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Reinforcement learning is a machine learning algorithm that has the potential to aid
in the development of an AGI system. Among the various types of machine learning
algorithms, RL is unigue in that it explores the environment without prior knowledge
and chooses the appropriate action while the others focus on handling the data.

AWS DeepRacer is a self-driving 1/18th size race car designed to simulate real-world
conditions while testing RL models on a physical track. The project aims to gain a
better understanding of RL, the mathematics underlying it, and to observe it in action
by deploying the trained model in Amazon's DeepRacer automobile. [1].

To fine-tune the model, performance indicators such as the average reward per
episode and cumulative reward were investigated. To gain a better understanding of
the distribution of action spaces, Amazon's log analysis capabilities were used. Any
wasted action was deleted for effective training based on the log analysis data. The
model is uploaded as soon as the training was finished to test it in the race track.

The results may be utilized as general suggestions for training models and

enhancing RL using AWS DeepRacer. By using the strategies described in the
thesis, it is possible to develop more robust and stable models.

Keywords: Machine Learning, Neural Networks, Reinforcement Learning,
Autonomous, DeepRacer, Amazon Web Service, automation.
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RL:

ML:

NN:
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EB:

AWS:
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LIiDAR:

ul:

PPO:

SAC:

Reinforcement Learning.

Machine Learning.

Neural Network.

Gradient Descent Batch Size.

Experience Buffer.

Amazon Web Services.

Common Service Center.

Do it yourself.

Light Detection and Ranging.

User Interface.

Proximal Policy Optimization.

Soft Actor Critic.



1 Introduction

1.1 Autonomous system and robotic

Autonomous robots will become increasingly prevalent in the world we live in.
From delivering food to our footsteps to driving us to work, autonomous
technologies will play a significant role in our daily lives. ML and atrtificial
intelligence advancements, combined with increased processing power, have
enabled the fantasy of self-driving automobiles to become a reality. With
increased air and land traffic, the deployment of autonomous vehicles will result

in more effective resource utilization.

When a system performs all dynamic tasks on its own, it is said to be
autonomous [2]. For example, a self-driving car should be capable of
performing driving tasks in all driving scenarios only through the use of its
automated system [2]. Autonomous robots are advantageous in situations (such
as high air traffic) when human control is either impossible or impractical [3].
Consider air traffic, for example. Imagine thousands of airplanes flying in close
proximity. A slight deviation in the trajectory of one airplane might have a
domino effect on the entire swarm of airplanes. This information must be
communicated to all other aircraft that may be impacted, and a decision must
be made in a split second. This task is insanely difficult and has a significant
probability of going wrong. However, if the airplanes have some degree of
autonomy and are communicating with each other, the path planning algorithm
would update instantly for each flight. As a result, the calamity can be averted

considerably more easily and efficiently.

1.2 Overview of Machine Learning

ML is exploding in popularity in the modern day and is likely to continue to do so
in the coming years. Our world is overloaded with data which is generated every

day at a dizzying speed. According to CSC, a provider of Big Data and Analytics



Solutions, the amount of data generated by 2020 is estimated to be 44 times
that in 2009 [4]. As a result, it is critical to comprehend data and gain insights in
order to gain a deeper understanding of the human world. Today's data sets are
So massive that conventional procedures are no longer applicable. In certain
instances, manually evaluating data and constructing prediction models is
impractical, time-consuming, and wasteful. On the other hand, ML delivers

trustworthy, repeatable outcomes and learns from previous computations.

In recent years, ML has grown in popularity. Earlier, ML was strongly limited by
the requirements for computer power and the quantity of accessible data.
Additionally, the improvement of algorithms has contributed to the development
of ML. There are several applications for ML, such as voice and

image recognition, and new ones are continually being developed.

In contrast to conventional programming, ML involves the computer discovering
solutions to given problems by analyzing the data it is provided. ML is distinct
from traditional programming in that, rather than providing the computer with
data and rules from which to generate results, the computer is provided with
data and results from which the computer will determine the rules and methods
for achieving the desired results on its own. Supervised learning, unsupervised

learning, and reinforcement learning are all distinct classifications of ML.

This thesis will discuss RL with AWS DeepRacer. Recommendations for
additional research are made, as this thesis can only provide a high-level
overview of AWS DeepRacer. This thesis aims to provide a summary of AWS
DeepRacer and its uses as well as to provide recommendations for effective RL

rules to apply while creating models with AWS DeepRacer.

2 Theoretical background

Human beings have acquired knowledge through trial and error. The learning
process is driven by reward mechanisms that incentivize particular behaviors.

The goal is to increase the number of positive responses and decrease the



number of negative responses through iterative methods. This teaches
individuals how to communicate with their world and how to overcome

complicated barriers. [5]

Reinforcement Learning RL is based on the concept of trial and error as a result

of interactions with the environment.

2.1 Reinforcement Learning

Reinforcement Learning RL is a useful framework for decision-making in
scenarios where an agent communicates with its environment via trial and error
to determine the most effective action. RL is concerned with sequential

decision-making in order to accomplish its objectives.

RL is similar to how biological systems adapt to the environment via trial and
error. The most common instance is training a dog. The trainer usually uses
treats to reward the correct behavior when training a dog to obey certain
commands. Positive Reinforcement is used in psychology to refer to behaviors
that are encouraged, whereas Negative Reinforcement is used to refer to

behaviors that are discouraged through punishment. [5]

RL is, in a nutshell, the process by which a decision-maker known as an agent
gets information about its environment and learns to pick behaviors that result in
the greatest reward for the agent. For the previous example, agent is a dog.
Environment is the “world” which agent interacts, such as a garden. Action are
performed by the agent in the environment, such as running around, sitting, or

playing balls. Rewards are issued to the agent for performing good actions. [5]

Figure 1 shows the simplest representation of RL framework
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Figure 1: Agent-Environment Loop. [6]

At first, the agent takes the state SO from its environment, which may include
information such as the captured image, its speed, and other sensory data. The
agent then performs action AO on the specified state SO. The environment
changes state to S1 as a result of the action, and the environment rewards the
agent with a reward R1. This loop repeats until the episode concludes, returning
the current state (SO) and action (AO), as well as the future state (S1) and

reward (R1). Figure 2 shows the entire process in detail.
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Figure 2: Reinforcement Framework

A typical illustration of this is a mouse in a maze. The mouse's objective in

figure 3 is to collect as much cheese as possible without being captured by the



cat. Collecting cheese nearby the mouse is more rewarding than trying to get

cheese nearby the cat.

Figure 3: A game where a mouse collects cheese in a maze. [7]

2.2 DeepRacer

The agent in DeepRacer is represented by a NN whose function approximates
the agent's policy. The environment state corresponds to the image captured by
the vehicle's front camera (see Figure 4), while the agent's actions are defined

by speed and steering angle.

If the agent completes the race, it will earn good prizes; if it does not, it will get
negative rewards as punishment. An episode begins by positioning the agent
along the track. The episode concludes with the agent completing a lap, going

off-track, or colliding with an item or another vehicle. [1]



Figure 4. DeepRacer state

2.2.1 The Vehicle

DeepRacer is a fully autonomous 1/18th-scale model of a race car developed
by Amazon that uses RL to run. The purpose of the product is to educate users
at all stages of RL [8]. Through their DeepRacer Console, customers can
conduct RL. Users can deploy the model to the vehicle after being trained.
Figure 5 shows the front and side views of the physical car used to test the
model in a real-world context and all of the DeepRacer parts in figure 6

separately. Information in details can be found in table 1 and 2. [1]




(a) Front View (b) Side view

Figure 5: DeepRacer Car Views.

Figure 6: AWS DeepRacer parts.

The car is capable of autonomous operation by doing inference using the RL
model submitted by the user [8]. Additionally, it can be operated manually via
the internal console. The vehicle is propelled by a brushed motor, and its speed
is controlled by a voltage regulator. The servomechanism controls the steering
[8]. Only time-trial race setting is used in this thesis for its purpose. However,
LiDAR was utilized to ensure the model's durability, as creating a solid DIY
physical track is tough. The forward-facing stereo cameras assist the vehicle in

determining the depth information included in the photos.



Table 1: AWS DeepRacer vehicle parts 1. [1]

Components

Vehicle Chassis [1]

Vehicle body shell [2]
Micro-USB to USB-A cable [3]

Compute battery [4]
Compute battery connector cable [5]

Power cable [6a]

Comments

Includes a front-mounted camera for capturing

vehicle driving experiences and the compute
module for autonomous driving. You can view
images captured by the camera as a streaming
video on the vehicle's device console. The chassis
includes a brushed electric motor, an electronic
speed controller (ESC), and a servomechanism
(servo)

Remove this when setting up the vehicle.
Use this to support USB-OTG functionality.

Use this to power the compute module that

runs inference on a downloaded AWS DeepRacer
reinforcement learning model.

Use this USB-C to USB-C cable to connect the

compute module with the battery. If you have a
Dell compute battery, this cable will be longer.

Use this to connect the power adaptor to a power

outlet.

Table 2: AWS DeepRacer vehicle parts 2. [1]

Components

Vehicle Chassis [1]

Vehicle body shell [2]
Micro-USB to USB-A cable [3]

Compute battery [4]
Compute battery connector cable [5]

Power cable [6a]

Comments

Includes a front-mounted camera for capturing

vehicle driving experiences and the compute
module for autonomous driving. You can view
images captured by the camera as a streaming
video on the vehicle's device console. The chassis
includes a brushed electric motor, an electronic
speed controller (ESC), and a servomechanism
(servo)

Remove this when setting up the vehicle.
Use this to support USB-OTG functionality.

Use this to power the compute module that

runs inference on a downloaded AWS DeepRacer
reinforcement learning model.

Use this USB-C to USB-C cable to connect the

compute module with the battery. If you have a
Dell compute battery, this cable will be longer.

Use this to connect the power adaptor to a power

outlet.




2.2.2 The environment

The AWS DeepRacer console is the primary technique for developing a model
to run the car autonomously. The console is an interactive platform that enables
users to monitor and evaluate the model's training and assessment phases

while also providing the model's primary log data. Figure 7 illustrates the

console UlI.

MainModel-final-1

Training configuration .«

Track Algorithm Model description Training time remaining (hh:mm) Status

Ace Speedway PPO Stay within borders - Custom 02:50 @ In progress

Simulation video stream
Your are watching your model train in a live simulation of the racetrack you selected
Just like babies learn to walk by stumbling around, your model learns by trial and error. In reinforcement

learning, this is called exploration and exploitation. Your AWS DeepRacer car explores the racetrack
gathering information about its environment and then exploits that information to maximize it's reward,

For the first iterations, the model might hit walls or go off track, but slowly the model learns what
actions give it the highest reward and it starts to improve.

When your model has finished training, it is automatically submitted to the AWS DeepRacer Student
League leaderboard if you did not opt-out during the model training tutorial.

Figure 7: The Ul during training.

2.2.3 Model

DeepRacer's model is a critical component. The model contains all the
characteristics and settings that comprise the agent's operating environment. It
is composed of three distinct parts: state, action, and reward for acting. The
policy is the agent's decision-making strategy, with the state of the environment
as the data and the desired action as the output. In DeepRacer, the policy is
frequently represented by a deep NN, also known as the RL model. Every
training session produces a single model. Even if the training is terminated
prematurely, a model is generated. Model is immutable, and is unable to modify
after generation. However, it is possible to clone a model and then train it with

different parameters. [1]
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2.2.4 Action Space

RL requires a limited set of behaviors or options from which an agent may pick
while interacting with its environment. That is the definition of action space

which may be either continuous or discrete. [1].

A discrete action space in a finite set provides all the activities an agent may
do each state. The NN of AWS DeepRacer responds to each situation on the
track by allocating the agent a specific speed and angle of turn based on data
from its camera or LIDAR sensor. The options are presented in predefined
action numbers, each of which corresponds to a specific steering angle and
throttle combination for the car. Table 3 illustrates the default discrete action

space.

Table 3: AWS DeepRacer Discrete Action Space. [8]

*
Action number  Steering Speed
0 -30 degrees 0.4 m/s
1 -30 degrees 0.8 m/s
2 -15 degrees 0.4 m/s
3 -15 Hegrees. 0.8 m/s
4 0 degrees 0.4 m/s
5 0 degrees 0.8 m/s
6 15 degrees 0.4 m/s
7 15 degrees 0.8 m/s
8 30 degrees 0.4 m/s
g 30 degrees 0.8 m/s

A continuous action space, as contrast to a discrete action space, lets the agent
to choose an action from a value range per state [8]. Similar to the discrete
case, the agent selects direction-speed pair based on the environmental
situation that is received from the camera and LiDAR inputs. However, in the

continuous action space, the agent has a range of options to pick from. There is
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a trade-off between performance and training time for these two action spaces.

In addition, it lacks a pre-set list of actions, as indicated in Figure 8.
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Figure 8. Continuous action space.

While continuous action space allows for better optimization since it contains a
range of values from which the agent can choose the optimal value pairings to
increase performance, the discrete action space constrains the agent to choose
from a limited list of permissible actions. However, because a continuous action
space has a range of values, the agent must train longer, increasing resource
use.

2.2.5 Reward Function

Policy
The agent's policy outlines how it pick an action in given circumstances. The

policy would select activities that optimize total benefit. It will not take the acts
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that result in an immediate increase in reward. In a nutshell, the policy always
prioritizes accomplishing its primary goal, meaning that it may select behaviors

that are suboptimal in their current state. [5]

Value Function

The value function represents the state's lasting quality. It is the cumulative
benefit that the agent anticipates from the current condition to the future state.
Reward is a measurement of the agent's instant performance in the present
state. The value function quantifies the agent's performance in the long term.
This reveals that a low reward is not always associated with a low reward

function or in any other way [5].

Reward

Each step requires the agent to do an action, and the value function indicates
how effective it was. This is referred to a reward. As stated earlier, the agent's

aim is to optimize its total benefits.

Rewards may award regularly or infrequently. Dense incentives are those that
appear frequently, while sparse rewards are those that appear infrequently [5].
In DeepRacer, for instance, remaining on race is a dense reward since the
vehicle will either stay on track for the full length of the race or will drive off.
Dodging an object in DeepRacer is a meagre prize, as even with six objects on
the track, they are still quite close to the track.

Reward Function

The reward function is a critical component of the AWS DeepRacer platform
because it effectively drives the agent to act. In the instance of the DeepRacer,
the reward function is a Python function that accepts a dictionary object of
parameters providing information about the current state and produces a
numerical estimate of the reward. With the function, the user can "reward" or
"penalize” a particular activity. The user may provide a set reward or one that is
dependent on the parameters. The following diagram illustrates the overall

structure of a reward function. Below is a sample outlines of a reward function.
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def reward_function(params):
reward =

return float(reward)

Figure 9: Basic outline of a reward function.

The params dictionary stores the key-value pairs corresponding to the state
measurements listed in table 4. It is not necessary to incorporate all of these
parameters into the reward function's design. A basic reward function may also
result in acceptable performance. However, some or all of the parameters may
be useful for creating reward functions for complex tracks that require the agent

to focus on multiple parameters concurrently to complete the race.
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Table 4: Key-value pairs in params [8].

key ralue detail

all_wheels_on_track Boolean flag to indicate if the agent is on the track

X float agent’s x-coordinate in meters

y float agent's y-coordinate in meters

closest_objects [int, int] zero-based indices of the two closest ob-
jects to the agent’s current position of (x,
v)

closest_wayvpoints [int, int] indices of the two nearest waypoints

distance_from_center float distance in meters from the track center

is_crashed Boolean Boolean flag to indicate whether the agent

has erashed
is_left_of_center Boolean Flag to indicate if the agent is on the left
side to the track center or not

is_offtrack Boolean Boolean flag to indicate whether the agent
has gone off track

is_reversed Boolean flag to indicate if the agent is driving clock-
wise (True) or counter clockwise (False)

heading float agent's yaw in degrees

objects_distance [Hoat, | list of the objects’ distances in meters be-

tween () and track_length in relation to the
starting line

objects_heading [Hoat, | list of the objects’ headings in degrees be-
tween -180 and 180
objects_left_of_center [Boolean,] list of Boolean flags indicating whether ele-

ments’ objects are left of the center (True)
or not (False)

objects_location [(Hoat, float).] list of object locations [(x,y), ...]

objects_speed [Hoat, | list of the objects’ speeds in meters per sec-
ond

progress float percentage of track completed

speed float agent's speed In meters per second (m/s)

steering_angle float agent's steering angle in degrees

steps int number steps completed

track length float track length in meters

track_width float width of the track

waypoints [(Hloat, float). ] list of (x,¥) as milestones along the track
center

Below is a simple example of a reward function which encourages the
DeepRacer car to follow the centerline. The reward function calculates a reward
depending on the distance between the vehicle and the track's centreline. The
closer to the centerline the car is, the higher reward is given to it. This reward
function is at the very basic level contains only two parameters: track_width and
distance_from_center
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1~ def reward_function(params):

# Example of rewarding the agent to follow center line

# Read input parameters
track_width = params['track_width']
distance_from_center = params['distance_from_center’]

o =1 o n B W R

# Calculate 3 markers that are at varying distances away from the
center line
9 marker_1 = 0.1 * track_width
10 marker_2 = 0.25 * track_width
11 marker_3 = 0.5 * track_width
12
13 # Give higher reward if the car is closer to center line and vice
VErsa

14~ if distance_from_center <= marker_1:

15 reward = 1.0

16 -  elif distance_from_center <= marker_2:

17 reward = 0.5

18~  elif distance_from_center <= marker_3:

18 reward = 0.1

20~  else:

21 reward = 1e-3 # likely crashed/ close to off track
22

23 return float(reward)

24

Figure 10: Sample code from AWS for “Follow the centreline” function

2.2.6 Hyperparameters

Entropy

The entropy measures the uncertainty in policy distribution. The model with a
large entropy shows higher variance behaviors comparing to the one with a
lower entropy. More increased entropy allows a more complete search of action

space. [1]
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Data point

Is defined as a set of [s, a, r, s’] which respectively stands for state, action,

reward and new state. Data point is also known as experience. [1]

Episode

During an episode, the agent either performs an action in its environment to
collect rewards or gets out of it. Episode durations may change from each other.

A set of data points constitutes an "episode”.

Experience buffer

The EB contains a set amount of sorted data points gathered from episodes of
varying lengths during the training time. It corresponds to images used as the

source for DeepRacer's input data. [1]

Batch

A subset of EB represents a section of the simulation during a specified period

and are used to adjust the weights. [1]

Training data

A collection of batches randomly picked from the EB. The training data is
utilized to update the weights of the policy network. [1]

Gradient descent batch size

GDBS is the number of recently sampled agent data points from an EB that are
utilized to update the NN’s weights. Random sampling reduces the connection.
Larger sizes give more effective and reliable weight updates, but the training
period of the model is likely to be longer and slower. [1]
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Epoch

The number of epochs indicates how often training data is transmitted through
the NN to update the weights. [1]

Learning rate

The learning rate determines how quickly the model learns by adjusting the
amount by which GDBS alters the values of NN weights. Due to the frequently
updating weights, a higher learning rate allows quicker training. However, if it is

set too high, the model cannot converge. [1]

Discount factor

Specifies the range of future state rewards that the agent will estimate using the
reward function when deciding whether to take an action. The higher the value,
the more steps are considered while acting, but cause the training is slower as

aresult. [1]

Loss type

The loss function is responsible for updating the NN's weights. The objective of
the loss type is to perform cumulative adjustment in the policy over time, such
that it transitions from random to policy influenced actions. DeepRacer supports
two types of losses: Huber and Mean squared error. [1]

Both function identically when updating the weights is minor. When the weights
are changed more significantly, differences occur. Compared to the Huber loss,

the mean squared error starts growing in larger increments.

Episode between each policy updating iteration

The size specifies the number of data points contained within an EB. Larger

buffers bring in more stable but slower updates. [1]
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2.2.7 Underfitting and Overfitting Model

When a statistical model is trained using an excessive amount of data, it is said
to over fit. When a model is trained with such a large amount of data, it begins
learning from the noise and incorrect data entries in the data set. The model
fails to appropriately classify the data because there are too many details and
noise. Non-parametric and non-linear approaches are responsible for overfitting
since these ML algorithms have the aim to develop the model based on the

dataset, allowing them to create unrealistic models.

It is critical to master the art of detecting overfitting and underfitting in ML. Both
of them cause significant effects on how your model performs unless you take
actions to prevent them or at the very least minimize them on model

performance.

Overfitting

Overfitting happens when a machine learning model attempts to cover more
data points than are present in the supplied dataset. Due to this, the model
begins caching noise and incorrect values included in the dataset, which
reduces the model's accuracy and performance. The risk of overfitting increases
according to the amount of model training. The more we train our model, the
higher the risk of an overfitted model. Figure 11 below shows an example graph

of an overfitting model where the model attempts to handle the whole dataset.

[9]
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Figure 11: A graph of an overfitting model.

In RL, an overfitting model performs perfectly within its training environment and
drops its performance dramatically in any different environment. In the thesis
project case, overfitting model can be recognized when testing the DeepRacer

car performance on other track.

Undefitting

Underfitting happens when a machine learning model fails to catch the
fundamental trend in the dataset. The training progress sometimes can be
interrupted early to avoid overfitting, so the model may not gain enough
knowledge from the dataset. Consequently, it may be unable to identify the
appropriate fit for the predominant trend in the data. Underfitting happens when
a model cannot learn sufficiently from the dataset, leading to decreased
accuracy and inaccurate predictions. Figures 12 below shows an example

graph of an overfitting model. [9]
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Figure 12: A graph of an underfitting model

In RL, underfitting occurs when the model stop training before exploring all the
action space and environment. The agent's model is immediately identifiable

when the agent is unable to complete even one lap.

Convergence

Convergence indicates that the model is operating optimally. Convergence is
the perfect position to train a model. After convergence, it is predicted the model
will begin to overfit and its performance in environments other than the training
environment would steadily drop. As the agent traverses its action zone,
entropy decreasing with time is necessary. The model has converged when the

model's rewards, average progression, and entropy begin to equalize. [10]
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Figure 13: The convergence at three peaks at the end of the training session.

3 Methods

3.1 Anaconda

Conda is a free and open-source for managing packages and environments
system on Windows, macOS, and Linux. Conda installs, executes, and updates
packages and their dependencies in a matter of seconds. Additionally, it
simplifies the process of creating, saving, loading, and switching between local
computer environments. Although it was designed to package and distribute
Python applications, it is capable of packaging and distributing software written
in any language. The Sagemaker and Robomaker logs were analyzed using the

Anaconda.
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3.2 Network Architecture

Proximal Policy Optimization (PPO) is the default algorithm in DeepRacer. AWS
just introduced a new algorithm named the Soft Actor Critic (SAC) algorithm.
PPO and SAC are similar in that they both simultaneously learn a policy and
value function. However, their techniques differ significantly in three key

methods, as illustrated in Table 5.

Table 5: Comparing PPO and SAC

PPO SAC

Works in both discrete and continuous action Works in a continuous action space

spaces

On-policy Off-policy

Uses entropy regularization Adds entropy to the maximization objective

As illustrated in the table, each algorithm has its own set of requirements and
techniques for learning. It is unnecessary to go through the mathematical details
of the algorithms in this context; rather, the emphasis should be on how they

were used in DeepRacer and the benefits of either algorithm.

3.2.1 PPO

PPO makes use of two NNs, called the policy and value networks. The policy
network, alternatively referred to as the actor network, determines the action to
execute in response to the input. The value network also referred to as the critic
network, uses the inputs to estimate the cumulative reward [12]. The policy
network is the one that communicates with the simulator and is applied to the
car. Figure 14 illustrates the network's architecture.
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Figure 14: Network Architecture. [12]

PPO applies on-policy learning, which means that it derives its value function
from the present policy through exploration. On-policy algorithms typically
require more data for training but are more stable in return. Over time, the policy
becomes less random, as weight changes incentivize exploiting previously

discovered benefits.

3.2.2 SAC

SAC applies off-policy learning, which incorporates behavior policy and
objective policy. The behavior policy communicates with the environment and
collects data used to formulate the target policy. The target policy can benefit
from the experiences of earlier policies. Off-policy algorithms are generally less

stable, but they require less training data. [1]

3.3 Services Architecture

SageMaker and RoboMaker, as well as other AWS cloud services, are included
in the AWS Deepracer environment. SageMaker is an AWS ML platform that
provides model training, whereas RoboMaker is a cloud service for the
development, testing and deployment of robotic products. DeepRacer integrates

them to train models and build virtual agents and environments via SageMaker
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and RoboMaker. It stores trained models, as well as training logs and other

associated artifacts, on the cloud storage platform S3 [11].

AWS RoboMaker builds a virtual environment for the agent to run on a
predefined track within the AWS DeepRacer architecture. SageMaker's trained
policy network model is followed by the agent's actions. Each lap is marked by a
single episode. The course is organized into episodes that are each comprised
of a defined number of steps. Redis, an in-memory database, is used by AWS
DeepRacer as an EB for selecting training material for the policy NN to train.
Redis caches "experiences" in each segment as an EB. The EB is described as
a sorted list of tuples representing each step's state, action, reward, and new
state. SageMaker extracts training data from the EB at random intervals and
feeds it to the NN in batches to update the weights. SageMaker then uses the
improved model saved in S3 to build new experiences. This loop will not stop
unless the training is finished. The EB starts with random actions in the very first
episode. As training advances, there should be less unpredictability in the
agent's activities. This architecture is shown in figures 14 and 15. This
configuration is advantageous because it allows the execution of numerous
simulations simultaneously to train a model on various segments of a track or

multiple tracks.

Amazon SageMaker MR 53 Bucket: Share Network AWS RoboMaker
Weights

RL Coach

MXNet | Tensorflow

Redis: Experience Replay
Buffer L

Figure 14: AWS DeepRacer Service Architecture
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3.4 Sagemaker Notebooks for training

The training approach mentioned before included the DeepRacer console,
which integrates the training and evaluation of DeepRacer models. The console
utilizes SageMaker and RoboMaker in the background to enable seamless
model training and evaluation [8]. The SageMaker notebook allows us to
"jailbreak™ AWS DeepRacer by granting us additional control over the
training/simulation process and RL algorithm customization. In a previous
section, we discussed how to distribute RL training across SageMaker and two
RoboMaker simulation environments that perform rollouts — the execution of a
specified number of episodes using the existing model or policy. The rollouts
gather agent experiences (state-transition tuples) and send them to SageMaker

for training purposes. SageMaker modifies the model policy, which is
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subsequently utilized to perform the subsequent rollout sequence. This training

cycle is repeated until the model achieves convergence [8].

4 Results

4.1 Overview

The first stage in this project was to develop an efficient reward function.
Initially, the network was trained using the default reward function. Additionally,
the hyperparameters were set to their default values. The training session was
scheduled for one hour. Following training, the model was tested for three trials
on the same track. Figure 16 illustrates the overall reward for each episode and
the percentage of completion.

[2X]
Fa
[}

100

|apoLU 3539

(=]

Reward
m
uonadwos yaedl abeaiiag

25

o
=]

[=]

|
i
|
8

2 4 B
Iteration

© -eo-
O -¢-
O -m-

Figure 16: Training Stats.
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Figure 17 illustrates the evaluation metrics. The evaluation trials were unable to
finish the track in its entirety. The second trial completed 94 percent of the track
before deviating. The most possible reason for the failure was insufficient

training time.

Evaluation results

Trial Time Trial results (% track Status
ri LI
(MM:S5.mimim) completed)
Off
1 00:06.488 21%:
track
2 00:22.706 Q404 Of
track
Off
3 00:07.248 26%:
track

Figure 17: Evaluation Stats

Two hours of training with default hyperparameters is recommended. Although
modifying hyperparameters may be necessary, it is important to remember that
modifying default hyperparameters will change the required minimum amount of
training time to convergence. In general, the effect of two hours of training on
easier time trial courses can indicate if the model needs retraining or just

analyze the log and move on.
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Figure 20: An unstable model when training with high entropy hyperparameter.

Reward graph info C

86 1 5 Trial Time Trial results (% track Stihi
(MM:SS.mmm) completed)
Lap
1 00:15.917 100%
complete
5=
2 L
3 2 00:15.754 100% 2P
E complete
a
]
B a
g s 3§ 3 00:16.467 100% tep
3 Q complete
g
o Time Trial results (% track
S- Tri
%3 . nay (MM:SS.mmm) completed) Status
25 7
off
1 00:01.294 6%
track
i 0 2 00:04.073 22% o
5 10 is 20 25 track
Iteration
off
3 00:04.076 28%
track
-
o 2 o . Time Trial results (% track
Trial Status
(MM:SS.mmm) completed)
© -¢-
off
1 00:01.139 6%
O -m- i track
ff
2 00:01.212 8% N
s track
Stop condition
Maximum time 3 00:01.199 7% oft
track

02:00:00 / 02:00:00

Figure 21: More stable model after an adjust hyperparameter



30

4.2 Agent Parameters

Both continuous and discrete action spaces have distinct advantages. The
majority of models developed for this research were discrete models. It looked
like discrete models did a little higher performance than continuous models at
the start of the testing period, but this could be because they had less time to
learn. Continuous models will almost certainly train slower. There are

insufficient data to determine which type of action space is preferred.

The most key parameter in an agent's parameters is its speed. The speed of the
model has the greatest effect on its performance. It is possible that the model
will make fewer mistakes in hard turns if its speed is increased. In addition,
training may take longer since the model will deviate off course more often
during the first phases of the training process as well as the agent may begin to
drift in corners if the steering angle is very high. The models become less stable
as their speed rises. The experiment provided no solid evidence for the location

of the agent's speed sweet spot.
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A B C D E F G H | J K L M N o
1 |Episode # Training It Epoch In Heatup|ER #TranslER #EpisocEpisode LeTotal step Epsilon  Shaped Tr Wall-Clocl Discounte Discounte Discounte Discounted Return/Min
2 1 o 0 0 952 1 952 952 0.1 6328 0.014751 2388.322 1075.116 4062.438 107.2
3 2 ] 0 0 1483 2 531 1483 0.1 3523.99 51.54001 1429.543 826.92 2770.388 -39.83043
4 3 o 0 0 2446 3 963 2446 0.1 6522.4 144.5621 2479.307 1116.295 4143.109 107.2
E 4 ] 0 0 3430 4 984 3430 0.1 6491987 239.336 2450.497 1070.938 4088.871 107.2
6 5 o 0 0 4394 5 964 4394 0.1 6515.2 332.2045 2515.707 1130.584 4098.251 107.2
7 6 ] 0 0 5356 6 962 5356 0.1 6407.2 424.4243 2516.754 1126.015 3994.067 107.2
8 7 o 0 o 5671 7 315 5671 0.1 1961.59 455.0547 863.48 530.0335 1692.978 -39.33043
o 8 ] 0 0 5969 8 298 5969 0.1 1843.993 484.2054 785.4539 509.7603 1613.152 -27.92312
10 9 o 0 o 6722 9 753 6722 0.1 5075.982 556.5823 1964.767 1078.4 3603.716 -71.4091
11 10 0 o o 6984 10 262 6984 0.1 1456.788 581.6819 571.2216 397.6045 1309.746 -47.74881
12 1 o 0 o 7934 11 950 7934 0.1 6587.2 672.4895 2487.229 1212.927 4232.793 107.2
13 12 0 o o 8112 12 178 8112 0.1 710.385 689.3337 287.2046 191.2106 660.5831 -59.59671
14 13 1 0 o 0 0 969 9081 0.1 6616 2737.018 2556.812 1222.868 4252.722 107.2
15 14 1 o o 968 1 968 10049 0.1 6443.2 2836.287 2423.433 1085.366 4105.524 107.2
16 15 1 0 0 1944 2 976 11025 0.1 6781.6 2929.318 2548.349 1169.107 4303.012 107.2
17 16 1 0 o 2624 3 630 11705 0.1 4182.38 2994.068 1646.743 893.7625 3068.729 -47.74881
18 17 1 0 0 3025 4 401 12106 0.1 2679.193 3032.341 1151.692 649.2728 2221.806 -27.8992
19 13 1 0 ) 3997 5 972 13078 0.1 6882.4 3126.181 2609.467 1211.076 4354.703 107.2
20 19 1 0 0 4307 6 310 13388 0.1 1918.39 3155.414 850.5184 489.7608 1658.044 -35.83043
21 20 1 0 ) 5295 7 933 14376 0.1 6442.371 3250.855 2470.964 1132.314 4066.971 107.2
22 21 1 0 0 6124 8 829 15205 0.1 5663.192 3330.277 2199.272 1126.816 3847.687 -31.8962
23 22 1 0 ) 6712 9 588 15793 0.1 4031.198 3387.389 1667.584 876.717 3056.769 -7.99793%
24 23 1 0 0 7682 10 970 16763 0.1 6615.189 3480.457 2470.43 1199.496 4227.323 107.2
25 24 1 0 0 8666 11 984 17747 0.1 6479.984 3575.229 2422.474 1174.906 4104.475 107.2
26 25 1 0 0 9639 12 973 18720 0.1 6411174 3669.422 2467.023 1154.389 4018.794 79.63557
27 26 2 0 0 805 1 805 19525 0.1 5110.378 5982.245 1894.271 1032.552 3592.672 -39.83043
28 27 2 0 0 1768 2 963 20488 0.1 6544 B075.213 2453.851 1118.058 4189.316 107.2
29 28 2 0 0 2743 3 975 21463 0.1 6666.4 6169.282 2511.99 1138.943 4225.657 107.2
30 29 2 0 0 3186 4 443 21906 0.1 2940.799 6211.904 1247.715 ©697.0297 2392.844 -4.001
a1 30 2 0 o 4178 5 992 22898 0.1 6832 6306.688 2575.252 1163.294 4285.918 107.2
32 31 2 o o 4443 ] 265 23163 0.1 1659.199 6332.265 770.2392 416.0963 1458 -4.001
a3 32 2 0 o 4634 7 241 23404 0.1 1431.989 6355.554 651.0832 394.5237 1277.63 -43.7916
34 33 2 o o 5653 8 969 24373 0.1 6494.4 6447.735 2439.352 1218.87 4138.941 0
35 34 2 0 o 6634 9 981 25354 0.1 6555.183 6541.935 2511.838 1173.36 4099.264 107.2
36 35 2 o o 7607 10 973 26327 0.1 6781.6 ©6634.67 2545.5607 1232.236 4313.346 107.2
7 36 2 0 0 8590 11 983 27310 0.1 6673.6 ©6728.846 2524.007 1207.971 4200.899 107.2
38 37 3 o o 0 o 961 28271 0.1 6479.2 5049.629 2490.284 1201.442 4094.221 107.2
39 38 3 0 0 983 1 983 29254 0.1 6767.2 9149.586 2516.284 1163.369 4302.292 107.2
40 39 3 0 ) 1963 2 930 30234 0.1 6659.2 9244.377 2495.866 1129.924 4221.691 107.2
41 40 3 0 0 2913 3 950 31184 0.1 6450.4 5334909 2472.39 1116.293 4109.845 107.2
42 a1 3 0 ) 3892 4 979 32163 0.1 6810.4 S9428.529 2564.632 1174.443 4308.237 107.2
43 42 3 0 0 4878 5 986 33149 0.1 6563.183 9523.786 2410.929 1206.668 4194.391 -51.70206
44 43 3 0 ) 5855 6 977 34126 0.1 6645.593 9617.687 2552.864 1151.308 4159.76 107.2
45 a4 3 0 0 6199 7 344 34470 0.1 2094.398 9651.111 926.9983 572.5004 1779.067 -7.997999
46 45 3 0 0 7154 8 955 35425 0.1 6666.4 9742.685 2560.393 1187.792 4229.201 107.2

4.3 Development

Figure 22: Agent parameter data.

4.3.1 Optimize Race Line

P

32
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To optimize the reward function to enable the agent to complete the race faster.

Remi Coulom introduced the algorithm in his PhD thesis [13]. The purpose is to

find the optimal race line path for a certain track and to persuade the agent to
follow it. Three sets of coordinates are used to establish a race track: the
outside and inner borders, as well as the mid-point. A Python algorithm was

developed Using the algorithm mentioned in to generate the track with the
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"optimal” path for every track defined using the three coordinate sets [14].

Figure 23 illustrates this technique in action.

In the K1999 algorithm, ¢; of the track is the curvature at each point 7; and is
computed as the inverse of the circumscribed circle for points 7,1, ¥; and #;11 [12].
The curvature is positive for curves to the left and negative for curves to the right.

The points are initially set at the center of the track.

Algorithm 2: K1999 PATH OPTIMIZATION ALGORITHM.
for i =1 to n do
C1 < Cj_1
C2 < Cit1
set 7, at equal distance to #;_; so that ¢; = (c; + ¢3)
if ©; is out of the track then i
| Move T; back onto the track

(a) Original Track (b) Optimal Race Line

Figure 23: Rebuild the race line [14]

The model was trained using the [14] reward function, which applied the K1999
Race-Line Optimization algorithm. Figure 24 illustrates the reward accumulated

throughout training.
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Figure 24: Reward apply K1999 Algorithm

While the rewards in figure 24 appear to be satisfactory, they are not consistent
with the work's objective. Training with this reward function significantly
increases the probability of overfitting to a track. By implementing the optimal
race-line track, the model can operate optimally only on the track on which it
was trained. Because the thesis's final aim is to operate the DeepRacer car on
an actual track, the model should be capable of navigating an unknown track.
The track used to evaluate the automobile may differ from the tracks used to
train the model. As a result, it is required to establish a "universal" model.

4.3.2 Universal Model

While training DeepRacer models for a single track produces a reasonable
result, it does not produce a robust model that can be utilized across all
DeepRacer tracks. Based on [15], a more extended reward function was
implemented to train a model on several tracks by cloning the model after each
training session. The reward function utilized for this purpose, as developed
from [15], is presented below. Figure 25 illustrates the hyperparameters used to

train the universal model.



35

def reward_function(params):
reward = 0.001
if params(["all_wheels_on_track"]:
reward += 1
if abs(params["steering_angle"]) < 5:
reward += 1

reward += ( params["speed"] / 8 )

return float (reward)

Hyperparameter Value
Gradient descent batch size 128
Entropy 0.01
Discount factor 0.999
Loss type Huber
Learning rate 0.0003
Mumber of experience episodes 20
between each policy-updating iteration

Mumber of epochs 10

Figure 25: Hyperparameter apply in the universal model.

Firstly, the model was trained for an hour on the oval track. Figure 26 shows the
reward graph, whereas Figure 27 shows the Oval track. The training time was
limited to one hour due to the model being cloned and trained on a different
track. By cloning, the current network weights would remain constant, allowing
the "knowledge" gained during this track’s training to be carried over to the next.

The reward graph also reveals that the model was unable to complete the



course during training. Additionally, the graph represents the best model

depending on the track's completion.
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Figure 26: Reward Graph on the Oval Track.
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To train on the Reinvent-base track, the model was duplicated. Since this is a
duplicated model, the reward function and hyperparameters were identical. The
reward graph and track layout are illustrated in Figures 18 and 19. Both reward

and track completion rates improved significantly during this training session.
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Figure 28: Reward Graph on the Reinvent-base Track

Figure 29: Reinvent-base Track
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This model was duplicated to allow for more training on a particularly tough
track — the Bowtie. Figure 20 illustrates the track. Due to the bow shape, this
track proved to be difficult. The agent did not comprehend the middle curve
since it could "see" the track on the other side and desired to take a "shortcut"
whenever it met those bends. As a result, the performance rate decreased
throughout this training session, as illustrated in figure 21 reward graph.
Similarly, the award may have been affected for the same reason. Due to the
model's success on the reinvent track, it was able to achieve even greater

outcomes.

Figure 30: Bowtie Track.
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Figure 31: Reward Graph on the Bowtie Track.

5 Conclusion

AWS DeepRacer is an excellent platform for learning about RL and
experiencing it in action. It includes simple-to-follow instructions for beginners
as well as the ability for an "advanced" user to access the backdoor. The
models were trained to run the real car autonomously using a variety of reward
functions and state-of-the-art optimization algorithms. However, the
development of the track required extreme care and precision, as the training
approach could only give a suitable outcome if the track approximated the
training track. AWS includes step-by-step instructions for building tracks. With
the right track building implements, the car would be capable of successfully
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navigating the race track on which it was trained, exactly as it did during the

simulated evaluation.

Due to the limited scope, resources, and time available for this research, there
was insufficient time to examine everything. Customization of the reward
function received less attention. A possible area of investigation is the
optimization of the reward function. If the model already had a very good reward
function, it would converge more quickly while simultaneously learning a more
optimal policy. It is necessary to reward the model for appropriate behavior.
After finishing model training and evaluation in simulation, the next stage would

be to evaluate DeepRacer in a physical setting.
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