

Nhan Mai

Apply reinforcement learning in
AWS DeepRacer

Metropolia University of Applied Sciences

Bachelor of Engineering

Information Technology

Bachelor’s Thesis

1 April 2022

Abstract

Author: Nhan Mai

Title: Apply Reinforcement Learning in AWS DeepRacer

Number of Pages: 46 pages

Date: 1 April 2022

Degree: Bachelor of Engineering

Degree Programme: Information Technology

Professional Major: Mobile Solution

Supervisors: Erik Pätynen, Senior Lecturer

 Anne Pajala, Senior Lecturer

Reinforcement learning is a machine learning algorithm that has the potential to aid
in the development of an AGI system. Among the various types of machine learning
algorithms, RL is unique in that it explores the environment without prior knowledge
and chooses the appropriate action while the others focus on handling the data.

AWS DeepRacer is a self-driving 1/18th size race car designed to simulate real-world
conditions while testing RL models on a physical track. The project aims to gain a
better understanding of RL, the mathematics underlying it, and to observe it in action
by deploying the trained model in Amazon's DeepRacer automobile. [1].

To fine-tune the model, performance indicators such as the average reward per
episode and cumulative reward were investigated. To gain a better understanding of
the distribution of action spaces, Amazon's log analysis capabilities were used. Any
wasted action was deleted for effective training based on the log analysis data. The
model is uploaded as soon as the training was finished to test it in the race track.

The results may be utilized as general suggestions for training models and
enhancing RL using AWS DeepRacer. By using the strategies described in the
thesis, it is possible to develop more robust and stable models.

Keywords: Machine Learning, Neural Networks, Reinforcement Learning,

Autonomous, DeepRacer, Amazon Web Service, automation.

List of Abbreviations

Contents

1 Introduction 1

1.1 Autonomous system and robotic 1

1.2 Overview of Machine Learning 1

2 Theoretical background 2

2.1 Reinforcement Learning 3

2.2 DeepRacer 5

2.2.1 The Vehicle 6

2.2.2 The environment 9

2.2.3 Model 9

2.2.4 Action Space 10

2.2.5 Reward Function 11

2.2.6 Hyperparameters 15

2.2.7 Underfitting and Overfitting Model 18

3 Methods 21

3.1 Anaconda 21

3.2 Network Architecture 22

3.2.1 PPO 22

3.2.2 SAC 23

3.3 Services Architecture 23

3.4 Sagemaker Notebooks for training 25

4 Results 26

4.1 Overview 26

4.2 Agent Parameters 30

4.3 Development 32

4.3.1 Optimize Race Line 32

4.3.2 Universal Model 34

5 Conclusion 39

References 41

List of Abbreviations

RL: Reinforcement Learning.

ML: Machine Learning.

NN: Neural Network.

GDBS: Gradient Descent Batch Size.

EB: Experience Buffer.

AWS: Amazon Web Services.

CSC: Common Service Center.

DIY: Do it yourself.

LiDAR: Light Detection and Ranging.

UI: User Interface.

PPO: Proximal Policy Optimization.

SAC: Soft Actor Critic.

1

1 Introduction

1.1 Autonomous system and robotic

Autonomous robots will become increasingly prevalent in the world we live in.

From delivering food to our footsteps to driving us to work, autonomous

technologies will play a significant role in our daily lives. ML and artificial

intelligence advancements, combined with increased processing power, have

enabled the fantasy of self-driving automobiles to become a reality. With

increased air and land traffic, the deployment of autonomous vehicles will result

in more effective resource utilization.

When a system performs all dynamic tasks on its own, it is said to be

autonomous [2]. For example, a self-driving car should be capable of

performing driving tasks in all driving scenarios only through the use of its

automated system [2]. Autonomous robots are advantageous in situations (such

as high air traffic) when human control is either impossible or impractical [3].

Consider air traffic, for example. Imagine thousands of airplanes flying in close

proximity. A slight deviation in the trajectory of one airplane might have a

domino effect on the entire swarm of airplanes. This information must be

communicated to all other aircraft that may be impacted, and a decision must

be made in a split second. This task is insanely difficult and has a significant

probability of going wrong. However, if the airplanes have some degree of

autonomy and are communicating with each other, the path planning algorithm

would update instantly for each flight. As a result, the calamity can be averted

considerably more easily and efficiently.

1.2 Overview of Machine Learning

ML is exploding in popularity in the modern day and is likely to continue to do so

in the coming years. Our world is overloaded with data which is generated every

day at a dizzying speed. According to CSC, a provider of Big Data and Analytics

2

Solutions, the amount of data generated by 2020 is estimated to be 44 times

that in 2009 [4]. As a result, it is critical to comprehend data and gain insights in

order to gain a deeper understanding of the human world. Today's data sets are

so massive that conventional procedures are no longer applicable. In certain

instances, manually evaluating data and constructing prediction models is

impractical, time-consuming, and wasteful. On the other hand, ML delivers

trustworthy, repeatable outcomes and learns from previous computations.

In recent years, ML has grown in popularity. Earlier, ML was strongly limited by

the requirements for computer power and the quantity of accessible data.

Additionally, the improvement of algorithms has contributed to the development

of ML. There are several applications for ML, such as voice and

image recognition, and new ones are continually being developed.

In contrast to conventional programming, ML involves the computer discovering

solutions to given problems by analyzing the data it is provided. ML is distinct

from traditional programming in that, rather than providing the computer with

data and rules from which to generate results, the computer is provided with

data and results from which the computer will determine the rules and methods

for achieving the desired results on its own. Supervised learning, unsupervised

learning, and reinforcement learning are all distinct classifications of ML.

This thesis will discuss RL with AWS DeepRacer. Recommendations for

additional research are made, as this thesis can only provide a high-level

overview of AWS DeepRacer. This thesis aims to provide a summary of AWS

DeepRacer and its uses as well as to provide recommendations for effective RL

rules to apply while creating models with AWS DeepRacer.

2 Theoretical background

Human beings have acquired knowledge through trial and error. The learning

process is driven by reward mechanisms that incentivize particular behaviors.

The goal is to increase the number of positive responses and decrease the

3

number of negative responses through iterative methods. This teaches

individuals how to communicate with their world and how to overcome

complicated barriers. [5]

Reinforcement Learning RL is based on the concept of trial and error as a result

of interactions with the environment.

2.1 Reinforcement Learning

Reinforcement Learning RL is a useful framework for decision-making in

scenarios where an agent communicates with its environment via trial and error

to determine the most effective action. RL is concerned with sequential

decision-making in order to accomplish its objectives.

RL is similar to how biological systems adapt to the environment via trial and

error. The most common instance is training a dog. The trainer usually uses

treats to reward the correct behavior when training a dog to obey certain

commands. Positive Reinforcement is used in psychology to refer to behaviors

that are encouraged, whereas Negative Reinforcement is used to refer to

behaviors that are discouraged through punishment. [5]

RL is, in a nutshell, the process by which a decision-maker known as an agent

gets information about its environment and learns to pick behaviors that result in

the greatest reward for the agent. For the previous example, agent is a dog.

Environment is the “world” which agent interacts, such as a garden. Action are

performed by the agent in the environment, such as running around, sitting, or

playing balls. Rewards are issued to the agent for performing good actions. [5]

Figure 1 shows the simplest representation of RL framework

4

Figure 1: Agent-Environment Loop. [6]

At first, the agent takes the state S0 from its environment, which may include

information such as the captured image, its speed, and other sensory data. The

agent then performs action A0 on the specified state S0. The environment

changes state to S1 as a result of the action, and the environment rewards the

agent with a reward R1. This loop repeats until the episode concludes, returning

the current state (S0) and action (A0), as well as the future state (S1) and

reward (R1). Figure 2 shows the entire process in detail.

Figure 2: Reinforcement Framework

A typical illustration of this is a mouse in a maze. The mouse's objective in

figure 3 is to collect as much cheese as possible without being captured by the

5

cat. Collecting cheese nearby the mouse is more rewarding than trying to get

cheese nearby the cat.

Figure 3: A game where a mouse collects cheese in a maze. [7]

2.2 DeepRacer

The agent in DeepRacer is represented by a NN whose function approximates

the agent's policy. The environment state corresponds to the image captured by

the vehicle's front camera (see Figure 4), while the agent's actions are defined

by speed and steering angle.

If the agent completes the race, it will earn good prizes; if it does not, it will get

negative rewards as punishment. An episode begins by positioning the agent

along the track. The episode concludes with the agent completing a lap, going

off-track, or colliding with an item or another vehicle. [1]

6

Figure 4. DeepRacer state

2.2.1 The Vehicle

DeepRacer is a fully autonomous 1/18th-scale model of a race car developed

by Amazon that uses RL to run. The purpose of the product is to educate users

at all stages of RL [8]. Through their DeepRacer Console, customers can

conduct RL. Users can deploy the model to the vehicle after being trained.

Figure 5 shows the front and side views of the physical car used to test the

model in a real-world context and all of the DeepRacer parts in figure 6

separately. Information in details can be found in table 1 and 2. [1]

7

 (a) Front View (b) Side view

Figure 5: DeepRacer Car Views.

Figure 6: AWS DeepRacer parts.

The car is capable of autonomous operation by doing inference using the RL

model submitted by the user [8]. Additionally, it can be operated manually via

the internal console. The vehicle is propelled by a brushed motor, and its speed

is controlled by a voltage regulator. The servomechanism controls the steering

[8]. Only time-trial race setting is used in this thesis for its purpose. However,

LiDAR was utilized to ensure the model's durability, as creating a solid DIY

physical track is tough. The forward-facing stereo cameras assist the vehicle in

determining the depth information included in the photos.

8

Table 1: AWS DeepRacer vehicle parts 1. [1]

Table 2: AWS DeepRacer vehicle parts 2. [1]

9

2.2.2 The environment

The AWS DeepRacer console is the primary technique for developing a model

to run the car autonomously. The console is an interactive platform that enables

users to monitor and evaluate the model's training and assessment phases

while also providing the model's primary log data. Figure 7 illustrates the

console UI.

Figure 7: The UI during training.

2.2.3 Model

DeepRacer's model is a critical component. The model contains all the

characteristics and settings that comprise the agent's operating environment. It

is composed of three distinct parts: state, action, and reward for acting. The

policy is the agent's decision-making strategy, with the state of the environment

as the data and the desired action as the output. In DeepRacer, the policy is

frequently represented by a deep NN, also known as the RL model. Every

training session produces a single model. Even if the training is terminated

prematurely, a model is generated. Model is immutable, and is unable to modify

after generation. However, it is possible to clone a model and then train it with

different parameters. [1]

10

2.2.4 Action Space

RL requires a limited set of behaviors or options from which an agent may pick

while interacting with its environment. That is the definition of action space

which may be either continuous or discrete. [1].

A discrete action space in a finite set provides all the activities an agent may

do each state. The NN of AWS DeepRacer responds to each situation on the

track by allocating the agent a specific speed and angle of turn based on data

from its camera or LiDAR sensor. The options are presented in predefined

action numbers, each of which corresponds to a specific steering angle and

throttle combination for the car. Table 3 illustrates the default discrete action

space.

Table 3: AWS DeepRacer Discrete Action Space. [8]

A continuous action space, as contrast to a discrete action space, lets the agent

to choose an action from a value range per state [8]. Similar to the discrete

case, the agent selects direction-speed pair based on the environmental

situation that is received from the camera and LiDAR inputs. However, in the

continuous action space, the agent has a range of options to pick from. There is

11

a trade-off between performance and training time for these two action spaces.

In addition, it lacks a pre-set list of actions, as indicated in Figure 8.

Figure 8. Continuous action space.

While continuous action space allows for better optimization since it contains a

range of values from which the agent can choose the optimal value pairings to

increase performance, the discrete action space constrains the agent to choose

from a limited list of permissible actions. However, because a continuous action

space has a range of values, the agent must train longer, increasing resource

use.

2.2.5 Reward Function

Policy

The agent's policy outlines how it pick an action in given circumstances. The

policy would select activities that optimize total benefit. It will not take the acts

12

that result in an immediate increase in reward. In a nutshell, the policy always

prioritizes accomplishing its primary goal, meaning that it may select behaviors

that are suboptimal in their current state. [5]

Value Function

The value function represents the state's lasting quality. It is the cumulative

benefit that the agent anticipates from the current condition to the future state.

Reward is a measurement of the agent's instant performance in the present

state. The value function quantifies the agent's performance in the long term.

This reveals that a low reward is not always associated with a low reward

function or in any other way [5].

Reward

Each step requires the agent to do an action, and the value function indicates

how effective it was. This is referred to a reward. As stated earlier, the agent's

aim is to optimize its total benefits.

Rewards may award regularly or infrequently. Dense incentives are those that

appear frequently, while sparse rewards are those that appear infrequently [5].

In DeepRacer, for instance, remaining on race is a dense reward since the

vehicle will either stay on track for the full length of the race or will drive off.

Dodging an object in DeepRacer is a meagre prize, as even with six objects on

the track, they are still quite close to the track.

Reward Function

The reward function is a critical component of the AWS DeepRacer platform

because it effectively drives the agent to act. In the instance of the DeepRacer,

the reward function is a Python function that accepts a dictionary object of

parameters providing information about the current state and produces a

numerical estimate of the reward. With the function, the user can "reward" or

"penalize" a particular activity. The user may provide a set reward or one that is

dependent on the parameters. The following diagram illustrates the overall

structure of a reward function. Below is a sample outlines of a reward function.

13

Figure 9: Basic outline of a reward function.

The params dictionary stores the key-value pairs corresponding to the state

measurements listed in table 4. It is not necessary to incorporate all of these

parameters into the reward function's design. A basic reward function may also

result in acceptable performance. However, some or all of the parameters may

be useful for creating reward functions for complex tracks that require the agent

to focus on multiple parameters concurrently to complete the race.

14

Table 4: Key-value pairs in params [8].

Below is a simple example of a reward function which encourages the

DeepRacer car to follow the centerline. The reward function calculates a reward

depending on the distance between the vehicle and the track's centreline. The

closer to the centerline the car is, the higher reward is given to it. This reward

function is at the very basic level contains only two parameters: track_width and

distance_from_center

15

Figure 10: Sample code from AWS for “Follow the centreline” function

2.2.6 Hyperparameters

Entropy

The entropy measures the uncertainty in policy distribution. The model with a

large entropy shows higher variance behaviors comparing to the one with a

lower entropy. More increased entropy allows a more complete search of action

space. [1]

16

Data point

Is defined as a set of [s, a, r, s’] which respectively stands for state, action,

reward and new state. Data point is also known as experience. [1]

Episode

During an episode, the agent either performs an action in its environment to

collect rewards or gets out of it. Episode durations may change from each other.

A set of data points constitutes an "episode".

Experience buffer

The EB contains a set amount of sorted data points gathered from episodes of

varying lengths during the training time. It corresponds to images used as the

source for DeepRacer's input data. [1]

Batch

A subset of EB represents a section of the simulation during a specified period

and are used to adjust the weights. [1]

Training data

A collection of batches randomly picked from the EB. The training data is

utilized to update the weights of the policy network. [1]

Gradient descent batch size

GDBS is the number of recently sampled agent data points from an EB that are

utilized to update the NN’s weights. Random sampling reduces the connection.

Larger sizes give more effective and reliable weight updates, but the training

period of the model is likely to be longer and slower. [1]

17

Epoch

The number of epochs indicates how often training data is transmitted through

the NN to update the weights. [1]

Learning rate

The learning rate determines how quickly the model learns by adjusting the

amount by which GDBS alters the values of NN weights. Due to the frequently

updating weights, a higher learning rate allows quicker training. However, if it is

set too high, the model cannot converge. [1]

Discount factor

Specifies the range of future state rewards that the agent will estimate using the

reward function when deciding whether to take an action. The higher the value,

the more steps are considered while acting, but cause the training is slower as

a result. [1]

Loss type

The loss function is responsible for updating the NN's weights. The objective of

the loss type is to perform cumulative adjustment in the policy over time, such

that it transitions from random to policy influenced actions. DeepRacer supports

two types of losses: Huber and Mean squared error. [1]

Both function identically when updating the weights is minor. When the weights

are changed more significantly, differences occur. Compared to the Huber loss,

the mean squared error starts growing in larger increments.

Episode between each policy updating iteration

The size specifies the number of data points contained within an EB. Larger

buffers bring in more stable but slower updates. [1]

18

2.2.7 Underfitting and Overfitting Model

When a statistical model is trained using an excessive amount of data, it is said

to over fit. When a model is trained with such a large amount of data, it begins

learning from the noise and incorrect data entries in the data set. The model

fails to appropriately classify the data because there are too many details and

noise. Non-parametric and non-linear approaches are responsible for overfitting

since these ML algorithms have the aim to develop the model based on the

dataset, allowing them to create unrealistic models.

It is critical to master the art of detecting overfitting and underfitting in ML. Both

of them cause significant effects on how your model performs unless you take

actions to prevent them or at the very least minimize them on model

performance.

Overfitting

Overfitting happens when a machine learning model attempts to cover more

data points than are present in the supplied dataset. Due to this, the model

begins caching noise and incorrect values included in the dataset, which

reduces the model's accuracy and performance. The risk of overfitting increases

according to the amount of model training. The more we train our model, the

higher the risk of an overfitted model. Figure 11 below shows an example graph

of an overfitting model where the model attempts to handle the whole dataset.

[9]

19

Figure 11: A graph of an overfitting model.

In RL, an overfitting model performs perfectly within its training environment and

drops its performance dramatically in any different environment. In the thesis

project case, overfitting model can be recognized when testing the DeepRacer

car performance on other track.

Undefitting

Underfitting happens when a machine learning model fails to catch the

fundamental trend in the dataset. The training progress sometimes can be

interrupted early to avoid overfitting, so the model may not gain enough

knowledge from the dataset. Consequently, it may be unable to identify the

appropriate fit for the predominant trend in the data. Underfitting happens when

a model cannot learn sufficiently from the dataset, leading to decreased

accuracy and inaccurate predictions. Figures 12 below shows an example

graph of an overfitting model. [9]

20

Figure 12: A graph of an underfitting model

In RL, underfitting occurs when the model stop training before exploring all the

action space and environment. The agent's model is immediately identifiable

when the agent is unable to complete even one lap.

Convergence

Convergence indicates that the model is operating optimally. Convergence is

the perfect position to train a model. After convergence, it is predicted the model

will begin to overfit and its performance in environments other than the training

environment would steadily drop. As the agent traverses its action zone,

entropy decreasing with time is necessary. The model has converged when the

model's rewards, average progression, and entropy begin to equalize. [10]

21

Figure 13: The convergence at three peaks at the end of the training session.

3 Methods

3.1 Anaconda

Conda is a free and open-source for managing packages and environments

system on Windows, macOS, and Linux. Conda installs, executes, and updates

packages and their dependencies in a matter of seconds. Additionally, it

simplifies the process of creating, saving, loading, and switching between local

computer environments. Although it was designed to package and distribute

Python applications, it is capable of packaging and distributing software written

in any language. The Sagemaker and Robomaker logs were analyzed using the

Anaconda.

22

3.2 Network Architecture

Proximal Policy Optimization (PPO) is the default algorithm in DeepRacer. AWS

just introduced a new algorithm named the Soft Actor Critic (SAC) algorithm.

PPO and SAC are similar in that they both simultaneously learn a policy and

value function. However, their techniques differ significantly in three key

methods, as illustrated in Table 5.

Table 5: Comparing PPO and SAC

As illustrated in the table, each algorithm has its own set of requirements and

techniques for learning. It is unnecessary to go through the mathematical details

of the algorithms in this context; rather, the emphasis should be on how they

were used in DeepRacer and the benefits of either algorithm.

3.2.1 PPO

PPO makes use of two NNs, called the policy and value networks. The policy

network, alternatively referred to as the actor network, determines the action to

execute in response to the input. The value network also referred to as the critic

network, uses the inputs to estimate the cumulative reward [12]. The policy

network is the one that communicates with the simulator and is applied to the

car. Figure 14 illustrates the network's architecture.

23

Figure 14: Network Architecture. [12]

PPO applies on-policy learning, which means that it derives its value function

from the present policy through exploration. On-policy algorithms typically

require more data for training but are more stable in return. Over time, the policy

becomes less random, as weight changes incentivize exploiting previously

discovered benefits.

3.2.2 SAC

SAC applies off-policy learning, which incorporates behavior policy and

objective policy. The behavior policy communicates with the environment and

collects data used to formulate the target policy. The target policy can benefit

from the experiences of earlier policies. Off-policy algorithms are generally less

stable, but they require less training data. [1]

3.3 Services Architecture

SageMaker and RoboMaker, as well as other AWS cloud services, are included

in the AWS Deepracer environment. SageMaker is an AWS ML platform that

provides model training, whereas RoboMaker is a cloud service for the

development, testing and deployment of robotic products. DeepRacer integrates

them to train models and build virtual agents and environments via SageMaker

24

and RoboMaker. It stores trained models, as well as training logs and other

associated artifacts, on the cloud storage platform S3 [11].

AWS RoboMaker builds a virtual environment for the agent to run on a

predefined track within the AWS DeepRacer architecture. SageMaker's trained

policy network model is followed by the agent's actions. Each lap is marked by a

single episode. The course is organized into episodes that are each comprised

of a defined number of steps. Redis, an in-memory database, is used by AWS

DeepRacer as an EB for selecting training material for the policy NN to train.

Redis caches "experiences" in each segment as an EB. The EB is described as

a sorted list of tuples representing each step's state, action, reward, and new

state. SageMaker extracts training data from the EB at random intervals and

feeds it to the NN in batches to update the weights. SageMaker then uses the

improved model saved in S3 to build new experiences. This loop will not stop

unless the training is finished. The EB starts with random actions in the very first

episode. As training advances, there should be less unpredictability in the

agent's activities. This architecture is shown in figures 14 and 15. This

configuration is advantageous because it allows the execution of numerous

simulations simultaneously to train a model on various segments of a track or

multiple tracks.

Figure 14: AWS DeepRacer Service Architecture

25

Figure 15: AWS DeepRacer Schematics.

3.4 Sagemaker Notebooks for training

The training approach mentioned before included the DeepRacer console,

which integrates the training and evaluation of DeepRacer models. The console

utilizes SageMaker and RoboMaker in the background to enable seamless

model training and evaluation [8]. The SageMaker notebook allows us to

"jailbreak" AWS DeepRacer by granting us additional control over the

training/simulation process and RL algorithm customization. In a previous

section, we discussed how to distribute RL training across SageMaker and two

RoboMaker simulation environments that perform rollouts – the execution of a

specified number of episodes using the existing model or policy. The rollouts

gather agent experiences (state-transition tuples) and send them to SageMaker

for training purposes. SageMaker modifies the model policy, which is

26

subsequently utilized to perform the subsequent rollout sequence. This training

cycle is repeated until the model achieves convergence [8].

4 Results

4.1 Overview

The first stage in this project was to develop an efficient reward function.

Initially, the network was trained using the default reward function. Additionally,

the hyperparameters were set to their default values. The training session was

scheduled for one hour. Following training, the model was tested for three trials

on the same track. Figure 16 illustrates the overall reward for each episode and

the percentage of completion.

Figure 16: Training Stats.

27

Figure 17 illustrates the evaluation metrics. The evaluation trials were unable to

finish the track in its entirety. The second trial completed 94 percent of the track

before deviating. The most possible reason for the failure was insufficient

training time.

Figure 17: Evaluation Stats

Two hours of training with default hyperparameters is recommended. Although

modifying hyperparameters may be necessary, it is important to remember that

modifying default hyperparameters will change the required minimum amount of

training time to convergence. In general, the effect of two hours of training on

easier time trial courses can indicate if the model needs retraining or just

analyze the log and move on.

28

Figure 18: Racing tracks

Figure 19: The very first models.

29

Figure 20: An unstable model when training with high entropy hyperparameter.

Figure 21: More stable model after an adjust hyperparameter

30

4.2 Agent Parameters

Both continuous and discrete action spaces have distinct advantages. The

majority of models developed for this research were discrete models. It looked

like discrete models did a little higher performance than continuous models at

the start of the testing period, but this could be because they had less time to

learn. Continuous models will almost certainly train slower. There are

insufficient data to determine which type of action space is preferred.

The most key parameter in an agent's parameters is its speed. The speed of the

model has the greatest effect on its performance. It is possible that the model

will make fewer mistakes in hard turns if its speed is increased. In addition,

training may take longer since the model will deviate off course more often

during the first phases of the training process as well as the agent may begin to

drift in corners if the steering angle is very high. The models become less stable

as their speed rises. The experiment provided no solid evidence for the location

of the agent's speed sweet spot.

31

Figure 22: Model metrics

32

Figure 22: Agent parameter data.

4.3 Development

4.3.1 Optimize Race Line

To optimize the reward function to enable the agent to complete the race faster.

Remi Coulom introduced the algorithm in his PhD thesis [13]. The purpose is to

find the optimal race line path for a certain track and to persuade the agent to

follow it. Three sets of coordinates are used to establish a race track: the

outside and inner borders, as well as the mid-point. A Python algorithm was

developed Using the algorithm mentioned in to generate the track with the

33

"optimal" path for every track defined using the three coordinate sets [14].

Figure 23 illustrates this technique in action.

(a) Original Track (b) Optimal Race Line

Figure 23: Rebuild the race line [14]

The model was trained using the [14] reward function, which applied the K1999

Race-Line Optimization algorithm. Figure 24 illustrates the reward accumulated

throughout training.

34

Figure 24: Reward apply K1999 Algorithm

While the rewards in figure 24 appear to be satisfactory, they are not consistent

with the work's objective. Training with this reward function significantly

increases the probability of overfitting to a track. By implementing the optimal

race-line track, the model can operate optimally only on the track on which it

was trained. Because the thesis's final aim is to operate the DeepRacer car on

an actual track, the model should be capable of navigating an unknown track.

The track used to evaluate the automobile may differ from the tracks used to

train the model. As a result, it is required to establish a "universal" model.

4.3.2 Universal Model

While training DeepRacer models for a single track produces a reasonable

result, it does not produce a robust model that can be utilized across all

DeepRacer tracks. Based on [15], a more extended reward function was

implemented to train a model on several tracks by cloning the model after each

training session. The reward function utilized for this purpose, as developed

from [15], is presented below. Figure 25 illustrates the hyperparameters used to

train the universal model.

35

Figure 25: Hyperparameter apply in the universal model.

Firstly, the model was trained for an hour on the oval track. Figure 26 shows the

reward graph, whereas Figure 27 shows the Oval track. The training time was

limited to one hour due to the model being cloned and trained on a different

track. By cloning, the current network weights would remain constant, allowing

the "knowledge" gained during this track's training to be carried over to the next.

The reward graph also reveals that the model was unable to complete the

36

course during training. Additionally, the graph represents the best model

depending on the track's completion.

Figure 26: Reward Graph on the Oval Track.

Figure 27: Oval Track.

37

To train on the Reinvent-base track, the model was duplicated. Since this is a

duplicated model, the reward function and hyperparameters were identical. The

reward graph and track layout are illustrated in Figures 18 and 19. Both reward

and track completion rates improved significantly during this training session.

Figure 28: Reward Graph on the Reinvent-base Track

Figure 29: Reinvent-base Track

38

This model was duplicated to allow for more training on a particularly tough

track — the Bowtie. Figure 20 illustrates the track. Due to the bow shape, this

track proved to be difficult. The agent did not comprehend the middle curve

since it could "see" the track on the other side and desired to take a "shortcut"

whenever it met those bends. As a result, the performance rate decreased

throughout this training session, as illustrated in figure 21 reward graph.

Similarly, the award may have been affected for the same reason. Due to the

model's success on the reinvent track, it was able to achieve even greater

outcomes.

Figure 30: Bowtie Track.

39

Figure 31: Reward Graph on the Bowtie Track.

5 Conclusion

AWS DeepRacer is an excellent platform for learning about RL and

experiencing it in action. It includes simple-to-follow instructions for beginners

as well as the ability for an "advanced" user to access the backdoor. The

models were trained to run the real car autonomously using a variety of reward

functions and state-of-the-art optimization algorithms. However, the

development of the track required extreme care and precision, as the training

approach could only give a suitable outcome if the track approximated the

training track. AWS includes step-by-step instructions for building tracks. With

the right track building implements, the car would be capable of successfully

40

navigating the race track on which it was trained, exactly as it did during the

simulated evaluation.

Due to the limited scope, resources, and time available for this research, there

was insufficient time to examine everything. Customization of the reward

function received less attention. A possible area of investigation is the

optimization of the reward function. If the model already had a very good reward

function, it would converge more quickly while simultaneously learning a more

optimal policy. It is necessary to reward the model for appropriate behavior.

After finishing model training and evaluation in simulation, the next stage would

be to evaluate DeepRacer in a physical setting.

41

References

1 Amazon. 2022. AWS DeepRacer: Developer Guide. Amazon Web
services

2 Understanding autonomous vehicles: A systematic literature review on
capability, impact, planning and policy. Online. JTLU.
<https://www.jtlu.org/index.php/jtlu/article/view/1405>. Accessed 6
April 2022

3 Designing autonomous robots | IEEE Journals & Magazine | IEEE Xplore.
Online. IEEEXplore. <https://ieeexplore.ieee.org/document/4799448>.
Accessed 6 April 2022

4 CSC Infographic Big Data. Online. CSC.
<http://assets1.csc.com/insights/downloads/CSC_Infographic_Big_Data.p
df>. Accessed 6 April 2022

5 Lonza, Andrea. 2019. Reinforcement Learning Algorithms with Python.
Packt.

6 “Openai documentation: Getting started with gym,”. Online. Gym
<https://gym.openai.com/docs/>. Accessed 6 April 2022

7 Deep Reinforcement Learning Course. Online. SIMONINI Thomas
<https://simoninithomas.github.io/deep-rl-course/>. Accessed 6 April
2022

8 What Is AWS DeepRacer? - AWS DeepRacer. Online. Amazon Web
Services
<https://docs.aws.amazon.com/deepracer/latest/developerguide/>.
Accessed 6 April 2022

9 Overfitting and Underfitting in Machine Learning – Javatpoint. Online.
Javapoint: <https://www.javatpoint.com/overfitting-and-underfitting-in-
machine-learning/> Accessed 6 April 2022

10 Ray Goh. October 13, 2020. Using log analysis to drive experiments and
win the AWS DeepRacer F1 ProAm Race. AWS Amazon

11 OpenAI. 2018. Proximal Policy Optimization. OpenAI. Online. OpenAI:
<https://spinningup.openai.com/en/latest/algorithms/ppo.html/> Accessed
6 April 2022

https://www.jtlu.org/index.php/jtlu/article/view/1405
https://ieeexplore.ieee.org/document/4799448
http://assets1.csc.com/insights/downloads/CSC_Infographic_Big_Data.pdf
http://assets1.csc.com/insights/downloads/CSC_Infographic_Big_Data.pdf
https://gym.openai.com/docs/
https://gym.openai.com/docs/
https://simoninithomas.github.io/deep-rl-course/
https://docs.aws.amazon.com/deepracer/latest/developerguide/
https://www.javatpoint.com/overfitting-and-underfitting-in-machine-learning/
https://www.javatpoint.com/overfitting-and-underfitting-in-machine-learning/
https://spinningup.openai.com/en/latest/algorithms/ppo.html/

42

12 Deepracer Car. Online. Xingtong Li.
<https://cse.buffalo.edu/~avereshc/rl_spring20/Xingtong_Li.pdf>
Accessed 6 April 2022

13 R. Coulom, “Reinforcement learning using neural networks, with
applications to motor control,” Ph.D. dissertation, Institut National
Polytechnique de Grenoble- INPG, 2002

14 Discovering Race Lines in DeepRacer Track Geometries. Online. C.D
Thompson <https://github.com/cdthompson/deepracer-k1999-race-lines/>
Accessed 6 April 2022

15 Aws deepracer experimentation. Online. S. Pletcher.
<https://github.com/scottpletcher/deepracer/> Accessed 6 April 2022

https://cse.buffalo.edu/~avereshc/rl_spring20/Xingtong_Li.pdf
https://github.com/cdthompson/deepracer-k1999-race-lines/
https://github.com/scottpletcher/deepracer/

