the applications only work in 2D and

static environments. In a dynamic environment like VR, the same theory will not

work accurately anymore. Furthermore, it is hoped that the work carried out in

8

Turku University of Applied Sciences Thesis | Tran Tuan Nghia

this thesis will in some way or another contribute to the development of VR

entertainment games as well as VR education games.

The visualization tool uses three methods: graph, heatmap, and scan path.

Each method is responsible for a type of data or special requirement from the

analyst. The amount of data collected from the Varjo headset and Unity editor

combined are over twenty different types of data. With the graph method, raw

floating data can be represented accurately over time. The result enables the

analyst to examine the in-game events based on a different timestamp. The

author used Unity Editor to draw the graph on a canvas in 3D space ingame.

The second method used in this project is the heatmap. By definition, the

heatmap is a technique that shows the size of an event as color[4]. In this case,

it shows the intensity and attention of the eye's gaze on different game objects.

Using this method provides analysts with an overview of how player spend their

time in some crucial areas.

The last method used in this tool is Scanpath. In short, "scanpath" is a

sequence of eye motion creating a path through specific points/objects when

playing[5]. The purpose of this method is to check if the player's eye fixations

are landed on an important object or in the correct order. It helps observers

specifically check how eye fixations move through some object rather than

showing the area as a heatmap does. Collecting data and scanpath from an

experienced sea captain, it will show the correct or roughly accurate path as a

sample for grading. In other words, a heatmap helps the analyst check if the

player pays attention to the right area and a scanpath is used to investigate

what the player is doing in that area.

This thesis is structured as follows: Chapter 1 introduces the thesis objectives.

Chapters 2 and 3 provide the background of research studies and the MarIOST

9

Turku University of Applied Sciences Thesis | Tran Tuan Nghia

application. Chapter 4 discusses data and data collection. Chapter 5 presents

the research of navigation in a 3D environment. Chapter 6 describes methods

developed in this tool. Chapter 7 presents the outcome result from the tool.

Chapters 8 and 9 are Discussions and Conclusion.

10

Turku University of Applied Sciences Thesis | Tran Tuan Nghia

2 Background of research studies

As mentioned in the introduction, VR games will be the future technology of the

gaming industry plus all other entertainment industries. There are more and

more VR games and applications developing every day. The VR gaming

industry's global revenue in 2020 is 1.1 billion $ and will continue to grow over

the years. It is forecast to reach 1.4 billion $ in 2021 and 1.6 billion $ in 2022(1).

It is a promising market for the gaming industry but, it also brings challenges.

The new technology also comes with less support and studies theory for further

development. Most of the theories and studies applying to the gaming industry

nowadays might not be able to use in a VR environment. Eyetracking studies

are one of those. The previous studies about eye-tracking are focused on a

static environment like a 2D screen and monitor. The differences in basic

principles between static and dynamic environments are massive, which leads

to differences in the end result. To fill those gaps that previous studies left

behind, this study will focus on collecting and displaying data in a dynamic

environment.

There are some examples of studies about visualization for eye-tracking like

Visualization of Eye Tracking Data: A Taxonomy and Survey[6] and

Visualization of Eye Tracking Data[7] that are worth to be mention. The scenario

in this game is in a VR environment, and the player will be moving around are

interacting with dynamic objects. Let us look at Figure 1 as an example.

11

Turku University of Applied Sciences Thesis | Tran Tuan Nghia

Figure 1. Example of 2D heatmap from other studies.

The heatmap was rendered on top of the screen capture. The colors speak for

themselves. The warmer the color, the longer someone looks at it. The

coordinate of fixation on the screen will be stored as the x and y coordinate of

the screen. And, the color will be rendered based on that coordinate and

displayed nicely on a 2D screen. Because of this, the application will be applied

to a static environment like websites, Figures, videos, etc. However, let’s put

this into practice in a 3D environment and the difference is enormous. The

fixations still land on the user screen and are collected into a database.

Nevertheless, because it is a dynamic environment when the user changes their

point of view by turning around, even though the fixation is still the same point

on the screen, it is not the same object anymore. So the study was not valuable

in this case and will display the result wrongly.

To be more specific, the previous study's outcome will be incorrect because of

the lack of navigation inside the 3D environment. To fill the gap, the author

created his navigation inside the VR environment based on data collection. It

collects data on the player position as well as rotation related to the VR world.

Because of player will be inside the VR environment and moving around locally

12

Turku University of Applied Sciences Thesis | Tran Tuan Nghia

to it, the collected data will be continuous correctly regardless player's behavior.

Because of that, navigation in a VR environment is crucial for this thesis and will

be applied to all of the following visualization methods. By combining various

data types collected from the Varjo headset, the author found a way to create

his navigation in the VR world. Section Navigation goes on to the detail of the

navigation research based on.

13

Turku University of Applied Sciences Thesis | Tran Tuan Nghia

3 MarISOT application

MarISOT, short for Maritime Immersive Safe Ocean Technologies funded to

develop an immersive maritime operations simulation. By transforming it into a

VR world, the training program for seafarers, sea captains, etc will be held

handily in the form of application. It leads to the fact that the cost and time for

maritime operations are massive and not influential. Moreover, this solution will

solve those problems by increasing performance while reducing the cost, also

the effectiveness and safety of the training. The concept of this training program

is to develop gameplay that which players will spawn in the command bridge

and control the boat. The performance will be graded based on how safe the

player drive and how well he follows the maritime instruction. To develop the

scoring system, developers need to collect and analyze data from a veteran sea

captain. After analyzing and researching what type of data will affect the overall

performance like cognitive load and pupil sizes, the scoring system will depend

on that and compare the difference with the player data to evaluate the final

result. Furthermore, all the data will be studied by neural networks and based

on that to develop an automatic grading system. This thesis provides a tool to

visualize data for analysts to analyze player behavior. The data collected from

players every frame is raw data with a massive amount. With this overwhelming

amount of data, analysts have a hard time figuring out what is going on with

player behavior over time. And, by visualizing each type of data, the analyst can

observe how the data change over the gameplay time and spot some

outstanding points.

The application is a VR application built in Unity Engine and uses the VR Varjo

headset for the eye-tracking feature. Unity Engine was chosen because it is one

of the most well-known game engines in the world and highly supports VR

development. Other than that, the Unity game engine is primarily chosen for

teaching and learning at Turku University of Applied Sciences as well as The

Game Lab. Because of the following reason, Unity Engine is preferred for

14

Turku University of Applied Sciences Thesis | Tran Tuan Nghia

project development. On the other hand, eye-tracking technology enables new

forms of experience and interactions in a VR environment. This powerful

technology provides complete insights for researching human behavior in the

VR environment. And Varjo VR glasses is the high-tech VR glasses that support

eye-tracking technology. With high resolution and a built-in library for Unity

Engine development, the Varjo headset is a suitable choice for the study

besides the project overall. Furthermore, the Varjo headset supports data

collection in various types and is valuable for the research. Further discussion

of data collection and its application of it will be in the next chapter.

15

Turku University of Applied Sciences Thesis | Tran Tuan Nghia

4 Data

The Varjo headset is a high-tech VR glasses that have eye-tracking integrated.

With the new technology that is built inside the headset, 37 different types of

data have been collected by Varjo Base and extracted into CSV files. The next

figure show extracted data from the Varjo headset in Excel form (Figure 2).

Figure 2. Varjo Base data.

To highlight, it included data about frames, video time, focus distance, stability,

status, gaze vector, gaze origin, pupil sizes, etc. All of the data is in floating-

point, and some of it needs to be combined to represent something else like 3D

coordinate points and vectors. To visualize all of these raw data with such a

massive amount, it needs different methods for a different use for each data.

For floating data, the author combined it with timestamp data to represent the

changing of value over time. Moreover, for this type of data, the graph method

will be used to describe it. For 3D coordinate data like gaze position, gaze

vectors, etc it will be used for navigation tools that help other methods like

heatmap and scan-path. Other features from Varjo Base are also being used for

16

Turku University of Applied Sciences Thesis | Tran Tuan Nghia

analytic progress. One of the standout features from it is Analytics Window

(Figure 3) in Developer Tools.

Figure 3. Varjo Base analytics window.

These tools are built-in inside Varjo Base, it helps and saves plenty of time for

developers to observe what is going on inside the headset. Advanced view

options give the developer different points of view from the left and right eye, as

well as peripheral and focus areas. Besides that, the combination of eye-

tracking features and screen recording is valuable for analysts. By enabling the

gaze dot screen recording, the analyst can have a better view of what is going

on inside the headset and what the players are paying attention to and it can

also be replayed multiple times for the purpose of analysis. Furthermore, the log

eye-tracking data options are also beneficial for analysis purposes since they

export eye-tracking data based on video timestamps. There are a couple more

excellent features like performance, depth, etc, but they will not be used and

covered in this thesis.

17

Turku University of Applied Sciences Thesis | Tran Tuan Nghia

Besides extracting data straight from the headset by Varjo Base, there is also a

way to extract the data from the game by using the VarjoPlugin library. The data

collected from Unity has some slightly different. Other than frames, eyes gaze

vectors, eyes status, focus distance, stability, and pupil size remains the same,

Unity can collect some other data come from the game world. The data

collected from Unity includes head position, rotation in world space, combined

gaze forward also other custom data like game objects that player looks at.

More information can be provided on player behavior in gameplay by

customizing and extracting data from Unity. By using the VarjoPlugin library, the

author can access gaze data and extract it into a log file (Figure 4).

18

Turku University of Applied Sciences Thesis | Tran Tuan Nghia

Figure 4. LogGazeData function.

Because both of the collected data from the Varjo headset and Unity Engine are

useful for the analyst in their way, combining them would create a more

significant outcome. The combined data set can provide sufficient information

for the analyst to do further research, including videos of gameplay and raw

19

Turku University of Applied Sciences Thesis | Tran Tuan Nghia

data, and in-game data related to it. The final result is the joining between two

sets of data based on the frame captured.

The most ideal and convenient for the analyst is to build a software like

iMotions(Figure 5) where the data will be embedded in the videos and shown to

the viewer based on the timestamp.

Figure 5. iMotions feature.

20

Turku University of Applied Sciences Thesis | Tran Tuan Nghia

5 Navigation

Navigation is the most important determinant when correctly rendering a

heatmap or scanpath or any kind of visualization method for a dynamic

environment like VR. Because the point of view is changing all the time in the

VR environment, the navigation can not be based on the screen coordinate. In

this thesis, the author uses the correlation between player position and the

environment around to navigate. The player spawns inside the virtual world, and

the world is static. Even though the player moves around the environment

nonstop but in the end, the player still stays inside it, and the environment

remains the same. So instead of using screen position, which is changing

dynamically, the environment position related to the player position is much

more reliable. By casting a ray from the player position with the eyes gaze

forward vector, it can detect what object the player is looking at in run-time. The

source code in Figure 6 is what the author uses to navigate contact points with

the environment by using the VarjoPlugin library[8].

Figure 6. DetectEnvironmentWithVarjoGaze function.

Here is where the data that was collected before in use. By using GetGaze(), all

information on gaze data will be returned, like in Figure 4. However, in this

function, only the gaze origin position vector and gaze forward vector are

21

Turku University of Applied Sciences Thesis | Tran Tuan Nghia

needed. And, because the vector value return is in the local space that is

related to the Varjo head transform, it needs to be transformed to world space.

As a result, the origin and direction for the environment detection are ready.

From the SphereCastOrigin, it cast a SphereCast to the environment with the

SphereCastDirection[9]. If it hits any environment object with the given layer, it

will return the information of that collide. The value for this SphereCast info can

be customized from the Unity’s inspector (Figure 7).

Figure 7. DetectEnvironment script variable from Unity Inspector.

After they collide, the detector identifies the environment object that the player

looks at, the detector will collect the contact point and add it into an array to

store. The contact point will be transformed to the command bridge local space.

This is because the player moves locally inside the ship, but the ship itself will

change its position in world space. If the player looks at any object on the ship

like windows, control board, etc, from in local perspective, it is a static object,

but it still changes its position over time in world space. So to keep the contact

point precisely, it needs to be transformed to the ship's local space.

Furthermore, all of these contact points are every position that the player's eyes

gaze lands on and will be used later for rendering heatmap and scanpath.

22

Turku University of Applied Sciences Thesis | Tran Tuan Nghia

6 Methods

The goal of this thesis is to build a tool that visualizes all the data collected into

an analyzable form. As mentioned, this thesis used three methods: graph,

heatmap, and scan-path to resolve those data.

5.1 Graph

This method is used to resolve the floating-point data and visualize it into value

change over time. Furthermore, because the time used is frame time amongst

all types of graphs, the line graph will be representing it precisely. The graph got

two axes: the x-axis for time and the y-axis for data value. The name of the

value will be on top, and the current object that the player is looking at is on the

right of the graph (Figure 8).

Figure 8. Graph layout.

23

Turku University of Applied Sciences Thesis | Tran Tuan Nghia

When creating this graph in UnityEngine, first the creator added a black canvas

and text reserved for the graph value. The value of those texts will be updated

based on the change over time in the data. For the line, the creator used

LineRenderer to render it on top of the black canvas in 3D space[10][11]. To

contain all of the information needed for the graph, AnalyticGraph class was

made. An AnalyticGraph object name valueGraph is created when the script

starts, and the value for it will be initialized from the Unity’s inspector(Figure 9).

Figure 9. AnalyticGraph class.

24

Turku University of Applied Sciences Thesis | Tran Tuan Nghia

GraphManager script was created to manage the graph (Figure 10).

Figure 10. GraphManager subfunction.

It had five functions to handle the graph change. ChangeValueGraphName() is

used to change graph name into given string. ChangeGameObjectText()

change the text into the name of the game object that the player is looking.

The Clear() function will refresh all the values of the graph. DrawCurve () will

handle the rendering for the line graph. The function will take an AnalyticPoint

object as a parameter (Figure 11).

25

Turku University of Applied Sciences Thesis | Tran Tuan Nghia

Figure 11. AnalyticPoint class.

For each of the data that needs to be present, an AnalyticPoint object will be

initialized for it. The analyticValues will be stored as a dictionary with the type of

<float, double> by pairing the data value and the time it has been captured.

Let’s get back to the DrawCurve() function. After the AnalyticPoint object gets

passed to the function, it gets all the information needed to draw the line. First, it

spawns the LineRenderer object to the canvas position by SpawnLine()

function. And then set the number of vertices as the number of AnalyticPoint

value set. The next step is to run a loop through every pair value given from the

AnalyticPoint object. Calculating the ratio between the value and the min, and

max value will determine the position of the line vertex in the graph. When the

loop is finished, all the vertex positions have been added, the line is complete

as well as the label text will be updated. The result will look like Figure 12. The

graph is used to display data with float values over time like pupil size, focus

distance, stability, etc. To observe another set of data, press the right and left

arrow buttons on the keyboard to go back and forth for it. The input handler and

collecting data are written in GraphObject script (Figure 13).

26

Turku University of Applied Sciences Thesis | Tran Tuan Nghia

Figure 12. Graph in VR.

27

Turku University of Applied Sciences Thesis | Tran Tuan Nghia

Figure 13. GraphObject subfunction.

28

Turku University of Applied Sciences Thesis | Tran Tuan Nghia

This script will collect data needed for the graph methods and call

GraphManager to render the graph. Because the data has been collected in

every frame so the amount of data is massive. So if the graph updates every

frame, the script will be too heavy and affect the performance. Using the

analyticsTimeStep as 0.01 second, the graph will be updated smoothly without

affecting the performance. The tool was tested and well performed in the VR

environment. The length of the test was about one to two minutes. However,

because of the massive amount of data collected in every frame, the

performance of the graph might go down over time. So the author recommends

clearing and re-render the graph every one or two mins to guarantee a smooth

performance. In the training program for the Marisot project, the gameplay

might be much longer than this demo project.

29

Turku University of Applied Sciences Thesis | Tran Tuan Nghia

5.2 Heatmap

The second method for this visualization tool is the heatmap. It will show how

much attention players pay to an area through colors. The warmer the color is,

the more time player spends on that area. This method can help the analyst in

research which area is essential and how different it is from a regular person

and an experienced one. For rendering, the heatmap will be rendered in a

sphere with invisible material surrounding the player[12]. The color will be put

on the material based on the player's gaze. Moreover, the final result will be

extracted from a 360 image from the player's perspective. To archive this result,

it needs to go through many small steps and take a closer look at it.

The HeatMapGenerate script will handle the rendering heatmap for this thesis.

All the parameters with SerializeField will be initialized from Unity’s inspector

(Figure 14,15).

30

Turku University of Applied Sciences Thesis | Tran Tuan Nghia

Figure 14. HeatMapGenerate script properties.

Figure 15. HeatMapGenerate script variables from Unity Inspector.

31

Turku University of Applied Sciences Thesis | Tran Tuan Nghia

The RadiusInfluence is how big the contact point is in the sphere.

TexResolution decides the details of the Texture2D created for the sphere

material[13]. The higher the TexResolution is, the greater height and width of

Texture2D. The sphere in the script is the invisible sphere game object. The

commandBridge is the transform of the ship where the player moves around.

This transform will use as an anchor for navigation. The gradient determined the

color of the heatmap. It goes from blue to purple based on how long the player

looked at that area. And all the ray information for navigation.

32

Turku University of Applied Sciences Thesis | Tran Tuan Nghia

Figure 16. HeatmapGenerate Unity’s base function.

For the Unity default function, the Awake() function will be called first. It is

called when GameObject that contains the script is initialized[14]. In the

Awake() function, it gets the reference for the DetectEnvironment script to get

all the data from there. After that, it initialized the Texture2D based on

TexResolution and set it for sphere material texture. The last step is to initialize

the pixel variable depending on the size of the texture. The next function is

Start()[15], and it will be called on the frame when the script is enabled before

33

Turku University of Applied Sciences Thesis | Tran Tuan Nghia

the Update() function is called for the first time[16]. It calls the ResetValues()

function to reset all the pixel values to 0. The last one is Update() function. This

function will be called every frame, and inside it is called the DrawListHeatmap()

function. It means that in every frame, the heatmap will be rendered based on

the data collected from the DetectEnvironment script.

Figure 17. DrawListHeatmap function.

Let’s take a closer look at DrawListHeatmap() function. First of all, it runs a loop

through all the pixel values and finds the max value. Based on the ratio of the

value of the pixel and the max value, the color for that pixel will be chosen from

34

Turku University of Applied Sciences Thesis | Tran Tuan Nghia

the given gradient. The next step is to run through every contact point detected

from the DetectEnvironment script. For each point, cast a Line from that position

to the player position and find a collision with the object with the given layer. In

this case, the sphere will be specific to that layer. The line cast will always hit

the sphere in theory because the sphere is surrounding the player. From the

collision point between line cast and sphere, that point coordinate will be

translated to pixel coordinate position. At that position, a circle will be created

based on the given radiusInfluence. The last loop will run through every pixel of

the texture and edit the value of the one inside of the created circle. The final

step is to apply all the changes to the texture.

Figure 18. Heatmap outcome.

The result will somewhat look like Figure 18 in the game. The heatmap shown

in-game is just for testing purposes. Because if the heatmap shows it while the

player is playing, it is not practical and will distract the player from his best

performance. So the heatmap will stay disabled in-game and only be active

when extracting the 360 images.

35

Turku University of Applied Sciences Thesis | Tran Tuan Nghia

5.3 Scanpath

The third method would be scanpath. The way of building this method is slightly

similar to the heatmap. Nevertheless, in the end, because the application for

this method is different and has more details than the heatmap, building it is

also slightly complicated. The heatmap shows the intensity of eye motion in a

particular area. Other than heatmap, scanpath shows how eye fixations travel in

that area. As a result, the scanpath would be more complicated, and many

more aspects need to be mentioned. The scanpath includes several factors

such as where, how long, and the order of it.

Let’s look at the first factor, where is the player looking? In this thesis project,

the author chooses game objects in the environment as the measurement.

Instead of creating a fixation every time the player's eye movement change, it

creates a fixation every time player change his intention on another object. By

using this approach, the number of fixations will be decreased and the scanpath

will be more simple and easier to analyze. As a result, the amount of data to

collect to render the scanpath also decreases, and increases the performance.

In order to archive the best performance for this method, the collider for the

game object needs to be optimized. In addition, each game object attached a

VarjoGazeTarget script.

36

Turku University of Applied Sciences Thesis | Tran Tuan Nghia

Figure 19. Object’s collider.

The more accurate the collider is, the better the scanpath is. Because of that,

the more collider is better. Especially the area has multiple objects overlapping

each other, and the collider needs to be carefully set. For sizeable objects and

one-piece objects, multiple colliders are needed. By separating the oversize

object into smaller game objects, especially the object with various details, the

result will be more accurate and it will also present more helpful information to

the analyst.

37

Turku University of Applied Sciences Thesis | Tran Tuan Nghia

Figure 20. DetectGazeTargetWithVarjoGaze function.

The navigation method was nearly the same as with the heatmap. It also gets

the gaze information and casts a SphereCast into the environment to find the

object. After finding the environment object, it checks for the VarjoGazeTarget

script. If the object does not have VarjoGazeTarget script attached to it, the

system will skip. If the CurrentTarget is null, which is the first target player

looking at, then it will assign the detected target into the CurrentTarget variable.

At the same time, it starts the timer to count how long the player looks at that

object and assigns the contact point to the ContactPoint variable. In another

case, where the detected target is not the CurrentTarget, it will add the current

target information into a list of ScanpathPoint(Figure21). Then, reset the timer

and assign a new value to the CurrentTarget and ContactPoint variables.

38

Turku University of Applied Sciences Thesis | Tran Tuan Nghia

Figure 21. ScanpathPoint class.

Figure 22. DetectEnvironment subfunction.

39

Turku University of Applied Sciences Thesis | Tran Tuan Nghia

The Add() function take three parameters including VarjoGazeTarget target,

float duration and Vector3 ContactPoint. This three-parameter matched with

timer, CurrentTarget, and ContactPoint variables mentioned earlier. Inside the

Add() function, it creates a ScanpathPoint object and passes the value into it.

Furthermore, the ScanpathPoint's objectName will be passed the target object

name into it. Each ScanpathPoint will have an identical ID for itself. The final

step is to add the ScanpathPoint into a list to store the data collected and

assign the new MaxDuration value if the duration satisfies the condition. The list

will be used for rendering the fixation of the scanpath. Furthermore, it is also

used to extract scanpath sequence strings. The sequence string is the

combination of object's names in order of scanpath, and the

CollectScanpathData() function is the one for that. The function will be called at

the end of the scanpath and return the sequence string of the whole list at once.

To handle the scanpath rendering and animation, the ScanpathManager script

is in use. All the parameters with SerializeField will be initialized from Unity’s

inspector.

40

Turku University of Applied Sciences Thesis | Tran Tuan Nghia

Figure 23. ScanpathManager script variables from Unity Inspector.

Overall, all the parameters used in the HeatmapGenerator script are also being

used here. TexResolution, Gradient, Sphere, CommandBridge transform, and

RayInfo remain the same uses. On the other hand, the rest of the parameters

are used for scanpath own purposes. Let’s take a look at each of them. The first

one is the ActivationScanpathAnimation key bind. By pressing this key bind, the

game will enter into the scanpath animation mode. The NotiText will be the

notification of it. When entering the animation mode, the player will be moved to

the AnimationTransform position to have a better view of the whole room. The

position will be in the middle of the command bridge. The next is visual

parameters. For scanpath rendering, all the fixations will be represented as

circles and joined together by a line. All the circles and line radius will be

41

Turku University of Applied Sciences Thesis | Tran Tuan Nghia

initialized from Unity’s inspector like Figure 23. About the color, all the colors will

be initialized from the Unity’s inspector. Circle color and line color will describe

the fixations and the lines between colors. The timeline gradient will show the

order of the scanpath by colors. The fixations go from white to purple,

depending on the order of it. The warmer the color is, the later the fixations.

All of the variables that are initialized from the Unity’s inspector will be used

inside the ScanpathManager script. Let’s take a look inside it. The Awake() and

Start() function remains the same with HeatmapGenerate. The Update()

function is different in this script. Instead of drawing a heatmap in every frame, it

will check if the player is entering the Animation mode or not. If the condition is

satisfied, it will call the function to render the scanpath.

Figure 24. ScanpathManager Unity base function.

First, it will ResetValues() just like HeatmapGenerate does. Then it changes the

boolean variable EnableAnimation to true. Doing this will freeze the player’s

42

Turku University of Applied Sciences Thesis | Tran Tuan Nghia

position in the LateUpdate() function. Then it will start the Coroutine of

ScanpathAnimation and start logging data from the ScanpathDataLog script.

Figure 25. ScanpathAnimation Coroutine.

43

Turku University of Applied Sciences Thesis | Tran Tuan Nghia

Figure 26. ScanpathAnimation Coroutine.

The ScanpathAnimation() handles the scanpath animation in the Animation

mode. Bypassing a speed value when calling, it can decide the speed of the

animation. First, it checks if the player is in Animation mode. If not, it will break

out of the function. Continue with stopping collecting all the data from

DetectEnvironment. Following up, it creates two variables for storing the current

radius of the circle and the previous contact point. The next step remains the

same with HeatmapGenerate to find the contact point on the Sphere surface.

44

Turku University of Applied Sciences Thesis | Tran Tuan Nghia

Furthermore, from that contact point found from the collision, it will be translated

to pixel coordinate. Since now the pixel coordinate has been navigated, the next

step is rendering the fixation on that position. There are two properties for

fixation radius that have been initialized from the Unity’s inspector:

RadiusCircleMax and RadiusCircleMin. The radius of the fixation will scale from

that min and max values based on the ratio of the fixation duration to the

maximum duration. This scale is to balance the circle radius and the

environment. It would be hard for the analyst to evaluate the scanpath if the

fixation size is overflowing the main object and overriding other objects.

Moreover, on the other hand, it would also be hard to evaluate if the size of the

fixation is too small. So by using the maximum and minimum values for the

fixations circle, the analyst can customize the scanpath based on their opinions

and make it the most convenient for them to research their work. So for each

ScanpathPoint collected from DetectEnvironment, calculated RadiusRatio

based on the point duration and the maximum duration. Furthermore, from that

ratio, combined with two given radius variables, it calculated the fixation radius.

To animate the circle, a while loop has been used. The condition for the while

loop is CurrentRadius < RadiusCircle. The CurrentRadius variable has been

assigned as 0. At the end of the while loop, it increased the value based on

Unity delta time and the speed parameter. Also, it return a

WaitForEndOfFrame(). The Coroutine principle is to pause the execution, and

the resume is based on the given condition[17]. In this case, the condition is the

return type of it which is the end of a frame. So the loop will pause until the end

of the frame and then continue it in the next frame. In conclusion, the circle will

be animated bigger and bigger from 0 to the given radius over every frame.

That is what it does to animate the fixation.

The next step is to render the line. There is a PreviousContactPoint variable

reserved for storing the position of the previous contact point in the loop. At first,

it will be assigned as a (0,0,0) vector. For each ScanpathPoint in the for loop, it

will check if the PreviousContactPoint is available. If it equals vector zero, which

45

Turku University of Applied Sciences Thesis | Tran Tuan Nghia

means it is the first contact point, it will skip the step. If the

PreviousContactPoint is available, first of all, draw a line between 2 contact

points. Furthermore, after getting the line vector between the two contact points,

it will projectile the whole vector to the Sphere surface with the same method as

earlier used. For line rendering, it used the line radius variable that has been

initialized from the Inspector. The last step is to apply the texture to the Sphere

and assign the contact point to the PreviousContactPoint variable. When the

animation is finished, the final result will be presented on screen to the

observer. At the same time, the sequence of all fixations will also be logged to a

CSV file in the ScanpathDataLog script. For the last step, the analyst can

extract the final result as a 360 image.

Besides the animation, there is another option for this scanpath method. The

animation approach is helpful for the analyst when it shows the progress of the

player's eyes motion. However, at the same time, it is considerably time-

consuming even when it has been sped up significantly. So the other option is

also built-in as a function for the ScanpathManager script. The

RenderScanpath() function will render the scanpath all at once and extract a

360 image as the final result. The way it works is the same as the heatmap

method. Instead of using Coroutine to render it over time, the function just runs

through the for loop of the contact point and renders the fixations based on the

calculated radius.

Figure 27. Log function.

46

Turku University of Applied Sciences Thesis | Tran Tuan Nghia

After the scanpath has been rendered, the scanpath sequence will be logged

into a CSV file. The ScanpathDataLog script will handle the logging. The Log()

function will get the sequence string as the parameter and write it into the CSV

file. According to the analyst, comparing scanpath sequences will assist in the

scoring system he is trying to archive. By using the Needleman-Wunsch

algorithm[18], the player sequence will be compared to a sample sequence

provided by an experienced sea captain. The score will be given based on the

match, mismatch, and gaps between the two sequences.

Figure 28. Scanpath outcome.

47

Turku University of Applied Sciences Thesis | Tran Tuan Nghia

5.6 360 image

The result of the heatmap, as well as scanpath, will be rendered on top of a

sphere inside the game environment. So it gives a hard time for an analyst to

get access to that data. At the same time, depending on the player’s position

inside the environment, the result will be rendered differently because of the

difference between points of view. So for the standard output of results coming

out of the method, it needs to have similarities in different respects. The position

inside of the VR environment should be the same as well as the point of view.

Furthermore, it gives an advantage for analysts since the result can be

indicated the differences at first eyes sight.

The standard output that the author chooses to extract is 360 images. The

reason is simple. With 360 images, it can efficiently present the result in the 2D

form either on a screen monitor as well on paper. Also, it can present fully the

VR environment, including a heatmap or scanpath on top of it. The position

author choose for the 360 images is from the middle of the VR environment, so

the environment will be presented as detailed as possible. The shot will be

taken from the player's perspective, where the sphere is surrounded. Because

of this setup, the camera will be inside the sphere. From the camera’s point of

view, the sphere will render the heat map and scanpath in between the camera

and the environment.

The code for extracting the 360 images from Unity is held in

TakeScreenshotEquirectangular script.

48

Turku University of Applied Sciences Thesis | Tran Tuan Nghia

Figure 29. TakeScreenshotEquirectangular script properties.

The parameters are variables for the image. It included resolution, format,

position, layer mask as well as a cube map. How the cube map work is that the

360 images will be combined with six different images. These images getting

shot from the camera will be rendered in this cube map[19].

There are also private variables for the 360 image, including a 2d Rectangle

(rect), a render texture, and a texture 2D.

49

Turku University of Applied Sciences Thesis | Tran Tuan Nghia

Figure 30. CaptureScreenshot360 function.

To handle rendering the 360 images, the CaptureScreenShot360() method is

triggered when the user presses the capture key that is preset from Inspector.

This method creates a temporary camera for rendering by creating a new object

and adding a Camera component[20]. And then, based on how users want to

50

Turku University of Applied Sciences Thesis | Tran Tuan Nghia

render the 360 images, it can be customized for different uses. The author uses

a layer mask of everything so it can render both the environment as well as the

heatmap and scanpath. By turning off a layer mask bit, the user can choose

what will be rendered in the 360 images. After setting the necessary parameters

for the camera component to work, it will render the camera view into a cube

map and destroy that temporary camera.

If the screenshot is needed, it will also create new screenshot objects. The next

step is to get the main camera and manually render the scene into a render

texture. After that, create a new unique file name and extract it into different

forms. Users can choose raw, png, and jpg format for the image.

51

Turku University of Applied Sciences Thesis | Tran Tuan Nghia

7 Results

During the developing time of the thesis project, testing was simplified as much

as it can be. The technology that has been built is for MarISOT main project

interest. Project has given was a student project and it still exists a significant

amount of bugs that affect the development process. The approaching way to

solve the problems also has to work around those bugs. Because of that

reason, the tools were built isolated from the rest of the demo project. So the

testing was simplified to test only the visualization tools but not how they work

with the whole project. The application of this tool and further development as

well as optimizing it with the main project will be handled by GameLab staff in

the different phases of the project.

The visualization tool is tested by the author and considered as complete.

The graph was successfully built and it runs and updates the data in real-time

with the game. The scanpath animation is also successful and well presented.

The demo video is attached as an URL link.

Video Url:

https://vimeo.com/674188475

https://vimeo.com/674189048

The heatmap and scanpath result as a 360 image is also successfully

presented in Figure 18 and Figure 28.

https://vimeo.com/674188475

52

Turku University of Applied Sciences Thesis | Tran Tuan Nghia

As soon as the tool was completed, the author contacted the analyst to get

more feedback on the tool. After some testing and analysis, the feedback from

the analyst was positive.

53

Turku University of Applied Sciences Thesis | Tran Tuan Nghia

8 Discussion

This thesis study and development support an analyst's master thesis. His topic

is to study a grading system for the training episode. To archive that, he isolated

and researched every factor in eye-tracking data. When an in-game event

happens, having a tool to inspect how the data change during that time is

helpful for the research. Based on his description and requirement, the author

established this tool and delivered it to him for his further research. The result

got positive feedback from the analyst, and it provided what he needed for this

research. With some of the test cases, overall, he can certainly see the player's

behavior. The result captured the most exceptional data change moment based

on in-game events. Factors like pupil size and focus stability in those in-game

events can be decided in the final grade. The heatmap result shows the

majority of time players spend in a particular area and object. It also

demonstrates how to concentrate the player on important spaces like the

controller board. The analyst was also happy with the scanpath sequence in-

game object. With the sequence result, he can develop a draft grading system

using the Needleman-Wunsch algorithm. In conclusion, the tool met the

analyst's expectations and became a valuable resource for his further study. On

the other hand, some feedback from the analyst and suggestion from the author

for continuous development is worth mentioning. For the demo purpose, the

performance, and testing is limited. For further development, the number of data

should be decreased. It should only be focusing on some data that analysts

think is worth inspecting. Without a doubt, the chosen data will be the result of

the analyst study. By decreasing the number of data, the performance also

increases. Also, by increasing the number and accuracy of the colliders,

performance will also be increased significantly. But for demo purposes, analyst

feedback about the performance is acceptable.

54

Turku University of Applied Sciences Thesis | Tran Tuan Nghia

9 Conclusion

The objective of this thesis was to develop a tool to visualize eye-tracking data.

To archive this objective, the author studied previous studies from existing

research about the same topic. Because the previous studies were not fit to the

thesis purpose, a new navigation method was built and fill the gap. The newly

developed navigation method is built as the core and from there other methods

can be built on top of it.

The tool was developed successfully and got well-received by the eye-tracking

specialist. The outcome of the developed tool fulfills the visualization

requirements as requested by the specialist. The requirements include

heatmap, scanpath, object sequence, and finally, isolate and visualize eye-

tracking data. This thesis practical outcome also contributes to previous

research about eye-tracking visualization by providing a novel visualization tool

for eye-tracking data. The research on navigation in the VR world not only

applies to this particular tool development but could also be used in many other

aspects of VR game development, such as player’s position and navigation,

camera angle, etc.

55

Turku University of Applied Sciences Thesis | Tran Tuan Nghia

References

[1] Video game industry statistics, trends and data in 2022. Jan 18, 2022

https://www.wepc.com/news/video-game-statistics/

[2] Micheal Mamerow: Gaming industry vs Other Entertainment industries(2022)

https://raiseyourskillz.com/gaming-industry-vs-other-entertainment-industries-

2021/

[3] Mika Luimula, Evangelos Markopoulos, Johanna K Kaakinen, Panagiotis

Markopoulos, Niko Laivuori, Werner Ravyse: Eye Tracking in Maritime

Immersive Safe Oceans Technology. September 2020

11th IEEE International Conference on Cognitive Infocommunications.

CogInfoCom 2020At: Online on MaxWhere 3D September 2020 DOI:

10.1109/CogInfoCom50765.2020.9237854

[4] Wikipedia: Heat map. 4th May 2022

https://en.wikipedia.org/wiki/Heat_map

[5] Scanpaths: Definitions, theory and applications

https://www.cis.rit.edu/pelz/scanpaths/scanpaths.htm

[6] Tanja Blascheck, Kuno Kurzhals, Michael Reascheke, Micheal Burch, Daniel

Weiskopf, Thomas Ertl: Visualization of Eye Tracking Data: A Taxonomy and

Survey: Visualization of Eye Tracking Data

Computer Graphics Forum 36. February 2017 DOI:10.1111/cgf.13079

[7] Martin Mirchev, Job van de Ven, Jan Willem van Ringelesteijn, Alex Perez-

Lucerga Garrido, Lucas Gether Ronning, Isa Dantuma, and Michael Burch :

Visualization of Eye Tracking Data

Education in Visualization. May 2020 DOI: 10.13140/RG.2.2.19353.65121

[8] Varjo Document: Unity. May 2022

https://developer.varjo.com/docs/v2.1.0/unity/unity

[9] Unity Document: Sphere cast. May 2022

https://www.wepc.com/news/video-game-statistics/
https://raiseyourskillz.com/gaming-industry-vs-other-entertainment-industries-2021/
https://raiseyourskillz.com/gaming-industry-vs-other-entertainment-industries-2021/
http://dx.doi.org/10.1109/CogInfoCom50765.2020.9237854%22%20/t%20%22_blank
https://en.wikipedia.org/wiki/Heat_map
https://www.cis.rit.edu/pelz/scanpaths/scanpaths.htm
https://developer.varjo.com/docs/v2.1.0/unity/unity

56

Turku University of Applied Sciences Thesis | Tran Tuan Nghia

https://docs.unity3d.com/ScriptReference/Physics.SphereCast.html

[10] Unity document: Line renderer. May 2022

https://docs.unity3d.com/ScriptReference/LineRenderer.html

[11] Unity document: Canvas. May 2022

https://docs.unity3d.com/2020.1/Documentation/Manual/UICanvas.html

[12] Unity Document: Material. May 2022

https://docs.unity3d.com/ScriptReference/Material.html

[13] Unity Document: Texture. May 2022

https://docs.unity3d.com/Manual/Textures.html

[14] Unity Document: Awake. May 2022

https://docs.unity3d.com/ScriptReference/MonoBehaviour.Awake.html

[15] Unity Document: Start. May 2022

https://docs.unity3d.com/ScriptReference/MonoBehaviour.Start.html

[16] Unity Document: Update. May 2022

https://docs.unity3d.com/ScriptReference/MonoBehaviour.Update.html

[17] Unity Document: Coroutines. May 2022

https://docs.unity3d.com/Manual/Coroutines.html

[18] Vladimir Liki´c: The Needleman-Wunsch algorithm for sequence alignment.

May 2022

https://www.cs.sjsu.edu/~aid/cs152/NeedlemanWunsch.pdf

[19] Unity Document: Cubemaps. May 2022

https://docs.unity3d.com/Manual/class-Cubemap.html

[20] Unity Document: Camera. May 2022

https://docs.unity3d.com/ScriptReference/LineRenderer.html
https://docs.unity3d.com/2020.1/Documentation/Manual/UICanvas.html
https://docs.unity3d.com/ScriptReference/Material.html
https://docs.unity3d.com/Manual/Textures.html
https://docs.unity3d.com/ScriptReference/MonoBehaviour.Awake.html
https://docs.unity3d.com/ScriptReference/MonoBehaviour.Start.html
https://docs.unity3d.com/ScriptReference/MonoBehaviour.Update.html
https://docs.unity3d.com/Manual/Coroutines.html
https://www.cs.sjsu.edu/~aid/cs152/NeedlemanWunsch.pdf
https://docs.unity3d.com/Manual/class-Cubemap.html

57

Turku University of Applied Sciences Thesis | Tran Tuan Nghia

https://docs.unity3d.com/ScriptReference/Camera.html

