

Magomedbashir Kushtov

Serverless CI/CD pipeline based on
Google Cloud Platform

Metropolia University of Applied Sciences

Bachelor of Engineering

Degree Programme in Information Technology

Bachelor’s Thesis

24 April 2022

Abstract

Author: Magomedbashir Kushtov

Title: Serverless CI/CD pipeline based on Google Cloud

Platform

Number of Pages: 43 pages + 6 appendices

Date: 24 April 2022

Degree: Bachelor of Engineering

Degree Programme: Degree Programme in Information Technology

Professional Major: IoT and Cloud Computing

Supervisors: Tapio Wikström, Senior Lecturer

This thesis looks at the serverless CI/CD pipeline based on the Google Cloud
Platform. The primary aim of this thesis was to design the serverless CI/CD pipeline
based on the Google Cloud Platform. To meet the project objective, related project
tasks were fulfilled.

The thesis consists of a theory part and a project part. The theory part includes the
DevOps principles, Virtualization, Cloud Computing, Continuous Integration and
Continuous Delivery processes (CI/CD). The project part focuses on implementing
the design of a serverless CI/CD pipeline based on the Google Cloud Platform. First,
the tests of Cloud Run and Cloud Build services were done in the Google Cloud
Platform to understand their workflow logic. Second, GitHub was connected to the
Google Cloud Platform to automate the Continuous Integration and Continuous
Delivery process. Third, the Docker image was created to emulate the development
part of the DevOps process. This Docker image was proceeded by the Google Cloud
Platform and as a result, the serverless deployment of a web application was
achieved.

The product of this thesis is the serverless solution for web application development
and deployment using the Google Cloud Platform services. Thus, it is possible to
avoid unnecessary work efforts and save time and costs compared to implementing
and deploying both physical and virtual servers for web applications.
The project uses the module design, therefore, it can be reconfigured and reused
according to developers’ needs.

The goal of creating the serverless CI/CD pipeline based on the Google Cloud
platform was successfully achieved. This solution will benefit the author of the thesis
project, students who are interested in DevOps and Cloud Computing area, as well
as DevOps specialists.

Keywords: Google Cloud Platform, GCP, Serverless CI/CD pipeline, GitHub,

 Docker, DevOps, Artifact Registry, Google Cloud Run, Google Cloud

Build

Contents

1 Introduction 1

2 Fundamentals of DevOps 3

2.1 DevOps Lifecycle 5

2.1.1 Plan 6

2.1.2 Build 6

2.1.3 Continuous Integration and Continuous Deployment 7

2.1.4 Monitor 8

2.1.5 Operate 8

2.1.6 Continuous Feedback 9

2.2 Virtualization, Cloud Computing, Continuous Integration and
Continuous Delivery Platform 10

2.2.1 Virtualization 10

2.2.2 Cloud Computing 15

2.2.3 Continuous Integration and Continuous Delivery Platform 17

3 Design of serverless CI/CD pipeline, Services and Tools 19

3.1 Google Cloud Services 22

3.2 GitHub 34

3.3 Docker Image of Serverless CI/CD Pipeline Based on GCP 36

4 Configuration Files for Serverless CI/CD pipeline 36

4.1 Configuration Files for development branches 37

4.2 The Dockerfile Configuration 40

5 Conclusion 42

References 44

Appendices

Appendix 1: The content of the production.yaml file of Production (main) branch

Appendix 2: The content of staging.yaml file of the Production branch

Appendix 3: The content of the Dockerfile of the Production (main) branch

Appendix 4: The content of the production.yaml file of Staging (staging) branch

Appendix 5: The content of staging.yaml of Staging (staging) branch

Appendix 6: The content Dockerfile of the Staging (staging) branch

List of Abbreviations

DevOps: An abbreviation of two parts: development and operations

IT: Information Technology

GCP: Google Cloud Platform, is a cloud computing service provided by

Google Inc.

YAML: A data serialisation language with a simple syntax that stores

complex data in a compact and readable format. YAML stands for

“Yet Another Markup Language”

CI/CD: This abbreviates continuous integration (CI) and either continuous

delivery or deployment (CD)

VCS: Version Control System

VM: Virtual Machine

OS: Operating System

IaaS: Infrastructure as a Service Platform

PaaS: Platform as a Service

SaaS: Software as a Service

ID: An abbreviation of the word “Identifier”

KPI: Key performance indicators.

SHA Secure Hash Algorithm is a mathematical algorithm that can

transform a random range of data into a fixed-length string consisting

of letters and numbers.

MiB Unit of measurement of the amount of information. One mebibyte is

equal to 1,048,576 bytes.

IAM Identity and Access Management

1

1 Introduction

This is the project type of bachelor’s thesis for the Degree Programme in

Information Technology specializing in IoT and Cloud Computing at Metropolia

University of Applied Sciences.

Presently, most cloud providers offer serverless solutions for their customers [6,

p. 24]. This choice is justified by cost savings, reliability, better fault tolerance,

and ease of maintenance. These advantages have been appreciated by

DevOps professionals. The combination of cloud technologies and other

platforms and tools provides solutions for complicated challenges.

The thesis work aims to design and implement a serverless CI/CD pipeline

solution by combining Google Cloud, GitHub, and Docker services. The

programming code and infrastructure of the pipeline can be reconfigured and

used in the future. The ease of changing Docker images will allow using such a

design for various purposes in development. The code for the pipeline will be

comprehensive. Therefore, changes in the code will change the behaviour of

the design. For example, the database image from the shared google library of

Docker images can be added to the infrastructure and connected to the web

application to store the data.

The CI/CD pipeline uses deployment servers as endpoints in integration,

testing, or delivery systems. The developers upload the source code to the

CI/CD repository, and deployment servers fetch the source code from it [8, p.

13]. If a pair or several branches are used during application development, then

deployment servers will be located at the ends of these branches as well. Such

servers can be either physical servers or virtual ones hosted in the cloud.

This deployment server can be a bottleneck of the whole pipeline since it can be

overloaded, hacked, rebooted, or in maintenance. This can seriously disrupt the

operation of the entire CI/CD pipeline. Therefore, the more reliable and

functional solution will be to change deployment servers to the serverless

version of the CI/CD pipeline based on microservices. Thus, the cloud provider

2

allocates resources for the application code automatically. The customer is no

longer concerned about the technical characteristics of the server and its

maintenance. This solution will benefit DevOps professionals, the author of this

thesis, and other IT students who are interested in the DevOps path.

3

2 Fundamentals of DevOps

Previously, IT jobs were strictly divided into areas. The IT department of

companies had to have specific professionals for each area. The developers

were writing software, while system engineers were responsible for IT

infrastructure and network engineers were working in the networking area. The

rapid development of the latest trends in the information technology industry

has demonstrated the need for new specializations [3, p. 9]. With the progress

of cloud technologies, demand for specialists in cloud areas has arisen.

Noticeably, the increasing number of employees raised the expenditures of the

companies and slowed down the entire work process [3, p.11].

An original approach was required to get rid of the cumbersome and clumsy

typical development process. Automation is a great solution to these issues.

Applying the new method increased the ability of organizations to provide high-

quality solutions in the shortest possible time. There was a need for new

professionals, who had skills in the development and operations areas. Such

specialists got their name from a combination of these words, namely DevOps

engineers [6, p.2].

Using the DevOps principle does not apply to banking or energy companies and

companies that process their customers’ personal data. These companies need

stable and highly secure products. However, the principle of DevOps works well

for companies, for example, who develop websites or sell software products.

The DevOps principle is also well suited to large corporations that develop

software for their own use.

In “typical” development, also known as a “Waterfall” model, the stages go one

after another. Meaning, that the team in the “Build” stage does not start building

the application before receiving the technical requirements. As well as the

“Deployment” stage does not start before it receives the complete product. And

lastly, the “Feedback” stage does not send any information to the “Plan” team

before a full analysis of received feedback. This development principle is too

4

cumbersome and takes time to coordinate each step. However, the “Waterfall”

model can give excellent results. Usually in this model, the order of technical

requirements is clear and precise. Development management is quite easy, and

there are strictly defined dates of deadlines, thus giving the possibility of a more

accurate planning time [3, p. 13].

As an alternative to the “typical” approach, DevOps offers a more flexible

method. All stages work in parallel. Due to this, high development speed and

cost-saving are achieved.

With all the advantages of DevOps, it has disadvantages as well. The

incompleteness of the testing cycle by skipping manual tests may cause critical

errors in production. Additionally, the requirements for DevOps engineers are

quite high, and often require high qualifications in many areas. An elevated level

of professionalism also applies to the management team.

Currently, the DevOps engineer participates in software development and

supports the entire process from development to implementation. To provide

high-level quality applications, DevOps engineers' required skills include

programming, scripting, and expertise in cloud technologies, version control

systems, virtualization, operating systems, and network technologies [1,

p.27,29].

To serve the innovative approach in the DevOps continuous integration and

continuous delivery environment, new tools appeared to automate processes.

These tools cover system build configuration management tests, version control

systems, application deployment and delivery, as well as monitoring tools.

These tools are increasing each day, providing more opportunities to automate

DevOps processes [12, p. 31].

This chapter covers some of the technologies used in the DevOps environment.

Such as integration and delivery systems, virtualization, and cloud computing.

The DevOps process will also be considered in more detail.

5

2.1 DevOps Lifecycle

The continuous manner of DevOps leads developers to use the infinite loop to

show the relationship between the stages of the DevOps lifecycle. Regardless

of the external consistency of the cycle, it represents the need for endless

cooperation and repetitive processes during the life cycle [2, p. 17].

Figure 1. A conceptual model of the DevOps lifecycle (Adapted from [2, p. 18]).

The DevOps life cycle in Figure 1 shows six stages: Plan, Build, Continuous

Integration and Deployment, Monitor, Operate, and Continuous Feedback. The

main idea of the life cycle of DevOps is the infinite loop of all processes. These

six stages are divided into two parts. The Plan, Build, Continuous Integration

and Deployment belong to the “Development” part, while Monitor, Operate, and

Continuous Feedback go to the “Operations” part [2, p. 18].

These stages should be described in more detail. Each of these stages has

features, requirements, and rules. The responsibilities of each stage are strictly

defined, and the successful completion of the work of the entire cycle depends

on the quality of work of each of them.

6

2.1.1 Plan

The “Plan” stage is continuous planning based on lean principles, by

understanding own resources and outcome results, continually adapting,

evaluating progress, verifying customer requirements, and adjusting the path as

needed to provide elasticity. The main goal of planning is to minimize costs and

time to find the most profitable option, while constantly improving the quality of

the product.

After implementing the DevOps life cycle, the “Continuous feedback” stage

provides information to the “Plan” stage to increase excellence. The “Plan”

stage is the start point of the DevOps lifecycle. All ideas for a future project are

born at this stage. The customer requirements and the developers' possibilities

are also discussed here [2, p. 19]. The direction of development is chosen

based on the conclusions of the “Plan” stage. However, edits and changes can

be constantly added and transferred to the development stage, thereby

confirming the principle of the DevOps approach, the continuous work of all

stages. This stage is one of the most important stages because it sets the pace

and quality of the entire project. [2, p. 16]

2.1.2 Build

The “Build” stage starts next. The working process goes according to the

“Plan” stage results. Previously selected tools and techniques for the

implementation of the project are used in this stage.

The “Build” stage is the continuous process of collaborative development. The

collaborative development process allows development, management, and

testing teams to continuously deliver high-quality software. This consists of

multi-platform development, programming language support, and lifecycle

management. The outcome of the “Build” stage must be a usable product to

an expected objective [2, p. 19]. However, the coding process does not stop

even after obtaining a working version of the product. Attempts to improve the

7

product are constantly ongoing. The constant work of the planning stage may

require a change in the operation of the application. Even cardinal changes are

possible, such as a change in the programming language, introduction of using

cloud technologies or changes in which operating system the future version of

the product will work on.

The following “Continuous Integration and Deployment” stage will begin its

work after uploading a completed product to the Continuous Integration and

continuous deployment platform with repositories and version control system.

Such a platform is an essential part of the DevOps life cycle.

2.1.3 Continuous Integration and Continuous Deployment

The “Continuous Integration and Deployment” (CI/CD) stage provides a

continuous pipeline that automates key processes. This reduces the resource

wait times, and demands of rewriting code, and enables more releases.

Automation is an important part of guaranteeing a steady and consistent

software release. The goal of automation is to get rid of manual processes as

much as possible. The coding, deployment, and delivery steps are automated in

DevOps by applying the version control system [2, p. 190]. The version control

system or VCS allows to roll back changes in the application code, by releasing

one of the previous versions. Thus, making it possible to correct errors, if they

have been in the released version of the application.

Besides, the VCS provides an opportunity to conduct an automated test of the

code before the deployment of the application. The ability to split development

branches into at least two branches, such as Staging and Production, minimizes

the occurrence of critical errors in the release version of the product. If the

application is complex, the version control system additionally provides an

excellent opportunity to check and test all dependencies and libraries of the

application.

8

The CI/CD platforms offer online repositories and a version control system. A

useful advantage of using VCS with online repositories is the possibility of

round-the-clock work on the project if the development department employees

are in different time zones all around the world [2, p.7].

2.1.4 Monitor

The “Monitor” stage opens the “Operations” part. This stage use product

observing tools that capture metrics and key performance indicators (KPIs) in

real-time [2, p. 48]. All received information is observed at an early stage,

providing that automated testing tracks the characteristics of the application.

The condition metrics must be studied and evaluated when an application is

examined and deployed. The monitoring system will identify problems related to

the operation and quality of the application detected at this stage.

All tests necessary for correct operation are carried out. After that, the

monitoring system will generate reports in a clear and accessible format and

notify all interested groups. Previously, monitoring tools were able to monitor

the application performance or network traffic only. While the current progress

of application monitoring tools allows supervising the performance of the server,

pipeline condition, the status of containers and database, and end-users

experience of using applications. The complete tracking tools grant to obtain

extensive information and see a fairly accurate picture of the application's

performance [2, p. 31].

2.1.5 Operate

The “Operate” stage includes the application's maintenance, direct use, and

troubleshooting. At this stage, the application is ready for use by the end-user

and represents a workable product. The quality of the product clearly illustrates

the quality of the organization of the entire life cycle of DevOps. Product

reliability and fast troubleshooting capability are essential parts of this stage.

The development team must use reliable deployment solutions on client servers

9

or in cloud storage, to identify problems earlier than they affect the customer

side. At this stage, customers of the product may notice imperfections and

defects in the application. In the future, all this information will be analyzed, and

modifications will be made [2, p. 20]. Based on the above, it is important to have

rapid product technical support, to remove the errors as fast, as possible and

reduce the downtime of the application. Constantly repeating the cycle in

DevOps helps to correct the application errors whenever they happen. If a

critical error occurs, then one of the processes in the previous stages was

skipped or poorly produced.

2.1.6 Continuous Feedback

The last stage of the cycle is “Continuous Feedback”, after which the entire

process will start again. All information related to the application usage is

gathered at this stage; the customers’ feedbacks are a major part of it [2, p.

4,44]. The customers’ wishes and suggestions to improve the usability of the

application are collected and provided to the “Plan” stage. Furthermore, the

problems and errors of an application are collected by DevOps teams to be

fixed in the next stages [2, p. 8].

The key principle of DevOps is “Continuous Everything”, each stage is

repeated constantly. For example, there is no need to wait until the “Plan”

stage receives the collected data from “Continuous Feedback” to keep its

work. Instead, it may continue the process of increasing the quality of the

current version and provide suggestions for the “Build” stage [2, p. 18]. Thus,

there are constant attempts to improve the already existing version of the

product at all stages simultaneously. The whole DevOps process can be

compared with the work of the conveyor, the correct and uninterrupted

movement of which is guaranteed by the small rollers of its mechanism.

10

2.2 Virtualization, Cloud Computing, Continuous Integration and
Continuous Delivery Platform

The modern development of computer technologies allows the creation of

infrastructures that are quite complex from a constructive point of view. Lots of

solutions that were created as separate independent products found their

purpose as part of one entire process [11, p. 19].

Cloud services have long ceased to be ordinary Internet storage [4, p. 15]. The

constant combination of new and existing software products into cloud services

has become a frequent practice for cloud providers. For example, virtualization

technologies have merged with cloud service technologies, and have already

become an integral part of them [11, p. 113].

2.2.1 Virtualization

Virtualization was invented as a technology that allows emulating the functions

of servers. According to virtualization principles, one physical server can contain

many virtual servers isolated from each other and running at the same time. All

physical hardware of the real server is shared with virtualized servers. Such a

server is also called a Host Server. Therefore, a single real server can have the

ability to play roles such as a Database, Web, or File server.

Figure 2. An example of consolidated servers (Adapted from [4, p. 10]).

11

In this kind of application, the server is also called a consolidation [4, p. 9,11].

Still, the evolution of virtualization technology has evolved to the ability to

emulate the work of physical devices as well. For example, emulate the

operation of network devices, mobile devices, and storage drivers [4, p. 2].

The virtualization technology uses various terms such as Hypervisor, Virtual

Machine, Guest OS, Host OS, and Containers. To understand how virtualization

works, each of these concepts must be considered and explained.

A hypervisor is a fundamental part of virtualization technology, which allows for

managing multiple operating systems on a single computer. The hypervisor

plays the role of an intermediary between the physical server and the virtual

machines, providing isolated hardware resources of the physical server for each

virtual machine. All interaction between physical servers and virtual machines

goes through the hypervisor [5, p. 23]. Figure 3 shows the logic of the working

process of virtualization.

Figure 3. The virtualization logic diagram (Adapted from [4, p. 23])

At the bottom layer is the physical server also known as the Host. At the middle

layer is the hypervisor, and at the top layer is the virtual machine also known as

Guest.

12

There are two types of hypervisors. The hypervisor type 1 operates directly on

the server. The virtualization software is installed on the server hardware

without a preinstalled operating system. This form of installation is called bare-

metal implementation. The type 1 hypervisor is more effective in utilizing

servers’ resources since it can communicate with them directly without an extra

layer representing an operating system. The less consumption of resources

makes the type 1 hypervisor economically preferable to type 2 since there is no

need to spend expensive server resources on installing and maintaining the

underlying operating system [4, p. 23,26]. Also, hypervisor type 1 provides

better security and availability [5, p. 23].

Figure 4. Types of Hypervisors (Adapted from [4, p. 24,25])

The type 2 hypervisor is installed on top of an operating system, referred to as

hosted virtualization. In the case of the realization of type 2 virtualization, the

hypervisor is installed as an application. The hypervisor can operate with

resources that the host server can share with it. The operating system installed

on the Server is called Host OS, while the operating system installed on the VM

is called Guest OS.

13

The main difference between type 1 and type 2 hypervisors is that type 2 has

an extra layer between VM and server where the Host OS is allocated [5, p. 24].

The Host OS makes the type 2 hypervisor less reliable. For example, any

updating patch for Host OS that requires a reboot will force reboots of all VMs

[4, p. 25].

A Virtual Machine also called a VM, is an emulated end–device, which has an

operating system and a set of applications that emulates the performance of a

real server. As mentioned before the hypervisor provides hardware support to

the VM. Therefore, from the point of view of the operating system installed on

the virtual machine, its “hardware” is real. The VM can be utilized as a typical

server by installing software and applications [4, p. 38].

A physical server can contain many virtual machines, running on top of it. Each

of the virtual machines is isolated from other VMs and can have different

operating systems and separate roles of servers. In case of VM failure, the

isolation also protects other machines from errors that occurred on failed VM [4,

p. 37].

Containers are one of the next steps in the evolution of virtualization

technology. While a virtual machine emulates the operation of a computer with

an installed operating system, containers allow emulating the functions of an

operating system. The container does not contain a complete copy of the

operating system and shares the kernel with the Host OS [6, p. 63]. Further, an

application can be placed in the container, and it can be a database or a web

application [7, p. 117]. This structure greatly reduces the size of the container.

Instead of using a virtual machine whose files can be several gigabytes in size,

the container size can be quite small, a hundred, tens, or even a few megabytes

[6, p. 63].

To communicate with the outer world, the containers use ports. For example,

the classic MySQL database uses port 3306 for connections. Therefore, if the

14

MySQL database was placed in the container, then port 3306 must be exposed

[8, p. 229].

Another excellent value of containers is that they can be used with the

consolidation method described above. Instead of installing separate virtual

machines for each server role, the containers with similar server roles can be

used [10, p. 24].

Figure 5. The models of VM-Based and Container-Based Servers (Adapted
from [9, p. 12]).

For example, Figure 5 shows the difference between the working process of a

VM-Based server and a Container-Based server. A container-based server

frees up server resources that can be used to run more containers [10, p. 24].

The container engine is used for management. It allows to create, run, manage,

and orchestrate the containers [4, p. 271].

In fundamental, the containers are isolated mini-virtual machines. This kind of

advantage makes them a perfect choice of application delivery tools. For

15

example, to run a certain application on the server, the presence of some

additional environments or a certain version of programming languages is

necessary. In the case of using a container, everything needed can be placed

inside. [4, p. 271]. This feature of the container makes it an indispensable tool

for software developers [7, p. 117].

2.2.2 Cloud Computing

Cloud Computing is a set of virtual services offered by cloud providers to

customers, over the network, including the provision of virtual servers, online

storage, virtual networks, and software applications. The common name for all

these services is “IT as a Service”. [5, p. 431]

The service delivery model of cloud computing has been adapted from the

traditional computing model, which is divided into three levels: infrastructure,

platform, and application. Infrastructure is the level of all physical devices such

as servers and their components, network devices, and peripheral devices. The

list of devices can be supplemented with power supplies and cooling systems.

The platform is the level that lies on the infrastructure level. It includes servers’

operating systems, firmware and drivers for networks and peripheral devices

such as printers, scanners, routers, and switches. The function of this layer is to

ensure the correct operation of the infrastructure by providing the necessary

software. The application software level is the level at which the end-user

interacts with the installed software. At this level, the comfortable work of the

programs necessary for the user is guaranteed. An example would be using a

text editor, or even playing a computer game. That is the use of any application

that was installed additionally and is not a required part of the server operating

system [11, p. 6].

Cloud providers use the same structure to provide services to customers. The

main difference is that the services are virtual and located in the provider's cloud.

The IT as a Service principle changes the names of these levels from

Infrastructure to Infrastructure as a Service (IaaS), from Platform to Platform as

16

a Service (PaaS) and from Application to Software as a Service (SaaS) [11, p.

10].

The Infrastructure as a Service (IaaS) provides computing resources such as

virtual servers, online storage, and virtual networks. For example, a cloud

provider can offer a virtual server of a certain capacity, but without an installed

operating system. In this case, the client is renting the virtual server and can

install the operating system of his choice [13, p. 477].

When talking about infrastructure, the shared responsibility model should be

mentioned. The shared responsibility model is the model that clarifies the

responsibility of cloud resources between customers and cloud providers, where

the cloud provider guarantees the efficient operation of the chosen level [11, p.

77]. Figure 6 shows the shared responsibility model.

Figure 6. Shared responsibilities in traditional and cloud computing (Adapted from
[11, p. 104]).

The Platform as a Service (PaaS) is the level that includes the infrastructure as

a Service level and additionally provides the servers’ operating systems. The

customer can rent the virtual server with a certain capacity and operating system

for his needs. For example, a developer team can rent a server to test their

application [13, p. 477]. The cloud provider is responsible for the accurate work

17

of the underlying infrastructure and the operating system software of the server

as well [11, p. 79].

Software as a Service (SaaS) provides applications as a service. As the name

of that service says, the cloud provider could provide online access to the

software application. The cloud provider takes care of infrastructure and platform

levels, therefore the customer is responsible only for the application use. An

example of a SaaS solution could be a Google Docs service. Where a customer

can use a browser to get the functionality of a text editor, without installing any

additional software on his computer [11, p. 80].

2.2.3 Continuous Integration and Continuous Delivery Platform

Continuous Integration and Continuous Delivery Platform, also known as

CI/CD platform is a system of standardized procedures and automation. In

general, the CI/CD platform is the repository with a version control system.

Software developers upload the application files or source code to the repository

periodically. Each upload gets the ID number which makes it easier to control the

versions of uploaded files [6, p. 37].

The source code repository can be split into branches; therefore, each

development team can work with the source code in a branch, specially created

for that team. Additionally, teams of developers can work with repositories, as

CI/CD provides round-the-clock access [8, p. 144].

To understand the principles of operation of CI/CD platforms, GitHub, will be

considered. GitHub uses terms such as “commit”, “push”, “pull”, or “fetch”.

By applying them, the developers can upload, download, delete, or roll back the

source code or its changes [8, p. 140]. Figure 7 shows the usual set of commands

for the GitHub platform.

18

Figure 7. Commands of GitHub CI/CD.

The add command adds the file or list of files to the tracking system, for

subsequent placement in the local repository. For example, the git add config.py

command will index the config.py file for the tracking system. The developer

indexes the config.py file, which in the future should be placed in the local

repository. If changes have been made in the config.py file, then the commands

must be re-executed, since the tracking system remembers the state of the file at

the time when the add command was applied last [8, p. 143].

The commit takes the indexed file and copies it into the local repository. In the

future, all files from the local repository will be copied to the remote repository.

Every time a change has been made to the files; the commit command must be

re-applied [8, p. 140].

The push command will push the latest commit to the remote server. Thus, the

local and remote repositories will be synchronized. All changes made in the local

repository will be placed in the remote repository. It is possible to send files also

to a specific branch using attributes [8, p. 141]. For example, git push origin main

will push “committed” files to the main branch of the origin repository.

19

The fetch command downloads the changes from the remote repository to the

specific folder on the local computer. It does not change any files of the local

repository unless the merge command was issued [8, p. 141].

The checkout command switches the branches, but another feature of the

checkout command is that it can undo changes in the working directory. For

example, git checkout – filename will revert the file's changes to the state it was

before the commitment to the local repository. In other words, the changes to the

file in the working directory of the project will be reset [8, p. 141].

The pull command downloads the changes from the remote repository that other

developers have made. Those changes will appear in the local repository [8, p.

141].

3 Design of serverless CI/CD pipeline, Services and Tools

Commonly, servers at various stages of work are involved in the process of

integration and delivery [8, p. 14]. These servers can be either real machines or

virtual ones, and they also can be hosted in the clouds. It is important to

understand that hosting servers in the cloud does not make it a serverless

solution. Such servers still exist, albeit in the virtual space. Figure 8 shows a

typical implementation of such a solution.

Figure 8. CI/CD pipeline based on physical or virtual servers.

20

The thesis aimed to design a CI/CD pipeline based on the Google Cloud Platform

and get rid of any servers in the integration, delivery, and deployment process.

Instead of using servers, Google Cloud Platform services are used.

Figure 9 demonstrates the complete realization of a serverless solution for CI/CD

pipeline based on GCP, with the additional platforms and tools.

Figure 9. Serverless CI/CD pipeline based on GCP.

21

The next chapters describe setting up the serverless CI/CD pipeline process step-

by-step, from scratch to the complete stage. The whole CI/CD procedure work

will be emulated, and the code and all necessary files will be provided as well.

The GCP services used in this project are Cloud Run Service, Cloud Build and

Artifact Registry. Another platform is GitHub, which is connected to the GCP. The

source code is pushed from GitHub to the GCP, and the trigger on GCP launches

the build, test and deploy actions. According to the branch name, the source code

of the web application is provided to the relevant Google Run service.

The GCP has 3 projects inside, Management, Staging and Production. The

Management Project is a major project. It has common connections with GitHub

and other projects. It also has all the necessary rights, and permissions to

process the received code, and then send the results to other projects. The

management project includes three Cloud Build services, representing the build,

push and deploy stages. After receiving the source code from GitHub, each of

these stages is turned one after another. In the first STEP_BUILD stage, the code

is managed, and the build process begins. At this stage, the desired container

image is downloaded from the Google Docker library. Based on this image, the

required image is created with included web server files and web application

code. The STEP_PUSH stage pushes the image to the Artifact Registry, where

the image is stored as a copy, and then pushed to the STEP_DEPLOY stage.

Finally, the stage STEP_DEPLOY sends the image to the Cloud Run service with

instructions and attributes to create a web server with the corresponding code for

the web application.

The Staging project contains the Cloud Run service. After receiving the image

and its attributes from the Management project, it deploys a serverless web

application according to the received information. The Production project does

the same steps; the difference is only the project’s destination.

22

3.1 Google Cloud Services

The Google Cloud projects are applied to manage services, and control

permissions and collaborators. For the implementation of serverless CI/CD

pipeline, 3 projects are created. To create a new project, the GCP dashboard is

used as seen in figure 10.

Figure 10. Creating a new project.

The projects Production and Staging include the Cloud Run services. The Cloud

Run service is a fully managed serverless solution for web applications based

on containers. This service also allows converting any back-end code written in

any supported programming language with dependencies into a service

function.

To add Cloud Run service to the Staging project, the Staging project is selected

and Cloud Run service is chosen from the left menu as shown in figure 11.

Figure 11. Adding Cloud Run service to the Production project.

23

By pressing the create button the Cloud Run service is started.

The next pages showed the settings for the Cloud Run service. Figure 12

demonstrates the setting changes of the Staging project according to

requirements.

Figure 12. The setting of Cloud Run service of Staging project.

In the Container image URL settings, the “TEST WITH A SAMPLE

CONTAINER” button was pressed. This adds the test “hello” container provided

by Google as a sample. The Service name was changed to my-docker-app-

staging. The Region setting was changed to europe-notrh1 (Finland). In the

Ingress setting, the “Allow all traffic” radio button is selected. In the

Authentication setting, the “Allow unauthenticated invocations” radio

button was selected. In Container, Variables & Secrets, Connections,

24

Security setting the container port was changed from 8080 to 80 port number.

The Capacity setting was changed to the minimum memory allocated to each

container, which is 128 MiB. The same settings were applied to the Production

project, with a changed Service name as my-docker-app-production, and

Region as europe-west1 (Belgium).

Figure 13. Successful deployment of the container.

Figure 13 demonstrates the successful deployment of the demo container for

the Staging project. The same result of deployment was achieved on the

Production project as well. The results screen in Figure 13 demonstrates the

revision of the container image, the Cloud Run service name, the region, and

the project name.

The project Management manages the main processes in this CI/CD pipeline.

One of them is the Artifact Registry service. The Artifact Registry creates a

repository with copies of all pushed images that pass through the Google Cloud

infrastructure.

25

To create an Artifact Registry service, the Management project was selected,

and from the left menu panel, the Artifact registry was selected. The GCP

shows the warning that ”Artifact Registry API must be enabled” since it is

used for the very first time. The “enable” radio button was pressed. On the next

page “create repository” button was pressed. After that, the settings page of

the Artifact Registry repository opens. Figure 14 shows the settings that are

required to be set.

Figure 14. The Artifact Registry settings.

The name of the repository was changed to ci-cd-docker-repository, and the

region was selected as europe-north1 (Finland).

26

The next step was to create triggers inside the Management project. From the

left menu panel, the Cloud Build was selected, and after that the warning page

that “API needs to be enabled” opened. After pressing the enable API button,

the page of Cloud Build opens. On the left side, the Triggers button was pressed.

The interconnection process of GitHub and GCP is started by pressing the

manage repositories button on the top side. On the following page, the connect

repository button was pressed. This opens the settings menu, with choices of

Sources, Authenticate, Repository, and triggers. Since the author is using

GitHub, the following Source was chosen.

Figure 15 demonstrates the Connect repository menu.

Figure 15. Connecting to GitHub repository.

After choosing GitHub, the Authenticate menu asked to authenticate the user.

Next, the GCP asks to install the Google Cloud Build app on the repositories that

will be connected to the GCP. The Select repository step is required to select the

account and repositories to connect to the Cloud Build service. The confirmation

27

with conditions of GCP is also required to accept. The last step of creating a

trigger was skipped by pressing the done button since the specific triggers will

be created later.

The triggers are needed for the Production branch as well as for the Staging

branch. They are added by pressing three small dots (view actions menu) right

of the repository name and selecting add trigger choice from the drop menu. The

next trigger setting page is required to be filled. Figure 16 shows the changed

settings.

Figure 16. Trigger settings for the Staging branch.

28

The Name of the trigger was changed to docker-app-push-to-staging, the

repository Event was changed to Push to a branch the Source was selected as

gearup2000/ci-cd-gcp-test (GitHub App), the Branch was changed to ^staging$,

the Configuration type was changed to Cloud Build Configuration file (YAML or

JSON), the Location of the configuration file was changed to the Repository

(since it is located in the GitHub repository) and the name of that file was changed

to staging.yaml. The staging.yaml (Appendix 5) file includes the configuration for

the trigger, and it is explained in the next chapters. At last, the create button was

pressed. The same settings were applied to create a second trigger for the

Production branch, which is the main branch in GitHub, with changes of the

name to be docker-app-push-to-production, the Branch setting as ^main$, and

the configurations yaml file as production.yaml (Appendix 1).

The last step was to give Service Account Permissions to the Management,

Production and Staging projects to interact with each other. The Management

project needs permission to deploy Docker images created by Cloud Build

services on Cloud Run services of Production and Staging projects, and another

permission to push the Docker images to the Artifact Registry service. Figure 17

shows the required permissions.

Figure 17. Permissions for Management project.

29

To allow the Management project the deployment of the Docker images on Cloud

Run services of Production and Staging projects, the Settings button on the left

menu panel was pressed and the service account email was copied as shown in

figure 18.

Figure 18. Service account email of Management project.

This service account email was added as Principal with Cloud Run Admin and

Service Account User roles in the Production and Staging project under the IAM

menus of these projects. Figure 19 demonstrates the steps to add the principal

to the Staging project.

Figure 19. Adding Management service account email as principal to Staging
project.

30

To add the Management’s service account email as a principal to the Staging

project, the Staging project was opened (1), then the IAM menu was opened (2)

and the ADD button was pressed (3). This opens the setting to add the principal.

As a new principal, the email of the service account of the Management project

was added (4), and new roles were applied to that service account. The Cloud

Run Admin (5) gives full control over Cloud Run services and the Service Account

User (6) allows run operations as the service account. The same settings were

applied in the Production project.

To permit the Management project to push the Docker images to the Artifact

Registry following steps are done.

Figure 20. Adding Management service account email as principal to Artifact
Registry.

The Artifact Registry menu (2) under the Management project (1) was selected,

then was selected the ci-cd-docker repository (3), and on the left menu, ADD

PRINCIPAL button was pressed (4) as shown in figure 20. After that, the service

account of the Management project was added with the Artifact Registry writer

role, which gives access to read and write repository items.

The last permissions were applied to Production and Staging projects to have

read access from Artifact Registry. This allows them to pull Docker images from

Artifact Registry. Figure 21 shows the steps to be taken to find the list of accounts

for the Production project.

31

Figure 21. The list of Production accounts.

To find the list of Production accounts, the IAM service (2) under Production

project (1) was selected, to show Google-provided role grants the Include button

was pressed (3), this showed the list of accounts, and the Google Cloud Run

Service Agent email was copied (4). The same steps are done in the Staging

project.

Figure 22. Adding Production and Staging Google Cloud Run Service Agent
accounts as readers of Artifact Registry service.

Figure 22 shows how to add service account emails as the Artifact Registry

Readers. This allows reading the images from the Artifact Registry.

After applying for all required permissions, manual testing was done. To conduct

tests, the Cloud Build menu item was selected in the Management project, after

which the Triggers item was selected in the menu on the left, which opens a list

32

of previously created triggers. Opposite the name of each trigger at the end of

the line is a RUN button that initiates the launch of the trigger. Thus, a commit

action from GitHub to the development branches was emulated. The test results

were checked in the History menu item of the Cloud Build service, as figure 23

demonstrates.

Figure 23. Results history of Cloud Build service.

The green color of the Status column indicates the successful results of pipeline

work. By clicking on the build number, detailed information about each result can

be checked. For example, for a detailed demonstration of the result, the last test

was chosen, as can be seen in figure 24. All steps were completed, and the

serverless version of the webserver was launched with a pre-installed HTML

page.

Figure 24. Detailed results of successful deployment.

33

The last tests were made using GitHub. Since two development branches are

used, each of them contains a copy of the Dockerfile. The Dockerfile also stores

instructions for building the HTML file and its contents. For a reliable test result,

the text in the HTML part of Dockerfile in both branches was changed. In

particular, the revision number of the web application. First, a commit was made

from the Production (main) branch, and the second commit was made from the

Staging(staging) branch. The last commit was made after merging two branches

into the main (Production) branch, thereby emulating the work of developers, in

the field of splitting and merging different branches of web application

development. Figure 25 shows the results of the first commit from the Production

(main) branch.

Figure 25. Performance test of serverless CI/CD pipeline.

For clarity, a simple Dockerfile (Appendix 3) example was used, which is not an

example of best practice, but sufficient to show the principle of operation of the

serverless CI/CD pipeline. The files production.yaml (Appendix 1) and

staging.yaml (Appendix 2) remains unchanged, as they are responsible for the

operation of the entire pipeline and contain instructions for transferring the

34

Dockerfile of each branch from GitHub repositories to Google Cloud Platform and

their further processing.

All built images were archived in the Artifact Registry. Figure 26 shows the saved

copies of the used Docker images for building the web application in the

Production (main) branch.

Figure 26. Docker images archive of Artifact Registry repository.

The Artifact Registry creates repositories for each branch separately and allows

to get rid of confusion when deploying them in the pipeline. Any of these copies

of images can be downloaded later to reuse or to be analyzed.

3.2 GitHub

GitHub provides a repository with a built-in version control system (VCS). The

files can be stored in the repository and can be accessed via the Internet. A

repository can be either public or private depending on the desires of the

repository owner.

This chapter describes all files of the serverless CI/CD pipeline located on GitHub

and their purposes. Figure 18 shows the content of the main (Production) branch

of the GitHub repository.

35

Figure 27. Content of the main branch.

Some of these files are responsible for the correct operation of the pipeline, while

the rest are part of GitHub and Microsoft Visual Studio.

.gitattributes – is the GitHub file that contains the attributes of each file in the

relevant repository and does not affect serverless CI/CD pipeline operation.

.gitignore – is the GitHub file that contains a list of ignored files that should not

be included in commits and does not affect serverless CI/CD pipeline operation.

Dockerfile – is a file (Appendix 3) that contains the instructions for building a

Docker image for a serverless CI/CD pipeline. The instructions indicate which

operating system to use and which services to install in the created image. This

file is used in CI/CD pipeline. The content of the Dockerfile will be described in

chapter 4.2.

cd-cd-gcp.sln - is the Microsoft Visual Studio file. It contains text information

about the project environment and status, and stores project-specific settings.

Does not affect serverless CI/CD pipeline operation.

production.yaml – is the file (Appendix 1) of instructions for the Cloud Build

pipeline and Cloud Run service of the Production branch. It contains the

instructions on steps for building, pushing, and deploying the Docker image file

at the Production branch. To get the Docker image, production.yaml file refers to

the Dockerfile (Appendix 3), which is the development file of the web application

used in the Production (main) branch. The content of the production.yaml will be

described in chapter 4.1.

staging.yaml – is the file (Appendix 2) of instructions for the Cloud Build pipeline

and Cloud Run service of the Staging branch. It contains the instructions on steps

for building, pushing, and deploying the Docker image file at the Staging branch.

36

To get the docker image, staging.yaml file refers to the Dockerfile. The content of

the staging.yaml will be described in chapter 4.1.

As mentioned before the files Dockerfile, production.yaml and staging.yaml are

used in serverless CI/CD pipeline project. Each of these files is responsible for

their part of the pipeline performance and contains the code that is executed at

the request of the developer or services such as a trigger.

3.3 Docker Image of Serverless CI/CD Pipeline Based on GCP

Docker is open-source software that grants the operating system to run

processes in an isolated environment based on specially created images. The

core principle behind Docker is application containerization. This type of

virtualization allows the software to be packaged in isolated environments called

containers. Each of these containers includes all the needed elements for the

application to work properly.

The serverless CI/CD pipeline uses the Ubuntu docker image from the

Container Registry library of images provided by Google Cloud Platform, which

can be found at

https://console.cloud.google.com/gcr/images/google.com:cloudsdktool. By

changing the settings in the Dockerfile, the user can change the version of the

operating system or completely change the operating system to another.

4 Configuration Files for Serverless CI/CD pipeline

The serverless CI/CD pipeline based on GCP uses three configuration files on

each branch, that automate the deployment process. Three of them namely

production.yaml (Appendix 1), staging.yaml (Appendix 2), Dockerfile (Appendix

3) are located at the main (production) branch and the other three namely

production.yaml (Appendix 4), staging.yaml (Appendix 5), and Dockerfile

(Appendix 6) are located at the staging branch. The production.yaml file contains

the configuration and attributes for the Production branch. The staging.yaml file

https://console.cloud.google.com/gcr/images/google.com:cloudsdktool

37

contains the configuration and attributes for the Staging branch. The Dockerfile

contains the configuration Docker image. The production.yaml and staging.yaml

files are almost identical. The difference is only in the variables for each

development branch. All other configurations are similar. The YAML

programming language was used to write these files. This language is a

supported language of the Google Cloud Platform.

The Dockerfile contains the service commands for building the docker image and

installing the webserver. Additionally, a simple HTML page is created and hosted

on a web server.

4.1 Configuration Files for development branches

The file production.yaml and staging.yaml were used for the serverless CI/CD

based on GCP. Each of them is responsible for its branches. The production.yaml

file serves the main branch, which is the Production branch of the CI/CD pipeline.

The staging.yaml serves the staging branch of the CI/CD pipeline. They contain

the instructions and commands to use in the pipeline. The contents of the files

are almost identical, with a small exception in the difference in the names of the

development branches. The production.yaml (Appendix 1) file is used to explain

the code. The steps part of the production.yaml file instructs GCP to create, push,

and deploy Docker image. Each of these steps should be considered to describe

in more detail, for this purpose the production.yaml file of the Production branch

will be taken. The process of building a Docker image begins after the steps line.

Build step

steps:

 - name: gcr.io/cloud-builders/docker

 id : BUILD

 args: ['build', '-t', '$_SERVICE_IMAGE', '.', '-f', 'Dockerfile']

Listing 1. The build step of production.yaml file.

The first BUILD step (listing 1) creates the Docker image from the provided

source and applies the given parameters to it. The name field identifies the pre-

38

built Docker image which is stored in the Google Container Registry at

gcr.io/cloud-builders/docker.

The id field specifies the ID which will be assigned to the built image. Examples

of IDs, such as BUILD, PUSH and DEPLOY can be seen in the Cloud Build

process shown in figure 24. The args field specifies the arguments to use. The

'build' argument starts the build process of a Docker image from the Dockerfile

and assembly context. An assembly context is a set of files located at a specific

path or URL. The '-t' argument specifies the tag and repository to store the image

on a successful build. The next '$_SERVICE_IMAGE' argument is the address

where the built image must be saved. The '.' argument specifies the current

working directory to build the image. The context for building the Docker image

will be taken from the current directory only. The '-f' argument specifies the

location of the Dockerfile. The 'Dockerfile' argument specifies the location and

name of the Dockerfile. In this example, the Dockerfile is in the current directory.

PUSH step

 - name: gcr.io/cloud-builders/docker
 id : PUSH
 args: ['build', '-t', '$_SERVICE_IMAGE', '.', '-f', 'Dockerfile']

Listing 2. The push step of production.yaml file.

The second PUSH step (listing 2) has id as PUSH and argument 'push' which

instructs the GCP to push the built image to the '$_SERVICE_IMAGE' location.

DEPLOY step

 - name: gcr.io/cloud-builders/gcloud
 id : DEPLOY
 args:
 - run
 - services
 - update
 - $_SERVICE_NAME
 - --project=$_SERVICE_PROJECT
 - --region=$_SERVICE_REGION
 - --image=$_SERVICE_IMAGE

Listing 3. The deploy step of production.yaml file.

39

The DEPLOY step (listing 3) has id as DEPLOY. The name argument

gcr.io/cloud-builders/gcloud is the repository with the latest version of the

Docker image maintained by the Cloud Build team. The arguments –run, –

services, –update can be represented in one row, such as run services update

$_SERVICE_NAME, which instructs the GCP to run services update of Cloud

Run environment variables and other configuration settings.

Images:

- $_SERVICE_IMAGE

Listing 4. The part of code to display the images in the build results.

The lines with code Images: and – $_SERVICE_IMAGE (listing 4) display the

created images in the build results.

The last part provides substitutions and parameters to build, run, and deploy

processes (listing 5).

substitutions:

 _SERVICE_IMAGE:europe-north1-

docker.pkg.dev/${PROJECT_ID}/${_DOCKER_REGISTRY}/${_DOCKER_IMAGENAME}:${SHORT_

SHA}

 _SERVICE_REGION : europe-north1

 _SERVICE_PROJECT : kushtov-production

 _SERVICE_NAME : docker-app-push-to-production

 _DOCKER_REGISTRY : ci-cd-docker-repository

 _DOCKER_IMAGENAME : app-production

Listing 5. The substitutions are part of the production.yaml file.

The line _SERVICE_IMAGE:europe-north1-docker.pkg.dev/${PROJECT_ID}

/${_DOCKER_REGISTRY}/${_DOCKER_IMAGENAME}:${SHORT_SHA} is a

link to a docker image located in the project repository and can be found in the

Artifact Registry repository of the relevant project as shown in figure 28.

Figure 28. Artifact Registry repository of the Production project.

40

As seen in figure 28, the PROJECT_ID is kushtov-management,

_DOCKER_REGISTRY is ci-cd-docker-repository, _DOCKER_IMAGENAME

is app-production, and SHORT_SHA adds the SHA tag to the built image.

The _SERVICE_REGION defines the region to use. The _SERVICE_PROJECT

defines the project name. The _SERVICE_NAME defines the trigger name. The

_DOCKER_REGISTRY defines the repository name. The

_DOCKER_IMAGENAME defines the name of the Docker image.

The staging.yaml (Appendix 2) file has the same setting as the production.yaml

(Appendix 1) with changes in the names of the project, trigger, and Docker

images for proper functioning in the Staging branch.

4.2 The Dockerfile Configuration

A Dockerfile (Appendix 3) is essentially a manual for building a docker image.

The commands in the Dockerfile specify which services should be installed, which

files should be created, or which firewall rules should be applied. Changes to this

file change the behavior of the web application because it contains the code for

it. The Dockerfile builds an image of a web server based on the Ubuntu operating

system, then creates an index.html file and fills its contents with simple HTML

code. To access a web page, the docker container opens port 80. There are two

Dockerfiles in each branch. To describe their configuration of them, the Dockerfile

of the Production branch will be used.

FROM ubuntu:21.04

RUN apt-get -y update
RUN apt-get -y install apache2
RUN echo 'Docker Image on Cloud Run
' > /var/www/html/index.html
RUN echo 'Version of App 0.1 Hello from Production
(main) branch' >> /var/www/html/index.html
CMD ["/usr/sbin/apache2ctl", "-D","FOREGROUND"]
EXPOSE 80

Listing 6. Content of Dockerfile of Production branch.

The line FROM ubuntu:21.04 defines the image to use. This case instructs the

docker engine to use the Ubuntu version 21.4 image for building the Docker

image.

41

The line RUN apt-get -y update initiates the process to check for available

updates of OS, libraries, and tools. If the updates are available, it will install them

without asking the user, since the -y key is used, which stands for yes answer in

case the user approval is needed.

The line RUN apt-get -y install apache2 initiates the process of installing the

Apache webserver.

The line RUN echo 'Docker Image on Cloud Run
' >

/var/www/html/index.html creates the index.html and inserts the “Docker

Image on Cloud RUN” text to the body of the index.html file.

The line RUN echo 'Version of App 0.1

Hello from Production (main) branch' >>

/var/www/html/index.html insert the “Hello from Production (main) branch” text

to the body of index.html file.

The line CMD ["/usr/sbin/apache2ctl", "-D","FOREGROUND"] initiates

foreground run process of Apache web server.

The line EXPOSE 80 instructs the Docker image to expose and listen the port

80. This port is used by web servers.

The Dockerfile file of the Staging branch has the same setting with a small

difference in the body text, where it is indicated that this build of web application

came from the Staging branch.

42

5 Conclusion

This thesis project aimed to design the serverless CI/CD pipeline based on the

Google Cloud Platform. With the use of the information received and the

combination of different technologies, the goal was achieved. In the beginning,

the documentation of cloud services provided by Google Cloud Platform was

studied. Based on the received information, the tests were carried out. This

gave an understanding of the principles of operation of these services and their

potential opportunities. By combining the GitHub and Google Cloud platforms,

the basis for the future pipeline was obtained. Files for more fine-tuning

configurations helped to successfully launch the entire pipeline. Additionally,

with their help, it became possible to control the entire process of developing

and deploying a web application. The Docker container technology was used to

build the web application. A simple Dockerfile was used to test the operation of

the pipeline since the goal of the entire project was not to develop a web

application, but to create a serverless CI/CD pipeline. The Dockerfile was

responsible for both the front end and the backend tasks. As a result of the

symbiosis of all these technologies and tools, a successful result was achieved

by hosting a web application on a serverless platform.

Replacing the functionality of the webserver with serverless Google Cloud

Platform services will help free up resources spent on developing applications.

This solution is quite relevant and significant in the field of DevOps. The

modular design of the project leaves the possibility for its reconfiguration and

reuse in other projects as well.

The study and creation of such a project helped the author of the thesis to cover

a wide range of technologies and tools. This project will be beneficial for

DevOps professionals, as well as for IT students. The application of the

knowledge gained in the process will assist the author of the project in the

future.

43

In the author’s opinion, the further development of serverless solutions is a very

promising direction and its development should be continued.

44

References

1 Davis, Jennifer; Daniels, Katherine. 2016. Effective DevOps: Building a
Culture of Collaboration, Affinity, and Tooling at Scale.

2 Mulder, Jeroen; 2021. Enterprise DevOps for Architects.

3 Metish, Soni; 2016. DevOps for Web Development.

4 Portnoy, Matthew; 2016. Virtualization Essentials 2nd Edition.

5 Tulloch, Mitch; 2010. Understanding Microsoft Virtualization Solutions
(Second Edition).

6 Riti, Pierluigi; 2018. Pro DevOps with Google Cloud Platform: With Docker,
Jenkins, and Kubernetes.

7 Diagboya, Ewere; 2021. Infrastructure Monitoring with Amazon
CloudWatch: Effectively Monitor Your AWS Infrastructure to Optimize
Resource Allocation, Detect Anomalies, and Set Automated Actions.

8 Krief, Mikael; 2019. Learning DevOps: The Complete Guide to Accelerate
Collaboration with Jenkins, Kubernetes, Terraform and Azure DevOps.

9 McKendrick, Russ; Gallagher, Scott. 2018. Mastering Docker: Unlock New
Opportunities Using Docker's Most Advanced Features, 3rd Edition.

10 Farcic, Viktor. 2016. The DevOps 2.0 Toolkit: Automating the Continuous
Deployment Pipeline with Containerized Microservices.

11 Bhowmik, Sandeep; 2017. Cloud Computing.

12 Reed, Mark; 2020. DevOps The Ultimate Beginners Guide to Learn
DevOps Step-by-Step.

13 Fox, Richard; Hao, Wei; 2017. Internet Infrastructure: Networking, Web
Services, and Cloud Computing.

Appendix 1

1 (1)

The content of the production.yaml file of Production (main)

branch

#---

Cloud Build Pipeline for Production Cloud Run

#---

steps:

Docker Build Image request, the arguments are:

'build' - is the entry point to the Docker cloud builder,

'-t' - is the Docker flag,

'$_SERVICE_IMAGE' - is the name of the image to be built in Artifact

Registry.

'.' - is the location of the source code, which indicates the source code is

in the current working directory.

'-f' - indicates to use a file as a source,

'Dockerfile' - indicates the name of a Dockerfile to use. In this case, the

name is "Dockerfile".

 - name: gcr.io/cloud-builders/docker

 id : BUILD

 args: ['build', '-t', '$_SERVICE_IMAGE', '.', '-f', 'Dockerfile']

Docker Push Image to Artifact Registry Service, the arguments are:

'push' - push the image to Artifact Registry Service.

'$_SERVICE_IMAGE' - is the name of the image to be pushed to Artifact

Registry.

 - name: gcr.io/cloud-builders/docker

 id : PUSH

 args: ['push', '$_SERVICE_IMAGE']

Docker Deploy the image to the Cloud Run

the arguments are: Update Cloud Run environment variables and other

configuration settings.

 - name: gcr.io/cloud-builders/gcloud

 id : DEPLOY

 args:

 - run

 - services

 - update

 - $_SERVICE_NAME

 - --project=$_SERVICE_PROJECT

 - --region=$_SERVICE_REGION

 - --image=$_SERVICE_IMAGE

images: # Display the image in the build results.

- $_SERVICE_IMAGE

substitutions:

 _SERVICE_IMAGE : europe-north1-

docker.pkg.dev/${PROJECT_ID}/${_DOCKER_REGISTRY}/${_DOCKER_IMAGENAME}:${SHORT_

SHA}

 _SERVICE_REGION : europe-north1

 _SERVICE_PROJECT : kushtov-production

 _SERVICE_NAME : my-docker-app-production

 _DOCKER_REGISTRY : ci-cd-docker-repository

 _DOCKER_IMAGENAME : app-production

Appendix 2

1 (1)

The content of staging.yaml file of the Production branch

#---

Cloud Build Pipeline for Staging Cloud Run

#---

steps:

Docker Build Image request, the arguments are:

'build' - is the entry point to the Docker cloud builder,

'-t' - is the Docker flag,

'$_SERVICE_IMAGE' - is the name of the image to be built in Artifact

Registry.

'.' - is the location of the source code, which indicates the source code is

in the current working directory.

'-f' - indicates to use a file as a source,

'Dockerfile' - indicates the name of a Dockerfile to use. In this case, the

name is "Dockerfile".

 - name: gcr.io/cloud-builders/docker

 id : BUILD

 args: ['build', '-t', '$_SERVICE_IMAGE', '.', '-f', 'Dockerfile']

Docker Push Image to Artifact Registry Service, the arguments are:

'push' - push the image to Artifact Registry Service.

'$_SERVICE_IMAGE' - is the name of the image to be pushed to Artifact

Registry.

 - name: gcr.io/cloud-builders/docker

 id : PUSH

 args: ['push', '$_SERVICE_IMAGE']

Docker Deploy the image to the Cloud Run.

the arguments are: Update Cloud Run environment variables and other

configuration settings.

 - name: gcr.io/cloud-builders/gcloud

 id : DEPLOY

 args:

 - run

 - services

 - update

 - $_SERVICE_NAME

 - --project=$_SERVICE_PROJECT

 - --region=$_SERVICE_REGION

 - --image=$_SERVICE_IMAGE

images: # Display the image in the build results.

- $_SERVICE_IMAGE

substitutions:

 _SERVICE_IMAGE : europe-north1-

docker.pkg.dev/${PROJECT_ID}/${_DOCKER_REGISTRY}/${_DOCKER_IMAGENAME}:${SHORT_

SHA}

 _SERVICE_REGION : europe-north1

 _SERVICE_PROJECT : kushtov-staging

 _SERVICE_NAME : my-docker-app-staging

 _DOCKER_REGISTRY : ci-cd-docker-repository

 _DOCKER_IMAGENAME : app-staging

Appendix 3

1 (1)

The content of the Dockerfile of the Production (main) branch

#---

Dockerfile / creates a Docker Image with integrated Apache WebServer. The OS

is Ubuntu 21.04

Define the image to use.

FROM ubuntu:21.04

Update the ubuntu image.

RUN apt-get -y update

Install Apache HTTP Server.

RUN apt-get -y install apache2

Insert the "Docker Image on Cloud Run" text to the index.html file.

RUN echo 'Docker Image on Cloud Run
' > /var/www/html/index.html

Add the "Version of App 0.1" to the default index.html file and change the

color of the text to the DeepSkyBlue.

RUN echo 'Version of App 0.1 Hello from

Production (main) branch' >> /var/www/html/index.html

Run Apache service in the foreground after the container is started.

CMD ["/usr/sbin/apache2ctl", "-D","FOREGROUND"]

tells the Docker container to listen on port 80

EXPOSE 80

Appendix 4

1 (1)

The content of the production.yaml file of Staging (staging)

branch

#---

Cloud Build Pipeline for Production Cloud Run

#---

steps:

Docker Build Image request, the arguments are:

'build' - is the entry point to the Docker cloud builder,

'-t' - is the Docker flag,

'$_SERVICE_IMAGE' - is the name of the image to be built in Artifact

Registry.

'.' - is the location of the source code, which indicates the source code is

in the current working directory.

'-f' - indicates to use a file as a source,

'Dockerfile' - indicates the name of a Dockerfile to use. In this case, the

name is "Dockerfile".

 - name: gcr.io/cloud-builders/docker

 id : BUILD

 args: ['build', '-t', '$_SERVICE_IMAGE', '.', '-f', 'Dockerfile']

Docker Push Image to Artifact Registry Service, the arguments are:

'push' - push the image to Artifact Registry Service.

'$_SERVICE_IMAGE' - is the name of the image to be pushed to Artifact

Registry.

 - name: gcr.io/cloud-builders/docker

 id : PUSH

 args: ['push', '$_SERVICE_IMAGE']

Docker Deploy the image to the Cloud Run

the arguments are: Update Cloud Run environment variables and other

configuration settings.

 - name: gcr.io/cloud-builders/gcloud

 id : DEPLOY

 args:

 - run

 - services

 - update

 - $_SERVICE_NAME

 - --project=$_SERVICE_PROJECT

 - --region=$_SERVICE_REGION

 - --image=$_SERVICE_IMAGE

images: # Display the image in the build results.

- $_SERVICE_IMAGE

substitutions:

 _SERVICE_IMAGE : europe-north1-

docker.pkg.dev/${PROJECT_ID}/${_DOCKER_REGISTRY}/${_DOCKER_IMAGENAME}:${SHORT_

SHA}

 _SERVICE_REGION : europe-north1

 _SERVICE_PROJECT : kushtov-production

 _SERVICE_NAME : docker-app-push-to-production

 _DOCKER_REGISTRY : ci-cd-docker-repository

 _DOCKER_IMAGENAME : app-production

Appendix 5

1 (1)

The content of staging.yaml of Staging (staging) branch

#---

Cloud Build Pipeline for Staging Cloud Run

#---

steps:

Docker Build Image request, the arguments are:

'build' - is the entry point to the Docker cloud builder,

'-t' - is the Docker flag,

'$_SERVICE_IMAGE' - is the name of the image to be built in Artifact

Registry.

'.' - is the location of the source code, which indicates the source code is

in the current working directory.

'-f' - indicates to use a file as a source,

'Dockerfile' - indicates the name of a Dockerfile to use. In this case, the

name is "Dockerfile".

 - name: gcr.io/cloud-builders/docker

 id : BUILD

 args: ['build', '-t', '$_SERVICE_IMAGE', '.', '-f', 'Dockerfile']

Docker Push Image to Artifact Registry Service, the arguments are:

'push' - push the image to Artifact Registry Service.

'$_SERVICE_IMAGE' - is the name of the image to be pushed to Artifact

Registry.

 - name: gcr.io/cloud-builders/docker

 id : PUSH

 args: ['push', '$_SERVICE_IMAGE']

Docker Deploy the image to the Cloud Run.

the arguments are: Update Cloud Run environment variables and other

configuration settings.

 - name: gcr.io/cloud-builders/gcloud

 id : DEPLOY

 args:

 - run

 - services

 - update

 - $_SERVICE_NAME

 - --project=$_SERVICE_PROJECT

 - --region=$_SERVICE_REGION

 - --image=$_SERVICE_IMAGE

images: # Display the image in the build results.

- $_SERVICE_IMAGE

substitutions:

 _SERVICE_IMAGE : europe-north1-

docker.pkg.dev/${PROJECT_ID}/${_DOCKER_REGISTRY}/${_DOCKER_IMAGENAME}:${SHORT_

SHA}

 _SERVICE_REGION : europe-north1

 _SERVICE_PROJECT : kushtov-staging

 _SERVICE_NAME : my-docker-app-staging

 _DOCKER_REGISTRY : ci-cd-docker-repository

 _DOCKER_IMAGENAME : app-staging

Appendix 6

1 (1)

The content Dockerfile of the Staging (staging) branch

#---

Dockerfile / creates a Docker Image with integrated Apache WebServer. The OS

is Ubuntu 21.04

Define the image to use.

FROM ubuntu:21.04

Update the ubuntu image.

RUN apt-get -y update

Install Apache HTTP Server.

RUN apt-get -y install apache2

Insert the "Docker Image on Cloud Run" text to the index.html file.

RUN echo 'Docker Image on Cloud Run
' > /var/www/html/index.html

Add the "Version of App 0.1" text to the default index.html file and change

the color of the text to the DeepSkyBlue.

RUN echo 'Version of App 0.1a Hello from Staging

(staging) branch ' >> /var/www/html/index.html

Run Apache service in the foreground after the container is started.

CMD ["/usr/sbin/apache2ctl", "-D","FOREGROUND"]

instruct the Docker container to listen on port 80

EXPOSE 80

	1 Introduction
	2 Fundamentals of DevOps
	2.1 DevOps Lifecycle
	2.1.1 Plan
	2.1.2 Build
	2.1.3 Continuous Integration and Continuous Deployment
	2.1.4 Monitor
	2.1.5 Operate
	2.1.6 Continuous Feedback

	2.2 Virtualization, Cloud Computing, Continuous Integration and Continuous Delivery Platform
	2.2.1 Virtualization
	2.2.2 Cloud Computing
	2.2.3 Continuous Integration and Continuous Delivery Platform

	3 Design of serverless CI/CD pipeline, Services and Tools
	3.1 Google Cloud Services
	3.2 GitHub
	3.3 Docker Image of Serverless CI/CD Pipeline Based on GCP

	4 Configuration Files for Serverless CI/CD pipeline
	4.1 Configuration Files for development branches
	4.2 The Dockerfile Configuration

	5 Conclusion
	References

