

An Nguyen Van

Label printing web application
library for Finnish paint company

Metropolia University of Applied Sciences

Bachelor of Engineering

Information Technology

Bachelor’s Thesis

3 May 2022

Abstract

Author: An Nguyen Van
Title: Label printing web application library for Finnish paint

company
Number of Pages: 53 pages
Date: 8 May 2022

Degree: Bachelor of Engineering
Degree Programme: Information Technology
Professional Major: Software Engineering
Supervisors: Janne Salonen (Principal Lecturer)

The purpose of the project was to plan and construct a standalone label customizing
and printing library, which would be used in the point-of-sale application for selling
paint for client on the hardware store using web technologies. This is part of the
company’s vision to migrate from multiple old school desktop applications using
different technologies into a universal web application. The decision is not only
providing a streamlined development experience but also enhancing the scalability of
the whole application in the future.

The project was the combination of observing web technologies frameworks and
researching existed methodologies. The team concluded that the label printing
application would be an isolated web application at first but still utilizing the same
technologies as others so it could be integrated with ease later. Furthermore, the
frontend development process is also supported by a workflow to ensure the
collaboration between developers, avoid time consuming repetitive tasks.

In conclusions, the project was a great success. The label web printing fulfils the
technical needs from the development team and the company’s vision. It could
function well both as a standalone and as a library of other web application.
However, there is still several enhancements that could be done such as developing
tests for the library to allow shipping the product with confidence, updating
dependency packages for new features from other libraries. However, the migrating
tasks are addressed first, improvements will be assigned after the new point-of-sale
is released.

Keywords: HTML, CSS, JavaScript, React, Redux, Front-end development, GitHub
actions, CI/CD

Contents

List of Abbreviations

1 Introduction 6

2 Theoretical Background 6

2.1 Client company 6
2.1.1 Client decision 6
2.1.2 Client requirements 7

2.2 Web technologies 8
2.2.1 Introduction to web technologies 8
2.2.2 React & Create-React-App 8
2.2.3 Node.js & NPM 10
2.2.4 Rollup.js 11
2.2.5 Redux 12
2.2.6 Jest 13
2.2.7 GitHub Actions 14
2.2.8 Netlify 16

3 Implementation 17

3.1 Methodology 17
3.1.1 React Concepts 17
3.1.2 BEM Naming Convention 21
3.1.3 CI/CD 22

3.2 Implementing User Interface with React & Redux 23
3.2.1 Project structure 23
3.2.2 Presentational Components 26
3.2.3 Container Components 32
3.2.4 Implementing Redux 34
3.2.5 Higher Order Component 38
3.2.6 Prop Types 40

3.3 Bundling library 43
3.3.1 Setting up environment & scripts 43
3.3.2 Testing integration with React application 47

3.4 Implementing workflows with GitHub Actions 48

4 Conclusion 50

References 51

List of Abbreviations

HTML: Hypertext Markup Language.

CSS: Cascading Style Sheet.

JS: JavaScript.

UI: User Interface.

OS: Operating System.

API: Application Programming Interface.

CI/CD: Continuous Integration and Continuous Delivery.

QA: Quality Assurance.

DevOps: Application development and operations.

ES6: ECMAScript 6.

6

1 Introduction

In the digital age, when the needs for rapidly information transfer rise and

individuals are managed to access to technologies with ease, so does the surge

of the website functionality. However, as the website evolves into web

application, scalability and solid architecture system are needed during the

developing period. This thesis presents the approach of Company C for

implementing a reusable web application utilizing the new front-end

technologies. During 2019, Company C decided to migrate from their monolith

desktop-based application into multiple micro web applications.

Nevertheless, the core of front-end web development still consists of Hypertext

Markup Language (HTML) for structuring document, Cascading Style Sheet

(CSS) for styling and JavaScript (JS) for interactive functionality. The web

application nowadays is frequently modified to adopt with the latest design, but

several practices and structures must be followed in a team of developers to

allow collaboration and scalability.

The thesis describes the entire process of developing and bundling the label

customizing and printing library with custom structure and solution.

Furthermore, to fulfil Company C’s demands for a scalable, maintainable

product and could be integrated with future projects with ease.

2 Theoretical Background

2.1 Client company

2.1.1 Client decision

As the current paint desktop application requires various vendors to maintain

and in need of update for future expansion of the company. Company C, being

one of the global innovators in producing paint pigment used in agriculture,

7

construction and other industries. The company has multiple subsidiaries

across Europe, America, China and Sound East Asia, they provided the paint

product accompanied by the paint dispensing software for the client.

Company C has been utilized its own custom desktop software since the

foundation. Nevertheless, the current application is only compatible on a certain

type of operating system, which lead to several restrictions with potential client.

Based on the feedbacks from client, the company made the decision to migrate

from its monolith desktop application to several reusable web applications. The

great migration started during the Summer of 2019 and is still in progress, the

customized label printing application is part of the requirements.

2.1.2 Client requirements

Traditionally, new requests form the client must be audited by both the designer

and developer teams to ensure the quality of the features. However, to fulfil the

business plans for upcoming clients from across the globe in the shortest

amount of time as possible, Company C’s designers decided to utilize the

prototype of the current desktop application to design the new user interface.

The development team presented a custom solution allows them to

continuously develop new features, ensure the compatibility between projects, a

workflow that automatically run the test and immediately deploy to the hosting

service to shorten the reviewing process. With this system, each team in the

software development department would be able to collaborate with each other

confidently while being independently in logic.

By using the new approach to the design and development process, the teams

met the requirements in terms of transforming a monolith software into multiple

applications.

8

2.2 Web technologies

2.2.1 Introduction to web technologies

The basic technologies functioned as the core for the majority of website are

HTML, CSS and JS. HTML is the markup language which constructs the layout

of web content in a meaningful context, it utilized “markup” text to product

“elements” that responsible for displaying the content in a web browser [1].

Originally, HTML is the only essential piece for the website, but as website

evolves into web application, it often includes CSS and JS. CSS is the web

language that describes the web’s appearance [2], the language provided the

web page not only the enhancements in terms of presentation but also the

scalability for multiple different devices. Lastly, JS, a lightweight programming

language, famous for being the scripting language for web pages and many

other environments [3]. JS is the “brain” behind the web page that allows it to

connect to resources from sever, handle complex logic resulted in an interactive

and dynamic experience for users.

Nowadays, most of the modern web pages or applications used the

combination of those technologies. As the demands for web pages grow, those

projects need to be architected in a concise manner for reducing the time

consumption in both developing new features and fixing bugs. This issue leads

to the birth of various web frameworks, whose provide out-of-the-box basic logic

handling for several functionalities. Hence, the projects could be easily

bootstrapped as the developer teams only need to concentrate on business

logic.

2.2.2 React & Create-React-App

During the process of researching for the suitable web frameworks to migrate

the desktop application, there are several options which can be adopted are

Angular React and Vanilla JavaScript. After having discussions regarding the

technical specifications, developer’s interests and plans for the web application,

9

the software department has chosen React to be the core web framework for

front-end development due to being a scalable lightweight framework and easy

to adopt.

React is a JavaScript library developed by Meta Company, formerly known as

Facebook, with component-based approach for developing user interfaces.

Firstly, component-based approach is the building of isolated web sections with

their own state, hence the name component. The components could be later

composed together to form an interactive UI, this plays an essential role in rapid

development since encapsulated components support the declarative

programming paradigm. Furthermore, the library allows the usage of external

packages and plugins in the React application, which drastically shorten the

development process since the team can use the well tested solutions from the

community in the projects [4].

Figure 1: Component based development [4].

Due to the shortage of time and the size of boilerplate generated code for

bundling the React application, the team decided to utilize Create React App, a

proven solution developed by the engineers’ team from Meta Company. Create

React App is the combination of multiple tools under one easy to maintain

package, it offers out-of-the-box modern setup for building React application,

handling styling import, etc [5]. Provided with these technologies, Company C’s

label customization application can start on shipping the business focused

product to the client without consuming time on setting up the needed

environment for development.

10

Figure 2: Setting up React project with Create React App with one bash command [5]

2.2.3 Node.js & NPM

React library requires an environment to run on local development, tool to

manage dependencies, compiler to convert the modern JavaScript used in

project into version that can be run by other JavaScript engines and browsers,

etc. By using Create React App, those tools are automatically installed in the

project, Node.js and NPM are included in the packages.

“Node.js is a JavaScript runtime built on Chrome’s V8 JavaScript engine” [6].

Traditionally, JavaScript is only run-on browser, but nowadays with the creation

of Node.js, the new run time permits JavaScript to interact with HTTP request,

access operating system, build scalable server for production and use various

useful functionalities that previously are not possible.

11

Figure 3: Node.js enable server creation with JavaScript [7].

NPM is an essential piece of technology that allow developer to develop and

share packages of encapsulated code [8]. Furthermore, it also stands for Node

Package Manager, as the name suggested, NPM automates the installation,

updating the project related packages.

 The usage of Node.js and NPM increase the productivity of the software

department team by integrating the library with multiple quality external

packages and unlocking potentials for shipping as a standalone component to

the point-of-sale application.

2.2.4 Rollup.js

The application is developed under local development provided by Node.js,

nevertheless, Create React App is designed to build the code into production

not a library. The team recognize the need for a custom-made bundler which

the developers can use to build the React code into a library instead of a

production application.

Firstly, team will use the boilerplate code created by Create React App not only

as part of a local development, but also a testing application integrated with the

library since the point-of-sale application is also built using Create React App.

Secondly, implementing the label printing application using custom module

12

bundler built on Rollup.js. Finally, when the library is bundled and confirmed on

the ability to be used as a component in the testing environment, the team will

deploy the code from the testing React application to hosting service for

feedbacks.

Rollup.js is a JavaScript bundler that composed the project modular code base

into a library. It has simple API and various built-in functionalities such as tree

shaking, support multiple formats and using packages from other libraries. [9]

2.2.5 Redux

Thanks to the usage of React, the application development has progressed

smoothly, however, the team is currently facing the issue of having to pass

down the data from parent components to their child for them to access the

state to the web application state. After researching, Redux is chosen to be the

main state manager for its flexibility and easy to debug.

Redux is a consistent state container library that centralized entire the

application’s state and logic in a single source [10]. Redux is created with the

three fundamental principles. Firstly, the entire state of the application is

encapsulated in a single source of truth called the “store”. A single source of

data store provides persistent for the application’s state hence faster

development and simpler debugging progress. Secondly, the state tree is

immutable through any other effects in the application and can only be modified

by dispatching an action. An action is a plain object contained the instruction

and data which the state needs for the transformation. Finally, after receiving

the package from the action object, the state tree uses reducers to execute the

modification. Reducer is basically a pure function, which has the state of the

application and an action as parameters. It performs the state transformation

based on the instruction and data of the action then returning the new the state

instead of directly modifying the previous state [11].

13

Figure 4: Simple application workflow used Redux as state manager [12].

With the addition of Redux, the printing application’s components have access

to the state tree’s data and performing safe changes to it when needed.

2.2.6 Jest

When it comes to software, the process of developing the application usually

accompanied by the creation of bugs. The development team would want to

ship the library with confidence and help the QA department in the testing

period. The development team chooses Jest as the tool for testing isolated

functionalities for the application.

Jest is a JavaScript testing framework, created by Meta, that allows developers

to implement tests in a simple and fast way. Jest provides the team with

14

feature-rich APIs to use such as mocking capability, running tests in parallel and

display the code coverage of the entire application [13].

Figure 5: Testing coverage with Jest [13].

The team original plans on writing only unit test the library due to the fact the

reusability is handled by the Rollup.js bundler and Create React App testing

environment.

2.2.7 GitHub Actions

Version control is an essential tool for software development to ensure the

collaboration between developer as easy as possible, and in case of changes

that break the production, the ability to roll back to a previous version is crucial.

The software development teams in Company C make use of Git for version

control and GitHub for hosting the repositories on daily work.

The label printing team realizes that developers a considerable amount of time

to build the software and deploy the application to the hosting service manually

for feedbacks. GitHub provides users with a continuous integration and

15

continuous delivery (CI/CD) system to perform the building, testing and

deploying tasks automatically called GitHub Actions. GitHub Actions is not only

allowing DevOps related operation, but also providing possibility for the pipeline

to interact with the repository when other events occur [14].

Figure 6: Event triggers workflow to run [14].

GitHub Actions pipeline will run when workflows attached to events in the

repository are triggered. Workflow is a customizable process in a YAML file that

contained one or several jobs, which will run when triggered by any related

events. Event is a certain activity that triggers one or more workflows to

execute. For example, pushing a commit to the remote repository or merging a

pull request into a branch, etc. A job normally consists of variable steps that run

on a specific virtual machine called runner [14].

Figure 7: An example workflow in GitHub Actions [14].

16

Utilizing the GitHub Actions, the team has increased the productivity

significantly due to time spent on manual repetitive task can be used on

developing core features of the application.

2.2.8 Netlify

Netlify is the chosen PaaS cloud service for hosting the application due to it fast

to set up and easy to use CLI. Furthermore, Netlify has the potential to scale in

the future such as replacing GitHub Actions pipeline in continuous integration,

deployment pipeline, serverless function, user authentication for server if there

is a need for its backend services [15]. For web application, Netlify also

manages the domain and DNS out-of-the-box, the ability to quickly build the

application as the preview or production helps shorten the feedback loops

during the development. The QA team can utilize multiple preview build

versions of web app to test with different issues and features effortlessly before

publishing to the production.

Figure 8: Multiple build versions ready for testing.

With the combination of GitHub Actions and Netlify, the developers in label

printing team can collaborate effectively with the designers, quality assurance

team. Moreover, these technologies are highly scalable, the label software team

17

can help other teams in the department to set up their workflow to bootstrap the

productivity in every projects.

3 Implementation

As mentioned from the introduction, the main objective of this thesis is to

migrating the label printing a web library standalone application with

compatibility and scalability. This section contains four subsections each with its

own merits:

• Methodology: the methods used in the application development
cycles.

• Implementing User Interface with React & Redux: structuring
and creating the project front-end with different type of components
such as presentational components for displaying the user
interface, container components for handling logic and connecting
with the data store created by Redux.

• Bundling library: demonstrating the usage of Rollup.js to allow
bundling, handling styling and exporting the library.

• Implementing workflows with GitHub Actions: utilizing the
GitHub Actions workflows to create an automation system for the
testing, building and deploying tasks of the application.

3.1 Methodology

3.1.1 React Concepts

As React is used as the core tool for developing user interface in the project,

there are several essential keys knowledge that a developer must deeply

understand to implement a good performance and well-structured application.

Firstly, instead of using the real DOM to interact with the page, React provides

the programmer with Virtual DOM. DOM, stands for Document Object Model,

represents an interactive API for web documents. It creates tree-like structure

for HTML documents and allow developer to manipulate the nodes in the

various ways [16].

18

Figure 9: DOM tree [17].

Nevertheless, as website grow more complex and dynamic, the DOM tree will

also grow and contain a huge of number of nested nodes. The DOM’s

traversing process and selecting the desired node to trigger an update for the

user interface based on the state of the application is slow, time consuming and

error prone.

Virtual DOM is a copy version stored in memory of the real DOM [18]. It can be

described as a lightweight, more abstract version of the DOM, any operations

that modifies the user interface occur in Virtual DOM is simpler and faster.

When the changes are made in the Virtual DOM, React determines the update

strategy for the real DOM using advanced algorithm named reconciliation.

The algorithm uses element type and key to justify the update cycle. If the roots

in virtual DOM and real DOM have the same types and attributes, the process

recurses on the children nodes. React triggers re-render when the traversing

reaches a difference, the tree will be rebuilt if it is the root element while only

update the change for a specific element if it is a children node. React also

introduces key attribute that supports conversion tree node to be faster and

more efficient [19].

19

Figure 10: Comparing and updating DOM [17].

Secondly, React proposes components based approach to the development of

user interface, so what is a component? Component is theoretically the same

as JavaScript function. Normal function can have different type of inputs and

return the outputs, like function, a component accepts arbitrary inputs called

“props” (an object contains data) and outputting the React elements to the

screen [20]. React element is a plain JavaScript object, much more lightweight

and cheaper to instantiate comparing to DOM node [21].

There are two ways to produce a React components. The first way is the write a

JavaScript function with “props” as the parameters and returning a React

element, normally this is called “function components”. Another way is to use

new ES6 class [20].

Figure 11: Function component [20].

20

Figure 12: Class component [20].

These two components are displaying the same user interface in the web

application. However, the Class component allows the programmer to add local

state and life cycle to the block of code.

Finally, the idea of isolated component development without affecting other part

of the application is supported by state and life cycles. State in class component

is normally an empty object but in contrast to props, it is exclusive and

controllable by their own component [22].

A component is equipped with various life cycle methods. A life cycle method

can be known as a special function that runs during a certain life cycle of the

component [23]. Traditionally, a component has three main life phases:

• Mounting: when the component is instantiated and attached to the
DOM.

• Updating: when an event triggers the changes in either props or
state, the component enters the updating phase.

• Unmounting: when the component is removed from the DOM.

The essential methods which are needed when developing a component:

• Constructor: the constructor method is called before the
component reach the mounting phase. This is where the
instantiation of local state and event handler bindings to the
component happened.

• ComponentDidMount: this method is executed immediately the
insertion of the component into the DOM. Performing data fetching,
handling side effects for the first time is normally done is this
method.

• ComponentDidUpdate: the function is invoked after the update
events occur. A network request or modification to the element

21

state can be accomplished in this method if they depend on the
newly changed state or props.

• ComponentWillUnmount: the method is invoked when the
component is destroyed from the DOM if the needs for cleaning up
any side effects that might occur even the component is
unmounted.

Figure 13: Lifecycles and methods of a component [24].

3.1.2 BEM Naming Convention

How to structure the styling for component plays a crucial role in the scalability

of the application especially when the project becomes more complicated. With

well-organized styling code, it shortens the development cycle by reducing the

amount of code written and loading time for the browser. BEM methodology,

stands for Block, Element, Modifier, is a well-known naming convention for CSS

as not only is it organizing the styling code in a simple to understand way but

also creating a relationship between the component and CSS [25].

The way the BEM Naming Convention works is firstly, a parent block is

positioned at the top-level. Secondly, nested child or elements are followed by

adding two underscores and the name of the block after the parent. Finally,

when there is a need for a specific style of the same element without altering

22

the other styling modules, a modifier can be inserted at the end of the name

block by writing two hyphens and a text indicates the change [25].

Figure 14: Example of using BEM in CSS.

3.1.3 CI/CD

CI/CD can be also known as continuous integrations and continuous delivery

[26]. The methodology implies the automation tasks focusing on recurring and

well-tested software delivery operation in real time.

The workflow starts with continuous integrations, after developers perform an

action which alters the source code of a branch in a CI integrated system, it

automatically tests and builds the code which allows for frequent quality code

contribution to the repository.

After the code passes the test and is built from CI, continuous delivery and

continuous deployment are the next steps on the DevOps pipeline. The code is

then putted into an environment where the team can deploy manually or auto

triggering a deployment script to push the code directly to the production.

With the combination of CI and CD, the programmer can deliver code quickly

with confidence either to testing area for testing and feedbacks or to production

for releasing.

23

Figure 15: Example of CI/CD workflow [27].

3.2 Implementing User Interface with React & Redux

3.2.1 Project structure

The project use BEM for structuring the CSS, but even if the relationship

between the component and its styling is clarify, there is still a need for organize

the components in a way so that it would be easy to identify which is stateless

or presentational and which is stateful or container.

Presentational component can function in isolation with the rest of the

application, meaning it is not dependent on mutual state with other component,

its purpose is mainly for displaying the styled element on the screen.

Furthermore, it does not perform any operations related to modifying data on its

own, but rather receiving data and the data-altering call backs only through

props passed down from parent or from specific state manager [28].

In contrast to the stateless component, the container component main

responsibility is providing the data to other components, so it is usually a

stateful class component or connecting with the mutual state of the application.

24

It may not have its own element but being the combination of other

presentational and container components [28].

Thanks to the separation of concerns regarding the functionality of components,

programmer can develop better reusable and adaptive component and only use

container for when state is needed [28]. For example, when the new design

requires changes related to several stateless components, they can be modified

with ease and does not affect the logic of the entire application.

The project implements the structure as follow:

• __tests__: storing the unit test for component.

• components: including the implementation of all reusable
components.

• containers: containing the stateful, Redux store connected

container components.

• mylib: containing utility functions.

• redux: including the redux reducers and actions implementation.

25

Figure 16: Project structure with separation of components and containers.

26

3.2.2 Presentational Components

Here is the implementation of a state components in the application:

const IconButton = (props) => {
 const {
 icon,
 iconSize,
 text,
 inNavbar,
 onClick,
 color,
 active,
 draggable,
 id,
 onDragStart,
 spin,
 } = props;
 const buttonStyle = classnames({
 btn__container: true,
 'btn__container--navbar': inNavbar,
 'btn__container--toolbar': !inNavbar,
 });
 const iconStyle = classnames({
 icon: true,
 'icon--toolbar': !inNavbar,
 });
 return (
 <Button
 type="button"
 color={color}
 className={buttonStyle}
 size="md"
 onClick={onClick}
 active={active}
 draggable={draggable}
 id={id}
 onDragStart={onDragStart}
 >

 {icon && (
 <FontAwesomeIcon icon={`${icon}`} size={iconSize} spin={spin} />
)}

 {text}
 </Button>

27

);
}

The IconButton component, by utilizing the new syntax of ES6, the component

is declared with arrow function with props as the parameter and only returning

the React element using the data passed from the parent and not causing any

side effects. The button styling is following BEM methodology for addressing

which style modifier needs to be used:

'btn__container--navbar': inNavbar,
'btn__container--toolbar': !inNavbar,

The customized button component is highly reusable due to its being a pure

function, which is when provided with the same input, it always returns the

same expected output.

Here is a different approach when implementing presentational component

when life cycle is needed:

class labelItemsSettings extends Component {
 shouldComponentUpdate(nextProps) {
 if (
 this.props.item !== nextProps.item ||
 this.props.layout.marginTop !== nextProps.layout.marginTop ||
 this.props.layout.marginBottom !== nextProps.layout.marginBottom ||
 this.props.layout.marginLeft !== nextProps.layout.marginLeft ||
 this.props.layout.marginRight !== nextProps.layout.marginRight
) {
 return true;
 }
 return false;
 }
 customWidth = (e) => {
 let num = Number(e.target.value);
 if (!isNaN(num)) {
 num = mmToPixel(num);
 const item = { ...this.props.item, width: num };
 this.props.updateItem(item);
 }
 };
 customHeight = (e) => {

28

 let num = Number(e.target.value);
 if (!isNaN(num)) {
 num = mmToPixel(num);
 const item = { ...this.props.item, height: num };
 this.props.updateItem(item);
 }
 };
 customPositionLeft = (e) => {
 let num = Number(e.target.value);
 if (!isNaN(num)) {
 num = mmToPixel(num);
 const item = { ...this.props.item, x: num };
 this.props.updateItem(item);
 }
 };
 customPositionTop = (e) => {
 let num = Number(e.target.value);
 if (!isNaN(num)) {
 num = mmToPixel(num);
 const item = { ...this.props.item, y: num };
 this.props.updateItem(item);
 }
 };

 render() {
 const { t, item, variableGroup, barcodeVariables, codeToInfo } = this.props;
 const sizeInputs = classnames('labelItem__inputs', {
 'labelItem__inputs--line': false,
 });
 const itemSettings = (
 <React.Fragment>
 <div className="labelItem__position">
 <p className="labelItem__title margin-0">
 {t('lbl.positionFrom', 'Position from')}
 </p>
 <div className="labelItem__inputs">
 <CustomInput
 type="number"
 disabled={!item}
 onChange={this.customPositionLeft}
 value={
 item
 ? pixelToMm(Math.round(item.x)) === 0
 ? ''
 : pixelToMm(Math.round(item.x))
 : ''
 }
 inputSize="md"
 variant="vertical"
 labelText={t('lbl.leftMargin', 'Left')}

29

 />
 <CustomInput
 type="number"
 disabled={!item}
 onChange={this.customPositionTop}
 value={
 item
 ? pixelToMm(Math.round(item.y)) === 0
 ? ''
 : pixelToMm(Math.round(item.y))
 : ''
 }
 inputSize="md"
 variant="vertical"
 labelText={t('lbl.topMargin', 'Top')}
 />
 </div>
 </div>
 <div className="labelItem__size">
 <p className="labelItem__title margin-0">
 {t('lbl.size_itemOnLabel', 'Size')}
 </p>
 <div className={sizeInputs}>
 <CustomInput
 type="number"
 disabled={!item}
 onChange={this.customWidth}
 value={
 item
 ? pixelToMm(Math.round(item.width)) === 0
 ? ''
 : pixelToMm(Math.round(item.width))
 : ''
 }
 inputSize="md"
 variant="vertical"
 labelText={t('lbl.width', 'Width')}
 />
 <CustomInput
 type="number"
 disabled={!item || (item && item.itemType === 'line')}
 onChange={this.customHeight}
 value={
 item
 ? pixelToMm(Math.round(item.height)) === 0
 ? ''
 : pixelToMm(Math.round(item.height))
 : ''
 }
 inputSize="md"

30

 variant="vertical"
 labelText={t('lbl.height', 'Height')}
 />
 </div>
 </div>
 </React.Fragment>
);

 return <React.Fragment>{itemSettings}</React.Fragment>;
 }
}

This component is initialized using ES6 class syntax. Traditionally, the class

component life cycle method starts with constructor but since it does not

implement state or bind methods manually, it is not necessary to invoke the

constructor method. The component styling is also using BEM, there are

several local methods written in arrow function to convert the value before

invoking the parent call backs.

Figure 17: Local event handler for changing width.

The life cycle used in the component is shouldComponentUpdate:

 shouldComponentUpdate(nextProps) {
 if (
 this.props.item !== nextProps.item ||
 this.props.layout.marginTop !== nextProps.layout.marginTop ||
 this.props.layout.marginBottom !== nextProps.layout.marginBottom ||
 this.props.layout.marginLeft !== nextProps.layout.marginLeft ||
 this.props.layout.marginRight !== nextProps.layout.marginRight
) {
 return true;
 }
 return false;

31

 }

Since the component performs side effects through its local method by

implementing call backs from the parent container. There is a need to optimize

the performance to avoid redundant re-renders, shouldComponentUpdate
method determines whether the component’s re-render progress is necessary

when the component received new props or state [23].

shouldComponentUpdate default returning value is true which means if the

data is changed, the component will always render a new version even if that

data is not related to it. In the example above, the component checks for

multiple needed props to decide whether it is crucial to build a new element or

not.

All the components are created and ready to be implemented in the container

for logic handling.

Figure 18: Structured reusable components.

32

3.2.3 Container Components

The implementation of Navbar container component:

Figure 19: Setting up state and life cycle method.

As described above, the container is created with class component and has its

props data and own individual state object initializing under the Constructor.
Moreover, the constructor is also the life cycle method where programmer binds

the local methods of the container. This component also takes performance

optimization into account by using the shouldComponentUpdate by a utility

function from a library that deeply comparing the data of the previous and

upcoming state to trigger the re-render.

33

Figure 20: Composition of other presentational components in the project.

The container is designed with composition, it does not have its own native

React element but contain various other components. Containers, like Navbar,
are mainly responsible for handling logic operations with the data of either one

section that they are named after or the entire application through a centralized

state manager. The state management system used in this project is the Redux.

34

Figure 21: Container components with state.

3.2.4 Implementing Redux

As mentioned before, Redux consists of three main principles when

implementing:

• Store: the only immutable central data source.
• Action: an object normally contains two properties, an instruction

and data body.

• Reducer: a pure function which gets the partial or entire store for
initial state, an action object as arguments and returns the expected
state after performing mutation operations.

Firstly, the store creation:

35

Figure 22: Create Redux Store.

Redux library provides with several utility function to set up the project such as

createStore and applyMiddleware. createStore establishes a state based on

the provided reducer function and StoreEnhancer by combining multiple

middleware using applyMiddleware [29]. What is middleware in Redux?

Middleware functions as a point which programmer can perform more complex

logic handling when the action is dispatched but not executed by the reducer

[30]. The store has two middleware called logger and undoMiddleware, which

is responsible for logging all side effects changes to the console and allowing

undo dispatched action.

Figure 23: Logging side effects and adding action to undo thanks to middleware.

Secondly, store’s actions implementation:

36

Figure 24: Types and Actions in Editor reducer.

The instructions or types is a separated object of strings, and all the actions

related to the reducer is put in the same file to allow scalability and avoid hard

to debug typos.

Finally, the reducers initialization:

Figure 25: Editor Reducer.

37

After dispatching an action from the user interface, the reducer receives the

action package along with the current state of the application as inputs then

using switch case to handle the mutation based on the action’s type.

As the application grows, the reducer must handle many cases, a good solution

addressing the issue is splitting one reducer into multiple reducers and then

combining them before passing to the store as argument.

Figure 26: Splitting one reducer into Editor and Layout for scalability development.

The combination happens in the index.js in the reducer folder.

Figure 27: Combining reducers into one.

38

3.2.5 Higher Order Component

So far, the project has implemented all the components needed for displaying

user interface, using composition to form block of related elements, handling

logic and passing data from parent to child element. In the previous section, the

Redux store, actions and reducers are up and running. The next step is

connecting React components and Redux state together using higher order

components provided by React Redux library.

What is higher order component? Higher Order Component (HOC) is a function

which has a component as a required input and returning a new data and

methods injected version of the component used as argument for the function

[31].

To pass data from Redux store to a React component, the project uses the

connect() from React Redux package. As the name suggested, the function

provides the connection from component to store data and action dispatchers in

Redux [32]. mapStateToProps() and mapDispatchToProps() are the main

inputs of the connect() function:

• mapStateToProps(): the function has the store data as the first
parameter and return an object contains the reference of the Redux
state in component props [32].

• mapDispatchToProps(): the function with the connection to all
actions dispatch method by default and hence the name implies,
mapping the Redux dispatch functionality to the component props
[32].

The connect function returns an HOC, a wrapper component, that passes the
data and dispatch needed from the input component.

39

Figure 28: Connecting Toolbar component with Redux.

The toolbar can access to the Redux store data and perform logical actions

through its own props due to the mapping from the connect HOC and the

mapping functions.

40

Figure 29: Accessing items and createItem method through props.

3.2.6 Prop Types

As the project gets more complex and with JavaScript being a typed dynamic

language has its advantages and disadvantages [33]. Since the developers in

the project uses Python daily for backend development, the dynamic variable

can be utilized which means more time spending on developing the application.

Nevertheless, the process of coding is always accompanied by creating bugs

and without some sort of type checking. Consequently, it affects the scalability

and causing unexpected bugs in production, that results in the team decides to

use PropTypes for typing the props each component is expected to receive.

This way, the programmer can still use the dynamic functionality to an extent

while providing a basic safety measure when developing the component.

41

Figure 30: PropTypes for Editor component.

Project create with Create React App is automatically installed Jest as test

runner. Tests are located under __tests__ folder which runs with bash

command.

42

Figure 31: Test barcode with Jest.

The example above shows how to structure the test. Firstly, describe() is the

outmost block, it groups all the related tests together. Secondly, each test starts

with it(), the function contains the actual implementation of the tests using utility

function and Jest API to assert the outcomes.

Figure 32: Test results.

At the end of this chapter, the application’s user interface and logic have been

successfully structured and implemented in a scalable way. However, the

project can only be built into a production application, the goal is to create a

library that could also be used in other React application.

43

3.3 Bundling library

3.3.1 Setting up environment & scripts

To generate a reusable library, the project code must move to an environment

where the compiling and bundling processes are handle by Rollup.js.

Changing the directory to outside of the React project then setting a new project

by following these steps:

• Installing Rollup.js in the local project with command line.

• Creating a new folder called src and new file in that folder called
index.js

• Creating a new package.json file and add the build script.

• Adding a customized Rollup config file.

• Installing Rollup necessary plugins such as babel for transpiling
code, postcss for import styling files, etc.

• Modifying the Rollup config file accordingly.

• Moving the React code to the newly created src folder.

44

45

Figure 33: Rollup.config.js

Figure 34: Package.json scripts.

The folder tree after the implementation of the new bundler where the contents

inside the example folder are from Create React App, this place functions as a

testing React application importing the built library:

46

47

Figure 35: New folder structure.

Since the library is used with internal React application, the essential

dependencies such as React, Redux are installed in the parent project rather

than in the library. The dependencies needed to develop the library is moved to

peerDependencies in the package.json file since the other application will

provides those.

3.3.2 Testing integration with React application

With the addition of new bundler, now, whenever in root folder run

Npm start

The library builds the application from the file contents of index.js file to dist
folder, then it enters watch mode, which means any new changes will trigger the

rebuilt of the library.

Figure 36: Dist folder contains builds of the library.

Since the project is for internal usage and does not need to be publish. To use

the library, navigating to the package.json file in the example folder, adding

the dependency name with the path to the dist folder.

48

Figure 37: Add local library to React app.

Importing the package into the React application and start the local

development. The application is running on the local server and serving the

user interface in the browser.

3.4 Implementing workflows with GitHub Actions

Before setting up the workflow, there is a need to integrate the site from hosting

service with the project repository.

• Install Netlify CLI through terminal.
• Log in to Netlify and generate personal access token for the project

on the website.

• Create new site and copy the site ID.

• Use Netlify CLI to set up the connection between the site and the
project.

• Add a script for deploy scripts in the package.json file in React
application folder, this allows for manual deployment to the preview-
built site with unique URL and can be accessed in Netlify’s site.

• Navigate to the project repository on GitHub, under Settings, fill the
site ID and personal access token to the Secrets section.

Figure 38: Adding deploy script to React application.

49

To create a GitHub Actions workflow, the project must have a folder called

.github and inside that folder, a workflow folder also needs to be generated.

Adding the project workflow with a YML file extension, the developer writes

customized for automating the build, test and deploy process. The workflow

runs the job called build-test-deploy when there is a push event occurs in the

main branch of the repository. Firstly, the chosen OS to operate the steps is

ubuntu-latest, then it executes the steps as design. Secondly, it performs a

checkout on the repository, sets up node version for the machine. Finally, it

dispatches the library build and test actions, builds the React testing application

and then deploys to Netlify.

name: CI & CD
on:
 push:
 branches: [main]

jobs:
 build-test-deploy:
 runs-on: ubuntu-latest
 steps:
 - uses: actions/checkout@v3
 - name: Set-up Node
 uses: actions/setup-node@v1
 with:
 node-version: '16.x'
 - name: Build library
 run: |
 npm install --legacy-peer-deps
 npm run test
 npm run build
 - name: Build React App
 run: |
 cd example
 npm install --legacy-peer-deps
 npm run build
 - name: Deploy
 run: |
 ./node_modules/.bin/netlify deploy --prod --dir=./example/build --
site ${{secrets.netlify_site_id}} --auth
${{secrets.netlify_personal_access_token}}

50

4 Conclusion

The main objective of the thesis was to show the development and bundling

process of the label customizing and printing library with comprehensive and

automated workflow for a Finnish paint company. Both the main requests for a

scalability library and working smoothly with the main application are met with

satisfaction from Company C. The project’s code base is easy to read, following

good methodologies and has auto build and deploy system. The challenges

rooting from the previous application is written for desktop usage with complex

logic for label creation so there is a need for researching thoroughly through the

technology stack and user interface organization in web application. The point-

of-sale development team can now integrate the label printing library into their

application with ease and later, connecting to the label printer to generate well

structure and diverse labels for their paint product.

However, due to the majority time spending on migrating desktop features into

web application, the testing coverage of the project is not as expected from the

development team. Although, the workflow produces a unique preview built of

the library when any features are developed and bugs are fixed, the lack of

tests not only allowing unexpected bug to sometimes appear in production but

also making the onboard process of new developer becomes more time

consuming.

To be able to ship the library with confidence, more test cases are needed as

well as enforcing type checking more strictly. Since the library will be

implemented as part of a bigger application, further development should take

accessibility and the design of the other application into account.

51

References

1 MDN Web Docs. HTML [internet]. 2022 May 2 [cited 2022 May 4].
Available from: https://developer.mozilla.org/en-US/docs/Web/HTML.

2 World Wide Web Consortium. HTML & CSS [internet]. 2016 [cited 2022
May 4]. Available from:
https://www.w3.org/standards/webdesign/htmlcss#whathtml.

3 MDN Web Docs. JavaScript [internet]. 2022 April 2022 [cited 2022 May 4].
Available from: https://developer.mozilla.org/en-US/docs/Web/JavaScript.

4 Meta Platforms, Inc. React [internet]. 2022 [cited 2022 May 4]. Available
from: https://github.com/facebook/react.

5 Facebook, Inc. Create React App [internet]. 2022 [cited 2022 May 4].
Available from: https://create-react-app.dev/.

6 OpenJS Foundation. Node.js [internet]. 2022 [cited 2022 May 4]. Available
from: https://nodejs.org/en/.

7 OpenJS Foundation. About Node.js [internet]. 2022 [cited 2022 May 4].
Available from: https://nodejs.org/en/about/.

8 Npm, Inc. About npm [internet]. 2022 [cited 2022 May 4]. Available from:
https://www.npmjs.com/about

9 Rollup.js Team. Rollup.js [internet]. 2022 [cited 2022 May 4]. Available
from: https://github.com/rollup/rollup.

10 Abramov D and the Redux documentation authors. Redux [internet]. 2022
[cited 2022 May 4]. Available from: https://redux.js.org/.

11 Abramov D and the Redux documentation authors. Three Principles
[internet]. 2021 June 25 [cited 2022 May 4]. Available from:
https://redux.js.org/understanding/thinking-in-redux/three-principles.

12 Abramov D and the Redux documentation authors. Redux essentials, Part
1: Redux Overview and Concepts [internet]. 2022 February 19 [cited 2022
May 4]. Available from: https://redux.js.org/tutorials/essentials/part-1-
overview-concepts.

13 Facebook Inc. Jest [internet]. 2022 [cited 2022 May 4]. Available from:
https://jestjs.io/.

14 GitHub Inc. Understanding GitHub Actions [internet]. 2022 [cited 2022 May
4]. Available from: https://docs.github.com/en/actions/learn-github-
actions/understanding-github-actions.

52

15 Netlify. One workflow. One platform [internet]. 2022 [cited 2022 May 5].
Available from: https://www.netlify.com/products/.

16 World Wide Web Consortium. What is the Document Object Model?
[internet]. 2022 [cited 2022 May 5]. Available from:
https://www.w3.org/TR/WD-DOM/introduction.html.

17 Peyrott S. React Virtual DOM vs Incremental DOM vs Ember’s Glimmer:
Fight. 2015 November 20 [cited 2022 May 5]. Available from:
https://auth0.com/blog/face-off-virtual-dom-vs-incremental-dom-vs-
glimmer/.

18 Meta Platforms, Inc. Virtual DOM and Internals. 2022 [cited 2022 May 5].
Available from: https://reactjs.org/docs/faq-internals.html.

19 Meta Platforms, Inc. Reconciliation. 2022 [cited 2022 May 5]. Available
from: https://reactjs.org/docs/reconciliation.html.

20 Meta Platforms, Inc. Components and Props. 2022 [cited 2022 May 5].
Available from: https://reactjs.org/docs/components-and-props.html.

21 Meta Platforms, Inc. Rendering Elements. 2022 [cited 2022 May 5].
Available from: https://reactjs.org/docs/rendering-elements.html.

22 Meta Platforms, Inc. State and Lifecycle. 2022 [cited 2022 May 5].
Available from: https://reactjs.org/docs/state-and-lifecycle.html.

23 Meta Platforms, Inc. React.Component. 2022 [cited 2022 May 5].
Available from: https://reactjs.org/docs/react-component.html.

24 Maj W. React Lifecycle Methods diagram. 2022 [cited 2022 May 5].
Available from: https://github.com/wojtekmaj/react-lifecycle-methods-
diagram.

25 Rendle R. BEM 101. 2015 April 2 [cited 2022 May 5]. Available from:
https://css-tricks.com/bem-101/.

26 IBM Cloud Education. What Are CI/CD and the CI/CD Pipeline. 2021
September 27 [cited 2022 May 6]. Available from:
https://www.ibm.com/cloud/blog/ci-cd-pipeline.

27 GitLab, Inc. CI/CD concepts. 2022 [cited 2022 May 6]. Available from:
https://docs.gitlab.com/ee/ci/introduction/.

28 Abramov D. Presentational and Container Components. 2015 March 23
[cited 2022 May 6]. Available from:
https://medium.com/@dan_abramov/smart-and-dumb-components-
7ca2f9a7c7d0.

53

29 Abramov D and the Redux documentation authors. createStore. 2021
June 26 [cited 2022 May 7]. Available from:
https://redux.js.org/api/createstore.

30 Abramov D and the Redux documentation authors. Middleware 2021 June
25 [cited 2022 May 7]. Available from:
https://redux.js.org/understanding/history-and-design/middleware.

31 Meta Platforms, Inc. Higher-Order Components. 2022 [cited 2022 May 7].
Available from: https://reactjs.org/docs/higher-order-components.html.

32 Abramov D and the Redux documentation authors. connect(). 2022 April 4
[cited 2022 May 7]. Available from: https://react-redux.js.org/api/connect.

33 Meta Platforms, Inc. Typechecking with PropTypes. 2022 [cited 2022 May
8]. Available from: https://reactjs.org/docs/typechecking-with-
proptypes.html.

Appendix 1

1 (1)

