

Lingxiao Huang

FULL-STACK E-COMMERCE ONLINE STORE
A Web Application for Purchasing and Uploading Products for Every User

Technology
2022

ACKNOWLEDGEMENTS

I would like to show my gratitude towards Professor Ghodrat Moghadampour,

my supervisor for giving support during my thesis project and thesis writing.

I would like to give my appreciation to VAMK, University of Applied Sciences

where I have studied for five years. All the knowledge and skills I learned there

are always valuable.

In addition, I am grateful for Mr. Umer, Mr Phi, Mr Sangam and other Integrify

team members for giving me the opportunities to gain experience of all the skills

for this project in Integrify Academy. I believe what I learn here will always be

an asset in my future career.

Finally, I would like to send my love to my family and my friends who have

supported me throughout the university studying period. All the love and

support I have received will not be forgotten.

Vaasa 30/04/2022

Lingxiao Huang

VAASAN AMMATTIKORKEAKOULU
UNIVERSITY OF APPLIED SCIENCES
Information Technology

ABSTRACT

Author Lingxiao Huang
Title Full-stack E-commerce Online Store
Year 2022
Language English
Pages 59
Name of Supervisor Ghodrat Moghadampour

This thesis focused on creating a full stack web application for people to buy
products, upload and sell items and place orders. The application in this project
was built to give users an online platform to sell and but second-hand items.

The technologies used to develop the application were React, TypeScript, SASS
and Cloudinary in frontend and Node, Express, MongoDB and Nodemailer in
backend.

The project resulted in a full-stack application, which allows users to create
accounts, upload items to sell, add items to the shopping cart and place orders.
Moreover, the administrator can login to the management console page to view
and perform different actions on users, products and orders.

Both the client and server applications have been deployed in Heroku (a cloud
services provider that can host dynamic web applications) successfully.

Keywords E-commerce, full-stack, React, MongoDB, and cloud
services

CONTENTS

ABSTRACT

INTRODUCTION ... 1

1.1 Background ... 1

1.2 Motivation ... 1

2 TECHNOLOGIES AND TOOLS ... 3

2.1 TypeScript Programming Language .. 4

2.2 React Framework .. 4

2.3 Redux .. 6

2.4 SASS ... 7

2.5 NodeJS ... 7

2.6 Express Framework ... 8

2.7 MongoDB & MongoDB Atlas... 8

3 APPLICATION DESCRIPTION .. 11

3.1 Application Overview and Constraints ... 11

3.2 Application Requirements Analysis .. 12

3.3 Use Case Diagram ... 14

3.4 Sequence Diagrams ... 14

3.4.1 Add Items to Cart Sequence Diagram ... 14

3.4.2 Add New Listing Sequence Diagram ... 15

3.5 Class Diagram .. 16

4 USER INTERFACE DESIGN.. 19

4.1 User Interface for General Users .. 19

4.2 User Interface for Admin Management Console 27

5 IMPLEMENTATION .. 32

5.1 Integrated Development Environment ... 32

5.2 Backend Server ... 33

5.2.1 Project Environment ... 33

5.2.2 Directory Structure.. 33

5.2.3 Application Source Code ... 35

5.3 Frontend Client ... 42

5.3.1 Project Environment ... 42

5.3.2 Directory Structure.. 43

5.3.3 Application Source Code ... 45

6 APPLICATION TESTING .. 54

7 CONCLUSIONS .. 58

REFERENCE .. 60

LIST OF FIGURES AND TABLES

Figure 1. Full stack development (Singh, 2019) 3

Figure 2. npx create-react-app 5

Figure 3. Redux workflow 7

Figure 4. MongoDB Compass 9

Figure 5. MongoDB Atlas User Interface 10

Figure 6. Software application architecture 12

Figure 7. The application main functions 14

Figure 8. Add Items to Cart Sequence diagram 15

Figure 9. Add New Listing Sequence diagram 16

Figure 10. User, product and CartItem class diagram 17

Figure 11. Order and billingInfo class diagram 18

Figure 12. Home page with user not logged in 19

Figure 13. ItemDetails page UI 20

Figure 14. Login and Register page 21

Figure 15. Email to be confirmed page 21

Figure 16. Email Confirm Message Page 22

Figure 17. Home page with user logged in 22

Figure 18. Cart page 23

Figure 19. Order page 24

Figure 20. Check out success page 25

Figure 21. Profile page 25

Figure 22. Deletion confirmation modal 26

Figure 23. New listing modal 26

Figure 24. Order detail page 27

Figure 25. Admin login 28

Figure 26. Admin home page 28

Figure 27. Admin user management page 29

Figure 28. Admin products page 30

Figure 29. Admin product detail page 30

Figure 30. Admin orders page 31

Figure 31. Visual Studio Code user interface 33

Figure 32. Directory Structure backend 34

Figure 33. Directory Structure frontend 44

Figure 34. Components directory tree 47

Figure 35. Pages directory tree 48

Figure 36. Jest test result in the terminal window 57

Table 1. Application Requirements 13

LIST OF CODE SNIPPETS

Code Snippet 1. TypeScript Installation 4

Code Snippet 2. Create React App 5

Code Snippet 3. Start React App 5

Code Snippet 4. server.ts 35

Code Snippet 5. app.ts 36

Code Snippet 6. auth router 37

Code Snippet 7. auth controller 37

Code Snippet 8. order controller createOrder method 38

Code Snippet 9. order service 40

Code Snippet 10. CartItem model 41

Code Snippet 11. Order model 42

Code Snippet 12. package.json frontend sample 43

Code Snippet 13. ReactDOM with Redux and Router setup in index.tsx 46

Code Snippet 14. React Routes defined in app.tsx 46

Code Snippet 15. The home.tsx function and state definitions 49

Code Snippet 16. The home.tsx file first usage of useEffect 50

Code Snippet 17. The home.tsx file second usage of useEffect 51

Code Snippet 18. The home.tsx file return statement 52

Code Snippet 19. Create a listing and product test case 55

Code Snippet 20. Get back an existing product test case 56

Code Snippet 21. Not get back a non-existing product 56

Code Snippet 22. Test script configuration in package.json file 57

LIST OF ABBREVIATIONS

API – Application Programming Interface

CSS - Cascading Style Sheets

CORS – Cross-Origin Resource Sharing

DOM – Document Object Model

GUI – Graphical User Interface

PC – Personal Computer

SDK – Software Development Kit

HTML – Hypertext Markup Language

IDE – Integrated Development Environment

SASS – Syntactically Awesome Stylesheets

URL – Uniform Resource Locator

UI – User Interface

1

INTRODUCTION

1.1 Background

With the increasing number of digital devices in our daily lives, it now has become

a common practice for people to use their computing devices to perform many

tasks and use different digital services. For instance, online shopping services,

online hotel reservation services and online plane tickets purchasing services have

been booming in the past decades. For most PC users nowadays, a web browser

is installed on their computers. Therefore, many digital services are provided

through World Wide Web in the browser.

A full-stack application is a software application that has both a frontend

application and a backend application which combines to a large application with

client-side and server-side. Full-stack application development is beneficial for

developers and customers in different ways, such as cost-effectiveness, faster

development and troubleshooting, flexibility, and maintenance.

1.2 Motivation

The main general motivation of this thesis is to create a web-based full-stack

application with a React frontend and a Node backend for users to purchase and

sell products. The application has a clear UI design and is easy to use for any

computer users.

Users should be able to register new accounts. After emails are verified, users can

login with their accounts in the application. The application has implemented

authentication and authorization methods for better security. Users can add items

to their carts and view the cart items after logout and login again. Then users can

make orders with their billing information and the system will store order details

in the database. In addition, users can upload their own items to the application

2

or remove items. For system administrator, actions such as user suspension and

products removal can be conducted.

3

2 TECHNOLOGIES AND TOOLS

This section discusses the tools and technologies used in developing the web

application. A full-stack web application development generally consists of two

parts: frontend development and backend development. Frontend web

development is the development of the graphical user interface of a website, using

HTML, CSS, and JavaScript, so that users can view and interact with that website

(Wikipedia, 2022). In this case, ReactJS was used as a JavaScript and TypeScript

framework and SASS as a CSS framework. Besides, Redux was used as a React state

management tool. Backend development, also known as server-side

development, is about the things that users cannot see but happen behind the

scenes. It focuses on databases, backend logic, APIs, and Servers (InterviewBit,

2021). In this project NodeJS and Express were used to build the backend server

and APIs. MongoDB was used as a database connected to the backend server.

Figure 1. Full stack development (Singh, 2019)

4

2.1 TypeScript Programming Language

TypeScript was developed by Microsoft in 2012 and it is a superset of JavaScript.

TypeScript is designed for the development of large applications (Wikipedia,

2022). It adds strict typing to JavaScript, which helps to reduce bugs and errors in

the code. In addition, TypeScript adds Object-Oriented Programming features

such as class and interface that are not supported in the original JavaScript. To run

a TypeScript file, TypeScript has to be installed and its compiler have to be installed

via NPM or yarn:

npm install -g typescript

yarn add -g typescript

Code Snippet 1. TypeScript Installation

After that run tsc can be run followed by a typescript filename to compile the TS

file to JS file. Then the compiled JS file can be run through the browser or in the

Node environment.

2.2 React Framework

React is a JavaScript library (also known as a JavaScript framework) for building

front end user interfaces. When using React to build webpage, React creates a

Virtual DOM in memory and React only changes what needs to be changed. React

enables programmers to use JSX to write HTML elements in JavaScript code.

To create a React application, Node must be installed. Then in the terminal, the

following commands are run:

5

npx create-react-app [your_app_name] for JavaScript React

npx create-react-app [your_app_name] --template

typescript for TypeScript React

Code Snippet 2. Create React App

Figure 2. npx create-react-app

To start the React application, the following commands are processed (see Code

Snippet 3):

npm start

yarn start

Code Snippet 3. Start React App

Some important concepts of React are components, props, and states. React

components are independent and reusable bits of code. They serve the same

purpose as JavaScript functions, but work in isolation and return HTML

(W3Schools, n.d.). React props stand for properties. They are like function

6

arguments that can be passed via from and to components. React states are like

variables in JavaScript that are mutable. They can be mutated through state

updating functions.

There are two ways of writing React components: one is writing functional

components which is used in this project; another is writing class components.

Before React 16.8, class components were the only way to track state and lifecycle

on a React component. Function components were considered "state-less". With

the addition of Hooks, Function components are now almost equivalent to Class

components.

2.3 Redux

Redux is a pattern and library for managing and updating application state, using

events called “actions”. It serves as a centralized store for state that needs to be

used across the entire application, with rules ensuring that the state can only be

updated in a predictable fashion (Redux, 2022). Redux is a great tool for managing

applications with large number of states and these states need to be accessed

across the entire application. However, not all applications need to use Redux. For

example, some applications with small number of states and the states do not

update frequently.

Generally Redux is more useful when:

 There are large amounts of application states that are needed in many

places in the application

 The application state is updated frequently over time

 The logic to update that state may be complex

 The application has a medium or large-sized codebase, and might be

worked on by many people

7

(Redux, 2022)

Figure 3. Redux workflow

2.4 SASS

SASS stands for Syntactically Awesome Stylesheet, and it is an extension to CSS. It

allows users to use variables, nested rules, mixins, functions and more with CSS-

compatible syntax. SASS helps to keep large stylesheets well-organized and makes

it easy to share design within and across projects (SASS, n.d.).

2.5 NodeJS

NodeJS is a JavaScript runtime environment built on Chrome’s V8 JavaScript

engine and it enables JavaScript code executed outside a web browser. Node.js

brings event-driven programming to web servers, enabling development of fast

8

web servers in JavaScript. Developers can create scalable servers without

using threading, by using a simplified model of event-driven programming that

uses callbacks to signal the completion of a task (Sons, 2012).

2.6 Express Framework

Express is a fast, unopinionated, minimalist web framework for Node.js. Express

provides a robust set of features for web and mobile applications (Express, 2017).

It provides many mechanisms to write HTTP handlers with different URL paths

named routes and offers integration with built-in or third-party middleware

functions which process tasks in the middle of request and response.

Programmers can add additional libraries to work with cookies, encryption, CORS,

web token, authentication & authorization, database connectivity, logging, error

handling and a lot more.

2.7 MongoDB & MongoDB Atlas

MongoDB is a cross-platform, document-oriented non-relational database that

provides high performance, high availability, and easy scalability. MongoDB works

on a concept of collection and document; a collection in MongoDB is a group of

documents which is the equivalent of a relational database table. The difference

is collections do not enforce a database schema. A document is a set of key-value

pairs and has dynamic schema, which implies documents in the same collection

do not need to have the same set of fields or structure (Tutorialspoint, n.d.).

There are many ways to work with MongoDB. During the development period in

this project, MongoDB Shell is used which is a command-line interface to work

with MongoDB. It allows access to MongoDB Shell through Windows command

prompt. In addition, MongoDB Compass is used which is an intuitive and flexible

GUI tool for MongoDB data management.

9

Figure 4. MongoDB Compass

MongoDB Atlas was used in the project deployment. MongoDB Atlas is a multi-

cloud database service that simplifies the deployment and management of

databases while offering the versatility needed to build resilient and performant

global applications on the cloud providers. (MongDB, n.d.). It also offers SDK tools

for different programming languages (in this case Node.js) to access MongoDB

Atlas programmatically.

10

Figure 5. MongoDB Atlas User Interface

11

3 APPLICATION DESCRIPTION

In this chapter, the application project, requirements, objectives and constraints

in details are described. First, we will look at the application structure overview

and constraints. Then project requirements are analyzed with a requirement

table. Finally, different UML diagrams will be presented to demonstrate project

functionalities and objectives in great details.

3.1 Application Overview and Constraints

The main objectives of this project are to create an online second-hand store for

people to trade their own items in an acceptable price with no middleman

charging commissions. The online store or platform is completely user-oriented

which means all actions and services are centered around users.

To create such application meeting the objectives, a full-stack application was

developed which consists of three essential components:

 Frontend Client

 Backend Server

 Database

The web frontend developed in React communicates with Node server via HTTP

requests. The Node server exchanges data with MongoDB with MongoDB data

querying language.

12

Figure 6. Software application architecture

The project has satisfied the basic objectives and requirements. However, there

are certain constraints of this application due to time shortage and technical

difficulties and they are also mentioned in requirements analysis. The constraints

include:

 No real payment solutions

 User account data is not comprehensive

 Data exchange over http

3.2 Application Requirements Analysis

The application requirements display required functions ordered by different

priority levels. Table 1 shows the implemented functions in this project and also

some improvement suggestions.

13

Table 1. Application Requirements

References Description Priority (1. Must have

2. Should have 3. Good

to have)

F1
User account

registration and login

1

F2 Adding, removing and

modifying products in

cart

1

F3 New listing upload 1

F4 Order creation from

check-out

1

F5 Administration

management console

2

F6 Email Verification

during registration

2

F7 Data exchange over

HTTPS

3

F8 Real payment solutions

like PayPal or Stripe

3

14

3.3 Use Case Diagram

The use case diagram includes all functions in the application. The primary use

cases for this application are viewing all products, adding items to cart and adding

new listing.

Figure 7. The application main functions

3.4 Sequence Diagrams

In this thesis, only two sequence diagrams for program operations are discussed:

add items to cart and add new listing. There are other operations in this

application and their sequence diagrams is similar to these two.

3.4.1 Add Items to Cart Sequence Diagram

One of the main functions of this application is the ability for users to add items to

their carts. First, users access the application and log in with credentials and client

sends requests to the server. If provided credentials are invalid, server responds

an error message. After a successful login, users perform add items to cart action

15

and then server will update a user cart document in MongoDB database. Finally,

server responds with a 200 -success code if everything is correct.

Figure 8. Add Items to Cart Sequence diagram

3.4.2 Add New Listing Sequence Diagram

Another main function of this application is for users to add new listing to the

listing document. Again, users access the application and log in with credentials

and client sends requests to the server. If provided credentials are invalid, the

server responds with an error message. After login, users perform add new listing

action and then the server will update user listing document in the MongoDB

database. Finally, the server responds with a 200 success code if everything is

correct.

16

Figure 9. Add New Listing Sequence diagram

3.5 Class Diagram

The class diagram contains all database models defined in the backend Node

application. For example, the User class has name, email, password as string, cart,

listings and orders as array of custom types. The billingInfo class is a subclass

within Order class. The relationships of classes are all composition, which indicates

that Product, Order and CartItem class does not exist without User class.

17

Figure 10. User, product and CartItem class diagram

18

Figure 11. Order and billingInfo class diagram

19

4 USER INTERFACE DESIGN

This section explains how the graphical user interface is designed in this

application. The user interface has been designed for general users and admin

management console.

4.1 User Interface for General Users

The design principles of this application are reactivity, user-friendliness, and

minimalism. Every action in the application will give users some feedback for

notification purpose. Its minimalist design also makes the application very simple

and easy to use.

Figure 12. Home page with a user not logged in

On the Home page, there is a search bar, navigation bar in the header and a list of

products in the body of the website. On the left top corner there is a store icon

from Font Awesome, which gives the users basic understanding of the website.

Then there is a search bar on the right of store icon with a search icon at the end

20

of search bar. The search bar has a product searching functionality. Then in the

navigation bar there are two navigation buttons: login and register, both of which

will lead to different pages. In the website body, a list of all products is shown in

the form of image, product name, product type, price and the “Add to Cart”

button. The “Add to Cart” button will only work when users are logged in and the

logged in user is not the seller of the product. If the user clicks on the product

image or product name, the application will route to the ItemDetails page which

is shown in Figure 13.

Figure 13. ItemDetails page UI

When the user clicks on the product image or product name in Home Page, they

will be directed to the ItemDetails Page. It has a large product image on the left

side and more product information on the right side, for example: name, price,

genre, number in stock, seller email and description. An item can be added to the

cart on the detail page. On the left top corner there is the “Back to Home Page”

button which will redirect users back to the Home Page.

21

Figure 14. Login and Register page

The Login page and the Register page are implemented similarly in a simple UI

design. They are contained in a card component with a header tag, form and two

buttons in the bottom. On the Register page, if a new user registers successfully,

the application will direct the user to the EmailToBeConfirmed page for email

verification shown in Figure 15.

Figure 15. Email to be confirmed page

On the EmailToBeConfirmed page, a text of header message is displayed and

below that there is a “Resend Email” button in case the user does not receive the

22

verification email, or some users try to login without emails being confirmed (see

Figure 16).

Figure 16. Email Confirm Message Page

After the user opens the link in the confirmation email, a dynamic confirm page

will be displayed based on the user id in the database. On the page a confirmation

message is shown and the “Go back to login” button can direct the user to the

login page.

Figure 17. Home page with the user logged in

When the user logs in successfully through the Login Page, the Home Page with

users logged in is shown (Figure 17). The only difference with the Home Page not

logged in is the changes in the navigation bar. On the logged in Home Page there

23

are two navigation buttons: Cart, Profile and Logout buttons. The Cart and Profile

buttons will lead to different pages and the Logout button will just log the user out

and the application will update the UI to the not logged in Home Page.

If the user is on the Home Page logged in, they can add selected items to their cart

by clicking the “Add to Cart” button on each item. This action will not only add an

item to the cart but also updates the items count in the navigation bar Cart button.

The system will check if the item already exists in the cart or not and decide

whether to increment the items count or not.

Figure 18. Cart page

24

On the Cart Page (Figure 18), the user will find all the items added to cart. The

user can change the quantity of items which will change the total price as well

and delete an item. All the actions will update the UI and updates will be stored

on the backend server. In the right bottom corner, the total price of the cart

items are shown and as well as the check out action which leads users to the

Order Page (Figure 19).

Figure 19. Order page

On the Order page, the user will see a summary of ordered items in the cart with

information about the single price, quantity, and total price. Figure 19 shows a

form for user billing information, and it asks general shipping details, including

name, country, address, phone number and payment methods.

25

Figure 20. Check out success page

After the user clicks the “Pay Now” button with all billing information entered

properly, it will go to the CheckOutSuccess Page that displays a check out success

message (Figure 20). To make the operation more interesting, a confetti animation

effect is added. The user can then go back to the store using the button below the

message.

Figure 21. Profile page

If the user goes to the Profile Page with the “Profile” link in the home navigation

bar, they will find their user information and all the listings that they have posted

in the application. Below the listings they can also find the order history that

26

contains all the orders they have completed. The user information section shows

username and email address. In the Listings section, the user can add a new listing

by clicking the green add icon at the end of listings and delete a listing.

Figure 22. Deletion confirmation modal

When the user clicks the red arrow in the listing, a modal (also called popup) will

show up for deletion confirmation (see Figure 22).

Figure 23. New listing modal

A New Listing form modal (Figure 23) is displayed when the user wants to add a

new listing item. There the user uploads an image file, enters name, price,

27

description, number in stock and genre information. If all information is entered

correctly, a new product (also listing) will be created and displayed on both the

Profile page and the Home page.

Figure 24. Order detail page

If the user clicks on the order Id on the Profile Page in the Order History section, it

will direct to the OrderDetail Page. The user can view purchased items and billing

information.

4.2 User Interface for Admin Management Console

Apart from user interface for general users, there is also an admin management

console for admin user to manage suspension of user accounts, deletion of

products and etc.

The admin login page, shown in Figure 25, can only be accessed through the

correct URL. The log in function will not work for general user accounts.

28

Figure 25. Admin login

Figure 26. Admin home page

After the admin successfully logins in, the application shows the Admin Home Page

with a side navigation bar on the left side and a welcome message. The side bar

has four navigation links: Home, Users, Products and Orders. Each one of them

correspond to one page. The default page is the home page.

29

Figure 27. Admin user management page

On the admin/users page (Figure 27), the admin can view all users including

himself. The users and information are displayed in table format. There are user

emails, isAdmin and Suspended fields. The admin is able to toggle the suspended

property between false and true. When a user’s suspended property is true, the

user will not be able to login to the application.

30

Figure 28. Admin products page

Unlike the Products view on the Home page of the application, the products

management console displays only the product names and a delete button which

will trigger product deletion. The admin can also click the product names to view

the product details at admin/products/productDetail page.

Figure 29. Admin product detail page

The Admin Product Detail Page is very similar to the Product detail page except it

does not provide the add to cart button.

31

Figure 30. Admin orders page

The Admin orders page displays all the orders grouped with different users. The

admin is able to view order details by clicking the order name which will direct to

admin order detail page, which is the same as the order detail page in the user

profile.

After the operations are complete, the admin can get back to the application

main page by logging out in right bottom corner of the side bar.

32

5 IMPLEMENTATION

This section will describe how the functionalities and graphical user interfaces

were implemented by code in detail. As it was mentioned in the Introduction

section that this project combines two applications: backend server and frontend

client. In each subsection, these topics will be discussed:

 Project Environment

 Directory Structure

 Application Source Code

5.1 Integrated Development Environment

There are many different IDEs in the market, for example, Eclipse, NetBeans,

Visual Studio, WebStorm, and Atom. The one chosen for this project is Visual

Studio Code, a source code editor (can also be classified as IDE) developed by

Microsoft. It is a lightweight but powerful source code editor which runs on the

desktop and is available for Windows, macOS and Linux. It comes with built-in

support for JavaScript, TypeScript and Node.js and has a rich ecosystem of

extensions for other languages and runtimes (Microsoft, 2022).

33

Figure 31. Visual Studio Code user interface

5.2 Backend Server

The Node backend server is developed to create REST API endpoints for frontend

and execute project logics and then modify data in the database.

5.2.1 Project Environment

The Project environment is the basic setup of a project. It consists of different

external dependencies, config file and environment variables. On the backend

server, a Node Typescript environment is set up with yarn, which is a package

manager similar to NPM. It creates a package.json file in the project root directory.

The package.json file configures dependencies, version, engines, license, running

scripts, development dependencies and so on.

5.2.2 Directory Structure

In Figure 32 shown below, the first directory is coverage. It is a testing report

automatically generated by Jest, which will be discussed later in the chapter. It

basically shows how many percentages the test cases have covered the

34

application. The second one, dist, is the output directory for JavaScript files which

are compiled TypeScript files. The third node_modules are installed packages

modules. The test is for testing code which will be covered in the chapter on

testing.

Figure 32. Directory Structure backend

The main directory is src folder, which contains config, controllers, middlewares,

models, routers, services, types and utils. Each of them has corresponding files

inside.

35

5.2.3 Application Source Code

In the root directory of the project, aptotes and server.ts are used as base files. In

the server.ts MongoDB connection and server boot are handled. First dotenv (an

environment variable loader) is used to load environment variables defined in .env

file. Then Mongoose and server are running on the port defined as environment

variables (see Code Snippet 4).

mongoose.connect(host, {

 useNewUrlParser: true,

 useUnifiedTopology: true,

 useFindAndModify: false,

 useCreateIndex: true,

 }).then(() => {

 app.listen(app.get('port'), () => {

 console.log(

 ' App is running in %s mode',

 app.get('port'),

 app.get('env')

)

 })

 })

Code Snippet 4. server.ts

The app function is imported from the app.ts module. In app.ts, we import built-

in and 3rd-party middlewares: express, dotenv, lusca, compression and cors. Then

app is defined using express and call app.use to allow cors access from all url

36

addresses. JWT_SECRET will also be checked. After that app will utilize all the 3rd-

party middlewares and add route handlers and error handlers (Code Snippet 5).

if (!process.env.JWT_SECRET) {

 console.log('FATAL ERROR: JWT_SECRET is not defined.')

 process.exit(1)

}

app.set('port', process.env.PORT || 3000)

app.use(express.json())

app.use('/api/products', productRouter)

app.use('/api/user', userRouter)

app.use('/api/orders', orderRouter)

app.use('/api/auth', auth)

Code Snippet 5. app.ts

The route handlers used by app are defined in the routers directory as mentioned.

In auth.ts, we import two controllers, authenticate User and is Admin, from the

controllers directory

The router function is achieved with the express Router() method. Then we will

call router.post() to define post method for each controller. Then in order.ts, we

have similar methods and route handlings (Code Snippet 6).

import express from 'express'

37

import { authenticateUser, isAdmin } from
'../controllers/auth'

const router = express.Router()

router.post('/', authenticateUser)

router.post('/isAdmin', isAdmin)

export default router

Code Snippet 6. auth router

In controllers directory, it provides necessary controllers for the router handlers.

First auth.ts controller has authenticateUser and isAdmin controllers (Code

Snippet 7).

const { email, password } = req.body

const user = await User.findOne({ email: email })

const passwordIsValid = bcrypt.compareSync(password,
user.password)

const token = jwt.sign({ _id: user._id }, jwtKey)

res.status(200).json(token)

Code Snippet 7. auth controller

In authenticateUser method, we will get a request from user in request body. After

checking if the user exists, a 3rd-parth library bcrypt is used to compare the hashed

password in the user database. If the password matches with the email and the

user is not suspended by admin, a jwt token is sent back with a status 200, saying

the user is logged in. In the isAdmin method, the logics are similar except we will

check if the isAdmin property is true.

In the order.ts controller, we define several methods:

38

 getAllOrders

 getOneOrder

 findOrdersByCustomerEmail

 createOrder

 deleteOrder

All the methods follow the basic principles of REST api CRUD operations. One

example of code is displayed in Code Snippet 8.

const newOrder = new Order({

 totalPrice,

 timestamp,

 customerEmail,

 purchasedItems,

 billingInfo,

})

const user = await User.findOne({ email: customerEmail })

user.cart = []

user.orders.push(newOrder._id)

await UserService.saveUser(user)

await OrderService.createOrder(newOrder)

Code Snippet 8. order controller createOrder method

The main logic is straightforward: Create, Read, Update, Delele (CRUD) operations.

Notice that when creating an order, the cart items must be cleared so that the

user will have an empty cart after making an order. There UserService and

OrderService are used which are both defined in the services directory. In the

39

deleteOrder method, the splice() method is called to remove one from the index.

Splice() is a native JavaScript array method. The product controller and user

controller are similar to the above order controller.

In the services directory, there are three services which are created to manipulate

application data and run some queries. The first file is order.ts which creates order

service. It has six methods which are self-explanatory as the names suggest (see

Code Snippet 9):

 createOrder

 getAllOrders

 getOneOrder

 findOrdersByEmail

 findOrderById

 deleteOrderById

const createOrder = async (order: OrderType) => {

 return order.save()

40

}

const getOneOrder = async (orderId: string):
Promise<OrderType> => {

 const foundOrder = await Order.findById(orderId)

 return foundOrder

}

const findOrdersByEmail = async (customerEmail: string)
=> {

 const foundOrders = await Order.find({ customerEmail:
customerEmail })

 return foundOrders

}

Code Snippet 9. order service

Those methods are called by controllers and the Order type and class are imported

from models directory. The methods for queries are based on mongoose query

building.

In models directory. We have created four models:

 CartItem

 Order

 Product

 User

Each model has different schemas defined using mongoose schema method

because mongodb is a NoSQL database.

The first model CartItem is not shown in database. It is included as an embedded

model in user model. We first declare the CartItemType with imageUrl as string,

41

productName as string, productId as a mongodb object id, price as number,

quantity as number and ownerEmail as string. The the schema and the

corresponding model are created as name CartItem (Code Snippet 10).

export type CartItemType = Document & {

 imageUrl: string

 productName: string

 productId: mongoose.Schema.Types.ObjectId

 price: number

 quantity: number

 ownerEmail: string

}

Code Snippet 10. CartItem model

Then we have Order model which has similar methods and definition like CartItem

model. The OrderType is defined with totalPrice as number, timestamp as string,

customerEmail as string, purchasedItems as array of CartItemType and billingInfo

as an object which has its own types: fullName, country, streetAddress,

phoneNumber, postalCode, city and paymethodMethod all as string. When we

declare purchasedItems, we use a common document-oriented relationship

pattern called embedded document (Tutorialspoint, n.d.). It has the CartItem as

an embedded document in the Orders documents. All the properties in CartItem

will also be displayed in Orders documents (Code Snippet 11).

export type OrderType = Document & {

 totalPrice: number

 timestamp: string

 customerEmail: string

 purchasedItems: CartItemType[]

42

 billingInfo: {

 fullName: string

 country: string

 streetAddress: string

 phoneNumber: string

 postalCode: string

 city: string

 paymentMethod: string

 }

}

Code Snippet 11. Order model

5.3 Frontend Client

The TypeScript React frontend is developed to give a clear and easy-to-use User

Interface which will render the content automatically and re-render it when states

are changed. Same as backend IDE, Visual Studio Code is used for developing the

frontend application.

5.3.1 Project Environment

Similar to the backend, in frontend NPM is also used. A package.json file is

initialized (Code Snippet 12).

"name": "online-store-frontend",

 "version": "0.1.0",

 "private": true,

 "dependencies": {

43

 "@fortawesome/fontawesome-svg-core": "^1.2.36",

 "@fortawesome/free-solid-svg-icons": "^5.15.4",

 }

Code Snippet 12. package.json frontend sample

5.3.2 Directory Structure

In the base directory, there are four main directories:

 build

 node_modules

 public

 src

The build directory contains compiled TypeScript files from the src folder, which

are simply JavaScript files. The node_modules, same with backend, has

dependencies installed for this project. The public directory includes a index.html,

a favicon.ico and logo png file which are auto-generated files when we set up a

React project. The main file in public is the index.html file.

44

Figure 33. Directory Structure frontend

The directory that has our source code is the src directory. Inside src folder, we

can see there are five embedded directories:

45

 assets

 components

 pages

 redux

 sass

The first assets directory has one image file which will be used as profile picture

for every user in the application. The components directory holds component code

like home, profile, cart etc. The pages directory contains code defining React

Router pages. The redux directory contains source code handling Redux

operations.

5.3.3 Application Source Code

The source code of this application is all included in src directory. In the root

directory of src, two important files are App.tsx and index.tsx. The index.tsx file

renders ReactDOM with BrowserRouter and redux Provider (Code Snippet 13).

46

ReactDOM.render(

 <React.StrictMode>

 <Provider store={store}>

 <BrowserRouter>

 <App />

 </BrowserRouter>

 </Provider>

 </React.StrictMode>,

 document.getElementById("root")

);

Code Snippet 13. ReactDOM with Redux and Router setup in index.tsx

In app.tsx file, a main Routes are defined and inside the main Routes many Routes

for this app are included (Code Snippet 14).

<Routes>

 <Route path="/" element={<Home />} />

 <Route path="/profile" element={<ProfilePage />} />

 <Route path="/orderDetail" element={<OrderDetail />}
/>

 <Route path="/cart" element={<CartPage />} />

 <Route path="/detail" element={<ItemDetail />} />

 …

</Routes>

Code Snippet 14. React Routes defined in app.tsx

47

In the components directory, we a nested directory tree like this:

Figure 34. Components directory tree

And in each directory admin, cart, home, profile, the source code inside is related

to the different components and pages.

The pages directory includes all the pages or Routes defined in App.tsx file. Each

file in the pages has their own urls in the browser.

48

Figure 35. Pages directory tree

Inside Home.tsx file which defines the content in home page, I have defined

different states like items for all product items, isLoading for checking if the page

is waiting for response, hasError for checking error, searchText for text typed in

search field, cartItems for items added to the cart and cartItemQuantity. The

isLoggedIn value is given by redux root state. The navigate is used to navigating

custom url and dispatch is used for dispatching redux action (Code Snippet 15).

49

const [items, setItems] = useState([]);

const [isLoading, setIsLoading]=useState<boolean>(true);

const [hasError, setHasError] = useState<boolean>(false);

const [searchText, setSearchText] = useState<String>("");

const [cartItems, setCartItems] = useState([]);

const [cartItemsQuantity, setCartItemsQuantity] =
useState(0);

const isLoggedIn = useSelector((state: RootState) =>
state.isLoggedIn);

const navigate = useNavigate();

const dispatch = useDispatch();

Code Snippet 15. The home.tsx function and state definitions

Then a useEffect(callback, dependency) hook is used to get products from

backend. The useEffect hook is used to perform side effects in application and

different usage of useEffect will correspond to different lifecycle methods in class-

based component. It uses axios to fetch data and handle the Promise with then

method and handle error with catch method. The related states are changed and

finally we will clean up the operation after the component unmounts (Code

Snippet 16).

50

useEffect(() => {

 axios("https://fierce-spring-store-
backend.herokuapp.com/api/products")

 .then((res) => {

 setHasError(false);

 setIsLoading(false);

 setItems(res.data);

 })

 }, []);

Code Snippet 16. The home.tsx file first usage of useEffect

After the first useEffect() hook runs, a second useEffect() will run in parallel. The

second useEffect check JWT in Cookies with three conditions (Code Snippet 17):

 No JWT stored in Cookies, the user is not logged in

 A JWT token longer than 149 characters stored in Cookies, it is the token

from admin login, and it will be removed

 A JWT token with 149 characters long stored in Cookies, get the user

information with the token

51

useEffect(() => {

 const jwt = Cookies.get("jwt");

 if (jwt) {

 if (jwt.length > 149) {

 Cookies.remove("jwt");

 } else {

 axios("https://fierce-spring-store-
backend.herokuapp.com/api/user/me", {

 headers: { "x-auth-token": jwt },

 })

 }

 }

 }, [isLoggedIn, cartItems.length, dispatch]);

Code Snippet 17. The home.tsx file second usage of useEffect

And finally in the return statement, the Home component returns Header, ItemList

and Footer component with related props (Code Snippet 18).

52

return (

 <>

 <div className="body-container">

 <Header

 setSearchText={setSearchText}

 cartItemsQuantity={cartItemsQuantity}

 setCartItemsQuantity={setCartItemsQuantity}

 />

 <ItemList

 searchText={searchText}

 items={items}

 isLoading={isLoading}

 hasError={hasError}

 setCartItems={setCartItems}

 cartItems={cartItems}

 />

 </div>

 <Footer />

 </>

);

Code Snippet 18. The home.tsx file return statement

One distinct aspect in return statement is the angle bracket <> inside return

statement which is named React Fragment. When multiple React components are

returned in a component, React Fragment is needed (The alternative would be div

53

container). Fragment could help you group child components without extra nodes

in the DOM. Angle bracket symbol is a short way of writing React Fragment. The

long format is <React.Fragment> and </React.Fragment>.

54

6 APPLICATION TESTING

In this section, testing types and tools used for the application are introduced.

When it comes with software testing, it always refers to automatic testing. Due to

time limit and heavy workload for this thesis project, automatic testing was only

done partly in the backend. For the frontend application, every component was

evaluated manually to make sure everything is working correctly on the client side.

As for backend server testing, there are two testing types that are implemented:

unit testing and integration testing. Unit testing tests a unit of an application

without its external dependencies; integration testing tests the application with

its external dependencies (Hamedani, n.d.). The testing tool used was Jest, which

is a delightful JavaScript testing framework with a focus on simplicity (Jest, n.d.).

For testing product api endpoints, most of testings are integration testings

because the product APIs have database server connection and need requests

from client. For this reason, request was imported from the supertest library which

mocks a client request and MongoMemoryServer from mongodb-memory-server

to create a MongoDB database. These methods were used to create some data in

database and test it automatically.

To write automatic tests, a test suite needed to be created with some setups and

different test cases. The describe method creates a test suite. In the callback

function, there were three methods to setup the database environment:

 beforeeach – runs before each test case

 aftereach – runs after each test case

 afterAll – runs after all test cases are complete

The first test case was to create a listing and product if all required parameters are

satisfied. A user was created first and a product was created using defined function

createProduct(). Then the http status code was expected to be 201, meaning

55

created and it also should have an id field. The name, genre and price were all

statically defined in createProduct() function (Code Snippet 19).

it('should create a listing and product', async () => {

 await createUser()

 const res2 = await createProduct()

 expect(res2.status).toBe(201)

 expect(res2.body).toHaveProperty('_id')

 expect(res2.body.name).toBe('Asus VivoBook S16')

 expect(res2.body.genre).toBe('electronics')

 expect(res2.body.price).toBe(1600)

 })

Code Snippet 19. Create a listing and product test case

In the second test case, we expected to get back an existing product. First, the

process of creating a user was repeated as well as a product. Then the id field was

extracted from the response body and the GET method was called on url

/api/products/productid. The id from the createProduct() method is expected to

be the same as the id from GET method (Code Snippet 20).

56

It(‘should get back an existing product’, async () => {

await createUser()

let res = await createProduct()

expect(res.status).toBe(201)

const 56roductid = res.body._id

 res = await
request(app).get(`/api/products/${56roductid}`)

 expect(res.body._id).toEqual(56roductid)

})

Code Snippet 20. Get back an existing product test case

The last test case in this application is to not get back a non-existing product test

case. This test is fairly straightforward and short. The GET method was called on

the url with a non-existing product id and the response status code should be 404

not found (Code Snippet 21).

it('should not get back a non-existing product', async
() => {

 const res = await
request(app).get(`/api/products/${nonExistingProductId}
`)

 expect(res.status).toBe(404)

})

Code Snippet 21. Not get back a non-existing product

In the terminal, to run the test files in test directory, the following command was

executed:

yarn test

which is defined as test script in the package.json file (Code Snippet 22).

57

"test": "jest --forceExit --detectOpenHandles --coverage
--verbose false"

Code Snippet 22. Test script configuration in package.json file

Then in the terminal window, testing operations were conducted. After the test

was finished, a test result was displayed (Figure 36) along with a detailed test

report in coverage directory as a HTML file.

Figure 36. Jest test result in the terminal window

58

7 CONCLUSIONS

The initial goal of this thesis project was to build an online e-commerce second-

hand store for users to purchase, sell their own items or place orders and for

administrator to easily manage the application data. To achieve the goal and meet

the requirements, a full-stack web application was developed with TypeScript,

React, Node, Express and MongoDB. After the development and testing phases,

the project was then successfully deployed to Heroku for both frontend client and

backend server for production.

During the development phase, numerous challenges and failures were

encountered. For instance, some commas or semicolons missing in JSON file in the

backend API testing took two days to understand what the problem is. Similarly,

environment variables undefined in production phase also greatly delayed the

deployment process. One of the greatest challenges during the development was

to setup an email confirmation service in backend using Nodemailer. To integrate

Nodemailer with the server, it requires many configurations such as credentials,

transport, email template etc. In addition, the Gmail sender account must be

configured as less secure apps access for Nodemailer to access the Gmail account.

In summary, the project meets its requirements and the initial goal. It was

completed and accepted by the supervisor after some improvement on

functionalities of the application.

This project still has much room for improvement although it achieves the initial

goal. For instance, an online payment solution such as Stripe or PayPal API could

be added to manage the online payment. The operations of item quantity in stock

can also be implemented so that the actual inventory stock operations can be

achieved. In addition, user information can be more complete with common

shipping address and profile picture. In addition, the project is currently using

HTTP as the internet protocol for data exchange because it can be more easily

59

implemented than HTTPS which is a more secure version of HTTP. In the future

improvement, HTTP could be replaced by HTTPS for better security.

60

REFERENCE

Express, 2017. Express offical site. [Online]

Available at: https://expressjs.com/

[Accessed 25 March 2022].

Hamedani, M., n.d. Udemy. [Online]

Available at: https://www.udemy.com/course/nodejs-master-class/

[Accessed 8 May 2022].

InterviewBit, 2021. InterviewBit. [Online]

Available at: https://www.interviewbit.com/blog/backend-developer-skills/

[Accessed 24 March 2022].

Jest, n.d. Jest Official Docs. [Online]

Available at: https://jestjs.io/

[Accessed 8 May 2022].

Microsoft, 2022. Visual Studio Code official docs. [Online]

Available at: https://code.visualstudio.com/docs

[Accessed 2 May 2022].

MongDB, n.d. MongoDB Documentation. [Online]

Available at:

https://www.mongodb.com/docs/atlas/?_ga=2.32041213.2145040344.1648165

715-579287739.1648165715

[Accessed 25 March 2022].

Redux, 2022. Redux. [Online]

Available at: https://redux.js.org/tutorials/essentials/part-1-overview-concepts

[Accessed 24 March 2022].

61

SASS, n.d. SASS offical document. [Online]

Available at: https://sass-lang.com/documentation

[Accessed 24 March 2022].

Singh, A., 2019. Medium. [Online]

Available at: https://medium.com/@aj.ankitsingh/stairways-to-become-a-full-

stack-developer-in-2019-189f954fff16

[Accessed 24 March 2022].

Sons, J. W. &., 2012. Professional Node.js: Building JavaScript Based Scalable

Software. 1st edition ed. s.l.:Wrox.

Tutorialspoint, n.d. tutorialspoint mongodb overview. [Online]

Available at: https://www.tutorialspoint.com/mongodb/mongodb_overview.htm

[Accessed 25 March 2022].

Tutorialspoint, n.d. tutorialspoint mongodb relationships. [Online]

Available at:

https://www.tutorialspoint.com/mongodb/mongodb_relationships.htm

[Accessed 3 May 2022].

W3Schools, n.d. W3Schools. [Online]

Available at: https://www.w3schools.com/REACT/react_components.asp

[Accessed 24 March 2022].

Wikipedia, 2022. Wikipedia. [Online]

Available at: https://en.wikipedia.org/wiki/Front-end_web_development

Wikipedia, 2022. Wikipedia. [Online]

Available at: https://en.wikipedia.org/wiki/TypeScript

[Accessed 24 March 2022].

