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Abstract 

Automatic Route Planning and Distance Calculation can be further developed by using 
the same factors as used in Route Planning by a Navigator while using the new 
Hydrographic S-100 Standards. These can be used to make this process automatically 
while considering the weather, depth, navigational dangers, and other related 
information like a regular Navigator does in reality. The purpose of this Thesis is to 
explain how Route Planning and Distance Calculation works, show the implementation 
of the new S-100 IHO standard and most commonly used pathfinding algorithms in 
automatic route calculation. Finally, explain why accurate and adaptable route 
calculation is essential to Autonomous Ships and Shipping in general in the future. 

For collecting the information for this Thesis, the chosen research methods were partly 
theoretical and partly constructive research, in the form of ascertaining and defining 
the problem to be solved, after presented the challenges that need to be tackled, 
literature review of researchers in the field of Pathfinding Algorithms applications, 
comparison of the literature collected, design of the process to solve the issue at hand, 
and theoretical evaluation of the various methods available depending on their use 
suitability and efficiency. 

In conclusion, the technology is here for using the new S-100 IHO ENC Standard for 
Automatic Route Calculation while using, as the research has revealed out of a diverse 
set of pathfinding algorithms, ranging from Dijkstra to A*, genetic, including ant colony 
algorithms, which have been proven by empirical studies that they can be potentially 
employed in route navigation for ships. The adoption of Automatic Route Planning and 
Calculation in Autonomous Ship Navigation is advocated by using deep learning 
algorithms; further cybersecurity concerns are also present, including but not limited 
to signal jamming and malicious attacks on the ship's communication equipment. 
Nevertheless, diverse solutions have been also identified to mitigate the threats and 
ensure that the ships can successfully attain their goals in reaching targeted 
destinations. In particular, the use of neural networks and deep reinforcement 
learning algorithms is a prevalent solution. 

Language: English 
Keywords: navigation, route planning, electronic charts, Routeing, route calculation, machine 
learning, geography, algorithms, data structures, pathfinding problems, wayfinding 
problems, safety check, maritime spatial data infrastructure, S-100, MSDI, IHO, IMO, ECDIS, 
GIS, ENC. 
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"The real voyage of discovery consists not in seeking new 

landscapes, but in having new eyes." 

Marcel Proust, French Novelist known for Remembrance of Things 

Past or In Search of Lost Time 
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1 Introduction 

Currently, route planning and distance calculation are mainly being done manually by a 

navigator, for passage planning for actual navigation at sea or automatically by 

dedicated software, either web-based or app-based, which is mainly used by office 

personnel who don’t have access to ECDIS (Electronic Chart Display Information System) 

or charts, such as shipbrokers, charterers, operators, and other parties interested in 

such information. I’ve had the personal experience of inaccurate route measurements 

made by routeing software by several hundred nautical miles, which in turn caused 

questions as that could result in significant delay and commercial impact and from the 

investigation the result was that the routeing software didn’t take into account several 

small islands and plotted the route over them. The advances in GIS (Geographic 

Information System) and digital hydrography, such as the new hydrographic S-100 

Standards, can be used to this process automatically while taking into account the 

weather, depth, navigational dangers, and other related information like a regular 

navigator does in reality. 

Route planning has evolved from an approximate science before the advent of real time 

communication and the Internet, where the vessel’s ETA (Estimated Time of Arrival) was 

a time window of several days, meaning the vessel could arrive at any time during these 

weeks, down to the ETA matching almost closely the ATA (Actual Time of Arrival) by only 

a few hours after an intercontinental voyage of several weeks, something that by its own 

right it’s a marvel of logistics. 

That of course wouldn’t be possible without the discovery of a series of technological 

inventions, such as long-range radio navigation such as Decca, Loran-C, the advent of 

satellite navigation with systems such as the GPS (Global Positioning System), GLONASS, 

Beidou, the internet, real time information feeds, API (Application Programming 

Interface) serving as a communication interface between different software applications 

and the evolution in the field of graph theory and pathfinding algorithms. logistics and 

process innovations such as Just In Time (JIT) arrivals, advanced port management to 

ensure prompt ships turnover, analysis of ships energy efficiency, standardisation of 

commodity paperwork and introduction of incoterms and electronic bills of lading, 
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which help vessels process their cargo and customs related paperwork faster and help 

for a quicker vessel turnover and a multitude of other innovations. 

Even after these innovations, there is room to further develop route planning to become 

not only more accurate in terms of accuracy but to be able to do constant route 

calculations and improvements on the current voyage, as a standalone system if it will 

be placed onboard an autonomous vessel. 

1.1 History of Route Planning and Calculation  

Route calculation is the result of a rigorous planning procedure called voyage planning. 

In the past voyage planning had to be made painstakingly on paper charts by plotting it 

first to general charts, then to other smaller charts. To get a “rough” distance 

measurement for an intercontinental voyage, it could take from 30minutes to even 1.5 

hours, depending on the navigators’ experience. For a more accurate reading, it could 

take from 1.5 up to 4 hours. From personal experience, the most challenging part was 

looking at the chart catalogue (see below Figure 1) and realizing that it would take the 

navigator quite a while to find the charts in the drawers and even worst when the chart 

he/she was looking for so bad was not there. Before routeing software, there were 

distance tables as either standalone books (such as reeds distance tables or np350 

admiralty distance tables, Lloyd’s maritime atlas) or as part of other books/publications 

(such as brown’s almanac or routeing charts). Some distance tables used low and high-

powered ship routes, where depending on the vessel’s engine horsepower, they would 

indicate the respective route to take. The assumptions used back then on the 

currents/weather are outdated due to climate change and the increase of vessel sizes 

and engine horsepower. These distance tables were used not only from the ships but 

also from the people ashore, who depended on the accuracy of this information by 

various stakeholders such as shipbrokers, charterers, operations managers. Accuracy 

was quite an issue due to the lack of sharing of information and experience at the time, 

and only people who were part of a specific group or company benefitted from this 

information exchange. Specialized software developed in-house by companies with 

resources such as AtoBviaC by BP, as it was quite a feat at the time, to contain all of the 

known tanker and bunkering ports in custom in-house software. Manual plotting of 

courses on ECDIS is the prevalent method now as ECDIS is mandatory equipment by IMO 
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now, and paper charts are only one of the alternatives and currently only being used for 

training and emergency in case of ECDIS failure. Consulting routeing charts and sailing 

directions / pilot books for the prevailing weather conditions in the area. Every route 

after it is drawn must be evaluated through the automatic safety check function, by the 

ECDIS software, in order to highlight potential issues in the plotted Route, which must 

then be, in turn, manually checked by the navigator and revise route or passage 

planning, as needed. 

 

Figure 1 Routeing Publications Covers and Admiralty Chart Catalogue (UKHO, 2020) 

Currently, a navigation officer on board a modern ship above 500 GT (Gross Tonnage) 

should have at the minimum an ECDIS available at his disposal for route planning, per 

mandatory IMO (International Maritime Organisation) requirements. Besides a standard 

ECDIS, a modern navigation officer can use touchscreen back of bridge navigation 

software for planning routes such as the one shown in Figure 2 and depending on the 

company’s budget. They may have a weather routeing software such as the one shown 

in Figure 3, where the planned Route can be optimized by the software to avoid heavy 

weather while minimizing fuel consumption and arriving at the shortest possible time. 

Also selecting the charts for the voyage so they can be ordered if needed, is done 
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automatically by uploading the route and the ECDIS will generate a list with all charts 

required for the voyage, or if the navigator chooses to manually select them from the 

ENC cell catalogue using a GUI (Graphic User Interface) like the one in Figure 4.        

                         

Figure 2 Using a touchscreen Back of Bridge Navigation software for planning routes 

(Navtor, 2015) 

                   

Figure 3 Modern Weather Routeing Software showing the weather affecting a specific 

route (SPOS, 2016) 

                                     

Figure 4 A graphic ENC Cell Catalogue for a specific area as shown in all modern ECDIS 

(ESRI, 2015) 
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S-52 is the IHO (International Hydrographic Organisation) standard for displaying 

navigational info on ECDIS, and S-57 is the IHO Standard for transfer of navigational data 

from the hydrographic office to the ENC producer and from there to the individual 

ECDIS. Each item has its own individual and group code and is displayed in layers as 

shown in the Figure 5 below. The bathymetric layer is adjustable according to the safety 

depth and safety contour, which is considering the vessel’s individual squat and UKC 

(Under Keel Clearance) calculations and the sailing area Zone of Confidence (ZOC) which 

depicts the hydrographic data accuracy of the area and in accordance with the 

company_navigational_policy.

 

Figure 5 S-57 ENC Raw Data display in Arc Map Maritime Module during construction of 

an ENC. (ESRI, 2015) 

Currently, there is an abundance of companies working in the field of maritime routeing, 

but few are the ones who are distinguished as go-to providers and even referenced in 

agreements and charter parties. Each company is using a different model for calculation, 

with most of them having manually plotted generic routes and then established main 

waypoints so that they can combine many destinations in a single route. The vast 

majority aren’t trade-specific like Worldscale, where the global Tanker Trade depends 

on making single voyage fixtures, and AtoBviaC, which was developed initially for the 

tanker industry. A few companies, such as MarineTraffic and Searoutes, use historical 

AIS (Automatic Information System) routes, which have been “cleaned” from clutter 

such as waiting, deviations, and similar occurrences which affect the actual voyage 

route. They remain generic, and even if they apply a seasonal filter for weather for 
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oceanic crossings, it still refers to past data and not the actual ones at present. A 

significant issue is that many companies ignore the individual vessel’s draft and 

dimensions, and thus many shorter routes are being lost. 

1.2 Statement of Purpose, Research Questions and Research Approach  

The challenges I faced during my tenure as a navigation officer, while striving to discover 

improved ways to overcome these issues and the realisation that the vast majority of 

Routeing Software available at the time offers a generic produced distance and only a 

few might have a selection for the ships draft and air draft, resulted to motivating me to 

research the topic further and compose this Thesis. These experiences made me realise 

that successful route / passage planning is an essential part of route calculation and 

without it, accurate and safe results couldn’t be possible.  

Despite the strides in advancement in the field of autonomous navigation, the focus on 

the actual passage / route planning by autonomous ships has been seriously 

underestimated because the companies that are researching for autonomous solutions, 

are equalizing marine navigation to autonomous car navigation driving on a road or a 

freeway, where the car has to follow the lanes.  

In this thesis, I will attempt to answer the following research questions: 

1) Why route calculation is more than a tabletop exercise by analysing the factors 

behind route / passage planning both using traditional and contemporary means 

of navigation, that includes the challenges faced during the planning of a voyage 

plan both from route planning software and the navigator’s perspectives? 

2) How to implement the use of the new S-100 IHO standard and pathfinding 

algorithms in automatic route calculation? 

3) Why accurate and adaptable route calculation is important to autonomous ships 

and shipping in general in the future? 
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1.3 Structure of the Thesis  

This thesis explains in the first chapter to the reader in brief, the history and evolution 

of route planning through the ages and the research statement, questions and approach 

to the thesis subject. Chapter two covers the methods and factors influencing automatic 

route planning and calculation. Chapter three explains the types of sailing methods and 

an operational point of view and that of the ENC (Electronic Navigational Charts) usage. 

In the fourth chapter the factors influencing route calculation are described. The history 

and evolution of electronic navigational charts are covered in the fifth chapter and in 

the sixth chapter the S-100 ENC standard is explained in detail technically and 

operationally. In the seventh chapter, pathfinding algorithms are presented and 

demonstrate their usefulness and application in video games, robotics and ship 

routeing.  Then the attributes of most well-known pathfinding algorithms are detailed 

and then compared between each other. The automatic route calculation for ships is 

covered in the eighth chapter by explaining how the process will work and what are its 

potential applications. The ninth chapter is about artificial intelligence and makes a 

distinction about the difference between machine learning and deep learning and it’s 

applications. Any potential cybersecurity issues are covered in the tenth chapter. The 

research methodology is explained in the eleventh chapter and the twelfth chapter has 

the conclusions of the thesis.  

2 Research Methodology 

For collecting the information for this thesis, the chosen research methods are partly 

theoretical and partly constructive research, in the form of ascertaining and defining the 

problem to be solved, after presenting the challenges that need to be tackled, literature 

review of researchers in the field of pathfinding algorithms applications, comparison of 

the literature collected, design of the process to solve the issue at hand, and theoretical 

evaluation of the various methods available depending on their use suitability and 

efficiency. Unfortunately, qualitative analysis methods such as interviews were not 

possible due to the demanding schedule of my current work and because several of the 

persons of interest, I approached with an important role in the industry were hesitant 

to disclose any information due to the commercial sensitivity of the subject. Sending 

questionnaires was not considered as a method, because the concept of the topic is 
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more about exploring the possible issues and possibilities of automatic route calculation 

would be restricting the exploration of the topic. Unstructured Interviews with general 

agenda of discussion, which encourage open discussion seem to be the most 

appropriate for this thesis, because the informant is allowed to speak freely about the 

topics covered and the interviewer would control the informant to only a small extent 

as long as the informant stays on topic (Zhang, Y., & Wildemuth, B. M., 2009). 

The literature review was made by following a simple 7-step structure according to 

Allison Kirsop,2021: First consider your audience - who are you writing for? This is 

important for the scope of the literature to be researched. Second, what type of review 

are you being asked to write - systematic or narrative? Do you know the difference? 

Third, who are the main players? Identify the research teams of your topic. Fourth, 

discuss timeframes correctly - be specific, and don’t generalize. Fifth step, back up your 

comments with convincing evidence. Sixth, be aware of accurately presenting conflicting 

data/correct citation and referencing. Seventh, know how to structure your review.  

3 Methods currently used for Automatic Route Planning 

As of now, automatic route planning processes are carefully guarded, and therefore 

these are not publicly known, except a few, but in my opinion, they seem to be divided 

into the following categories based on the method they use: 

1) Distances being calculated manually by experienced navigators for each class of 

ship. 

2) Distances being sourced by AIS data of the corresponding size/class of ship. 

Depending on the size, draft, type, and trade of the vessel, there is variance in its 

routing.  

3)  Or by being indicated in the way the route is being chosen/toggled in their 

interface, such as via nodes/waypoints.  

4) Wayfinding formulas applied on Open-Source maps, not considering the depth 

of the sea, but only the layer attributed as the sea. Information is not available on 

the topic due to the fact companies in the field, do not disclose these. 



9 

 

When calculating distances by AIS data and the size of the vessel, more specifically the 

companies collect the AIS positions of all vessels of a specific class, over a specific period 

of time e.g., 2 years, 1 year or as needful, and create traffic density maps. these density 

maps show at their thickest areas, the routes most widely used and the main points of 

connecting these lines are the waypoints of the voyage. By analyzing all traffic for a 

specific area, you can then filter by each size of vessel, as shown below in Figures 6 -15, 

and get a clearer picture of the routes each vessel takes depending on its size. If we want 

to further analyze it, we will have to identify when the vessel is laden or ballast according 

to his AIS status and by filtering the data per month of year over a period of years. This 

way the final result is more custom made for the specific size and type of vessel rather 

than a general routeing software. Results are fully custom made, but still are the better 

than what you can have with a generic wayfinding formula that disregards all trade 

specific and environmental factors such as depth, currents, winds, swell, seasonal 

storms. 

                   

                 Figure 6 All Year 2019 Traffic Density Map (MarineTraffic, 2021) 
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Figure 7 Handysize Bulk Carrier Year 2019 Traffic Density Map (MarineTraffic, 2021) 

 

Figure 8 Handymax Bulk Carrier Year 2019 Traffic Density Map (MarineTraffic, 2021) 
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Figure 9 Capesize+ Bulk Carrier Year 2019 Traffic Density Map (MarineTraffic, 2021) 

 

Figure 10 Large Container Ships >3,000 GT Year 2019 Traffic Density Map (MarineTraffic, 

2021) 
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Figure 11 Handymax Bulk Carrier Traffic (green) overlayed on top of Handysize Tankers 

(pink) Year 2019 Traffic Density Map (MarineTraffic, 2021) 

 

Figure 12 Panamax Bulk Carrier Traffic (green) overlayed on top of Handysize Tankers 

(pink) Year 2019 Traffic Density Map (MarineTraffic, 2021) 
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Figure 13 Capesize+ Bulk Carrier Traffic (green) overlayed on top of Handysize Tankers 

(pink) Year 2019 Traffic Density Map (MarineTraffic, 2021) 

 

Figure 14 Capesize + Bulk Carrier Traffic (green) overlayed on top of Aframax /LR2 + 

Tankers (pink) Year 2019 Traffic Density Map (MarineTraffic, 2021) 
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Figure 15 Capesize + Bulk Carrier Traffic (green) overlayed on top of Aframax /LR2 + 

Tankers (pink) vs.  Large Container Ships >3,000 GT (yellow) Year 2019 Traffic Density 

Map (MarineTraffic, 2021) 

Another method is when the calculated route is being chosen/toggled in the software 

interface, such as via nodes/waypoints. The results are variable depending on company 

to company due to their algorithm, a number of nodes, and other factors not visible, as 

they are done in the backend of the development process. Some “bottleneck” coastal 

areas, such as the One Fathom Bank in the Malacca Strait, straits in the Indonesian 

Archipelago, or in the Caribbean Sea, might have draft restrictions attributed so any 

vessels exceeding this draft will not be navigated through these points. This draft is not 

considering any squat effect, waves, swell, tides, and any other applicable factors. 

The route will be calculated predominantly through an algorithm by using ENCs 

(Electronic Navigational Charts) as the means to recognize navigational dangers and the 

depth of the sea. The type of ENCs that will be used can be the S-100, which contains 

meteorological, hydrographic, and nautical layers of navigational information in layers, 

as illustrated in Figure 16 below. 

An alternative method will be by using historic AIS routes, which are filtered by the type 

of ship, size class (handymax, panamax, etc.), and draft and then used as a measure to 

compare against the algorithm calculated route, as a means of weighted average 
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verification. The weight average value to be indicated by the number of vessels with 

similar dimensions. As a safety precaution, it’s always strongly recommended; the route 

always is validated by a certified professional if used for navigation. 

Route optimization has the potential to significantly contribute to helping reducing fuel 

consumption, thus emissions of CO2 and SOX (Sulphur Oxides) / NOX (Nitrogen Oxides). 

Due to the continuous evolution and revision of ship energy efficiency calculation 

standards by IMO, in this thesis, we won’t be expanding further on the subject. 

                                  Figure 16 S-100 Main ENC layers (KHOA, 2017) 

Currently, automatic route calculations, except when done manually, are only 

considering the shortest navigable route but without detailed draft checking. If they are 

carried out on official ENCs, there should be specific criteria implemented that will 

ensure the calculation of the safest possible route. 

The route planning criteria will be divided by order of most important to least, as shown 

in the Appendix I “Route Planning Criteria” and from Figures 17 to 19. 
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Figure 17 UKC calculation considering all environmental and ENC factors (AWP Marine 

Consultancy Ltd, 2017)             

                     

                       Figure 18 Standardized Depth Terminology (UKHO, 2015) 
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              Figure 19 Paper Chart Source Data reference example (UKHO, 2015) 

4 Types of Sailing Methods 

Doing route planning and therefore calculation, without considering the appropriate 

type of sailing method to be chosen, will not only significantly affect the resulting 

distance but also the safety of the voyage itself. Since the middle ages, the evolution of 

nautical science, geography and geodesy caused the degree of complexity of the 

subjects to be significantly expanded to help long distance voyages and the resulting 

changes that these needed such as accuracy, safety and therefore increase the degree 

of certainty that the vessel would actually arrive at its destination and not get lost or 

aground. 

Depending on the length of the voyage and the curvature of Earth’s shape, the main 

types of sailing in great circle sailing it’s illustrated, as a straight line when represented 

on a gnomonic chart or as a curved line on a mercator chart and in rhumb line sailing, 

shown as a straight path on a mercator chart or as a curved path on a gnomonic chart. 

Rhumb Line sailing is divided into further subcategories with a certain degree of 

complexity which will cause deviation from the current subject, but for the sake of 

staying on topic and brevity, these are omitted in this thesis. 
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4.1 Depiction of Great Circle and Rhumb Line Navigation on Charts 

According to National Geospatial Intelligence Agency 2019, American Practical 

Navigator, Chapter 12, plotting a straight course on a mercator map is referred to as 

rhumb line sailing, but due to the shape and, more precisely, the curvature of the earth, 

the rhumb line does not represent the shortest distance on its surface. On the contrary, 

the shortest distance between two pathways on the surface of the earth is the distance 

between two places on the arc of a great circle sailing, which is portrayed as a curved 

line on a mercator map but as a straight line on a gnomonic chart due to the form of the 

earth's curvature. While great circle routes may be drawn more readily on gnomonic 

charts, they are not conformal, which means that the navigator cannot directly measure 

directions or distances as he can on a mercator chart. By conformal, we mean that the 

projection picture preserves every angle between two curves that intersect on Earth (a 

sphere or an ellipsoid). As a result, the map's distances are not distorted unevenly. A 

great example of the illustration of great circle tracks on different projections is shown 

in Figure 20 below. 

                           

   Figure 20 Constructing a great circle track on a gnomonic and a mercator projection 

(National Geospatial Intelligence Agency, 2019) 

According to National Geospatial Intelligence Agency 2019, American Practical 

Navigator, Chapter 12, the most accurate method for numerically calculating any type 

of course and distance is to use spherical trigonometry and, more precisely, to apply the 

same methodology used in celestial navigation to sailing calculations. The point of 

departure is substituted for the observer's position, the geographical position of the 
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celestial body is substituted for the destination, the difference in longitude is substituted 

for the meridian or local hour angle, the azimuth angle is substituted for the initial 

course angle, and the great circle distance is substituted for the zenith distance.  

4.2 Great Circle Navigation  

According to National Geospatial Intelligence Agency 2019, American Practical 

Navigator, Chapter 12, by definition, a great circle is a circle on the surface of a sphere 

whose plane passes through its centre. The most well-known big circles on the earth's 

surface are the equator (˚ N/S) and the meridians. Thus, any vessel sailing on the equator 

in a due east/west direction or along a meridian in a due north/south direction is doing 

great circle sailing. These are not, however, the only big circles on the earth's surface. 

Any great circle created in any direction on the earth's surface will form a great circle 

track that a ship may follow.  

According to National Geospatial Intelligence Agency 2019, American Practical 

Navigator, Chapter 12, several considerations to bear in mind while calculating a great 

circle track for sailing include the fact that the great circle track is always angled away 

from the equator. 

4.3 Factors to consider during Great Circle Navigation  

According to National Geospatial Intelligence Agency 2019, American Practical 

Navigator, Chapter 12, the shortest distance between two points is calculated along the 

arc of the great circle that links them. Traveling the shortest route between two sites 

through great circle sailing rather than rhumb line may save several hundred miles. As a 

result, it is clear that such considerable disparities should be considered while planning 

an ocean cruise for a vessel. The rhumb line, convenient as it is, should not be used for 

long voyages except as noted below. 

1. For small distances, the rhumb line, and the great circle are nearly coincident. 

2. The rhumb line between places near the same meridian is very nearly a great 
circle.  

3. The Equator is both a rhumb line and a great circle. Parallels of latitude near 
the Equator are very nearly great circles.  
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According to National Geospatial Intelligence Agency 2019, American Practical 

Navigator, Chapter 12, Thus, parallel sailing, a kind of rhumb line sailing, is almost as 

short as a large circle at low latitudes. On the mercator map, the arc of the great circle 

connecting two locations (unless they are both on the same meridian or both on the 

equator) will seem to be longer than the rhumb line's shortest path. The rhumb line is 

the indirect path, and by following the big circle, the vessel is constantly heading directly 

toward her port, as if it were visible. While the mercator map depicts the path as a 

straight line, the vessel does not arrive at her port until the very end of her trip. If, when 

attempting to follow a large circle, the ship is pushed away from it, as could be the case 

due to inclement weather, it will serve no use to return to the former course at the 

earliest convenience. Another large circle must be drawn connecting the ship's current 

location with the port of destination. Except for the equator and constant meridian lines, 

any great circle intersects each meridian at a different angle. As a result, the path of a 

ship following a great circle track must be continually adjusted to maintain this angle. 

Due of the impracticality of continually altering the course of a vessel, this need is 

satisfied by changing the course at regular intervals. When a ship follows the great circle 

track, it follows a set of chords connecting the different places along the track's length. 

A sphere's great circle bisects every other great circle. As a result, the Equator bisects 

each of the Earth's great circles. As a result, if the great circle is stretched around the 

Earth, one half will be illustrated in the Northern and the other half in the Southern 

hemisphere, with the mid-point of either half being the point on the circle farthest from 

the Equator. 

A great circle track may be drawn on a Mercator map by finding the track's number of 

points, drawing a reasonable curve across them, or connecting the points with a 

sequence of straight lines called chords. Theoretically, tangents to the great circle are 

preferable than chords. In practise, the procedures are almost identical. Points are 

picked along meridians, often at five-degree intervals, since this enables the selecting 

off and charting of latitudes and longitudes around the great circle track. This approach 

is often used in practise to identify and draw the path of a great circle on a Mercator 

map. One of the primary benefits of the solution through great circle chart is that any 

potential problems become readily visible. Land, ice, or extreme weather, as well as 

other operational restrictions, may preclude the utilisation of great circle sailing for 
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portions of or the whole of one's voyage. Pilot charts are very important in this situation. 

A brief run along the rhumb line is often sufficient to reach a place where the great circle 

route may be followed. Where a choice is available, the rhumb line picked should be as 

close to the direct great circle as feasible. Assume the big circle path comes dangerously 

close to a nautical hazard. In such instance, a great circle to the area of the danger, one 

or more rhumb lines along the hazard's boundary, and another great circle to the 

destination may be required. Another possibility is to employ composite sailing; another 

is to use two great circles, one from the place of departure to a position near the 

maximum latitude of clear water and another from that point to the destination. 

4.4 Rhumb Line Navigation  

Any line on the Earth's surface that, due to its constant bearing, cuts all the meridians at 

the same angle, known as a Rhumb Line course.  

According to National Geospatial Intelligence Agency 2019, American Practical 

Navigator, Chapter 12, a rhumb line intersects all meridians at the same angle and is 

illustrated as a straight line on a Mercator map. The main benefit of the rhumb line is 

that it keeps a constant true direction, which means that a ship staying on a Rhumb Line 

course between two points does not deviate from its true heading. It is suitable for the 

majority of navigational applications, bearing lines included (except long-range such as 

the ones obtained by radio bearings). Except at high latitudes, both course lines and 

rhumb lines are represented on a Mercator map as rhumb lines. The path’s spherical 

shape is illustrated by different formulas for Rhumb line sailings, which produce many 

alternative outcomes. They will provide varying results for routes, lengths, and locations 

based on the kind of sailing performed. 

 

5 Factors affecting Route Calculation 

The difference between a planned and an executed voyage is environmental and 

technical factors, potentially affecting the voyage execution. The factors that are 

affecting the voyage can be distinguished to technical, which are but not limited to the 

ship’s draft, depth, breadth, Length overall, Deadweight, Displacement, Air Draft, Speed 
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and squat, and the environment such as wind/wave/current/swell direction and speed, 

barometric pressure, tides, salinity, ocean’s depth, and characteristics to name a few.  

Then these must be distinguished into static and dynamic so that we can assess and 

monitor passage planning and execution with the best possible result, according to the 

below table.    

Table 1 List of Dynamic and Static Elements affecting Passage Planning, 2021              

Static Elements Dynamic Elements 

Ship’s Draft Speed 

Air Draft Squat 

Breadth Under Keel Clearance (UKC) 

Length overall Wind direction and speed 

Deadweight Wave direction and speed 

Displacement Current direction and speed 

Ocean’s depth and bottom 
characteristics 

Swell direction and speed 

Metacentric Height (GoM) Air & Water Temperature 

Depth Barometric pressure 

 Tides 

Water salinity 

Ice Coverage and thickness 

Voyage Distance and Destination ETA 
(Estimated Time of Arrival) 

(Source: Author, 2021) 

Due to the dynamic nature and being affected by the morphology of the surrounding 

landscape and the other environmental factors, the environmental factors have a 

seasonal pattern that can make a significant difference in the long-distance voyage. 

This example is shown in the Weather Routeing Charts of UKHO (United Kingdom 

Hydrographic Organization) and the World Sailing Routes by NGIA (National Geospatial 

Intelligence Agency) like in the Figure 21 below. They depict the optimal route to be 
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followed depending on the month sailing the area, and the average weather conditions 

met in these areas. 

                           

Figure 21 The World Sailing Ship Routes (National Geospatial Intelligence Agency, 2019)  

6 History, Present and Future of Electronic Navigational 
Charts 

In May 1992, Electronic Navigational Charts (ENC) officially accepted the IHO 

(International Hydrographic Organization) S-57 standard. They had, however, been 

created unofficially since the 1980s for military uses by the US and Canadian Navy. 

In November 2000, after drafting the IHO Standard S-57 3.1, the IHO decided to defer 

its implementation in order to provide ECDIS (Electronic Chart Display Information 

System) manufacturers further time to produce equipment that complies with the IHO 

requirements. 

Due to the demanding operational challenges inherent in maritime transportation and 

the ever-increasing pace of global trade, it was decided to create a new ENC standard 

that would incorporate the benefits of data available from a variety of sources 

(meteorological, hydrographic, geographic information science (GIS), etc.) and 
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advancements in maritime technology. Thus, IHO began developing S-100 in 2009 and 

completed it in January 2010 with the announcement of S-100 standard 1.0.0 and its 

implementation timeframe. S-100 edition 3.0.0 and S-101 edition 1.0.0 were created in 

2017. 

Advances in coding and digital hydrography, such as the new Hydrographic standards 

such as S-100, may be utilised to automate this procedure while taking into 

consideration the weather, depth, navigational hazards, and other pertinent 

information, much like a real-world Navigator would. The real-time incorporation of 

meteorological, hydrographic, and geographic information system (GIS) data will aid in 

the practical usage and requirement of ENCs in everyday marine operations. 

S-100 will be critical in developing and establishing electronic navigation and MSDI 

(Marine Spatial Data Infrastructure) as essential capabilities of maritime logistics and 

operations. 

According to the International Hydrographic Organization's (IHO) Marine Spatial Data 

Infrastructures Working Group (MSDIWG), a Marine Spatial Data Infrastructure (MSDI) 

is that component of a Spatial Data Infrastructure (SDI) that is focused on marine input 

in terms of governance, standards, information and communications technology (ICT), 

and content (IHO, 2017). The fact that 71% of the earth's surface is covered by water 

(USGS, 2018) underscores the crucial need of a maritime data gathering. According to 

the International Hydrographic Organization's Marine Spatial Data Infrastructures 

Working Group (MSDIWG), MSDI is gaining traction as a method for integrating 

disparate data sources for efficient analysis across a variety of disciplines, including 

spatial planning, environmental management, and emergency response. This demands 

generic data storage, rather as storage for a single product, a local user group, or a 

specific purpose. An MSDI is a collection of hydrographic products and an infrastructure 

that enables data exchange at all levels. 

An MSDI can be described as a framework comprising of the key components shown in 

Figure 22 below. 
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   Figure 22 Policy & Governance, Technical Standards, Information Systems and 

Geographic Content comprising the Four Pillars of MSDI, (IHO,2017) 

Spatial Data is information or data that indicates the geographic location of features and 

limits on Earth and Space, including natural or man-made features, oceans, and space. 

It comprises information about these objects and boundaries, such as their properties, 

observations, and other metrics. 

Spatial data is often represented using coordinates and topology and is therefore 

mappable. Geographic Information Systems are often used to manage, access, and 

analyse geographical data. 

At the 1992 United Nations Conference on Environment and Development in Rio de 

Janeiro, a landmark resolution was adopted emphasising the need of reversing the 

effects of environmental degradation (GSDI, 2004). The Agenda 21 resolution 

establishes measures to tackle deforestation, pollution, the loss of fish stocks, and 

hazardous waste management, to name a few. At the 1992 Rio Summit and at a United 

Nations General Assembly special session called in 1997 to examine Agenda 21 

implementation, the critical significance of geographical information in helping decision-

making and management was underlined. In 2003, during the World Summit on 

Sustainable Development in Johannesburg, South Africa, a pioneering endeavour was 

made to illustrate the capabilities, benefits, and possibilities of employing online digital 

geographic information for sustainable development. 

Geographic information is crucial for making informed decisions on a local, regional, and 

global scale. Crime management, business development, flood mitigation, 

environmental restoration, community land use assessments, and disaster recovery are 
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just a few of the areas in which decision-makers benefit from geographic information 

and the underlying infrastructures (i.e., Spatial Data Infrastructure or SDI) that facilitate 

information discovery, access, and use. 

However, information is a valuable commodity. As a result, sufficient information and 

the resources necessary to effectively exploit it are not always easily accessible, 

especially in underdeveloped countries. By developing New Products with Commercial 

Potential, such as S-100, the most efficient and sustainable way to fund the production 

of Maritime Spatial Data without delay is to agree on a synchronous international 

implementation of the Dataset's regular production, validation/qualification, and 

dissemination. This necessitated coordination among multiple industry players to 

ensure that end-user devices were suitable for purpose. Legal recognition of new data 

products is necessary under the IMO framework, and IHO's duty is to guarantee that all 

technical and operational issues are considered in order to develop an internationally 

harmonised approach. 

                     Table 2 ENC Global Coverage statistics 2008-2017,2018 

                                             ENC Global Coverage  

2008 ENC Global Coverage 2017 ENC Global Coverage 

Small Scale Charts                                              
94%  

Small Scale Charts                                            
100% 

Medium Scale Charts                                        
68% 

Medium Scale Charts                                        
93% 

Large Scale Charts                                              
65% 

Large Scale Charts                                             
98% 

                     (Source: UKHO, 2018) 

 

Currently, less than 15% of the world's ocean waters have been measured directly, and 

only about 50% of the world's coastal waters (waters 200m deep) have been surveyed. 

Increased seabed survey coverage is crucial for the sustainable use of the oceans, seas, 

and marine resources, and therefore for achieving the United Nations Sustainable 

Development Goal 14 (A. Wölfl, J. Jencks, and C. Devey, Hydro International, 2021). 
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On August 27, 2021, an international mission comprised of representatives from the 

United States (NOAA), the United Kingdom Hydrographic Office (UKHO), and the 

Canadian Hydrographic Service participated in the S-100 sea trial in Busan, Republic of 

Korea., KHOA (Korean Hydrographic and Oceanographic Office) used an S-100 prototype 

ECDIS as shown in Figure 23 below. 

According to the report contained on the page "S-100 sea trials: working toward 

standardised navigation products," NOAA, 2021, the primary objective of the S-100 sea 

trial was to evaluate a prototype S-100-based Electronic Chart Display and Information 

System (ECDIS) capable of ingesting and displaying a variety of datasets including 1) S-

101 – Electronic Navigational Charts, 2) S-102 – High Resolution Bathymetry, 3) S-111 – 

Surface Currents, and 4) Throughout the route, test scenarios were conducted to check 

1) how the system integrated the various kinds of datasets and 2) how the high-

resolution bathymetry layer can be used to offer a more accurate safety contour and 

depict go/no-go situations based on underkeel clearance management data. Following 

the sea testing, the crew was able to provide suggestions to the IHO's S-100 working 

group on how to enhance the currently developing interoperability standard. 

Additionally, gaps were discovered that must be addressed as the IHO continues to 

refine product requirements. For instance, it was determined that, while data such as 

marine protected areas (MPA) are necessary for planning purposes, they may not need 

to be displayed on the front-of-bridge navigation system because the regulatory 

information associated with the MPA is already included in the base electronic 

navigational chart (ENC). Another critical feature that became obvious during the sea 

testing was the need for a consistent representation of data inside the navigation 

system. If each depiction of the product is produced independently, there is too much 

information when they are combined in a single system, rendering the system 

ineffective from a navigational standpoint. This will need enhanced coordination among 

IHO working groups to ensure that main navigation depiction is actually consistent. 
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Figure 23 S-100 prototype ECDIS displaying S-101 electronic navigational chart in 

conjunction with S-129 Underkeel Clearance management data. (NOAA, 2019)  

7 S-100 ISO Standards 

This new type of ENCs will bring innovations in the Maritime Navigation domain by not 

developing new components in isolation but together with other relatable ones, 

extensive and active feature catalogue registry, symbology, and software enhancements 

such as Layer Interoperability Catalogue (IC), more straightforward use of hydro data 

beyond Hydrographic Organizations and ECDIS users, S-100 being built using Unified 

Modelling Language (UML) thus offering more straightforward service through different 

platforms and through these innovations the IHO strives to bring Maritime Hydrography 

and Navigation into the mainstream GIS. 
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The IHO S-100 Data Framework is supported on various ISO 19100 Standards for the 

following purposes, as listed in the figure 24 below, in the Appendix II “List of the 

individual parts, their associated part numbers, and ISO 19100 Conformance standards”.  

 

Figure 24 IHO S-100 Components and their Associated ISO Standards (Robert Ward, Lee 

Alexander, Barrie Greenslade, Anthony Pharaoh, 2008) 

According to IHO (2019), the S-100 Standard's primary objectives are to enhance 

navigational safety, innovate standardised service delivery by decoupling data content 

from encoding format, enabling format-neutral product specifications, unlock the 

potential of marine geospatial data by supporting a broader range of marine or 

hydrographic-related digital data products and customers, and provide dynamic data for 

environmental intelligence. 

To that end, IHO (2019) intends to allow product specifications to evolve through 

extension without the need to publish new versions of existing product specifications, 

to provide an ISO-compliant registry managed by the IHO that contains flexible and 

expandable registers such as feature concept dictionaries and product feature 
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catalogues, and to provide separate registers for different user communities. The Plug 

and play updating capability is one of the new standard's primary advancements. This 

eliminates the requirement for new product specifications or system changes. To make 

it more user-friendly, the majority of features and attributes will stay intact, but they 

will be implemented in a structured and methodical manner, as seen below in Figures 

25 and 26 below. Nevertheless, the inclusion of additional layers will need a modification 

in ECDIS operating methodologies. This is the function of the Interoperability Catalogue 

(IC). The benefits of the S-100 standard to we will present include a new loading strategy 

for ENC Cells, advanced pick reports for ENC Data, notice-accompanied updates, a new 

information type, improved text placement, a new method of calculating and displaying 

bathymetric quality information, and additional information on the ENC.

 

                Figure 25 S-100 and S-101 Implementation Plan Phases (KHOA, 2017) 

 

               Figure 26 S-100 and S-101 Implementation Plan Timeline (KHOA, 2018) 
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The S-100 IHO Standard is comprised of the following ten parts: 

1) Establish the S-100 Registry / Register Mechanism 

2) Provide Guidance on creating application Schemas 

3) Metadata 

4) Creating Feature Catalogues 

5) Coordinate Reference Systems 

6) Spatial Properties 

7) Imagery and Gridded data 

8) Creating Portrayal Catalogues 

9) Encoding Formats 

10) Creating Product Specifications 

7.1 Types of S-100 Layers 

The S-100 IHO standard introduces various kinds of interchangeable layers, each serving 

a different purpose, which can suite the navigator depending on the type of data or 

combination of data he needs. These can be summarized depending on the Scale of 

Navigation, Type and Issuing authority in Appendix III” ENC Layers types depending on 

Issuing Authority and purpose of use”, and in conjunction with Figures 27 to 28 

contained in this chapter. 

           

             Figure 27 Visual Portrayal of S-100 ENC Types and Uses (KHOA, 2018) 



32 

 

                      

                                    

                 Figure 28 Portrayal of S-101 ENC various object layers (KHOA, 2018) 

In addition, one of the differentiating but subtle attributes of S-101 is the difference of 

scale ranges depending on the navigational purpose of the ENC as shown in the table 

below. 

 Table 3 ENC Usage Bands, 2019 

 

(Source: NOAA, 2019) 
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7.2 Data structures and attributes used in S-100 

The S-100 Data Framework is divided into a) Feature Concept Dictionary Register, b) 

Portrayal Register, c) Metadata Register, e) Product Specifications Register and f) Data 

Producer Code Register 

The process of building product specifications based on S-100 can be divided into the 

following phases according to the below table. 

Table 4 Phases of S-100 ENC Product Specification Assembly, 2015 

Phases of S-100 ENC Product Specification Assembly 

Phase 1 User Requirements Assessment 

Phase 2 Data Modelling (Application Schema) 

Phase 3  Data Classification and Encoding 

Phase 4 Create a Product Specification Document 

Phase 5  Registry / Register Work 

Phase 6 Product Verification 

(Source: IHO, 2015) 

Due to the large number of layers used in S-100 and the potential for information 

overload, symbol cluttering can potentially be a source of error when used, particularly 

for mission-critical tasks such as transiting shallow water, navigating in bad weather, or 

performing other tasks with a similar level of risk. 

To this end, KHOA has recommended to IHO (Paper for Consideration by TSM5, 

Procedures for S-100 Interoperability Catalogue, KHOA, 2017) that the Interoperability 

Catalogue (IC) be created. The IC is used to de-clutter displays, reduce information 

overload, resolve information and symbol conflicts, and improve the overall quality and 

understandability of information presented to mariners when multiple S-100-based data 

products are displayed simultaneously. One may argue that this functionality is a game 

changer for ENCs and maritime geographic information systems in general. If applied 
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properly, it may provide novel methods for doing Maritime Navigation-related activities 

or Operational Planning that take into account all possible environmental aspects. 

The Interoperability Catalogue has been separated into five (5) levels, each of which 

corresponds to the proper level of operation and layer count, as seen in the table below. 

Table 5 Table of Interoperability Catalogue (IC) Levels, 2018 

Level Definition 

Level 0 All interoperability processing is turned off. In this case, feature data 

pass unchanged through standard portrayal processing. 

Level 1 Feature types from different products, including S-101, are interleaved 

as specified by the display plane and drawing priority information in the 

interoperability catalogue. 

Level 2 If feature types in other products are determined to be superior in 

terms of accuracy and quality to specific ENC feature types, then these 

ENC feature types are suppressed.  

Level 3 The ENC is treated as one of the components of the data stack, and 

selected feature instances from other products may be treated as being 

superior to or enhancing selected ENC feature instances. 

Level 4 This level is the same as level 3 but permitted spatial queries to 

determine related subsets. Operations to define the interoperation 

results are explicitly defined using an adequate set of spatially capable 

rules. 

(Source: KHOA, 2018) 

Level 0 displays the S-101 as layers by first sorting them according to their qualities and 

then combining all S-101 layers to generate the final output. Then, additional S-10x 

products, such as S-102 and S-111 in the following example, are superimposed. 
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At Level 1, the Interoperability Display Plane is applied to permit viewing of the S-101 

ENCs, and then all of the S-10x ENCs' layers are combined into a single final layer with 

all of their properties. 

To allow viewing of the S-101 ENCs at Level 2, an Interoperability Suppressed Layer with 

just the required properties is deployed. The S-10x ENCs' layers are then blended into a 

single final layer with just the necessary properties. 

To explain how the Interoperability Catalogue works, three practical examples 

illustrated in figures 29 to 32, will be presented below utilising a Nautical S-101 ENC, a 

Bathymetric S-102 ENC, and a Current S-111_ENC.______________________________

 

              Figure 29 S-10x ENC layers used for the Demonstration (KHOA, 2018) 

                     

               Figure 30 Level 0 final depiction of the S-10x ENCs (KHOA, 2018) 
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                                Figure 31 Level 1 final depiction of the S-10x ENCs (KHOA, 2018) 

 

               Figure 32 Level 1 and Level 2 final depiction of the S-10x ENCs (KHOA, 2018) 

7.3 Display and data integrity of S-100 ENCs 

As the S-100 are currently, as of May/2021, still under development, there will be no 

mention of said standards. More specifically, for Validation checks, there is a 
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placeholder in the S-101 document under Annex C – S-101 Validation Checks, which 

doesn’t have any specific information as of now.  

As for display standards, in the same document, it’s mentioned that the Portrayal 

Catalogue contains the mechanisms for the system to portray information found in S-

101 ENCs. More specifically, the S-101 Portrayal Catalogue information are contained in 

the portrayal_catalogue.xml of the S-101 ENC Standard. 

8 Pathfinding / Wayfinding Algorithms    

A prerequisite to examining the different types of pathfinding algorithms is to review 

their history and their basic features or characteristics briefly. At the foundational level, 

pathfinding describes the process of identifying the shortest route between two end 

points, for instance, in route planning, maze navigation, planning of robot paths, and 

transit planning. Mathew (2015) also posits that pathfinding involves plotting, using 

computer applications to identify the optimal (shortest) route between the start and 

end nodes. According to the researcher, finding a path between points is highly 

complicated, and a distinction is identified between a path and the shortest path. In a 

different study, Sidhu (2020) describes pathfinding as a process of generating the 

optimal route that exists in a map between the start and end nodes, wherein artificial 

intelligence (AI), the algorithm is designed as a kind of graph search. However, the 

researcher reiterates that despite being widely adopted in gaming and artificial 

intelligence, pathfinding is also utilized in applications such as navigation systems, 

robotics, and networks. 

A similar finding is also emphasized by Abd Algfoor, Sunar, and Kolivand (2015). They 

report that pathfinding has emerged as an essential component in diverse applications 

such as GPS, robotics, video games, and crowds’ simulation. The researchers also 

observe that pathfinding can be implemented in various types of environments, 

including real-time, static, and dynamic. Abd Algfoor, Sunar, and Kolivand (2015) further 

add that pathfinding techniques have improved accuracy and efficiency over the years 

as diverse researchers have focused on developing high-performance and realistic paths 

for users. Directly, this indicates that pathfinding seeks to create natural and high-

performance paths at a basic level.  
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8.1 Pathfinding problem variations 

According to Botea, A., Bouzy, B., Buro, M., Bauckhage, C. and Nau, D. (2013), diverse 

variations of the pathfinding problem have emerged over the years, for instance, single-

agent pathfinding search, multiagent pathfinding search, adversarial pathfinding, 

heterogeneous terrain, mobile units, incomplete information, and dynamic changes in 

the environment. Despite the diversity in pathfinding problems, the researchers, 

however, argue that pathfinding essentially involves two phases or timesteps: graph 

generation and algorithms for pathfinding. The steps that help solve the shortest path 

and optimal path problems are completed in different pathfinding algorithms, including 

Dijkstra, A* algorithm, genetic algorithms, and ant colony (Rafiq, Kadir, and Ihsan, 2020). 

The researchers further posit that A* and Dijkstra algorithms are used in finding the 

shortest paths in a brief explanation. In contrast, the genetic and ant colony algorithms 

are utilized as search techniques to identify the minimum cost in a graph. The four 

different pathfinding algorithms are examined in detail in section 15.1, while this section 

discusses the variations of pathfinding problems further. In particular, three variants are 

examined: single-agent, multi-agent, and adversarial search pathfinding.  

To begin with, single-agent pathfinding problems are defined as problems that involve 

finding paths between two graph vertices (Sharon, G., Stern, R., Felner, A. and 

Sturtevant, N.R., 2015). The researchers argue that such problems have been widely 

researched in diverse applications such as robot routing, GPS navigation, network 

routing, planning, and combinatorial problems. In a different research, Standley and 

Korf (2011) further distinguish the single-agent from multiple-agent pathfinding 

algorithms by highlighting that the single-agent problems contain only one agent and 

are typically solved using algorithms for graph search-based on the A* algorithm. On the 

contrary, the researchers argue that multi-agent problems have multiple agents in the 

same problem space. When computing a solution, there is a need to be careful to avoid 

conflict between the agents. Sharon, G., Stern, R., Felner, A. and Sturtevant, N.R. (2015) 

reiterate the findings by observing that the multi-agent kind of pathfinding problems 

can be generalized as the single-agent pathfinding problems where there is more than 

one agent (k>1).  
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Further review by Bulitko Björnsson, Y., Sturtevant, N.R. & Lawrence, R. (2011) outline 

how the pathfinding algorithms work, whereby the researchers highlight that a 

requirement for the single-agent problems is that, before an agent can move, the 

algorithm requires to generate a complete and possibly an abstract path for each agent. 

As a result, this mode of operation causes them to scale poorly.  

The evaluation of the studies (Sharon, Stern, R., Goldenberg, M. & Felner, A. 2013; 

Bulitko, Björnsson, Y., Sturtevant, N.R. & Lawrence, R., 2011) indicate two differences 

exist between the single-agent and multi-agent pathfinding problems. First, as the 

authors posit, the single-agent problem comprises only one agent in the problem space, 

and its solution involves identifying a path between two graph vertices. In contrast, the 

multi-agent problem involves multiple agents in the same problem space, whereby each 

agent is allocated a unique start and end goal state (Sharon, Stern, R., Felner, A. & 

Sturtevant, N.R.., 2015). Secondly, the multi-agent search algorithm must identify paths 

between all agents from the beginning to end goal states while constrained by the fact 

that the agents should not collide during their movement in the problem space (Standley 

and Korf, 2011). Kem, Balbo, and Zimmermann (2017) further add that in other 

instances, the multi-agent pathfinding problem also aims to minimize the cumulative 

cost function, for example, the total number of time steps needed to ensure every agent 

can attain their goal. However, with single-agent algorithms, such constraints are not 

imposed on the problem space agent. A third difference between the single-agent and 

multi-agent pathfinding problems also arises, like their associated applications. For 

instance, Kem, Balbo, and Zimmermann (2017) posit that single-agent applications 

typically include the traveling salesman or proving theorem, while multi-agent 

applications comprise robotics, aviation, video games, and traffic control. 

The third kind of pathfinding problem is the adversarial search problem (Ivanová and 

Surynek, 2014). According to the authors, the adversarial cooperative pathfinding 

problem (ACPF) generalizes cooperative pathfinding (CPF), whereby an extension is 

made by adding an adversarial component. In explanation, Ivanová and Surynek (2014) 

posit that with a fundamental CPF problem, the objective is to identify routes that do 

not collide for agents, allowing them to traverse from their initial start nodes to unique 

one’s disjoint destinations. However, an additional feature with these problems is 

centralized control, whereby the agents are placed in static environments that are fully 
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observable and controlled. The agents do not make any decisions (Yannakakis and 

Togelius, 2018). The authors posit that the ACPF problem advances the CPF by adding 

an adversarial element outside the central planning mechanism control and acts against 

it. Ivanová and Surynek (2014) further explain that the classical CPF problems are 

challenged by their limited expressive power in the real world, as such environments are 

usually not fully cooperative. Subsequently, the adoption of ACPF pathfinding is justified 

due to the complexity of the dynamic real-world environment, making it more 

challenging to control.  

Based on the brief review of pathfinding problems, the multiple agent pathfinding 

(MAPF) searches is the most popular approach. It has been adopted in diverse 

applications in the real world, including aviation, robotics, video games, and traffic 

control (Sharon, Stern, R., Felner, A. & Sturtevant, N.R., 2015). The review also showed 

that in real-world situations, the environments are not fully cooperative. As a result, 

classical cooperative pathfinding may not be optimal in finding solutions in the problem 

space. As a result, the need for adversarial cooperative pathfinding was emphasized 

(Ivanová and Surynek, 2014). In the next section, a brief discussion of these applications 

is undertaken to understand how MAPF is utilized in real applications such as video 

games, robotics, and ship routing. The justification for reviewing such applications is that 

this provides insights that further understand route planning, which is the main focus of 

this research.  

8.1.1 Pathfinding algorithms adoption in video games 

According to Cui and Shi (2011), usage of pathfinding in video games is quite common. 

Different roles are played, and real-time strategies employed, for instance, where 

characters are sent to complete missions from one location to another. In this regard, 

pathfinding is utilized to allow the game characters to cleverly avoid obstacles and 

identify the most efficient path over different terrain. In another research, Mathew 

(2015) postulates that pathfinding in video games concerns how objects find paths 

around obstacles, such as how players lead a group of units in the play area containing 

the different obstacles.  

Bulitko, Björnsson, Y., Sturtevant, N.R. & Lawrence, R. (2011) further report that a 

common problem in video games regards identifying an existent path between two 
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nodes or locations, whereby agents need to act rapidly in response to player commands 

and actions by other agents. The researchers add that due to the requirement, most 

game developers require a time limit that is constant for the path planning amounts per 

move, for instance, a millisecond for each movement by simultaneous agents in the 

player space. However, an unintended consequence of such requirements is that 

pathfinding actions consume significant CPU (central processing unit) resources 

(Mocholi, Jaen, J., Catala, A. and Navarro, E., 2010). The authors postulate that as 

modern games feature more dynamic worlds and realistic characters, the problem sizes 

scale significantly, requiring more computing resources. To tackle the issue, Mocholi, 

Jaen, J., Catala, A. and Navarro, E. (2010) advocate for ant colony algorithms that 

consider characters' emotions in pathfinding applications. Bulitko, Björnsson, Y., 

Sturtevant, N.R. & Lawrence, R. (2011) share a similar view, whereby they argue that 

conventional algorithms based on A* employed in pathfinding applications in games are 

challenged because they scale poorly. In explanation, the researchers say that the use 

of static search algorithms, including A*, Iterative Deepening Algorithm (IDA*), Anytime 

Algorithms (ARA*), PRA*, DA* and D*, is not efficient as the various algorithms required 

to generate a solution that is complete before taking the first action. Subsequently, the 

increase in the size of the problems leads to an increase in planning time and a risk of 

exceeding prior finite upper bounds (Bulitko, Björnsson, Y., Sturtevant, N.R. & Lawrence, 

R., 2011).  

To alleviate the shortcomings of static search pathfinding algorithms based on A*, real-

time heuristic search algorithms are advocated (Lawrence and Bulitko, 2010). The 

researchers argue that such algorithms are justified in video games due to the 

requirement for rapid response time and the time limitation in the environments. In 

explanation, Bulitko, Björnsson, Y., Sturtevant, N.R. & Lawrence, R. (2011) report that 

search algorithms that are real-time in nature can address the problems in that, instead 

of computing all actions before deciding which one the agent ought to take, only a few 

steps are processed by undertaking a lookahead search of a fixed depth in regard to the 

agent’s current status. Thereafter, a heuristic algorithm is used to compute the rest of 

the actions and update the function over time. However, Lawrence and Bulitko (2010) 

argue that the shortcoming associated with real-time heuristic algorithms is that they 

do not view the end goal state. As a result, the agent has a risk of hitting a dead-end or 
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selecting suboptimal actions. The authors also highlight a second disadvantage because 

the real-time heuristic search agents are further observed to repeatedly visit the same 

state space, a phenomenon known as scrubbing (Lawrence and Bulitko, 2010). The 

implication is that the solution quality tends to be low while the scrubbing behaviour is 

considered irrational. 

Based on the broad application of real-time heuristic algorithms and static search 

variants, many researchers have focused on enhancing the algorithms in order to 

improve overall performance. With the heuristic algorithms, the focus is directed 

towards ensuring they deliver complete solutions. In contrast, with the A* algorithms, 

there is a focus on improving their scaling capacity with increased problem sizes (Bulitko, 

Björnsson, Y., Sturtevant, N.R. & Lawrence, R.,2011). For instance, Huang (2020) 

advocated for an approach to enhance A* algorithms by adding heuristics components 

to ensure the search for redundant paths was optimized. Thereafter, binary heap would 

be utilized to store the open list in the A* algorithm and further optimize the weight of 

paths in the map. The generated path was also further smoothed, and optimization of 

the A* algorithm done using the zonal search method (Huang, 2020). Findings obtained 

showed that the pathfinding efficiency improved, and player experience further 

enhanced.  

8.1.2 Pathfinding algorithms adoption in robotics 

In the robotics field, Abd Algfoor, Sunar, and Kolivand (2015) posit that since robots 

move in unpredictable, complex, unknown, and cluttered environments, the robots' 

movement should ensure they can detect obstacles and avoid them to reach their 

destinations successfully. As such, robots operate under two key constraints; avoiding 

obstacles in their environments and ensuring they reach their end goal destinations 

successfully. In another study, Standley and Korf (2011) add that robots employ 

cooperative pathfinding algorithms. They facilitate the plan motions of multiple robotic 

arms, whereby each can accomplish different tasks without collision. However, the 

limitation with these studies (Standley and Korf, 2011; Abd Algfoor, Sunar, and Kolivand, 

2015) is that they only focus on the deployment of pathfinding in scenarios where robots 

operate singularly. They explain how the agents navigate in environments and avoid 

obstacles where they are on their own. 
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 Further study by Mai and Mostaghim (2020) nonetheless reveals that pathfinding 

algorithms are also practical in scenarios where there are multi-robot systems. The 

algorithms have to mitigate collisions between robots and obstacles and other robots as 

they attempt to navigate from start to end nodes. There is an additional need to avoid 

collisions between the robots that travel within the same space simultaneously. Wei, 

Hindriks, and Jonker (2015) add that multi-robot cooperative pathfinding problems are 

challenging. The authors further argue that identifying an optimal solution for the 

problems is intractable and NP-hard as solutions that are centralized and based on a 

global search can ensure completeness but cannot scale optimally in large teams of 

robots and do not perform well in real-time.  

Likewise, Luna and Bekris (2011) report that are adopting decoupled decentralized 

solutions, where the robotic systems are provided with an extra level of autonomy, is 

also challenged because they do not guarantee completeness despite working well in 

real-time applications. As a result, the robots may end up getting stuck in deadlocked 

situations. One strategy to alleviate the challenge was proposed by Wei, Hindriks, and 

Jonker (2015), whereby instead of allowing the robots to access a shared database, 

similar to the decoupled scenario, the robots would be allowed to communicate with 

each other to keep track of their states and intentions.  

Other researchers have further advocated for novel techniques to guide robots in 

identifying optimal paths to facilitate goal attainment. For instance, Upadhyay, Shrimali, 

and Shukla (2018) demonstrated unmanned aerial vehicles (UAV) in leading n robots to 

n different destinations or end goals. The UAVs.  acted as the leaders of the robots by 

having a bird’s eye environmental view. In the study, an algorithm was deployed to 

create a relationship between the UAVs.  and the robots. In turn, the UAV would help 

create an efficient path for each robot, thereby avoiding collision between robots and 

obstacles and other robots. A similar study was also conducted by Luo, Espinosa, A.P., 

De Gloria, A. & Sgherri, R. (2011). They revealed that teamwork between UAVs.  and 

robots could be harnessed in undertaking rescue plans in different kinds of hazardous 

accidents. In the study, the researchers argued that the relationship was efficient in 

scenarios where outdoor robots could not obtain GPS information from satellites to 

traverse different terrain. In such a case, micro aerial vehicles (MAV) with cameras 
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would search the damaged area and communicate with the target robots to undertake 

the rescue operations.  

8.1.3 Pathfinding algorithms adoption in ship routing 

Similar to video games and robotic movement, ship routing also adopts pathfinding 

algorithms to identify optimal sailing courses and speed of the ocean voyage, which are 

based on nautical charts, captain experiences, sea conditions that are forecasted, and 

the individual ship features in a particular route (Grifoll, Martorell, L., Castells, M. & de 

Osés, F.Xavier.M.,2018). In a different study, Shin, Y.W., Abebe, M., Noh, Y., Lee, S., Lee, 

I., Kim, D., Bae, J. & Kim, K.C. (2020) report that various pathfinding algorithms have 

been developed to identify ship routes to guarantee economical ship operation by 

harnessing data on marine climate and Automatic Identification System (AIS). The 

researchers argue that optimization of shipping routes is crucial as ship owners aim to 

minimize fuel consumption while also ensuring that minimal emissions are generated to 

mitigate climate change effects. Shin, Y.W., Abebe, M., Noh, Y., Lee, S., Lee, I., Kim, D., 

Bae, J. & Kim, K.C. (2020) nonetheless argue that the algorithms used are not efficient 

in providing optimal routes as they fail to account for experimental conditions of 

operation such as ocean and weather. In the study, the researchers advocated for 

adopting an enhanced A* algorithm using weather data and AIS to mitigate the 

limitations of the conventional A* algorithm. 

The suggestion from the evaluation of the studies is that pathfinding in virtual (video 

game) and natural (robotic or ship routing) environments involve the identification of 

the shortest path from the start to end nodes as well as avoiding obstacles in the terrain 

as well as other agents within the same environments. However, several noteworthy 

differences were observed among the various applications. 

8.2 Attributes of Pathfinding / Wayfinding Algorithms important to 
the process 

Pathfinding / Wayfinding algorithms are being used in our daily lives in a wide variety of 

applications, ranging from Logistics to IT and Finance. The theory behind each algorithm 

is on its own a wide subject to be discussed in detail in this Thesis, so in this chapter 

analysis of the components / attributes of the algorithms found in Chapter 7.2, will only 
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be discussed, which in my opinion are the most pertinent to Automatic Route 

Calculation. 

8.2.1 Dijkstra algorithm 

According to Shu-Xi (2012), the Dijkstra algorithm is a popular shortest-path algorithm 

known as the labelling algorithm. The author reports that shortest-path problems are 

prevalent in different management, organization, and production settings. For instance, 

in the production process, shortest path solutions are necessary to complete production 

tasks quickly and with high efficacy (Shu-Xi, 2012). Zingaro (2021) also holds a similar 

view, who reports that rational plans are required to ensure significant gains can be 

made at minimal costs in management processes. Likewise, there is also a further need 

to ensure a large number of goods can be transported at minimal costs in transport 

settings. Aside from transport, management, and production applications, shortest-path 

problems are also widely adopted in diverse fields, including computer network routing 

algorithms, route navigation, game design, and robot Pathfinder, among others (Shu-Xi, 

2012).  

In another study, Javaid (2013) reports that the Dijkstra algorithm tackles the challenge 

of identifying the shortest path between a node in the graph to a destination node at 

the foundational level. In further explanation, the author also adds that with the 

algorithm, one can identify the shortest path from one location to all graph points 

simultaneously, hence being termed as a single-source shortest-path problem. Further 

review by Neapolitan (2015) also reveals that the Dijkstra algorithm closely resembles 

the breadth-first search algorithm, which is utilized in identifying the shortest path 

between nodes in an unweighted graph. However, in contrast, the Dijkstra algorithm is 

used to determine the shortest path between nodes in a weighted graph. Despite the 

difference, Zingaro (2021) argues that the Dijkstra algorithm can function like the 

breadth-first algorithm (BFS), where the edges in the graph are assigned a weight of 1. 

As a result, by identifying the shortest path in the unweighted graph, the algorithm can 

minimize the number of edges, similar to the BFS algorithm. 

In order to understand how the Dijkstra algorithm works, there is also a further need to 

examine its underlying basics. For instance, as Nalepa (2020) reports, the algorithm 

starts at a selected node. It proceeds to analyze the entire graph in order to identify the 
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existent shortest path between a node and all other graphical nodes. Secondly, 

Neapolitan (2015) adds that the algorithm maintains the shortest distance between 

each node and the source node currently known and constantly updates the node values 

to find a more straightforward path. A third feature is that when the algorithm identifies 

the shortest path between the source node and other nodes, the node is identified as 

being visited and further added to the optimal path (Javaid, 2013). By iterating the three 

steps, the Dijkstra algorithm can add all nodes to the track in the graph, thereby allowing 

the source node to connect to other nodes by following the shortest path possible 

(Nalepa, 2020). 

An example of solving the shortest path to different nodes using the Dijkstra algorithm 

is further detailed by Navone (2020), as described in the figure below. 

              

Figure 33 Solving for the shortest path using the Dijkstra algorithm (Navone, 2020) 

From figure 33, the main objective is to identify the shortest path from the start node 

(0) to each of the nodes indicated by numbers (1 to 6). To tackle the problem using the 

algorithm, there is a need to create a list of both visited and unvisited nodes each time 

the algorithm calculates the shortest path between two nodes (Navone, 2020).  

From the detailed description of the Dijkstra algorithm, a further need arises to examine 

the advantages and disadvantages it is associated with. To begin with, Lee (2012) 

highlights that a critical advantage of the Dijkstra algorithm stems from the fact that it 

is pretty straightforward due to its linear nature. As a result, the algorithm can compute 

the shortest path from a single node to all other network nodes and from a single source 

to another single destination node by halting the algorithm whenever the shortest route 
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is attained. Thirdly, Venkat (2014) also adds that once its output has been generated 

with the algorithm, it becomes easier to identify the least weight path to all nodes that 

are marked permanently. In this regard, therefore, a new diagram is not required when 

each pass has to be developed.  

The author further adds that the Dijkstra algorithm has a time complexity of O(n2). In 

explanation, Nalepa (2020) posits that the algorithm has to make n-1 iterations for a 

graph with n nodes. After each iteration, a node is added as a marker to the 

corresponding node set, leading to the iteration experience. Following the iteration, the 

algorithm processes information from ni nodes, the block weight, and other 

information. In turn, this leads to the processing of n network nodes and the time 

complexity of O(n2). A fourth advantage highlighted by Nalepa (2020) is that the 

algorithm has an order of n2 and, as such, can be applied in solving relatively large 

problems.  

Despite the advantages, the Dijkstra algorithm is associated with various disadvantages, 

a key aspect being that the algorithm is associated with a slow search speed and low 

time-consuming efficiency because the algorithm focuses on finding all optimal paths at 

an accuracy of 100% (Forišek and Steinová, 2013). Therefore, the researchers argue that 

the algorithm is challenged in terms of the search speed as it undertakes a blind search 

when selecting the optimal path in the network. Secondly, as Zingaro (2021) observes, 

the algorithm cannot work on negative weights or edges, unlike other variant algorithms 

such as the Bellman-Ford. Thirdly, the author also argues that the algorithm also 

introduces an additional constraint as there is a need to maintain the tracking of vertices 

visited (Zingaro, 2021).  

The evaluation of the studies indicated that the Dijkstra algorithm is considered highly 

efficient in finding all optimal paths in a given network (Forišek and Steinová, 2013; 

Nalepa, 2020). This finding implies that the algorithm has been widely adopted in diverse 

real-world applications. For instance, in traffic information routing, the Dijkstra 

algorithm is adopted in tracking the source and destinations of the information (Venkat, 

2014). A second application area is in routing computer network information. The link-

state routing protocol relies on the Dijkstra algorithm to compute the shortest path to 

the network and populates the information in a routing table (Oliveira and Pardalos, 
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2014). In further explanation, Srikant and Ying (2014) offer that the Dijkstra algorithm is 

a link-state routing algorithm, whereby each node has knowledge on the states of all 

nodes in the same network, and as a result, the entire network topology and all link 

costs. Subsequently, based on the global link states, the node can compute the minimum 

cost paths from itself to all other network nodes (Oliveira and Pardalos, 2014). On the 

same note, Talukder, Garcia, and Jayateertha (2014) highlight the open shortest path 

first (OSPF) algorithm as a link-state algorithm that relies on the Dijkstra algorithm in 

internet routing.  

In addition to real-world applications such as internet routing and traffic information 

systems tracking. For instance, Wang, Mao, and Eriksson (2019) proposed a three-

dimensional Dijkstra optimization algorithm to optimize ship voyages, improving energy 

efficiency and safety. A three-dimensional weighted graph was generated in the study, 

and the Dijkstra algorithm was used for optimization. Findings reported showed that the 

algorithm was able to lead to optimal routing, which enabled ships to encounter less 

harsh environments at sea and, as a result, reduced fuel consumption by about 5%. In 

another study, Liu, S., Jiang, H., Chen, S., Ye, J., He, R. & Sun, Z. (2020) further integrated 

Dijkstra’s algorithm in deep inverse reinforcement learning for route planning used by 

food delivery agents. In the study, the researchers argued that due to the high growth 

in food delivery in China, delivery men using e-bikes did not utilize system recommended 

routes in making deliveries due to the outdated or incomplete road network information 

in most areas. Therefore, to capture the delivery routes preferred by the delivery men, 

the Dijkstra algorithm was adopted to characterize them. Deep reinforcement learning 

was further adopted to recommend preferred routes. Findings showed that the Dijkstra 

algorithm and reinforcement learning adoption improved the F1-score distance by 

about 8% where road information was made available.  

Mirahadi and McCabe argued that building evacuation strategies impacted the success 

of an emergency response plan in reaction to disastrous events in the building. However, 

shortcomings were observed with conventional building evacuation strategies seeking 

to identify the shortest paths when exiting from buildings in emergency cases. Mirahadi 

and McCabe (2021) further proposed EvacuSafe, a model for facilitating building 

evacuation based on the Dijkstra algorithm. By adopting a modified Dijkstra algorithm 

in the Active Dynamic Signage System (ADSS) model, the safety level of building 
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evacuation was enhanced significantly compared to the traditional plan for evacuation 

based on the shortest path. With the ADSS model, the building was monitored in real-

time. In an unexpected scenario, changes in the evacuation strategy were 

communicated to building occupants, thereby facilitating their evacuation. In a different 

study, Rosita, Rosyida, and Rudiyanto (2019) also proposed implementing the Dijkstra 

algorithm and multi-criteria decision-making for optimal route distribution for other 

products. 

Based on the evaluation of various studies in this section, the Dijkstra algorithm’s 

functionality and features were identified and further examined. Core advantages and 

shortcomings were also emphasized and real-world applications in internet routing, 

traffic flow, building evacuation, and ship routing.  

8.2.2 Breadth-First Search (BFS) 

According to Miller and Ranum (2011), the breadth-first search algorithm is used to 

traverse or generate a tree in a breadth ward motion while utilizing a queue to 

remember the next vertex to start a search when the iteration cannot proceed. Hurbans 

(2020) further adds that the algorithm begins at a specific node (root) and proceeds to 

explore every node at the given depth before exploring the next depth of nodes. As such, 

the author reports that the algorithm visits all children of nodes at a particular depth 

before visiting the next depth of the child before finding a goal leaf node (Neapolitan, 

2015). The author explains that the breadth-first algorithm is the most popular approach 

for traversing graphs. One starts at the selected node (source) and traverses the graph 

in a layerwise approach, thereby exploring neighbour nodes directly connected to the 

source node. After that, the traversal moves onto the next-level neighbour nodes. 

Subsequently, the review of the different studies indicates that two core rules guide the 

breadth-first algorithm 

i. Move horizontally and visit all nodes in the current layer. Mark all unvisited 

nodes as visited and insert them in a queue. 

ii. Move to the next layer. Where no adjacent node is identified, remove the 

first vertex from the queue.  
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To facilitate further understanding of the breadth-first search algorithm (BFS), the 

following example in figure 34 is detailed. 

 

                          Figure 34. Illustration of BFS algorithm (Neapolitan, 2015) 

In figure 34, the starting node for the algorithm is node 1, which initializes the algorithm. 

The algorithm starts at node 1 and marks it as visited. After that, it moves to the next 

layer, where it visits node 2 and adds it to the queue. The graph is traversed in a 

layerwise manner, whereby nodes in the horizontal layer are then visited. In this case, 

node 3 is visited and enqueued. The algorithm, after that, visits the next adjacent node 

4 in the same horizontal layer. As this layer is left with no unvisited nodes, the algorithm 

dequeues node 2 and traverses its children nodes. The same procedure is repeated 

iteratively until all nodes in the graph are visited. The flowchart in figure 35 below 

illustrates the flow of the BFS algorithm. 
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                        Figure 35. Flowchart of the BFS algorithm (Hurbans, 2020) 

The flowchart above summarises the approach described earlier regarding the traversal 

of the graph. As such, the following stepwise flow is identified: 

i. Enqueue the root node using the first-in-first-out (FIFO) algorithm where 

objects are processed based on their accessed order. 

ii. Mark the root node as visited. 

iii. Is the queue empty? The algorithm can either return to “no path to the 

goal” or dequeue the node as the current one. 

iv. Dequeue node as the current node. 

v. Get the next neighbour of the current node. 

vi. Mark the neighbour as visited and set the current node as the parent of the 

neighbour. 

vii. Enqueue the neighbour node.  

viii. If the goal is yet to be reached, return the path to the neighbour. 



52 

 

The BFS algorithm is associated with several advantages. For instance, it can identify the 

shortest path between the start node and any other reachable node in the graph 

(Sedgewick and Wayne, 2016). The authors add that the algorithm is also simple to 

implement as it involves a small number of steps. Neapolitan (2015) adds that the 

algorithm is complete and optimal and does not suffer from any potential infinite loop 

problems. However, several disadvantages are also identified. For example, it is a blind 

search and delivers poor performance where the search space is large (Sedgewick and 

Wayne, 2016). Secondly, the algorithm consumes significant memory compared to 

alternatives such as the depth-first search (DFS). 

Nevertheless, despite the few disadvantages of the BFS algorithm, diverse researchers 

have employed it in tackling different path-finding problems. For instance, Zhang F., Lin, 

H., Zhai, J., Cheng, J., Xiang, D., Li, J., Chai, Y. & Du, X. (2018) proposed an adaptive 

breadth-first search algorithm for integrated CPU and GPU (Graphic Processing Unit) 

architectures. The researchers argued that the BFS algorithm was also becoming more 

important as a representative algorithm for data analysis with the increased popularity 

in big data applications. In the research, BFS was employed to identify the traversal 

order and device for each performance level. Findings obtained showed that the 

algorithm led to the best energy efficiency and achieved higher performance over other 

integrated architectures. The analysis of the different studies (Wang, Li, and Fang, 2012; 

Zhang F., Lin, H., Zhai, J., Cheng, J., Xiang, D., Li, J., Chai, Y. & Du, X., 2018) indicated that 

the use of BFS algorithms led to high performance and predictive accuracy levels.  

Further study by De Carvalho and Soma (2015) also showed that the breadth-first search 

could also be applied in the minimization of open stacks (MOSP) problems. Results 

obtained showed that the proposed heuristic BFS algorithm had higher robust behaviour 

in comparison to the best heuristic for MOSP despite the lower accuracy recorded. As 

such, the researchers argued that using the BFS algorithm was a cost-effective 

alternative useful in solving or attaining good upper bounds for tackling MOSP problems. 

In another study, Rakhee and Srinivas (2016) also developed an efficient routing 

protocol to facilitate the selection of optimal paths for continually monitoring vital 

patient signs in body area networks (BANs) in hospital environments. The constraining 

conditions identified included the high patient numbers and significant traffic that was 

generated that changed rapidly. In the research, Rakhee and Srinivas (2016) combined 
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the BFS with the ant colony algorithm, with the results showing that the approach led 

to enhanced results compared to traditional methods. The review of the studies 

emphasized that BFS algorithms could be employed in solving path-finding problems, 

especially in combination with other algorithms such as the ant colony algorithms. 

8.2.3 Depth-First Search (DFS) 

According to Riansanti, Ihsan, and Suhaimi (2018), the depth-first search algorithm 

traverses the graph from the root node. It explores the graph to the farthest possible 

distance along each branch (for a tree graph) before backtracking. Backtracking in this 

regard implies that when the algorithm moves forward, and no more nodes are left 

along the current paths that are yet to be traversed, the algorithm then moves 

backwards along the same path to find nodes that are yet to be traversed. The authors 

further add that due to its recursive nature, the DFS algorithm is implemented in terms 

of stacks that maintain the unvisited nodes. As a result, all nodes in the current path will 

be visited until traversal of all unvisited nodes is undertaken, and thereafter, the path is 

then selected (Li and Ueno, 2017).  

In another study, Kozen (2012) reports that in implementing the DFS algorithm, each 

vertex of the graph is categorized either as visited or not visited. The authors also posit 

that the algorithm is implemented in a series of four steps as listed below: 

i) Put any one of the graph’s vertices on top of a stack 

ii) Take the top item of the stack and add it to the visited list 

iii) Create a list of the adjacent nodes for the particular vertex. All nodes that are 

unvisited then placed at the top of the stack 

iv)  Repeat steps (ii) and (iii) until the stack is empty.  

Regarding its advantages, Miller and Ranum (2011) report that the DFS algorithm uses 

less memory and resources as it maintains only a list of nodes from the root node to the 

current node. The authors also add that the algorithm also takes less time to reach the 

goal node than other algorithms that adopt a similar approach, for instance, the BFS. 

However, on the contrary, Kozen (2012) argues that there is a likelihood of an infinite 
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loop occurring as the algorithm searches deep down the graph. Secondly, the author 

also argues that the algorithm does not guarantee to find the optimal solution as many 

states of the node keep re-occurring (Li and Ueno, 2017).  

Various researchers have further undertaken diverse empirical studies that demonstrate 

the use of depth-first search algorithms in solving path-finding problems. For instance, 

Li and Ueno (2017) proposed an extended depth-first search algorithm to undertake 

optimal triangulation in Bayesian networks. In the study, the researchers extended the 

algorithm by adding a new dynamic clique maintenance algorithm which computed 

cliques that had a new edge and also introduced a new pruning rule known as pivot 

clique pruning. The generated results emerged that the extended DFS algorithm-

generated optimal triangulation faster than the conventional algorithms. 

8.2.4 Iterative Deepening Depth First Search (IDDFS) 

According to Russell and Norvig (2016), the IDDFS algorithm combines the BFS and DFS. 

The authors postulate that the premise of the algorithm is that it eliminates the 

disadvantages present in both BFS and DFS by creating a hybrid algorithm with the 

unique advantages of both. In explanation, Kozen (2012) reports that two main 

limitations challenge the DFS algorithm; the inability to identify the shortest path to a 

node and the likelihood of the DFS algorithm reaching the node very late even if it is 

close to the root node. The author also argues that the shortcoming of the BFS algorithm 

is that it is memory-intensive despite its fast exploration speed. Subsequently, by 

developing the IDDFS algorithm, the fast exploration speed of the BFS is coupled with 

the space efficiency of the DFS algorithm (Russell and Norvig, 2016).  

In regard to how the algorithm works, Needham and Hodler (2019) add that the IDDFS 

algorithm first undertakes a limited depth-first search up to a particular depth which is 

limited, and after that, the depth limit is incremented through iterating the procedure 

unless the goal node is identified, or the entire tree is traversed. From an analytical 

perspective, the IDDFS makes different calls for the DFS algorithm at different depths 

beginning from the initial value. In this regard, the algorithm implements the DFS 

algorithm in a BFS fashion. To further understand how the algorithm works, figure 36 

below illustrates an example of a graph with four different depth levels. 
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                            Figure 36. IDDFS graph with 4 depths (Pedamkar, 2020) 

As illustrated in the graph, each of the depths is then traversed via the DFS algorithm 

leading to the solution space outlined in figure 37 below. 

 

                              Figure 37. IDDFS graph traversal (Pedamkar, 2020) 

Diverse advantages and disadvantages of the algorithm have also been identified, and 

for instance, it is argued to be complete as it can identify a solution provided it exists in 

the graph (Pedamkar, 2020). A second advantage is that the algorithm is efficient where 

solutions are identified at a depth of the tree (Konar, 2018). On the same note, the 

researcher adds that the algorithm has quick responsiveness as it generates early results 

that are refined multiple times through different iterations. Pedamkar (2020) further 

adds that the algorithm is also highly efficient in in-game tree search as it improves 

depth definition, heuristics, and scores of search nodes. Despite its efficiency, the author 

argues that it is considered wasteful due to the time and wasted calculations which 

occur at the same depth (Pedamkar, 2020). In further explanation, Russell and Norvig 

(2016) report that with the IDDFS algorithm, all work done in the previous phase or 
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depth is repeated. A second disadvantage also arises from the fact that the failure of the 

BFS algorithm leads to the eventual failure of the IDDFS (Konar, 2018).  

8.2.5 Bi-directional Search 

According to Korf (2003), the bi-directional search algorithm is a brute-force algorithm 

that requires an explicit end goal state instead of creating a test for a given goal 

condition. The author reports that with the standard graph searches such as the 

breadth-first and depth-first, the search usually begins from one direction: the root or 

source node for the BFS algorithm or the end node for the DFS variant. However, with 

the bi-directional algorithm, the search begins from both directions simultaneously 

(Russell and Norvig, 2016). The author further adds that one algorithm begins the search 

from the initial node while the second begins from the goal vertex. As a result, the two 

algorithms intersect somewhere at the middle of the graph, with the path that traverses 

from the initial node to the final node being considered the shortest path. The Figure 

below summarises the bidirectional search algorithm. 

                                             

                     Figure 38. Bidirectional search algorithm (Russell and Norvig, 2016) 

In another study, Qi, Shen, and Dou (2013) report that the main objective of the 

algorithm is to minimize the time required to search for the shortest path in a graph. 

The time for the search (exploration time) is reduced to a fraction of the time needed 

by other search algorithms as the two intersect at the middle of the graph. Needham 

and Hodler (2019) further compare the bidirectional search to the single search 

algorithm such as BFS/DFS regarding the searching complexity. According to the 

researchers, single search algorithms (BFS/DFS) have a search complexity of O(bd) for a 

branching factor b and where the distance from the goal to source vertex is d (Needham 
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and Hodler, 2019). However, with the bidirectional search, two search operations are 

executed simultaneously, leading to a search complexity of O(bd/2) for each algorithm 

and total complexity of O(bd/2 + bd/2), which is less than the overall complexity of single 

search algorithms O(bd) (Needham and Hodler, 2019). Therefore, two advantages of the 

bidirectional search include the fast exploration time and reduced memory and resource 

utilization (Needham and Hodler, 2019). The authors also add that the algorithm is 

optimal and complete as an optimal solution is always identified. The argument 

advanced is that the algorithm has a reduced exploration time because it undertakes 

simultaneous searches.  

However, despite such advantages, Russell and Norvig (2016) argue that the algorithm 

is challenged by the fact that a user needs to be aware of the goal state to be attained 

in the graph search, thereby decreasing its use cases significantly. An additional 

disadvantage regards the complexity in implementing the code and instructions for the 

algorithm, as care needs to be taken when implementing the node and search (Qi, Shen, 

and Dou, 2013). The authors also add that it is not possible to perform a backward search 

through all states in some instances. Similarly, there is also a need to ensure the 

algorithm is robust enough to understand the intersection and where the search should 

come to an end to avoid the possibility of an infinite loop (Needham and Hodler, 2019). 

An illustration of the working of the algorithm is detailed below. 

Saux and Claramunt (2014), who implemented a bidirectional dynamic routing algorithm 

for maritime routing based on hexagonal meshes and iterative deepening A* (IDA*) that 

facilitated data accessibility, showed that the bidirectional search generated better 

performance in terms of average execution time. Results obtained revealed a reduction 

in computation time and distance that was traversed in the graph. In a different study, 

Kumar (2019) also implemented bidirectional algorithms for the A*, breadth-first, and 

best-first search alternatives and compared performance to the conventional 

algorithms. Findings reported showed that the bidirectional versions could generate 

better results compared to the traditional algorithms. 

8.2.6 Uniform Cost Search 

According to Chandra (2014), the uniform cost search algorithm is a brute-force 

algorithm that is used to find solutions in a directed weighted graph with a minimum 
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cumulative cost. In explanation, the author reports that with the uniform cost search 

algorithm, the goal is to identify the path to the goal node which has the lowest 

cumulative cost as the nodes are each associated with a cost. Rothlauf (2013) further 

adds that with the algorithm, the lowest cumulative cost is identified for a weighted 

graph as the nodes are expanded based on traversal costs from the root node. To 

understand how the algorithm works, the example graph in the figure below is detailed. 

                           

              Figure 39. Uniform cost search weighted graph (Jagga, 2020)  

As detailed in the graph, the aim is to identify the shortest path with the lowest 

cumulative cost from the start node (S) to each of the end nodes (G1), (G2), (G3).  

One advantage of the uniform cost search algorithm is that it helps identify the lowest 

cumulative cost path in a weighted graph from the source to the root node (Rothlauf, 

2013). Jagga (2020) adds that the solutions derived from the algorithm are also complete 

and optimal for each state. Other disadvantages identified include high storage 

consumption and the likelihood of the algorithm being stuck in an infinite loop as it 

derives possible paths from the root to destination nodes (Chandra, 2014). On the same 

note, Jagga (2020) reports that the algorithm has to maintain a sorted open list in the 

priority queue. 

8.2.7 Breadth-First Search with Heuristic Function 

The breadth-first search with heuristic function has been described as an algorithm that 

expands a graph's nodes in breadth-first order but employs a heuristic function when 

pruning the search space (Zhou and Hansen, 2006). The authors note that no node is 

inserted into the available list with the algorithm where the f-cost is higher than the 
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upper bound of the optimal solution’s costs as the nodes are not on an optimal path. 

Over the years, breadth-first search with heuristic function algorithms has also been 

utilized in solving diverse path-finding problems. For instance, Wang, Li, and Fang (2012) 

utilized the heuristic breadth-first search algorithm to undertake robust tumor 

classification. The authors argued that finding tumor-related genes with the highest 

accuracy was vital to serving as tumor biomarkers.  

The BFS algorithm with heuristic search was employed to select the best gene subsets, 

where findings obtained showed that the algorithm led to better generalization 

performance and identified many tumor-related genes (Wang, Li, and Fang, 2012). The 

indication from the study was that adoption of a heuristic breadth-first search algorithm 

led to higher prediction accuracy compared to other methods and utilized fewer genes. 

In another study, Zhou and Hansen (2006) further demonstrated the effectiveness of 

breadth-first heuristic search algorithms in tackling complex graph-search problems. In 

the study, the researchers revealed that breadth-first search was better than best-first 

strategy as it prevented node generation and was much easier to implement. Two 

variants of the breadth-first heuristic search algorithms were discussed; a memory-

efficient breadth-first branch-and-bound search and a breadth-first iterative deepening 

A* algorithm which was based on the breadth-first branch-and-bound search. Findings 

showed that the breadth-first algorithms outperformed other systematic search 

algorithms when tackling complex graph-search problems based on the computational 

results.  

8.2.8 A* algorithm 

The A* (A-star) algorithm is a highly ubiquitous search algorithm highly utilized in 

pathfinding research problems (Foead, Ghifari, A., Kusuma, M.B., Hanafiah, N. & 

Gunawan, E. 2021). The researchers posit that the popularity of the algorithm arises 

from its simplicity, modularity, and efficiency. As a result, the algorithm has been widely 

utilized in broad and strategy-based games owing to its stability, efficiency, and 

accuracy. In another study, Iordan (2018) reports that the A* algorithm is a sophisticated 

breadth-first search (BFS) algorithm whose main aim is to search for shorter than longer 

paths between the start and end nodes. Ping and Shuai (2013) further describe the 

algorithm as being complete and optimal. In explanation, the authors posit that 
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completeness describes the capability of the algorithm to identify the least cost from 

the source node to the destination node. In contrast, the optimal nature of the algorithm 

refers to the notion that the algorithm can identify all available paths from the source 

to the destination nodes (Ping and Shuai, 2013).  

In another study, Roy (2019) adds that the optimality of the A* algorithm implies that it 

is assured of finding the solution that is best while its completeness further suggests 

that provided there exists a solution for a problem, the A* algorithm is always 

guaranteed to find it. The author further highlights that the algorithm’s values are 

calculated using the function below; 

                     f (n) = g (n) + h (n)                       (4) 

                     (Roy, 2019) 

where:  

f (n) is the lowest cost of the neighbourhood node n 

g (n) is the exact cost of the path from the start node to a node n 

h (n) is the heuristic estimated cost from a node n to the goal node 

In further explanation, Foead, Ghifari, A., Kusuma, M.B., Hanafiah, N. & Gunawan, E. 

(2021) argue that whenever the A* algorithm traverses a node, it calculates the cost, f 

(n), of travel to the nodes that neighbour it and, after that, enters the node which has 

the lowest f (n) value. Akash (2020) adds that h (n), which is the heuristic cost, is not a 

cost in reality but instead is a guess cost used to find the cost that could lead to most 

optimal paths between source and source source-destination nodes.  

By adopting an approach to identify the least-cost path to the end node, Ghaffari (2014) 

argues that the A* algorithm utilizes a best-first search approach to identify the optimal 

path from the initial to destination nodes. Various advantages of the algorithm have also 

been identified. For instance, since the algorithm relies on path distance as a criterion, 

it can be adopted in diverse applications (Duchoň F., Babinec, A., Kajan, M., Beňo, P., 

Florek, M., Fico, T. & Jurišica, L., 2014). A second advantage arises from its ease of 

comprehension, given that it solves the path-finding problem in a stepwise manner and 

relies on a definite procedure (Denden, Essalmi, and Tlili, 2016). In further explanation, 
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the authors report that the A* algorithm is also easy to convert to an actual program as 

it breaks down problems into smaller sub-parts or components. In another study, Zidane 

and Ibrahim (2017) argue that the algorithm is associated with diverse disadvantages, 

including its time-consuming nature and difficulty in putting big tasks into algorithms. 

Nevertheless, despite such disadvantages, diverse researchers have employed the A* 

algorithm in different applications, whereby path-finding problems are solved. For 

instance, Ghaffari (2014) utilized the A* algorithm to develop a routing protocol that 

was energy-efficient for wireless sensor networks. In the study, the researcher argued 

that due to the need to deliver critical information in a multi-hop and energy-efficient 

manner in wireless sensor networks, there was a further need to extend the lifetime of 

the networks using energy-efficient routing protocols. To tackle the problem, Ghaffari 

(2014) proposed an energy-efficient protocol, which improved the network’s lifetime by 

forwarding packets through the shortest path that delivered optimal results. In another 

study, Yu Y., Wang, J., Xue, X. & Zou, N. (2019) utilized the A* algorithm for developing 

a route navigation system based on visible light communication and used in an 

underground garage. In the study, the researchers aimed to tackle the difficulty in the 

parking lot, security of communications, and low efficiency of the garage by using visible 

light communication. Findings showed that by using the A* algorithm for route 

navigation, the needs of vehicle navigation were adequately met, and signal 

transmission of a range of 4m was attained. 

Bagheri S.M., Taghaddos, H., Mousaei, A., Shahnavaz, F. & Hermann, U. (2021) also 

employed the A* algorithm in crane optimization locations and modular construction 

configuration. The researchers argued that while the utilization of on-site heavy mobile 

cranes in construction was inevitable, their high rental costs made it difficult for 

companies to utilize them. The A* algorithm was adopted to develop a framework that 

facilitated optimization of the pre-determined lifting sequence to tackle the problem. 

Results obtained showed that the use of the algorithm was advantageous as it led to 

lower costs compared to previously used algorithms for lift planning. In another study, 

Cai and Ji (2018) further employed the A* algorithm in the adaptive routing of network-

on chips. The researchers employed the algorithm and coupled it with a deadlock-free 

adaptive routing algorithm to tackle network congestion. The proposed solution utilized 

routing table information to select output channels that were not congested for 
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forwarding packets using the A* algorithm. Results obtained showed that the use of the 

algorithm led to improved throughput and average latency.  

The analysis of the various reviewed applications (Ghaffari, 2014; Cai and Ji, 2018; Yu Y., 

Wang, J., Xue, X. & Zou, N., 2019; Bagheri S.M., Taghaddos, H., Mousaei, A., Shahnavaz, 

F. & Hermann, U., 2021) reveals that A* has been adopted in diverse applications and 

settings. The applications range from wireless sensor networks to route navigation and 

optimization of crane configurations. Based on the observed diversity, the findings 

emphasize that the A* algorithm is highly versatile and can be applied in different 

applications. Nevertheless, other researchers have further modified the A* algorithm 

and employed it in diverse applications, as detailed in the next section. 

8.2.9 Genetic algorithms 

At the foundational level, genetic algorithms (GA) are described as optimization 

algorithms that facilitate the search of potential solutions in a given space (Nagib and 

Gharieb, 2004). The authors further add that such algorithms are meta-heuristic in 

nature and are based on evolution models. As a result, genetic algorithms can solve 

complex problems within a short period of time. In reiteration, Lamini, Benhlima, and 

Elbekri (2018) highlight that GAs were developed in 1960 by John Holland and inspired 

by Darwin's natural evolutionary principles. In explanation, the authors report that the 

genetic algorithms are associated with several evolutionary processes, including 

initialization, fitness, natural selection, cross over and mutation.  

Further examination by Jebari (2013) reveals that GAs generate a random initial 

population representing all likely solutions to the particular optimized problem at the 

initialization phase. Xin J., Zhong, J., Yang, F., Cui, Y. & Sheng, J. (2019) further explain 

that the GA maintains a population of candidate solutions encoded as a binary string 

referred to as a chromosome. The authors emphasize that the chromosomes are 

generated at random. An adaptation function assesses each possible solution 

(chromosome) to ascertain the quality of the potential solution.  

The second phase involves selection, whereby generic operators are further applied to 

the solutions to create new progeny. Xin J., Zhong, J., Yang, F., Cui, Y. & Sheng, J. (2019) 

add that selecting the parents will be subjected to the actual reproduction based on 
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their adaptation values. The third phase is the exact reproduction of new progeny from 

the selected parents using mutation or crossover operators (Nagib and Gharieb, 2004). 

The authors also add that bits are randomly exchanged between the two strings in the 

chromosomes of the intermediate population in the crossover operation. In contrast, 

the mutation process randomly alters some of the bits in the chromosomes. In a 

reiteration of the findings, Lamini, Benhlima, and Elbekri (2018) further report that 

crossover is later applied to the new product offspring by recombining data from the 

two parents selected in the reproduction step. The authors also highlight that mutation 

is adopted to ensure population diversity by changing some population members' 

genetic structures based on a mutation rate.  

Nelson, Barlow, and Doitsidis (2009) also observe that genetic algorithms repeatedly 

undertake the evolutionary cycle until the stopping criteria are satisfied. In explanation, 

the authors report that the stopping criteria may be satisfied where the number of 

generations is fixed, where the population does not evolve rapidly enough, or where the 

pre-determined iteration limit is attained.  

Τhe GA algorithm has three inputs; population size, crossover rate, and mutation rate. 

However, only one output is generated, the best chromosome or most optimal solution.  

Regarding the advantages of GA algorithms, Achour and Chaalal (2011) report that the 

algorithms can solve complex problems within a short time period. An explanation for 

their efficiency highlights that the algorithms can explore the search space in parallel 

and thereby do not require the function being optimized to be differentiable or have 

smooth properties. However, despite such advantages, Achour and Chaalal (2011) argue 

that GAs are still limited as they face the exploration-exploitation dilemma where a 

significant problem is the capability to select the initial population.  

Nevertheless, diverse researchers have, over the years, adopted genetic algorithms in 

solving path planning problems in different settings. In mobile robot path planning, in 

particular, researchers argue that GAs are efficient. They enable the robotic agent to 

identify an optimal path that is also collision-free from the source to the final target, 

either single or multiple (Sarkar, Barman, and Chowdhury, 2020). To begin with, Lamini, 

Benhlima, and Elbekri (2018) employed GAs in robotic path planning where an improved 

crossover operator was utilized. Results obtained showed that the proposed crossover 
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operator helped avoid premature convergence and offered feasible paths with more 

optimal fitness values than its parents, thereby converging more quickly. Simulation 

results also revealed that the use of GAs led to better performance and optimal solutions 

in different environments. In a second study, Giardini and Kalmár-Nagy (2011) employed 

the genetic algorithms coupled with heuristic local search in developing a combinatorial 

planner for autonomous systems. In the study, the researchers solved a subtour 

problem, a variant of the classical traveling salesman. Results obtained showed that 

combining genetic operators, which had a double crossover with a mutation, with local 

boosting technique provided an efficient solver for combinatorial problems that were 

otherwise considered too difficult. 

Further study by Ma J., Liu, Y., Zang, S. & Wang, L. (2020) also revealed the combination 

of genetic algorithms and continuous Bezier optimization to facilitate path planning for 

mobile robots. Findings obtained showed that combining the two approaches led to a 

more practical approach in generating a shorter, smoother, and safer path for the robots 

in comparison to conventional techniques. In particular, the researchers employed the 

genetic operations to obtain control points for Bezier curves while shorter paths were 

selected from the optimization criterion, which determined the Bezier curve’s length. 

Ma J., Liu, Y., Zang, S. & Wang, L. (2020) also revealed that the solution also enhanced 

the smoothing of the robot’s path by adding safety distance to the fitness function to 

allow it to be updated dynamically based on the distance between the path and 

obstacles to ensure safe and efficient robotic movement. In a different study, Tu and 

Yang (2003) had also proposed a genetic algorithm to facilitate path planning for mobile 

robots where the chromosome had a variable length. Findings reported showed that the 

robot was capable of finding optimal paths for mobile robots that were collision-free. 

The simulation results underscored the effectiveness of genetic algorithms in mobile 

robot path planning. Hu and Yang (2004) also employed knowledge-based genetic 

algorithms to facilitate path planning for mobile robots. Results obtained showed that 

the algorithms could find an optimal or near-optimal robot path in dynamic and static 

environments. In the study, the researchers utilized knowledge-based genetic 

algorithms for path planning as opposed to standard GAs. In particular, domain 

knowledge was incorporated in the specialized operators, leading to a combination of 

local search techniques. A similar study had also been conducted by Sarkar, Barman, and 
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Chowdhury (2020). They reported that domain-knowledge-based genetic algorithms 

helped address path planning problems that had one or multiple targets. Based on the 

results obtained, the researchers argued that reliance on domain knowledge for the 

genetic algorithms led to better performance. Only one target was considered instead 

of methods that relied on evolutionary algorithms.  

The examination of the various reviewed empirical studies indicates that genetic 

algorithms have been widely adopted in path planning applications for mobile robots. 

Further analysis also showed that researchers enhanced the genetic algorithms by 

improving individual components in the different simulations. For instance, Lamini, 

Benhlima, and Elbekri (2018) proposed an enhanced crossover operator, while Hu and 

Yang (2004) used knowledge-based genetic algorithms. Giardini and Kalmár-Nagy (2011) 

further combined genetic algorithms with local heuristic search. As a result, the genetic 

algorithms could display better performance in path planning compared to conventional 

or traditional approaches that relied only on GAs. 

8.2.10  Ant Colony algorithms 

The final category of the path planning algorithms is the ant-colony algorithms (ACA) 

based on the ant colony theory (Ye, Ma and Fan, 2005). According to the researchers, 

the ant colony theory explains the behaviour of real ants while searching for food, 

whereby they can communicate with one another through the release of pheromones 

or aromatic essence, which is left on the trail or on paths that the ants travel in search 

of food. Zhishui (2011) adds that the ants release the pheromones as a way to cooperate 

with one another in finding the shortest path to the food source. However, in the 

absence of the pheromones, the author argues that the ants have to walk for longer 

paths, thereby undertaking more random walks.  

Dai X., Long, S., Zhang, Z. & Gong, D. (2019) further argue that upon finding pheromones, 

ants follow them, thereby reinforcing the trail. However, the author emphasizes that 

the ants must make several decisions before selecting a given trail with pheromone. For 

instance, Dai X., Long, S., Zhang, Z. & Gong, D. (2019) report that the ants may be forced 

to select several paths with pheromone essence. In this regard, the author reveals that 

ants select the path with the highest concentration of pheromones due to higher 

probability. Secondly, as Zhishui (2011) reported, the ants are also limited by the 
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evaporation of the pheromones on the paths travelled, thereby requiring the ants to 

secrete the pheromones constantly. As a result, the ants also have to decide which paths 

have a higher pheromone concentration before selecting the path to the food source. A 

dilemma thus arises in terms of selecting a longer or shorter path to the food source, 

especially where all paths are associated with pheromones. However, as Wen and Cai 

(2006) argue, the result is that, over time, more ants will be concentrated in the shorter 

paths to the food source than the longer paths. 

Porting this insight to path planning, ant colony algorithms can be developed for artificial 

ants, describing the mutual collaboration between different individuals to achieve a 

particular objective (Wang Y., Chen, J., Ning, W., Yu, H., Lin, S., Wang, Z., Pang, G. & Chen, 

C. 2020). On the same note, the authors report that the artificial ants would be focused 

on identifying the optimal and shortest path between the source and destination targets 

while also relying on pheromones or an artificial feedback system to determine the 

paths they will traverse. In a reiteration of the argument, Zhishui (2011) report that ant 

colony algorithms are associated with four core aspects; i) a local strategy that guides 

the movement of agents in the search space, ii) ant’s internal state, which maintains 

information about the ant’s past, iii) the pheromone track which contains helpful 

information in decision-making when selecting different paths, iv) the ant’s decision 

table which outlines probabilities and also guides decision-making process (Zhishui, 

2011). 

In another study, Zhangqi, Xiaoguang, and Qingyao (2011) summarize the ant colony 

algorithm in a series of steps as follows: 

i. Determine the basic parameters of the ACO algorithm, information inspiration 

factor, pheromone intensity, evaporation coefficient, hope inspiration factor. 

ii. Select an ant, put it at the map’s starting point, and highlight the end node to 

determine the path to be travelled. 

iii. After each and travels to the end node, update the pheromone partially and 

compare it with the current optimal path. 
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iv. If the path obtained is shorter than the optimal path, replace the optimal path 

with the current path. 

v. After ants traverse the path, update the pheromones globally and iterate the 

process.  

With the fundamental understanding of how ant colony algorithms work, examining 

their diverse applications is also essential, particularly in path-finding problems. To begin 

with, Korb (2009) employed the ant colony algorithms for optimizing the structure and 

ligand-based drug design. In the research, artificial ants were utilized in finding the 

optimal minimum energy used in the conformation of the ligand in the binding site. The 

researchers further used the artificial ants to facilitate the search towards low energy 

confirmations. Results showed that the algorithms displayed effective results about the 

optimization of energy in ligand-based drug design. In a second study, Kazharov and 

Kureichik (2010) further employed the ant colony algorithms for solving transportation 

problems by simulating the ant colony's behaviour after making various modifications. 

The analysis of the two studies underscored the impact of mimicking ant behaviour in 

tackling optimization problems in diverse settings such as drug design and 

transportation problems. 

In another study, Qian and Zhong (2019) employed ant colony algorithms to facilitate 

the planning of optimal individualized tourism routes. The researchers gathered latitude 

and longitude values of each city and actual inter-city train and air tickets involving 

optimizing traveling to 34 different cities in China. Ant colony algorithms employed a 

heuristic search and identified optimal travel routes for travel problems. Findings 

demonstrated that the algorithms were able to generate positive results. The use of ant 

colony algorithms in the optimization of travel routes has also been examined in other 

studies such as Hulianytskyi and Pavlenko (2019). They utilized the algorithms to identify 

the optimal traveller routes in airline networks by considering the constructed route and 

user conditions with the time-dependent cost of connections. In the research, the ant 

colony algorithms were considered essential in solving time-dependent problems 

represented in extended flight graphs. The generated results emerged that the use of 

the algorithms led to a higher quality of constructed routes between the various diverse 

regions.  
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The ant colony algorithms have also been deployed in solving conventional problems 

such as the traveling salesman under stationary environments (Mavrovouniotis and 

Yang, 2010). However, the researchers considered a dynamic travelling salesman 

problem in the study, whereby cities were replaced by new ones when executing the 

algorithm. To alleviate convergence challenges in the algorithms, the ant colony 

optimization (ACO) algorithms were enhanced using a memetic ACO algorithm which 

carried out a localized search. Findings reported showed that the modified ACO 

performed better than the traditional and unmodified ACO algorithms. Zhang and Zhang 

(2018) also utilized ant colony optimization algorithms in finding the shortest path in 

dynamic traffic networks. In the study, the researchers experimented on an existing 

traffic network, whereby results obtained showed that the algorithm could find the 

optimal path in a dynamic traffic network.  

The analysis of the different empirical studies on ant colony optimization algorithms 

revealed that the algorithms helped identify optimal routes in different path-finding 

applications such as road networks, airlines, and even the conventional traveling 

salesman problem. 

8.3 Comparison of Pathfinding / Wayfinding Algorithms 

Finding the right process for route planning is not a straightforward answer. There has 

been a number of significant strides in the field of graph theory and pathfinding 

algorithms, so this results in a wide variety of choices depending on the user’s needs. 

The summary of the comparison contained in chapter 7.3 is contained in Appendix V, 

for easier reference. Dijkstra algorithm efficiently locates the direct and shortest 

possible route between nodes of a wide range of problems. However, it costs time and 

resources drain as it performs an unguided search. Moreover, its usage is limited to only 

cyclic graphs because it cannot analyse the graphs in which nodes cannot be traversed 

back due to the involvement of opposing edges.  

A* algorithm prefers the ideal and less extended path between endpoints while 

consuming extensive storage. The smooth execution of this algorithm depends on the 

limited branching factor, stagnant cost, and precision of the functions involved. 
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In contrast to the A* algorithm, Iterative Deepening works in a bit specific and flexible 

way by evaluating the flash route between initial and defining nodes. Although it 

occupies less space, it takes way more time to process the graph as it visits the same 

nodes multiple times due to its inability to keep track of exploration. 

To overcome this problem, a more advanced and guided search algorithm, Dynamic A* 

algorithm, has been designed, which works in a planned and ordered way using heuristic 

function and gives the most direct and updated paths by analysing live fluctuations in 

the graph with high accuracy. It is valid to the problems having mediocre complexity. 

Unlike the A* algorithm, it fails if there is a limitation to the branching factor and 

constant costs.  

Weighted A* algorithm has a brilliant path searching mechanism to evaluate the 

minimum distance between nodes. It starts its search on states which has low heuristic 

values while not ignoring the higher values. It has a significant edge over the 

conventional A* algorithm, but it struggles with intensive and complex problems. 

Lifelong Planning A* algorithm (LPA*) is an advanced form of the A* algorithm, which 

refreshes the distance values from the previous search. Then adjusts to changes in the 

graph without analysing and re-evaluating the entire chart. The weighted A* algorithm 

also gives better performance but fails to reach an efficient result in complex situations. 

Genetic Algorithms (GAs) are the evolved form of conventional heuristic search 

algorithms, which are adaptive, and their foundation lay on the concepts of genetics and 

natural selection. These intelligent algorithms use historical data, and their search is 

directly focused on the better-performing regions in the space. Optimization and search 

problems can be efficiently solved using these intelligent algorithms. They can analyse 

the multiple space regions simultaneously, reducing the processing time while solving 

intensive problems. 

The ant colony algorithm is utilized for discovering optimal ways that depend on the 

conduct of subterranean insects looking for food. Initially, the ants meander 

haphazardly. At the point when they discover a wellspring of food, it strolls back to the 

province, leaving "markers" (pheromones) that show where the food is. In the initial 

step of taking care of an issue, every ant produces an answer. Next, the paths found by 
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the ants are analysed. Finally, path values are refreshed. There are numerous 

improvement issues where it can utilize ACO for tracking down the ideal arrangement. 

Time taken by this algorithm for convergence is a bit hard to estimate. 

Breadth-First Search (BFS) starts in a structured and sequential manner layer by layer. 

While moving forward, it can detect the connected nodes and ultimately the idea path 

when it has reached the end. It does not have any hectic problem revisiting the nodes 

and is easy to use as it involves a few simple steps. It is an unguided search algorithm 

and struggles with high-end problems if the space is ample and consumes a more 

significant portion of the storage. 

Depth-First Search (DFS) utilizes the backtracking concept. It starts with the initial node 

and drives all its nearby nodes into a stack. Finally, it pops a node from the stack, which 

acts as the stimulus for the next node to explore paths and drive all its connecting nodes 

into a stack, and this process goes on. Owing to its ability to maintain only lists, it does 

not require much memory space and time to finally develop a path that gives this a 

distinction over its predecessor, Breadth-First Search. 

Iterative Deepening Depth First Search (IDDFS) performs searches in steps. First, it 

analyses the graphs to a certain depth and then again performs another depth search to 

a greater extent till the whole tree has been analysed and traversed, and the algorithm 

has reached its goal. This algorithm can be used in more complex problems where the 

solutions are expected to be in greater depth. Moreover, quick results are possible as 

this algorithm completes the search in steps and then refines the search to come up 

with the most efficient results. However, it can also consume more time if the solution 

is obtained after multiple iterations and perform calculations on the previous depth 

again.  

The bi-directional search uses two algorithms simultaneously and starts searching from 

the initial node and vertex node. Consequently, both algorithms meet somewhere in 

point of time and suggest the most ideal and shortest path. The only smartness which 

bi-directional search has to show is that it must understand the intersection point to 

avoid recalculating and reanalysing the whole web of nodes. If heuristics are not 

involved, Uniform Cost Search is the best option among all other algorithms. Optimal 

cost can easily be solved for a general graph using UCS. In contrast to the Depth First 
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Search, Uniform Cost Search prioritizes the least cumulative cost in the weighted graphs 

and provides complete solutions to the search problem at the cost of ample memory 

space. Breadth-First Search with Heuristic Function uses heuristic functions and 

expansion of nodes in the breadth-first order to speed up the search and achieve a 

complete result. However, it needs ample storage space to store nodes and even fails in 

extensive search problems.  

9 Automatic Route Calculation  

Automatic Route Calculation, due to its complexity, will be divided into two parts, 

consisting of the Automatic Route Planning and the Automatic Route Safety Check Parts.  

Automatic Route Planning is the first part of each voyage and starts after defining the 

departure and Arrival Port and plotting a route based on the ship’s maneuvering 

characteristics and expected weather forecast.  The second part is the Automatic Route 

Safety Check, which in essence is the validation of the voyage after counterchecking 

based on the set safety parameters in place, ensuring a smooth voyage. 

9.1 Automatic Route Planning 

Considering the detailed explanation in Chapter 7 and more specific Chapter 7.1.3 about 

Pathfinding Algorithms, this Thesis will use as an example for automatic route planning 

the A* Algorithm, because the popularity of the algorithm arises from its simplicity, 

modularity, and efficiency adds that the optimality of the A* algorithm implies that it is 

assured of finding the best solution. At the same time, its completeness further suggests 

that provided there exists a solution for a problem. The A* algorithm is always 

guaranteed to find a solution. Its main aim is to search for shorter as opposed to longer 

paths between the start and end nodes and optimally efficient as no other optimal 

algorithm is guaranteed to expand fewer nodes than A*. However, it comes with certain 

disadvantages, such as being memory intensive, as it gets exhausted once nodes are 

stored in memory, so programming languages such as C or Rust can be used, which focus 

more on memory efficiency and fast processing rather than using Python, JavaScript or 

other inefficient but straightforward languages for such an operation. An Illustration of 

the practical application of A* Search Algorithm is shown in Figures 40 and 41 below. 
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Figure 40 A* Search Algorithm example of finding the optimum route considering 

various obstacles and safe distance from them (Author, 2021) 

           

Figure 41 A* search algorithm generic example of finding the route in a cell pattern with 

obstacles (Author, 2021) 

Because this Automatic Route Planning and Calculation software that is discussed in this 

Thesis, is assumed for standalone use on an Autonomous Vessel without assistance from 

External Shore Assistance, it must fulfil the following requirements by being able to 

process any route required in the fastest possible way, be memory efficient, especially 
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related to Random Access Memory (RAM), because it can cause the system to crash and 

rebooting it in the middle of the ocean is not a choice, run on a Operating System (OS), 

which is resource efficient such as Linux, communicate with ship’s Sensors and via an 

Application Programming Interface, with Weather Routeing Software or collect the Raw 

Weather Data, ensure Redundancy by having simultaneously running another duplicate 

of the system in standby, so when the primary unit is detected to stop functioning it will 

immediately start and run in it’s place and energy Redundancy by having a sufficient 

number of Uninterruptible Power Supplies (UPS) sufficient to cover the energy 

requirements for a three week voyage. 

For the initial route, the attributes that will only be taken into account will be object 

attributed as land and depth contours deeper than the safety contour, considering UKC, 

squat, and vessel’s planned speed. Once the initial route is established between the first 

and last waypoint, then the software will validate the route and, if needed, will correct 

it after recognizing the attributes according to the parameters listed in chapter 8.2. 

9.2 Automatic Route Safety Check 

Route Checking or Route Safety Check currently implemented in ECDIS is done by 

entering first the ship’s characteristics, the Safety Contour, and its voyage waypoints. 

Based on these, the ECDIS software performs a complete assessment of the voyage and 

shows every single alarm that is being shown. The Safety Check is made according to 

IHO S-58 Technical Standard, Section 4.10.2.1 of the IEC 61174, ed. 4 Technical Standard 

and Circular MSC.1/Circ.1503 IMO Guidelines for ECDIS Good Practice and the Safety 

Contour. An example of automatic route safety check in ECDIS is shown in the figure 

below 
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Figure 42 Example of a Route Safety Check by ECDIS using S-57 Attributes (ECDIS 

screenshot taken by author onboard ship, 2013) 

It is a crucial part of the Automatic Route Calculation because it is the distinctive feature 

that sets apart this route calculation method from other ones. It doesn’t blindly look for 

the shortest route or, in general terms. Still, it provides a more custom and accurate 

result which depends on the accuracy of the input values and the consistency and 

accuracy of the dynamic information related to passage planning. The Safety Contour is 

recommended to be calculated (IHO, 2012) as Vessel Safety Draft = Vessel Draft + 

Dynamic Squat + Safety Margin, which depending on the shipowner's Navigation Policy, 

can be altered accordingly so it can more accurately depict the safety contour. It should 

be noted that if the safety contour in use becomes unavailable due to a change in source 

data, the safety contour should default to the next deeper contour. The shallow depth, 

safety depth, and deep-water settings are entered only for the easier visual illustration 

of the end user and assist the navigator in identifying dangerous shallow and safe 

navigable areas, so this instance will not be mentioned as we refer to automatic route 

checking only by software. A practical illustration of how the Safety Contour is shown 

compared to the actual ship’s draft is illustrated below by NOAA. 
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Figure 43 Example of how the Safety Contour is used in an ENC (NOAA, 2019) 

The safety contour can be more easily identified by the software as a no-go area and 

avoid it rather than using spot soundings, which can prove far more challenging to 

identify and avoid. 

 The safety check analysis will be distinguished in the attributes check part and the 

wayfinding part. The optimum navigable route will be calculated with A* search 

algorithm by setting the parameters and criteria for considering the parameters 

mentioned earlier and adding as an additional planning parameter the safety distance 

from objects such as land, shallow waters (less than safety contour), and the attributes 

mentioned in the second part. The Safety Distance can be suggested to be 12 nm in 

Open Waters where traffic, weather, and other parameters allow, and in Shallow waters 

or Coastal Navigation can be reduced to 5 nm or less depending on the Navigation Risk 

Assessment of the voyage and the Company’s Navigation Policy. The attributes that will 

be used for the safety check are divided into the following categories according to the 

table 6 below:  

Table 6 Safety Check ENC Attributes and ENC group they belong 
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(Author, 2021) 

Because CATZOC classification has more than a single characteristic, in table 7 below its 

attributes are shown in full detail. As covered in Chapter 9.2, S-100 have the 

Interoperability Catalogue (IC) function, so the suitable mode of data display is shown 

depending on its purpose. This can be used to enhance the accuracy of displayed data, 

so the end result is the optimal one for the required purpose. For the purpose of 

Automatic Route Safety Check and for Route Monitoring, Level 2 would be the best one 

to be used in the S-10x series. At the same time, Levels 3 and 4 are more suitable for use 

along with the framework of the Marine Spatial Data Infrastructure (MSDI). 
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Table 7 UKC recommended values in relation to CATZOC Depth and Position Accuracy

 

 (NOAA, 2019)  

9.3 Automatic Route Calculation Process 

After combining the Automatic Route Planning and the Automatic Route Safety Check 

elements of the process as described previously, the Automatic Route Calculation can 

be successfully implemented. There is no mention of Cross Track Error (XTE) or 

connection to Navigational Sensors in the below flowchart because this belongs to the 

domain of autonomous navigation at sea. Due to its complexities ad challenges, this 

thesis won’t be enough to tackle it. For reference, the Groups mentioned in the 

flowchart in Appendix V “Autonomous Route Calculation Flowchart”, they can be found 

in the previous Chapter 8.2.  

Due to the risks mentioned in chapter 6.3 about Great Circle sailing and due to the 

constant course changing, the most common method of sailing is Rhumb Line, so in the 

Flowchart in Appendix V, the sailing method followed is assumed to be Rhumb Line. 
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9.4 Potential Applications  

Once automatic route calculation is successful, its potential applications within the 

maritime industry are numerous and diverse, ranging from commercial (i.e., route and 

distance calculation for merchant ships) to environmental (creation of standard routes 

through particularly sensitive sea areas / PSSA) to statutory (creation of standard routes 

through particularly sensitive sea areas / PSSA) (Establishing Commercial Benchmark 

Routes for Specific Trade of Merchant Ships). 

The most straightforward and direct outcomes are cases such as the UKC allowance for 

port tide optimization. One such experiment was undertaken by NOAA in the Port of 

Long Beach, Los Angeles, USA. Since 2017, Water levels - Predictions and real-time data 

are provided through PORTS® utilising additional Maritime Spatial Data gathered by 

Nearshore Wave Prediction System (NWPS) forecasts for wave and swell conditions 

(Physical Oceanographic Real-Time System). Wave buoys with real-time data 

transmission and an Integrated Ocean Observing System Lidar data is gathered along 

the shoreline and utilised to update nautical charts using latest hydrographic surveys 

and high-resolution bathymetric inland ENCs. 

According to the NOAA's 2017 Port of Long Beach Precision Navigation initiative, Long 

Beach, is the United States largest port complex and the ninth busiest port in the world, 

already saves boats an estimated $10 million per year in lightering expenses. This 

ground-breaking effort used private sector innovation and NOAA data streams to 

improve the safety of deep-draft ship navigation. The Port of Los Angeles - Long Beach 

is exposed to the open ocean and is thus subject to peculiar wave, swell, and water-level 

conditions. When waves came in long period swells, the new ultra-large oil ships 

entering the port were prone to groundings. For example, a ship pitching one degree 

may increase its draught by more than ten feet (03.05 m). The port decreased the 

maximum permissible ship draught to 65'ft (19.81 metres) as a precaution, despite the 
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fact that the dredged channel is 78' ft (23.77 meters).                                              .                

 

Figure 44 Potential pitch of a vessel entering the Port of Long Beach. (PORT OF LONG 

BEACH PRECISION NAVIGATION PROJECT, NOAA, 2017) 

According to the NOAA-funded Port of Long Beach Precision Navigation initiative, 

Jacobsen Pilots, which is responsible for all pilotage inside the port, first brought the 

matter to the notice of NOAA's Office of Coast Survey in late 2012 during a Los 

Angeles/Long Beach Harbour Safety Meeting. In the years that followed, an industry 

working group collaborated with a Dutch business that develops a web-based 

programme known as PROTIDE (PRObabilistic TIdal window DEtermination). PROTIDE 

optimises the port's accessibility by estimating the optimal times for ships that need 

tidal data to pass safely. This is accomplished by merging individual ship dimensions and 

stability information with real channel architecture, up-to-date environmental 

predictions, and a cutting-edge ship motion analysis engine. All of these computations 

need a large number of precise and verified real-time measurements of water levels and 

waves, which were made possible by expanding on an existing initiative with the 

Southern California Coastal Ocean Observing System (SCCOOS). Due to the project's 

success, the US Coast Guard Captain of the Port (COTP) has lifted the 65 ft (19.81 metres) 

draught limit, enabling draughts of up to 66 ft (20.11 metres) to access the port. In April 

2017, a 66 ft (20.11 metres) tanker made three transits. After many runs at 66 foot 

(20.11 metres), the COTP will make a final decision to raise to 67 ft (20.42 metres). The 

long-term objective is to successfully travel at 69 ft (21.03 metres) draught. Offshore 

time lightering will be eliminated, resulting in increased operating efficiency and safety, 

as well as a reduction in environmental risk. Additionally, each additional foot of draught 
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allows cargo ships to carry an additional 40,000 barrels of crude oil. This corresponds to 

an extra $2 million of merchandise loaded for every foot of draught increased. 

Additionally, in 2020, the National Oceanic and Atmospheric Administration (NOAA) 

conducted a Socioeconomic Study on the Impact of Precision Navigation, which 

emphasised the importance of enhancing navigation safety in light of the increasing 

number of incidents associated with the increasing volume of port traffic (both 

incoming/outgoing), as illustrated in the charts and figures below in this 

Chapter._____________

 

Figure 45 Import vs. Export Tonnage Chart in the 20 Top Ports in the US according to 

Precision Marine Navigation (PMN) Socio-Economic Study (NOAA, 2020) 

 

Figure 46 Foreign vs. Domestic Tonnage Chart in the Top 20 Ports in the U.S. according 

to Precision Marine Navigation (PMN) Socio-Economic Study (NOAA, 2020) 
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Figure 47 Incidents within 3 km of port Chart in the Top 20 Ports in the U.S. according to 

Precision Marine Navigation (PMN) Socio-Economic Study (NOAA, 2020) 

According to the Precision Socioeconomic Study, NOAA, 2020, ships are already passing 

through US ports with Keel Clearance, which may be as little as 1 foot in certain 

circumstances (30 cm). Ships are becoming larger in response to rising demand for 

commodities and the need to improve the logistic supply chain's efficiency, while the 

"just-in-time" supply chain concept places increased demands on port operations. 

Mariners' tools for making safe operating choices have remained largely unchanged over 

the previous two decades, necessitating greater vessel load and wait periods in ports 

while depending on manual calculations and theoretical Tidal Tables in the absence of 

real-time environmental data. Precision Navigation offers sailors with a single data 

source for all navigational products, rather than forcing them to consult many data 

sources in order to identify the optimal path through crowded waterways. As indicated 

in this paper, ports that employ Precision Navigation should experience a gain in 

efficiency and safety, which benefits a wide range of stakeholders. 

According to the Precision Socioeconomic Study, NOAA, 2020, the aim of this initiative 

is to accomplish three key goals: a) To utilise quantitative data to identify and prioritise 

the United States Ports that would reap the most benefits from Precision Navigation, as 

NOAA wishes to determine which additional United States ports would make economic 

sense to execute future projects. b) Develop valuation approaches for estimating 

Precision Navigation's major economic advantages. c) Apply those methodologies and 

consult with local stakeholders to estimate the economic benefits and impacts of 

implementing Precision Navigation at the Ports of New York/New Jersey and the Lower 

Mississippi River, which process the most ship tonnage and have some of the highest 
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incident rates among US ports. Precision Navigation Services are unrelated to S-100 on 

their own. Once the S-100 is completely developed, they will be effectively integrated 

into them, demonstrating the potential uses and cost savings that may be realised via 

the S-100's revolution of Maritime Spatial Data. Once Precision Navigation Services are 

deployed effectively, advantages will include pilots feeling more secure flying with less 

under-keel clearance and producing annual savings of between $200 million and $472 

million owing to decreased operational expenses and faster turnaround. Delays will be 

reduced as a result of improved weather and tide forecast, and pilots will be able to 

operate more safely as a consequence of the real-time data from Precision Navigation, 

lowering the danger of allisions, accidents, and groundings. That benefit alone would 

save between $176,000 and $1,030,000 per year in physical damage and injuries, or 

around $3.7 to $9.8 million per year in more comprehensive economic damages. 

Additionally, let us not forget the March 2021 grounding of the container ship Ever Given 

(see figure below) for reasons that are still unknown but have been attributed to Under 

Keel Clearance levels, Squat, and Wind Speed, all of which could have been avoided 

significantly by using more accurate real-time Maritime Spatial Data. Due to the 

continuing claims and pending proceedings relating to the event, the full effect of the 

particular grounding has not been determined.  

                              

Figure 48 Ever Given grounded in Suez (modified Copernicus Sentinel data [2021], 

processed by Pierre Markuse March 24th, 2021)  
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10 Artificial Intelligence 

AI (Artificial Intelligence) can be defined either broadly or specifically depending on the 

type of use we refer to or the degree of familiarity with the subject. If a broad definition 

could be used, it would refer to it as the concept of a software based agent either trained 

or left to learn unsupervised, to being operated autonomously from Humans in 

accordance with either a set of defined goals or make decisions well under uncertainty, 

without any set goals. Simplifying AI as merely a system that thinks and acts like humans 

is an oversimplification, which can create certain ambiguity to arise, as AI operated 

systems have the potential to work outside of the scope of definition of Human 

Intelligence. This doesn’t mean that Human Intelligence is inferior to AI, but rather it can 

be more proficient in figuring out problems that humans don’t have the cognitive and 

sensory capacity to do so. This way it can be considered as supplementary to Human 

Intelligence. 

10.1 Artificial Intelligence and application of new technological 
innovations in Route Finding 

In this section, the review of machine learning and deep learning in route finding is 

examined. However, to begin with, a brief overview of machine and deep learning is 

undertaken to understand the underlying operations between them. At the 

foundational level, artificial intelligence is described as the science and engineering of 

making machines intelligent, whereby software thinks intelligently, similar to humans, 

while exploiting the greater speed and processing power of computers (Hiesboeck, 

2018). In this regard, artificially intelligent applications mimic the cognitive functions of 

humans, such as problem-solving or learning (Oppermann, 2020). The author further 

postulates that the association between the three concepts is illustrated in figure below. 
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Figure 49. Relationship between AI, machine, and deep learning (Oppermann, 2020) 

As illustrated in figure above, both machine and deep learning are subsets of artificial 

intelligence that focus on equipping machines with intelligence. The following section 

briefly discusses machine learning and further reviews its applications in route planning 

and pathfinding.  

10.2 Machine Learning 

According to Awad and Khanna (2015), machine learning describes a field that focuses 

on teaching computers to learn without being constantly programmed for specific tasks. 

Hiesboeck (2018) shares a similar view and further posits that machine learning also 

describes the ability to learn without explicit programming. However, to facilitate such 

learning, the algorithms require to be trained using data (Oppermann, 2020). In further 

explanation, the author reports that machine learning models focus on minimising the 

error between predictions made and actual existent ground truth values during the 

training process. In a different study, Shalev-Shwartz and Ben-David (2014) add that 

there exist diverse types of machine learning algorithms which include classification 

algorithms used in data classification such as Naïve Bayes Classifier and Support Vector 

Machines (SVM) and cluster analysis algorithms such as K-means and tree-based 

clustering.  

The researchers argue that each of the different algorithms is associated with an 

objective or error function (Shalev-Shwartz and Ben-David, 2014). For instance, with the 
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classification algorithms such as SVM, the researchers argue that the algorithm's 

objective function would be to categorize data into one of two types, for example, cats 

and dogs. In such a case, the SVM algorithm would compare the prediction of the model 

against the ground truth values and parameters adjusted until the error rates between 

the predictions and actual values is as minimal as possible (Oppermann, 2020). In 

explanation, Oppermann (2020) further argues that the machine learning algorithms are 

essentially optimization algorithms as they focus on comparing ground truth values and 

the predicted model in a bid to reduce the error between them as much as possible.  

Different researchers have employed the different algorithms in tackling path finding 

and route planning problems with this understanding of machine learning. To begin 

with, Snoeck, Merchán, and Winkenbach (2020) utilized machine learning algorithms to 

solve routing optimization problems in transport and logistics. In the study, the 

researchers argued that route optimization was a crucial challenge in the supply and 

logistics industry owing to data unavailability on endogenous and exogenous customer 

constraints. As a result, deviations from planned routes were a common challenge 

reported. A probabilistic Metropolis-Hastings within Gibbs algorithm was further utilized 

in making inferences from delivery transactions. Results obtained revealed that the 

method outperformed other existent traditional solutions that focused on simply 

counting occurrences.  

In a second study, Basso, Kulcsár, and Sanchez-Diaz (2021) employed machine learning 

algorithms to facilitate route planning for electric vehicles in order to save energy. In the 

study, the researchers argued that the routing of electric vehicles required considering 

their limited driving range as it was affected by uncertain factors, such as traffic 

conditions. The researchers adopted a probabilistic Bayesian machine learning approach 

to predict energy consumption as well as the variance for road paths, routes, and links 

(Basso, Kulcsár and Sanchez-Diaz, 2021). The researchers further utilized data for public 

routes in Gothenburg-Sweden using realistic simulations for traffic on a 24-hr basis in 

Luxembourg city. Results obtained show that there was high accuracy for energy 

prediction as well as energy savings for the reliable routes (Basso, Kulcsár and Sanchez-

Diaz, 2021). The findings underscored the importance of Bayesian networks in route and 

path planning. 
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10.3 Deep Learning 

According to Oppermann (2020), deep learning is a subset of machine learning as its 

algorithms also rely on data in order to solve different tasks. Hiesboeck (2018) further 

adds that deep learning aims to enhance machine learning closer to artificial intelligence 

by creating knowledge from multiple layers of information processing. The author adds 

that at the foundational level, deep learning algorithms comprise multiple layers of 

neural networks, which are modelled after the human brain (Hiesboeck, 2018). Figure 

below illustrates a deep neural network. 

                         

                         Figure 50 Deep neural network (Oppermann, 2020) 

As detailed in figure above, deep learning algorithms are associated with several layers 

of neural networks (artificial neural networks), which enhance their performance. In 

another study, Molnar (2019) reports that the improvement in performance for the 

deep learning algorithms arises from the fact that the artificial neural networks can learn 

and make decisions on their own from the data, unlike flat algorithms, which parse and 

learn from data before using the insights to make decisions. Diverse researchers have 

also employed deep learning algorithms in tackling route and path planning problems. 

To begin with, Duc, Huu, and Nananukul (2020) developed a dynamic route-planning 

system that was based on artificial neural networks (ANN) for automated guided 

vehicles within a warehouse. In the study, the researchers reported that there lacked 

real-time route-planning algorithms, which were suitable in implementing automated 

guided vehicles with limited computing resources. To test a real-time route-planning 

system, Duc, Huu, and Nananukul (2020) developed a simulation of the internal layout 

of the warehouse and an optimization model based on machine learning ANNs to 

determine an operational route for the problem. Findings reported showed that the 
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algorithms were able to generate routes that were 98% accurate for the practical 

internal layout of the warehouse, which had 18 storage racks and 67 path segments.  

In a second study, Blum, Jones, and Yoshida (2019) utilized deep learning reinforcement 

learning algorithms in real-time path planning for lunar and space exploration robots. In 

the study, the researchers argued that deep learning was significant in advancing space 

exploration. It could be applied in high-level tasks such as path planning and low-level 

tasks such as motion control, which were important in enabling the robots to walk and 

undertake path planning. To train the robots, Blum, Jones, and Yoshida (2019) proposed 

deep reinforcement learning with randomized reward function parameters for 

simulated 8 degree-of-freedom robots that were quadruped and ant-like in shape. The 

deep reinforcement learning algorithms would enable the robotic agents to travel 

anywhere within the environment by undertaking both path planning and motion 

control within the single neural network. Various improvements were reported in the 

research as the autonomous robots became more liberal in path selection. They could 

choose real-time paths based on sensor information instead of conservative pre-built 

graphs (Blum, Jones, and Yoshida, 2019). The research results indicated significant 

promise regarding the advancement in space exploration robots such as rovers in fast 

locomotion and legged cave robots prone to rough terrain.  

In another third study, Yu, Su, and Liao (2020) further demonstrated the use of neural 

networks and hierarchical reinforcement learning to facilitate autonomous path-

planning in mobile robots. From the study results, it was observed that neural networks 

and hierarchical reinforcement learning could be effectively used to develop dynamic 

routes for the mobile robots tested in different kinds of environments. The researchers 

further compared the performance of various algorithms. The Deep Deterministic Policy 

Gradient (DDPG) approach was observed to generate the best results, for instance, in 

terms of shorter path-planning time and reduced number of steps. Furthermore, results 

obtained showed that the algorithm shortened the convergence time by 91% compared 

to other algorithms such as Q-learning and further enhanced the smoothness of planned 

paths by about 44% (Yu, Su, and Liao, 2020). In another study, Lei, Zhang, and Dong 

(2018) also adopted deep reinforcement learning to facilitate dynamic path planning for 

robots in unknown environments. From the study results, it was observed that the 

double Q-network (DDQN), a deep reinforcement learning algorithm, enhanced the 
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ability of the autonomous robots to avoid obstacles dynamically, thereby successfully 

reaching the local target position in unknown environments. The argument by the 

researchers was that deep reinforcement learning solved the curse of dimensionality 

quickly and further processed inputs that were multidimensional. A different study by 

Woo, Lee, and Cha (2018) also utilized reinforcement learning and neural networks to 

develop optimal routes for mobile robots. In the research, the researchers argued that 

there was a need for mobile robots to dynamically plan their paths, primarily where they 

worked with other robots and humans. As such, reliance on shortest path algorithms 

could increase waiting times as other robots blocked optimal paths. Woo, Lee, and Cha 

(2018) combined neural networks and reinforcement learning to overcome the issues, 

thereby enabling the robot to design the shortest path by making its own judgment 

based on available environmental information.  

The analysis of the different applications of deep learning underscores the value of 

neural networks in path-planning problems. Furthermore, from the studies' analysis, 

deep learning coupled with reinforcement learning was an effective approach in 

developing dynamic and real-time paths for mobile robotic agents in different 

environmental contexts. In the study by Duc, Huu, and Nananukul (2020), ANNs were 

observed to be effective in internal environments such as warehouses, where dynamic 

real-time route planning paths could be generated for guided vehicles. Blum, Jones, and 

Yoshida (2019) would further emphasize the value of reinforcement learning in path 

planning for lunar and space robots. The findings were reiterated in the study by Yu, Su, 

and Liao (2020), Okereke, Mohamad, and Wahab (2020), and Lei, Zhang, and Dong 

(2018), where neural networks coupled with deep reinforcement learning led to more 

optimal results. From an analytical viewpoint, it can be argued that the combination of 

deep learning and reinforcement learning leads to better results as compared to other 

algorithms as the autonomous robots are equipped with the capability to be more liberal 

in path selection as they can choose real-time paths based on sensor information as 

opposed to conservative pre-built graphs (Blum, Jones and Yoshida, 2019). Furthermore, 

as Oppermann (2020) argued, such deep learning algorithms do not require any form of 

human intervention in feature extraction as they automatically handle the process.  
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10.4 Comparison between Machine and Deep Learning 

The comparison between machine learning and deep learning highlights several 

noteworthy differences. To begin with, Molnar (2019) reports that deep learning 

algorithms outperform machine learning algorithms by eliminating the need for feature 

extraction. In explanation, the author argues that machine learning algorithms such as 

Decision Trees, SVM, Naïve Bayes, and Logistic Regression are considered flat algorithms 

as they require additional pre-processing through feature extraction before they can be 

applied to the raw data (Molnar, 2019). Oppermann (2020) also holds a similar view, 

who also reports that with feature extraction, the raw data is represented in different 

classes or categories to allow the machine learning algorithms to perform a given task. 

On the contrary, the author reports that with artificial neural networks, the pre-

processing step is not required as the data layers in the algorithms can represent the 

data independently (Goodfellow, Bengio, and Courville, 2016). This finding implies that 

with machine learning algorithms, there is a need for human intervention whereby 

programmers hand-code the different features applied in the data. However, feature 

extraction is undertaken by the program itself, not requiring additional human 

intervention with deep learning algorithms. Figure 51 below illustrates the differences 

between machine and deep learning algorithms. 

 

    Figure 51. Difference between machine and deep learning (Oppermann, 2020) 

As detailed in figure above, machine learning algorithms require the input of 

programmers to hand-code the different features before the algorithm can be applied 

to the raw data. As an illustrative example, the author considers the problem of 

classification of images as either car or not. With machine learning algorithms, a 

programmer must explicitly state the features that help identify a car, for instance, 
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windows, wheels, shape, among others (Oppermann, 2020). However, with deep 

learning, the algorithm can identify the car's unique features without any human 

intervention, thereby facilitating the analysis process. Conversely, deep learning 

algorithms already contain the feature extraction process as part of the algorithm’s 

training process. The algorithm can optimize the step-in to obtain the best abstract 

representation of the data (Oppermann, 2020). 

A second difference between machine and deep learning regards the influence of 

training data on the performance of the algorithms (Goulet, 2020). According to the 

author, deep learning algorithms can increase their accuracy with an increase in the 

amount of training data. However, with machine learning algorithms, the accuracy of 

the algorithms only increases up to a specific saturation point (Goulet, 2020). Thirdly, 

Goodfellow, Bengio, and Courville (2016) also highlight that further differences also 

emerge regarding the hardware used by the algorithms. In explanation, the authors 

report that machine learning algorithms run on less powerful machines such as CPUs 

with less computing power, unlike deep learning algorithms that require more powerful 

hardware such as graphical processing units (GPUs). On the same note, Oppermann 

(2020) observes that a shorter amount of time is required to process machine learning 

algorithms compared to deep learning algorithms. Likewise, other differences are also 

observed regarding how the deep learning algorithms can be tuned or performance 

enhanced, unlike machine learning algorithms associated with a limited tuning 

capability (Molnar, 2019).  

In addition to the discussed differences, other differences have also been observed 

about their application in route finding and path planning. For instance, from the 

analysis of diverse empirical studies relying on neural networks and reinforcement 

learning (Lei, Zhang, and Dong, 2018; Yu, Su, and Liao, 2020; Okereke, Mohamad, and 

Wahab, 2020), it emerged that higher performance was observed for autonomous 

agents with regard to path planning and selection of optimal routes in unknown 

environments. Such advantages were attributed to the capability of the algorithms to 

select features without human intervention, thereby enabling the agents to be more 

autonomous in path selection.  
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11 Cybersecurity concerns 

In this section, a review of cybersecurity concerns regarding the use of algorithms for 

route planning is undertaken. In particular, there is a specific focus on identifying the 

risks that arise from the use of algorithms in pathfinding and route planning in sea 

navigation. To begin with, Felski and Zwolak (2020) discuss two core cybersecurity 

threats that are faced by unmanned surface vehicles (USV) such as ships when 

autonomous navigational systems are implemented within them. First, the authors 

argued that there was a risk of threats from using basic equipment for navigational 

purposes (Felski and Zwolak, 2020). In explanation, the authors argued that reliance on 

Global Positioning System (GPS) and Global Navigation Satellite Systems (GNSS) for 

communication was associated with various dangers, such as they would be easily 

interfered with by malicious users. The finding is further supported by Grant A., 

Williams, P., Ward, N. & Basker, S. (2009), who reported that GNSS and GPS systems, 

which were the primary source of navigation for maritime applications, were at risk of 

interference or signal jamming, which could lead to possible denial of service over large 

geographical areas. 

A second threat identified by Felski and Zwolak (2020) regarded various GNSS 

vulnerabilities, including spoofing, interference, and cyber-attacks. Figure below 

displays some of the vulnerabilities associated with GNSS systems. 

 

           Figure 52 GNSS threats and vulnerabilities (Felski and Zwolak, 2020) 

Felski and Zwolak (2020) further reported that signal jamming was a commonly 

increasing problem as signals could be sent with an intention to interfere with 

communication from satellites or send false signals to the receivers. However, to 
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counter the jamming vulnerability, the authors advocated for the use of independent 

receiving devices that could calculate the ship's position based on multiple satellites. As 

a result, this would facilitate identifying the source and direction of the jamming signal. 

A similar finding was also reiterated by Marcos E.P., Caizzone, S., Konovaltsev, A., Cuntz, 

M., Elmarissi, W., Yinusa, K. & Meurer, M. (2018), who further reported that due to the 

increased dependence on GNSS systems for communication in sea navigation, this 

further raised concerns regarding their vulnerability, especially where signals were 

blocked deliberately through radio frequency interferences. However, in order to 

further counter cybersecurity threats in ship systems, the adoption of a cybersecurity 

risk assessment model is recommended. Refer to Appendix B, which shows a hazard 

analysis model for the cloud, and Appendix C illustrates an assessment model for 

onboard servers. 

12 Conclusions 

This research aimed to show the complexities of passage planning by analyzing the 

factors affecting it and show how to implement the use of the new S-100 IHO standard 

and pathfinding algorithms in automatic route planning and examine path-finding 

algorithms in route navigation for various manned and unmanned surface marine 

vehicles, merchant ships in specific. Still, it can be applied as well to other maritime 

applications such as Shore Based operations. Based on the examination of diverse 

studies, it emerged that pathfinding is limited to vehicle navigation, video games and 

robotics. The findings indicated that a similar end goal was common in the different 

scenarios as different agents focused on reaching their target destinations. For instance, 

in both robotics and video games, the various agents focused on avoiding obstacles and 

successfully reaching their end destinations. However, with ship navigation, path finding 

is further constrained by a range of environmental and technical factors such as 

weather, fuel consumption and the need to minimise emissions of greenhouse gases. 

Therefore, the research underscores the peculiarity of pathfinding in ships as there is a 

myriad of constraints that must be factored into when selecting the routing algorithms. 

A direct policy implication that arises in this regard is that ship captains and navigators 

need to develop a robust and highly diversified criteria when selecting different optimal 

routes for ship navigation at sea. In this regard, the criteria ought to not only ensure the 
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ship routing algorithms are effective in avoiding obstacles as well as reaching the end 

goal but also align to the demands of reducing fuel consumption and greenhouse 

emissions. 

Further analysis in the thesis revealed diverse path-finding algorithms that are 

important in the process. The algorithms ranged from BFS, DFS, IDDFS, Bidirectional 

search, Dijkstra, genetic algorithms, ant-colony algorithms, A* and various variations of 

A* such as D*, Lifelong Planning A* (LPA*), Weighted A*. Comprehensive analysis of the 

algorithms shown in Chapter 7.3 and Appendix IV, which reveal that each of these 

algorithms is associated with diverse advantages and disadvantages. Directly, the finding 

implies that ship captains and navigators have access to a wide array of path-finding 

algorithms in tackling ship routing problems. Furthermore, from the analysis of diverse 

empirical studies, it also emerged that different researchers have used different 

algorithms to solve path-finding problems in ship navigation. Therefore, the policy 

implication is that there is a need for ship navigators to closely evaluate the different 

path-finding algorithms in order to ensure they achieve the targeted objectives in ship 

navigation. An alternative recommendation is reliance on best practices, whereby the 

navigators can utilise the algorithms that are the most popular by use in other 

transportation sectors.  

Finally, the paper examined the role of artificial intelligence, machine learning and deep 

learning in route planning. From the analysis carried out in Chapter 9, it emerged that 

although machine learning is the superset of deep learning, deep learning algorithms 

have, however, assumed a central role in navigation. In particular, the use of neural 

networks and deep reinforcement learning algorithms was observed to be a highly 

popular solution. Nonetheless, as the adoption of autonomous ship navigation is 

advocated from the use of deep learning algorithms, further cybersecurity concerns 

were also highlighted, including signal jamming and malicious attacks to the 

communication equipment in the ships. Nevertheless, diverse solutions were also 

identified to mitigate the threats and ensure that the ships are able to attain their goals 

in reaching targeted destinations successfully.  

Based on the findings obtained in the research, several future research avenues are 

identified. First, as the research has revealed that diverse types of path-finding 
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algorithms ranging from Dijkstra to A*, genetic and ant colony algorithms can be 

employed in route navigation for ships, there is a need for studies which compare 

performance of these algorithms in solving ship navigation problems and identifying 

which algorithms or combination of them, is suitable for ship navigation. Such studies 

provide important insights regarding the performance of algorithms in route navigation, 

thereby enabling ship navigators and captains to select the most optimal algorithms for 

pathfinding in ships. Secondly, the research findings have also revealed that deep 

learning algorithms have also emerged as an important solution in pathfinding, 

especially in robotic applications. However, in order to benefit from the algorithms, 

there is need for further research which utilises them in ship navigation and routing 

applications and the need to install as many sensors capturing relevant marine 

environmental data such as tides, sea temperature, salinity, sea current force and 

direction, firstly in the most frequently visited and infrastructure critical ports. The study 

has revealed that there is a dearth of research on deep learning applications in ship 

routing and pathfinding, thereby necessitating future research. A third future avenue is 

that there is a need for future research into cybersecurity risks that arise from reliance 

on machine and deep learning algorithms in ship routing activities. However, the study 

revealed that various cybersecurity risks, including signal jamming and interference of 

communication in ships, were a commonly reported problem. In future research, more 

empirical studies which shed light on the shortcomings of reliance on machine and deep 

learning in pathfinding among ships are required.  

Based on the above findings of this Thesis, we can summarise the areas where further 

research is needed, which can complement the content of this Thesis: 

1. How do path-finding algorithms ranging from Dijkstra to A*, genetic and ant 

colony algorithms compare in solving real life ship navigation problems and 

identifying which algorithms or combination of them, is suitable for different 

types and situation of ship navigation? 

2.  What is the role and importance of marine environmental sensors, installed 

onboard and in navigable areas of the ship?  

3. What are the accuracy and calibration standards applicable to marine 

environmental sensors used in Precision Marine Navigation applications?  
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4.  What is the role, applications and importance of machine and deep learning 

path-finding algorithms in ship routing and pathfinding? 

5. What are the cybersecurity risks that arise from reliance on machine and deep 

learning algorithms in ship routing activities? 

6. What are the findings of empirical studies on the shortcomings of reliance on 

machine and deep learning in pathfinding among ships are required? 

As stated in Chapter 11 about Research Methodology, due to lack of response for 

Personal Interviews and Questionnaires not being well suited for this subject, the 

reliability of this Thesis is based on the literature review and the concepts being 

introduced. The validity of the Research Question made as stated in Chapter 1.2 is based 

on the cross examination of the literature review and the quality and reliability of the 

References used such as the American Practical Navigator Bowditch Almanac and IHO 

and IMO literature used, which hare all considered as the go to references in the field of 

Maritime Navigation. Finally, the importance of Research Questions posed in this Thesis 

are dependent on the necessity of Automatic Route Planning in Autonomous Navigation 

but also for the daily commercial usage in real life applications, which as explained 

throughout Chapter 8, it’s evident that these will in the forefront of any developments 

in the future. 
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Appendixes 

This chapter comprises of several tables and figures which were quite extensive to be 

included in the main text of the thesis, therefore allocated here for easier viewing and 

referral of the reader. 

Appendix I 

 Route Planning Criteria (Source: Author, 2021) 

Priority Order by 1 

most important to 

11 least 

Type of Criteria Description 

1 

Verification of 

Official ENCs 

status 

1) ENCs should comply with the latest 

IHO (International Hydrographic 

Organization), IMO (International 

Maritime Organization), IEC 

(International Electrotechnical 

Committee), and ISO (International 

Standards Organization) standards.  

2 

CATZOC (Category 

of Zone of 

Confidence) 

CATZOC (Category of Zone of 

Confidence) ranking in relation to 

scale, i.e., if an A1 ENC is available on 

a small scale while a large-scale C, D, 

or U ENC is available in the interested 

area, the most accurate will prevail. 

On the contrary, if an A2 or A3 ENC is 

available on a large scale while a small 

scale A1 ENC is available in the 

interested area, the one with the 

largest scale will prevail, but the 

object search results will be cross-
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checked against the A1 small scale 

ENC (see below figure 17, 18 and 19).  

3 
Navigational 

dangers 

Such can be wrecks, isolated dangers, 

areas with charted depth less than 

safely navigable considering CATZOC 

Depth Accuracy (see below figure 17, 

18, and 19). 

4 
Navigational 

Warnings 

Temporary and Preliminary (T&P), 

Navtex and INM-C (Inmarsat-C) EGC 

(Enhanced General Calling) 

Navigational Notices, which can be 

sourced directly from the issuing 

authorities’ websites. 

5 
Vessel’s Static 

draft 

Vessel’s draft without the influence of 

Squat or environmental factors such 

as rolling because of swell, etc. (see 

below figure 17). 

6 
Size and class of 

Ship 

Some vessels might have 

displacement or breadth restriction in 

certain navigable areas, such as 

Kamsarmax bulk carriers. 

7 
Under Keel 

Clearance (UKC) 

According to OCIMF (Oil Companies 

International Maritime Forum) SIRE 

(Ship Inspection Report) Vessel 

Inspection Questionnaire, 2019 p. 30, 

Vessel’s UKC (Under Keel Clearance), 

which can be affected by several 

factors and the Underkeel calculations 

should include, but not necessarily be 

limited to (see below figure 17): i) The 
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predicted height of the tide (see below 

figure 17), ii) Changes in the predicted 

tidal height, which are caused by wind 

speed and direction and high or low 

barometric pressure, iii) Nature and 

stability of the bottom - i.e., sand 

waves, siltation, etc., iv) Change of 

water density and the increase in 

draught due to freshwater allowance, 

v) The vessel's size and handling 

characteristics and increase in draught 

due to heel, vi) Wave response 

allowance, which is the vertical 

displacement of the hull due to heave, 

roll and pitch motions, vii) The 

reliability of draft observations and 

calculations, including estimates of 

hogging and sagging, viii) Reduced 

depths over pipelines and other 

obstructions, iv) vessel’s Squat. 

8 Vessel’s Air Draft 
It might be obstructed by Bridges and 

Hanging Cables (see below figure 18). 

9 

Vessel’s 

maneuvering 

characteristics 

Such can be the vessel’s turning circle 

and Wheel over line speed depending 

on if the ship is sailing in coastal 

waters with dense traffic or in open 

waters. 

10 

Wind 

direction/speed, 

Wave/Swell 

direction/height 

These can be according to user-

determined limits and taking into 

consideration the vessel’s GOM (Ships 

Corrected Metacentric Height) and 
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and Current 

direction/speed 

therefore Rolling Period, especially 

when dealing with tall ships such as 

Containerships, RoRo (Roll On Roll Off 

Carriers) or Cruise ships and to 

minimize vessel bunker consumption 

by selecting the optimum route. 

11 
COLREGS (Collision 

Regulations) 

Taking them into consideration when 

designing routes in case such as when 

crossing Traffic Separation Schemes, 

when navigating in TSS and when a 

vessel can navigate at an inshore 

traffic zone or any other applicable 

instance. 
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Appendix II 

 List of the individual parts, their associated part numbers, and ISO 19100 
Conformance standards (Source: IHO,2015)

   

 

 

 

 

 

 

Part Title  Part Number  ISO19100 Standard
Conceptual Schema Language S-

100 
Part 1 

ISO 19103:2005, Geographic information - Conceptual 
schema language ISO

Management of IHO 
Geospatial Information 

Registers S-100 
Part 2

 ISO 19135:2005, Geographic Information - Procedures for 
registration of items of geographic information

Feature Concept Dictionary 
Registers S-100 

Part 2a 

ISO 19135:2005, Geographic Information - Procedures for 
registration of items of geographic information ISO 

19126:2009, Geographic Information – Feature concept 
dictionaries and registers

Portrayal Register S-100 Part 2b 

ISO 19135:2005, Geographic Information - Procedures for 
registration of items of geographic information ISO 

19126:2009, Geographic Information – Feature concept 
dictionaries and registers ISO 19117:2012, Geographic 

Information - Portrayal
General Feature Model and 

Rules for Application Schema S-
100 

Part 3 
ISO 19109:2005, Geographic information - Rules for 

application schema

Metadata S-100 Part 4a ISO 19115:2005, Geographic information - Metadata
Metadata for Imagery and 

Gridded Data S-100 
Part 4b ISO 19115:2005, Geographic information - Metadata

Metadata – Data Quality S-100 Part 4c 

ISO 19113, Geographic information - Quality principles ISO 
19114, Geographic information - Quality evaluation 

procedures ISO 19138, Geographic information - Quality 
measures

Feature Catalogue S-100 Part 5 
ISO 19110:2005, Geographic Information - Methodology for 

feature cataloguing
Coordinate Reference Systems 

S-100 
Part 6

ISO 19111:2007, Geographic information - Spatial referencing 
by coordinates

Spatial Schema S-100 Part 7 ISO 19107:2003, Geographic information - Spatial schema

Imagery and Gridded Data S-
100 

Part 8 

ISO 19123:2007, Geographic information - Schema for 
coverage geometry and functions ISO 19129, Geographic 

information - Imagery, Gridded and Coverage Data 
Framework

Portrayal S-100 Part 9
Encoding Formats S-100 Part 10

ISO/IEC 8211 Encoding S-100 Part 10a
ISO/IEC 8211:1994, Specification for a data descriptive file 

for information interchange structure implementations

GML Encoding S-100 Part 10b 
ISO 19136:2007 Geographic information - Geography Markup 

Language
HDF5 Encoding S-100 Part 10c HDF5 Data Model and File Format

Product Specifications S-100 Part 11 
ISO 19131:2008 Geographic information – Data product 

specifications
S-100 Maintenance Procedures 

S-100 
Part 12



 

Appendixes
 
Appendix III 

Table of ENC Layers types depending on Issuing Authority and purpose of use (Source: 
Author, 2021) 

ENC Layers types depending on Issuing Authority and purpose of use 

IHO IALA 

Intergovernment

al Oceanographic 

Commission  

Other 

Organization

s  

International 

Electrotechnic

al Commission  

From S-101 to 199 
From S-201 to 

299 

From S-301 to 

399 

From S-401 

to 420 
From S-421 

S-101 ENC 
S-201_Aids_to 

Navigation (AtoN) 
None at the moment 

S-401_Inland 

ENC 

S-421_Route 

Plan 

S-102 Bathymetric 

Surface 

S-210_Inter-VTS 

Exchange Format 

 

S-411_Ice 

Information 

 

S-103 Sub-Surface 

Navigation 

S-230_Application 

Specific Messages 

S-

412_Weather_

/ Met-ocean 

forecasts 

Overlay  

S-104_Water_Level 

Information_for_Surface 

Navigation 

S-240_DGNSS 

Station Almanac 

 

S-111_Surface Currents 
S-245_Loran ASF 

Data  

S-112 Dynamic Water 

Level Data Transfer 

S-

246_eLoran_Statio

n Almanac 

S-

121_Maritime_Limits_a

nd Boundaries 

S-247 _Differential 

e-Loran Reference 

Station Almanac 
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S-

122_Marine_Protected 

Areas 

 

S-123_Radio Services 

S-124 Navigational 

Warnings 

S-125 Navigational 

Services 

S-126_Physical 

Environment 

S-127_Traffic 

Management 

S-128 Catalogues 

of_Nautical Products 

S-129 Under Keel 

Clearance Manager 
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Appendix IV 

Table of Comparison of Pathfinding / Wayfinding Algorithms (Source: Author, 2021) 
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Appendix V 

Autonomous Route Calculation Flowchart (Source: Author, 2021)
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Figure 33 Solving for the shortest path using the Dijkstra algorithm (Navone, 2020) 
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Figure 38. Bidirectional search algorithm (Russell and Norvig, 2016) 
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