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ABSTRACT 
 

The objective of this thesis was to develop a turn-based two-player board game 
called Dobutsu Shogi (Let’s catch the lion) and implement a simple AI using 
minimax algorithm with alpha-beta pruning optimization techinique. The game 
was a single-page web application built using web development technologies: 
ReactJS and Redux with Typescript. It provided two play modes: two users 
against each other and a user against a computer. 
 
In the theoretical part, some of the most basic concepts of game theory were 
introduced and followed by the explanation of minimax algorithm with alpha-beta 
pruning variation. Furthermore, in the implementation part, the process of making 
the game and programming its AI was described in detail. 
 
In the end, the goal to make Dobutsu Shogi board game and develop its simple 
AI was successful. Minimax algorithm implementation worked well, and its 
optimization technique alpha-beta pruning showed its effectiveness in terms of 
performance. However, the AI was using a quite poor static evaluation function, 
and as a result, users can still defeat it if they have a certain amount of experiece 
about the game. 
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1 INTRODUCTION 

In this computer era, the use of AI to improve product quality as well as people’s 

daily lives has become increasingly popular. As a result, its applications can be 

seen in almost every field, including game development. It is undeniable that this 

field has been a promising area in the application of AI since the very beginning. 

While video games are gradually becoming the first choice for presenting and 

testing different algorithms recently, board games have been the central topic for 

AI researchers from the start (Yannakakis & Togelius 2018, Preface ix). 

 

One of the earliest applications of gaming AI was being opponents in some 

common board games like Tic-tac-toe, Chess, Checkers, or Go. These games 

have been researched deeply and as a result, not only the quality of AI used for 

them is improved, but also programs that capable of defeating world’s top players 

have been created one after another. In order to implement AI for board games, 

different algorithms and optimization ways have been applied. Until now, minimax 

algorithm along with alpha-beta pruning was one of the most popular techniques 

used in this area. 

 

The goal of my thesis is to develop a single-page web application as a simulated 

version of a turn-based two-player board game called Dobutsu Shogi (Let’s catch 

the lion) and applying minimax algorithm with alpha-beta pruning optimization 

technique to implement a simple AI for the game. The game will be built using 

modern web development technologies such as ReactJS, Typescript, and Redux. 

 

Throughout my thesis, readers will be introduced with the most basic concepts of 

game theory, minimax algorithm, alpha-beta pruning variation, and the process of 

programming a board game with its simple AI. In theoretical part, there will be 

illustrative figures with pseudo-code that help explaining the algorithm. In 

implementation part, beside explanation texts, not only screenshots of used code 

but also logic diagrams for different actions will be provided in order to describe 

the process better. Additionally, I also applied and tested different variations of 

the algorithm to show the improvement in term of effectiveness. In the end, I 
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hope that readers will be able to create an AI system for a board game 

themselves using introduced knowledge. 

 

2 THEORETICAL BACKGROUND 

This section covers theoretical background related to using minimax algorithm to 

program an AI system for a board game. The topics include basic concepts of 

game theory, minimax algorithm, and alpha-beta pruning.  

 

2.1 Game theory 

Game theory is a mathematical framework for strategic interactions between 

participants where each of them is assumed to always aim for the optimal result 

based on given rules and information. In gaming industry, while its applications 

are rarely found in real-time games, game theory is considered as the source for 

the terminology that is used in turn-based games (Millington & Funge 2009, 668). 

This subsection does not introduce all concepts about game theory but only 

enough to understand how it can be used to implement an AI system in a turn-

based game. 

 

2.1.1 Types of games 

Based on different characteristics of the game, game theory classifies it into 

different forms: zero-sum and non-zero-sum game based on the game objective, 

perfect and imperfect information game based on the information about the game 

that each player has. The board game project that will be implemented later is 

considered as a two-player zero-sum game with perfect information. 

 

Zero-sum and non-zero-sum game 

 

In a zero-sum game, the sum of all losses by a player or group of players is equal 

to the sum of all gains for every possible outcome of that. Games such as Chess, 

Checkers, or Tic-tac-toe are simple examples of two-player zero-sum games 

since in the end, there is one winner and one loser. If you score 1 point for 

winning, then it would be equivalent to score -1 for losing. It is also possible for 
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ties in this type of game, because then neither player gains nor loses, and the 

sum is still equal zero. Another good example for zero-sum game is Poker. After 

all, the combined amount of winning money is balance to the combined amount 

of losing money. (Non-Zero-Sum Games vs. Zero Sum Games… 2010.) 

 

In contrast to zero-sum games, there are games where all participants could all 

win or lose. These games are referred as non-zero-sum games. A classic 

example for this type of game is the Prisoners’ Dilemma. In this example, two 

prisoners are held in different cells and cannot communicate with each other. 

They are both offered a bargain. If both confess, they will be convicted for three 

years each. If both stay silent, they will only serve one year in prison. However, if 

one confesses while the other does not, the one who confessed will be free, while 

the other will be convicted for five years. It is important to note that the prisoners 

do not know if the other confessed or not. It is clear that the option in which both 

prisoners remain silent will lead to the optimal payoff, however, it is not a rational 

option since they all behave in their self-interest. Therefore, the most rational 

decision here for both is to confess, resulting in their losses. 

 

Perfect information and imperfect information game 

 

Perfect information games refer to games where every player have all information 

about the game state at any time. They are aware of every possible action and its 

effect. Examples for this type of game are Chess, Go, or Tic-tac-toe. Although 

you may not know what move the other will play, but you will be able to determine 

all moves that your opponent could possibly make and its result at any given 

time. Meanwhile, in card games like Poker, there is information that you do not 

know, such as your opponents’ cards. This type of game is called imperfect 

information game. 

 

It is often easier to work with perfect information games since all game state data 

is visible all the time. Different algorithms and techniques can be adapted for 

imperfect information games too. However, because of more elements need to 
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be considered, they often lead to a worse performance. (Millington & Funge 

2009, 669.) 

 

2.1.2 The game tree 

A game tree is a graph where its nodes represent game states, and its edges 

represent player actions to get from one game state to another. The number of 

tree branches from a node is the number of possible actions that player can 

make at that given game state, and the root of the tree is the current game state 

when the tree is started to be built. (Yannakakis & Togelius 2018, 39.)  

 

Figure 1 shows a part of a Tic-tac-toe game tree.  

 

 

Figure 1. Tic-tac-toe game tree 

 

In a game tree, each node describes a different game board position, and from 

that board position, each branch represents a player’s possible move. Since this 

is a turn-based game, each player takes turn to make a move. After a move is 

made, the board position is changed. A game tree can be continued until the 

board position cannot provide any other possible moves. These positions are 

referred to terminal positions, in which the game is over. In terminal positions, a 
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point is assigned to each player. For Tic-tac-toe game, it is quite simple as +1 for 

the winner, -1 for the loser, and 0 if it is a tie. 

 

A game tree’s depth is the maximum number of turns in the game. Game tree in 

different games has different size of branches and depth. In Tic-tac-toe, it is 

possible to construct a complete game tree that include every possible outcome 

since the board only contains nine squares, equal to a maximum of nine turns. 

However, in Chess, there can be an infinite number of turns (the 50-move rule 

can limit this). Consequently, the depth can be infinity and it is impossible to build 

the whole game tree, although the numbers of branches is relatively small. 

(Millington & Funge 2009, 670.) For this type of game, the program often 

examines only a small part of the whole tree and assigns points based on the 

game state. 

 

2.2 Minimax algorithm 

In adversarial games like Chess, Checker, Go, and Tic-tac-toe, a basic 

adversarial search algorithm called minimax is used to find the optimal action for 

the player while assuming the opponent also makes the optimal decision. This 

algorithm has been applied successfully in different two-player perfect-

information zero-sum games. 

 

Minimax algorithm is a recursive algorithm that uses recursion to go through the 

game tree. In this algorithm, there will be two players participating in the game, 

one is called maximizing player, and the other is called minimizing player. Each 

player will always take action that leads to the best outcome for them. Since this 

is applied in zero-sum game where a player’s loss is the other’s gain, maximizing 

player will select action with maximum value, while minimizing player will do 

completely opposite, select action with minimum value. 

 

As mentioned before, the complete game tree is not always able to be built. It is 

possible to be constructed in Tic-tac-toe since there is only a maximum of nine 

turns, but impossible in games like Chess or Go. Therefore, in most of the 

minimax applications, the search is stopped after looking ahead a certain number 
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of moves to only construct a part of the game tree. When the search is stopped, 

terminal nodes are also formed. The algorithm will first proceed down to these 

terminal positions and use static evaluation function to evaluate them. In Chess, 

a simple evaluation function can be the sum of total value of black pieces 

currently on board subtracted by the sum of total value of white pieces currently 

on board. The higher this result is, the better situation is for the white side. In 

order to construct high quality AI, much more complex functions are needed to 

evaluate the board state. After getting the evaluation for terminal nodes, the 

algorithm traverses up the game tree, determines the value that current player 

(minimizing or maximizing) at that given state would select assuming they play 

optimally. (Yannakakis & Togelius 2018, 43.) In order to describe the algorithm 

better in programming, Figure 2 uses pseudo-code to show a way to implement 

minimax algorithm.  

 

 

Figure 2. Pseudo-code for minimax algorithm 

 

In Figure 2, node is the current examining board state, depth is how many moves 

ahead that going to be searched, and isMaximize is a Boolean variable 

represents current player. First, the function checks if the current node is a 

terminal node to return its evaluation. Otherwise, current player will be 

determined. If it is maximizing player, all new game states that can be formed 

from current one will be explored to find the highest evaluation that can be 

obtained (maxEval). In order to return the highest evaluation between all child 

nodes, a recursive call to the minimax function is made, using a child node, 
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current depth minus one, and the new current player (the opponent – minimizing 

player) as the arguments. If current player is minimizing player, instead of finding 

the maximum evaluation, the function will search for the lowest evaluation of all 

child positions (minEval). Additionally, when looking at a new game state from 

minimizing player’s perspective, it is important to remember to call recursive 

function passing isMaximize as true to represent the new current player (the 

opponent – maximizing player). 

 

Figure 3 illustrates how minimax algorithm works in a specific game tree with 

scores assigned to terminal nodes as the results of static evaluation function. The 

red path describes the best moves for each player in each position. 

 

 

Figure 3. How minimax algorithm works 

 

The higher the depth is used in the initial call, the better the returned move is. 

However, the number of tree node that need to be explored are exponential in 

depth of the tree. As a result, in order to finish running the algorithm in a certain 

amount of time, depth number cannot be too high, and the computing power also 

need to be taken into account. 

 

2.3 Alpha-beta pruning 

Alpha-beta pruning is a modified version of minimax algorithm, which can also be 

seen as an optimization technique. By using this variation, some tree leaves, or 
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even entire branches are able to be removed without affecting the result. In other 

words, without checking every game state, the algorithm can still find the optimal 

move that the original minimax will return with less time needed. 

 

In order to find leaves and branches that are not affected the result for pruning, 

two threshold parameters called alpha and beta are used; hence, the name 

alpha-beta pruning. Alpha represents the highest value that the algorithm has 

explored so far at any point along the path of maximizing player, while beta 

represents the lowest value has been found so far at any point along the path of 

minimizing player. When beta is equal or lower than alpha, the prune will occur. 

(Alpha-Beta Pruning, 2022.) Figure 4 uses pseudo-code to show a way to 

implement this variation of the algorithm. 

 

 

Figure 4. Pseudo-code for alpha-beta pruning 

 

Compared to the codes in Figure 2, in Figure 4, the minimax function required 

two new parameters: alpha and beta. They are checked to update after the 

evaluation of a child node is finished and followed by another check for pruning. 

The value for alpha can only be updated if current player is maximizing player, 

while the value for beta can only be updated if current player is minimizing player. 

It is also important to note that alpha and beta values are not passed to upper 
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nodes while backtracking the game tree, but only passed to the child nodes. 

Since the aim of these values is to keep track of the highest and lowest explored 

value along the path of maximizing and minimizing player, in the initial call, their 

initial values are minus infinity and infinity accordingly. 

 

Figure 5 describes the same game tree used in Figure 3 but with alpha-beta 

pruning variation applied. Branches with double red crosses represent pruned 

branches, and nodes without value on them represent have not explored nodes. 

It can be observed that the returned optimal move path is still the same even 

without exploring all game states. 

 

 

Figure 5. How alpha-beta pruning works 

 

It is important to note that in alpha-beta pruning, the prune is not always 

guaranteed to occur. Figure 6 describes the game tree in Figure 2 with some 

terminal positions are swapped. This game tree is also applied with alpha-beta 

pruning, however, no node or branch is eliminated.  
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Figure 6. Alpha-beta pruning applied to game tree with bad move order 

 

Move order is an essential factor affecting alpha-beta pruning’s performance. The 

numbers of branch that will be pruned from the tree is highly dependent on the 

order of the moves. In the worst case, no branch is eliminated, and the algorithm 

works exactly like in minimax algorithm. It is even worse since the function also 

takes time to check for pruning, which will not happen. In an ideal case, the 

moves are ordered from best to worst for the current player at that depth. Domain 

knowledge is usually used to determine which order is likely to be good, for 

example, in Chess, captured moves are often examined first. (Alpha-Beta 

Pruning, 2022.) 

 

3 PROJECT IMPLEMENTATION 

In this section, the process of making a two-player zero-sum board game with 

perfect information called Dobutsu Shogi followed by the implementation of its 

simple AI is showed in detail. The AI programing process illustrates how minimax 

algorithm with its alpha-beta pruning variation is applied. This thesis project 

includes two main play modes: two users against each other to describe the 

basic functions of the game, and a user against a computer to test the AI system.  
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3.1 Dobutsu Shogi game 

Dobutsu Shogi (“Let’s catch the lion!”, “Animal Chess”) is a small variant of 

Japanese Shogi. The game was invented by a female professional Shogi player 

Madoka Kitao. It is played on a 3x4 board with the general rules of standard 

Shogi, but with a few exceptions. (Dobutsu Shogi, 2022.) Figure 7 shows 

Dobutsu Shogi board with all pieces at the start of the game. The red dots in 

each piece illustrated different directions that piece can move, but only one 

square per move. 

 

 

Figure 7. Dobutsu Shogi game starting position 

 

The game rules are simple. There are two players (Sky and Forest), and each 

player starts the game with four pieces as in Figure 7: 

• Lion is the same as King in Chess, can move one square in any direction 

• Giraffe is the same as Rook in Chess, can move horizontally or vertically, 
but only one square 

• Elephant is the same as Bishop in Chess, can move diagonally, but only 
one square 

• Chick is the same as Pawn in Chess after its first move, can only move 
one square forward 

 

Like in Shogi, captured pieces change side and are sent to the hand of player 

who capture it. When it is your turn, you can choose between moving a piece on 

board and dropping a piece in hand back to the board. If a Chick reaches the 
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furthest rank from its side, it is promoted to a Hen (Figure 8), and if it is captured, 

it is demoted back to a Chick. A Hen can move one square in any direction, 

except diagonally backwards. Unlike in Shogi, there are no restrictions about how 

a player can drop a Chick. Player can drop two Chicks in the same file, drop a 

Chick to checkmate, or drop a Chick in the final rank (however, by doing this, the 

Chick will not be promoted to a Hen and consequently, unable to move). 

(Dobutsu Shogi, 2022.) 

 

 

Figure 8. Hen piece 

 

In order to win the game, players need to capture their opponent’s Lion, or move 

their own Lion to the furthest rank without being captured in the next move 

(stalemate is also a win). If two players play the same move three times in a row, 

the game will end in a draw. (Dobutsu Shogi, 2022.)  

 

The game that is built as the thesis project does not use the original assets as in 

above figures in this subsection. Since the aim of the project is to illustrates the 

basic gameplay and its simple AI, a simple board will be used with two sides, 

white and black (Forest and Sky side respectively), and instead of the cartoon 

figures of the relevant animals, texts are used to represent different pieces. 

 

3.2 Development technologies and tools 

In order to build this project, different web technologies such as React for 

performing frontend operations, Redux and Redux toolkit for state management 

were used, along with Typescript for types check and proper documentation. For 

styling in the application, I found it easier for managing styles with SASS. 

 

About tools, Visual Studio Code was used as the source code editor, while 

Microsoft Edge as the web browser. Furthermore, React Developer Tools and 
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Redux DevTools are two extensions that were used mainly for the debugging 

process. React Developer Tools is a powerful extension for inspecting 

components with their current props and states inside React tree, while Redux 

DevTools makes tracking the application workflow and managing state changes 

much easier. 

 

3.3 Folder structure 

Planning application folder structure is one of the key steps that have a huge 

impact on the scalability and maintainability of the project as it grows, however, it 

is sometimes skipped. By organizing all files in a logical order, when a project 

becomes bigger, its components, styles, states, and utility functions are still easy 

to keep track and manage. Figure 9 describes how different files and folders are 

arranged in this application. 

 

 

Figure 9. Project folder structure 

 

All files outside of src folder are generated from create-react-app with Typescript 

template. Inside of it, components folder includes all UI components that are used 

in the application, while store folder contains all redux files for state management. 

utils folder keeps utility files for different game functions, constants, and types. 
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Furthermore, AIHandler.ts file is responsible for the logic implementation of the AI 

system, while App.tsx and index.tsx files are the main component of the React 

application and the root file for React accordingly. For styling, styles folder is 

used to keep all global styling, typography, animations, mixins, style functions 

and variables. To style each component, a separate SCSS file is used and kept 

beside the component file. The thesis project is built based on React, Typescript, 

and Redux. As a result, the folder structure is designed to fit this type of project. 

 

3.4 Application layout 

With React as the main development technology, the application UI is divided into 

smaller components containing their own properties and states. This part 

discusses not only how the project layout is divided, but also different features 

that the application provides. Figure 10 shows the inside of components folder. 

 

 

Figure 10. components folder 

 

There are three main components: About, Game, and Settings. It can be seen 

from Figure 10 that Setting and About components are not divided into smaller 

ones to keep the application simple and since there are not too many reusable 
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parts here. Figure 11 describes how the application looks like with different 

components being rendered on a web browser.  

 

 

Figure 11. Application layout 

 

Game component includes three other types of smaller components: Cell, Piece, 

and Grave. Each Cell contains a Piece that can only be rendered when there is a 

piece in that cell. Beside a 3x4 board containing 12 Cell and eight Piece 

components, there are also two rows of grave representing hand of two players 

for placing captured pieces, each row contains six Grave components. 

 

As you can see from the setting panel, users can change between different 

modes. Two game modes that the application provides are two-player and 

computer-vs-player (an AI play as white/black against a user play as black/white 

side). Additionally, there are also different game options that can be selected 

during the game to improve users’ experience. Players can undo the latest move 

if at least one move has been made, start a new game with the selected game 

mode immediately, or change to the opposite board view. 

 

Figure 12 describes About component after being rendered. It contains the 

project information and basic game rules. 
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Figure 12. About component 

 

This panel is not rendered by default. However, when About button from setting 

panel is clicked, it will be displayed on top of the current layout and will return to 

the hidden state when Back button is clicked. 

 

3.5 State management 

In React applications, states can be managed inside components using useState 

hook and passed around through props. However, this way of handling state only 

works effectively in a small scale, not when the number of states travelling 

between components is huge. To simplify the process of managing and updating 

global states, in this application, Redux Toolkit is used to implement Redux store 

and logic, while React-Redux is used to connect Redux store and React 

components together. 

 

Figure 13 describes the content of store folder. index.ts file creates the Redux 

store instance using configurationStore function from Redux Toolkit, while the 

other two Redux slice files are responsible for Redux logic of different features. 

game.ts exports gameReducer function for gameplay logics, and setting.ts 

exports settingReducer function for setting logics. 
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Figure 13. store folder 

 

Figures 14 shows all enums (sets of named constants) in constants.ts and all 

types that are declared using Typescript in types.ts file. 

 

 

Figure 14. constants.ts and types.ts files 

 

A TCell object represents a cell on board. This object contains its position on 

board, type, which is only set when this cell is one of the generated moves, and 

the id of current piece. The position is determined by two numbers as the 

coordinate of the cell on board where the origin (0, 0) is the lower left corner cell 

in the initial view (white side is under black side on screen). A TGrave object 

represents a grave slot that stores all related information such as this slot’s id, 

side, or the id of current piece. Next, a game piece is represented by a TPiece 
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object which contains all information of this piece: id, side, name, the current cell 

(if not in hand), and a list of all reachable cells from current position. Lastly, a 

move that is made during the game is represented by a TMove object. This 

object includes its type, move and captured pieces, origin and destination cells, 

and two Booleans showing if this is a promote-to-Hen move or a demote-to-Chick 

move, or both. The type of a move will be set to null when is declared for the first 

time and can be modified later.  

 

The game state in game slice keeps track of different states of the game. All 

states that are used to form a game state are listed below:  

• All cells’ current states 

• All graves’ current states 

• All pieces’ current states 

• Current turn (white or black) 

• Winning side (null if the game continues) 

• Id of current active piece (null if there is no active piece now) 

• List of all moves that are made since the game started 

 

While game slice is responsible for handling game state, setting slice is 

responsible for managing current game settings. All states that are used to form a 

setting state are listed below:  

• Current game mode index (0 is human versus human, 1 is AI as white 
side versus human as black side, and 2 is human as white side versus AI 
as black side) 

• Current board view is reversed or not 

• About panel is showing or not 

 

Figures 15 describes initial game and setting states from Redux DevTools. It can 

be seen that allCells, allGraves, and allPieces arrays are empty currently, but 

later when the game starts, there will be an initialized function to generate all 

cells, graves, and pieces. 
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Figure 15. Initial game and setting states 

 

Furthermore, by using useSelector and useDispatch hooks from react-redux, any 

piece of states from Redux store can be read and modified easily from any 

component. 

 

3.6 Basic game functions 

Before diving into developing an AI system for this game, all basic game features 

are implemented. This helps not only creating functions that operate a game 

match, but also later will be used while applying the algorithm. Figures 16 and 17 

show all reducer functions that are used to update setting and game states. To 

implement different features, actions are dispatched from components. 

 

 

Figure 16. settingSlice reducers 
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Figure 17. gameSlice reducers 

  

Since settingSlice reducers, which are responsible for updating setting state, are 

quite simple, they will not be discussed further. Additionally, this part 

concentrates only on the implementation of basic game functions, as a result, 

aiHandler reducer will be skipped for now.  

 

3.6.1 Initializing game 

In order to initialize a new game, initGame action is dispatched from React 

components. Figure 18 describes the reducer function for this game action. 

initCells, initGraves, and initPieces are three functions imported from 

GameUtils.ts file that are used to first empty all cells, pieces, and graves lists and 

then set them to their starting value. 

 

 

Figure 18. Code for initGame reducer 

 

Figure 19 illustrates the game state after initGame action is dispatched for the 

first time when the application run using useEffect hook with an empty 

dependency array inside Game component.  
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Figure 19. Game state after initGame is dispatched 

 

After a new game is initialized, allCells contains 12 TCell objects, allGraves 

contains 12 TGrave objects, six from each side, and allPieces contains eight 

TPiece objects, four from each side. 

 

3.6.2 Generating possible moves 

When a user clicks on a piece, if this piece is not currently active, its possible 

moves need to be generated. Otherwise, all generated moves need to be 

deleted. This feature is implemented by dispatching pieceOnClick action from the 

clicked piece component after checking if the piece is currently clickable.  

 

For the checking process, the current turn state that is extracted from the game 

state and the side of the clicked piece will be compared. If the side of the piece is 

the same as the current turn, then this piece is clickable. The current game mode 

id information that is extracted from the setting state is also considered in this 

process. For example, if the computer plays as white side, white pieces are not 

clickable for the whole game. Additionally, pieces are only clickable if the winner 

state is still null, implying the game continues.  

 

After making sure the clicked piece is clickable, pieceOnClick action will be 

dispatched. Figures 20 and 21 show the logic workflow inside the reducer 

function and a way to implement it. 
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Figure 20. Logic workflow inside pieceOnClick reducer 

 

 

Figure 21. Code for pieceOnClick reducer 

 

In order to find a clicked piece object in the store, findPieceById function imported 

from GameUtils.ts file is used. This function takes two arguments which are a 

piece id and the list of all pieces and returns a piece with this id from the list. 
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If there is already an active piece when a piece is clicked, all generated moves 

need to be deleted. To do this, deleteMoves function is used. This function takes 

two arguments, the clicked piece object and the list of all cells. It first empties the 

list of all moves for the clicked piece, and then sets the moveType property of all 

cells back to null. 

 

For the purpose of generating a piece’s all possible moves from its current 

position, generateMoves function is imported from GameUtils.ts file and used. It 

takes the clicked piece, the list of all cells, and the list of all pieces as arguments. 

This function first finds all possible cells that this piece can move to base on its 

name, side, and current position, and then changes these cells’ type according to 

the type of the move. Furthermore, all these reachable cells are stored in the 

clicked piece object’s allMoves after the function finished. Figures 22 and 23 

describe what happens when different pieces in different places are clicked. 

 

 

Figure 22. Possible moves generated when white Lion is clicked 
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Figure 23. Possible moves generated when white Chick is clicked 

 

Cells are rendered differently based on its moveType, so users can see all 

possible moves clearly on screen. In Figure 22 the red cell represents an attack 

to the black Chick, while green cells show that they are just normal moves 

between cells. In Figure 23, yellow cells represent all positions that the white 

Chick can be dropped back to the board. 

 

3.6.3 Handling a move 

After generating all possible cells that a piece can reach from its current position, 

users will be able to make a move by simply clicking on one of these cells. This 

feature is implemented by dispatching cellOnClick action after checking if the 

clicked cell is reachable for current active piece. 

 

The checking process is quite simple. It is mentioned before that when finding all 

reachable cells for a piece, the type of them is changed according to the type of 

move. Therefore, if the moveType property of the clicked cell is one of three 

MoveType states (move, atk, or rev), that cell is one of the destination cells, 

otherwise, it is not.  
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If the clicked cell is reachable, cellOnClick action is dispatched. Figure 24 

illustrates the logic workflow inside the reducer function. 

 

 

Figure 24. Logic workflow inside cellOnClick reducer 

 

Figure 25 shows the code from cellOnClick reducer that is responsible for getting 

all needed information for a move and storing them in an object.  

 

 

Figure 25. Code for getting all information of a move and storing them in an object 
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In Figure 25, moveType represents the type of this move, while movePiece and 

killedPiece represent moving piece and captured piece (if this is an attack move). 

Different pieces’ object is searched from the store using getPieceById function. 

Next, fromCell and toCell are origin and destination cells for this move. If the 

clicked piece is currently in hand, fromCell is known as null. These cells’ object is 

gotten from the store using getCellByPos function, which is imported from 

GameUtils.ts file. The function takes the position of a cell and the list of all cells 

as arguments and then returns a cell with the same position from the list. At this 

point, promote and demote properties are set to false by default and can be 

modified if needed when the move is executed. 

 

Figure 26 describes the code from cellOnClick reducer that is responsible for 

executing the move and updating the move history.  

 

 

Figure 26. Code for executing move and updating move history 

 

moveExecute function is imported from GameUtils.ts file. This function is used to 

update current state of different properties of the move object which is passed as 

argument. Additionally, it also checks if this move is a promotion move, demotion 

move, or both and changes the move’s properties accordingly. After the new 

move is executed, it will be pushed to the moveHistory state from the store. 

 

Figure 27 shows code that is responsible for checking game over state and 

reordering pieces in hand, which is the rest of the logic diagram except cleanup 

part. 
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Figure 27. Code for checking game over state and reordering pieces in hand 

 

To improve users’ experience, captured pieces will always be placed from left to 

right, in the following order: Chick, Elephant, and then Giraffe. In order to achieve 

that, a function called reorderPieceInGraves, which is imported from GameUtils.ts 

file, is used. It takes the side where the pieces’ order needs to be considered, the 

list of all graves, and the list of all pieces as arguments. First, this function filters 

the array of all pieces to get only pieces in hand (current cell is null) and divides 

them into three smaller arrays according to their type: chick, elephant, and 

giraffe. Then, concat method is used on these arrays to form a new array of 

pieces that applies the new order. The array of all graves is filtered to select only 

graves of the chosen side. Before placing in new pieces with the right order and 

updating grave’s information, each grave in this list has its currentPieceId 

property set back to null. 

 

When two players play the same move three times in a row, the game will end in 

a draw. In order to check for this result, drawCheck function is used. The function 

investigates current move history and compares nine last moves from it. If the 

move has just been executed forms three repeated moves in a row, the winning 

side state is set to draw. 
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As introduced in Dobutsu Shogi rules, the game will also over when a Lion 

reaches the furthest rank without being captured in the next move, or when a 

Lion is captured. It is quite simple to check for the second situation. If the nearest 

move is an attack move and the captured piece is a Lion, then the winning side is 

set to the moving side. However, to check for the first condition, a more 

complicated function which is gameOverByReachingCheck is used. This function 

takes the recent move, the list of all cells, and the list of all pieces as arguments 

and returns a Boolean representing if the game ended or not. If the moving piece 

in this move is a Lion and the rank of the destination cell is the furthest, an array 

contains only opponent’s pieces which are on board is filtered from the list of all 

pieces. After calling generateMoves function on all of them, allMoves property of 

each piece is checked. If there is no attack move with a Lion as captured piece, 

Boolean true will be returned, and the winning side is set to the moving side.  

 

Finally, there is a cleanup part from the logic diagram that is responsible for 

deleting generated moves and updating current active piece as well as current 

side. Figure 28 describes how this part is implemented.  

 

 

Figure 28. Code for cleaning up after making a move 

 

After deleting all moves to get all cells back to their normal state, the id of current 

active piece is set back to null and changeSide function is called to update the 

current side. Now, the board is back to its normal state with no active piece or 

generated moves and ready for the next move. 

 

3.6.4 Undoing a move 

At first, undo a move seems like an extra feature for this project since it not really 

affects the gameplay or the AI implementation. However, the way to implement 

the minimax algorithm later needs the ability to undo moves. As a result, some 

extra lines of code are added beside undo function to make undo a separate 

game feature that helps improving user’s experience. 
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When undoHandler action is dispatched from a component, based on the current 

game mode and game state, different numbers of move are undone. For 

example, while two-player mode is selected, only one move is undone each time 

the button is clicked. However, while one-player mode is selected, if the computer 

already made its move, two moves need to be undone, otherwise, only one move 

is required. The number of moves then will be passed to the action as the 

payload object to decide how many times undo logic block will be looped. Figure 

29 describes the logic diagram for each loop. 

 

 

Figure 29. Logic workflow for undoing a move 

 

Firstly, to get the last move’s data and remove it from the move history, pop 

method is used. The process of creating an object to get and store a move’s 

related information from the game state is the same as in cellOnClick reducer. 

However, this time the created object contained correct promote and demote 

properties already. Figure 30 shows the code from undoHandler reducer that is 

responsible for getting all information of last move from the game state and store 

them in an object. 

 



33 
 

 

Figure 30. Code for getting information of last move and storing them in an object 

 

Figure 31 describes code that is responsible for the rest part of the logic diagram 

in Figure 29, including undo the move, check for pieces in hand reordering, and 

clean up.  

 

 

Figure 31. Code for undoing last move, checking for in-hand pieces’ order, and cleaning up 

 

In order to undo a move, a function imported from GameUtils.ts file called 

moveUndo is used. This function is basically the same as moveExecute function, 

which is used when implementing move handling feature. It takes the newly 

created object of last move as the argument and updates current state of its 

properties. After the state of related cells and pieces are updated, pieces that are 

currently in hand of the moving side are reordered if the type of undo move is 

attack or revive. Finally, the same cleanup code as the one used in cellOnClick 

reducer is applied to make the board get ready for the next move. 
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3.7 Game AI implementation 

In this part, the process of implementing a simple AI for this game is showed in 

detail. In order to look ahead the next couple of moves and return the best one, 

an AI object is created using class. Instead of passing the board state as an 

argument for minimax function as showed in Figures 2 and 4, the state of the 

game will be stored and updated continuously through class’s properties and 

methods. After the best move is calculated, the whole process of handling a 

move is applied in the reducer to make that AI move on the board and get ready 

for the next user’s move. Figures 32 and 33 describe the AIHandler class and 

how an AI object is created inside aiHandler reducer using a depth of seven. 

 

 

Figure 32. Code for AIHandler class 

 

 

Figure 33. Code for creating an AI object inside aiHandler reducer 

 

Most properties are initialized using constructor method, except nodeTraversed 

and bestMoveScore. nodeTraversed represents the number of game states the 

algorithm has searched and is used for better illustrating the effectiveness of 
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different algorithm variations. bestMoveScore represents the score of the best 

move and is initialized with a very low value so it will be updated no matter how 

bad the found move can be. Inside the constructor, current game states are 

cloned from game state store, while depth number and best move object are 

initialized. All objects representing current game state are deep cloned. 

Therefore, in case there are some unexpected behaviors happened while running 

the algorithm, the original state remains unchanged. For aiSide and playerSide 

properties, they are set using payload object when aiHandler action is 

dispatched. 

 

3.7.1 Minimax with alpha-beta pruning 

As described in the pseudo-code for alpha-beta pruning in Figure 4, the minimax 

function will first check if current examining node is a terminal node to run static 

evaluation function. If it is not, then based on whether current player is 

maximizing or minimizing, the function performs different actions to determine 

highest and lowest score from the child nodes accordingly. In this part, only the 

code for maximizing and minimizing player is described. The whole process of 

checking for terminal nodes to assigning evaluation score will be discussed later. 

 

Figure 34 illustrates minimax method (alpha-beta pruning variation) with hidden 

code blocks. In line 81, nodeTraversed property is updated every time the 

method is called to represent the number of searched board states. 

 

 

Figure 34. Code for minimax method 

 

Figure 35 shows the logic code that is responsible for finding maximum score for 

maximizing player.  
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Figure 35. Code for finding best score for maximizing player inside minimax method 

 

This implementation is almost the same as showed in the pseudo-code; thus, it 

contains some changes. The major modification is that instead of passing the 

child board positions down to examine them, all current possible moves will be 

executed, one by one. By executing a move before calling minimax again, the 

new call will apply to the new board state that is formed after the move is made. 

Furthermore, the previous board positions can be set back using created undo 

function. While doing and undoing these fake moves, the move history is also 

updated along using pop and push methods. Additionally, an extra code block is 

added from line 97 to 102 to check if the current depth is the max depth to update 

the best move object and its score right after a better move is found. 

 

For finding all possible moves, getAllSideMoves method is implemented. The 

method calls generateMoves function on each piece of the current side, adds 

generated moves to an array, and before returning this array as the result, it will 

reorder all moves based on how good they seem to be. The order from best to 

worst, which is based on my experience, is the captured moves, revive moves, 

and then normal moves between cells.  

 

For finding lowest score for minimizing player, the same logic is applied with 

some modifications on the values. Figure 36 describes the code block that is 



37 
 

responsible for finding the worst score for minimizing player inside minimax 

method.  

 

 

Figure 36. Code for minimizing player inside minimax method 

 

Figure 37 shows getBestMove method where the minimax algorithm is called for 

the first time. After the algorithm finished running, the method will log the number 

of traversed nodes with the best move score and return a TMove object as the 

best move. 

 

 

Figure 37. Code for getBestMove method 

 

Figure 38 shows how getBestMove method is called from a created AI object 

inside the reducer.  

 

 

Figure 38. Code for calling getBestMove from AI object inside aiHandler reducer 

 

In aiHandler reducer, after the best move object is determined, it will be handled 

the same as described in handling a move feature. 
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3.7.2 Static evaluation 

As explained before, when minimax algorithm proceeds down to the terminal 

nodes of the game tree, it will evaluate these positions and there will be no more 

recursions. A board position that is only considered as a terminal node when the 

current depth is zero or when the game is over. Figure 39 describes this process 

of checking for terminal positions to return evaluation value inside minimax 

method.  

 

 

Figure 39. Code for checking and evaluating terminal nodes inside minimax method 

 

Figure 40 shows gameOver method which will look at current game state and 

return null if the game continues, or a Winner enum (white, black, or draw) if the 

game ended. 

 

 

Figure 40. Code for gameOver method 
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After knowing that a node is a terminal one, its score is calculated. Figure 41 

illustrates the code for evaluation method when the game is over. 

 

 

Figure 41. Code for calculating score difference when the game ended inside evaluate method 

 

This method takes two arguments which are the gameOver method result and 

the current depth. The method first calculates the score for each side and then 

returns the difference as the result. If the game ended, a relatively high score with 

the current depth will be added to the winning side. In case the game is draw, the 

score difference stays zero. The reason behind adding current depth to the score 

is to make sure the AI will always try to win as soon as possible or delay its 

defeat. For example, if the next two move and the next three move for AI side are 

both winning moves, the nearer one will always be chosen. If the next two move 

and the next three move all lead to a loss, the AI should go with the further one. 

 

If the game is not over yet, the score for each side is determined based on their 

current pieces, both on board and in hand. It is important to note that if a piece is 

currently on board, its position is not considered. As mentioned before, the higher 

quality of the evaluation function, the higher quality of the implemented AI will be. 

However, this project only uses a simple evaluation way to assess different game 

states since the main objective here is to create a simple AI system. Table 1 
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describes how each piece is evaluated based on my experience after playing this 

game for a long time.  

 

Table 1. Score evaluation for different pieces in different places 

Places 

Pieces 

Chick Elephant Giraffe Hen Lion 

In hand 1 3 3 X X 

On board 2 6 6 12 10000 

 

There is no score assigned to Hen and Lion piece when they are in hand since 

they will never be. If a Hen is captured, it is demoted back to Chick, and if a Lion 

is captured, the game is over. 

 

3.7.3 Outcome 

At this point, the game application has been finished and run fine in all game 

modes. The implemented AI system worked as expected. For better illustrating 

the effectiveness of different algorithm’s versions (pure minimax, alpha-beta 

pruning, alpha-beta pruning with good move order), I have implemented and 

tested a separate AI system using each variation. Table 2 shows number of 

positions that each variation needs to search to make the optimal decision with 

different depth numbers when playing as white from initial board state. 

 

Table 2. Number of nodes each algorithm version needs to search with different depth 

Depth Minimax Alpha-beta pruning 
Alpha-beta pruning with good 

move order 

3  145 95   48 

5 9,243 1,258  601 

7 734,353 23,484 8,200 

9 62,520,789 356,065 84,720 

 

It is undeniable that the number of nodes that need to be searched has been 

decreased greatly when new techniques are applied. As a result, the speed of the 
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algorithm is improved significantly. The AI created in this project applies with only 

the depth of seven since my computing power and time to make a move in a real 

game is limited. 

 

4 CONCLUSION 

After having general knowledge about game theory’s different types of games 

and the game tree, minimax algorithm basic concepts and how it is applied to 

develop a turn-based game AI that makes the optimal decision become easy to 

understand. Combining it with the use of alpha-beta pruning variation, the 

algorithm performance can be significantly improved.  

 

The goal of this thesis was to develop a simulated version of a turn-based two-

player board game named Dobutsu Shogi (Let’s catch the lion) using different 

web development technologies and create a simple AI system based on minimax 

algorithm with alpha-beta pruning. This goal was achieved successfully. Different 

game features as well as the AI worked as expected. Furthermore, minimax 

solution was found to be easy to apply when implementing the AI system. After 

using different optimization ways that were introduced in the theoretical part, it 

can be observed from the result that the performance of the created AI was 

improved dramatically. It is interesting to note that this AI implementation way can 

easily be adapted and applied to other zero-sum games with perfect information 

to develop their own AI system. 

 

It is undeniable that there is still plenty of room for further development for the AI 

system in this game. By applying a concept called transposition tables that 

prevents calculating the same board positions multiple times, the computation 

time can be greatly decreased. Furthermore, enhancing the current static 

evaluation function can also be considered as one way to increase the AI’s 

quality since currently, it is built only based on my experience. 
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