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A common problem for microcontroller devices and most technology, in general, is measuring 
and comparing devices or components to determine which product best suits a situation and the 
benefits or drawbacks each possesses. The goal is to investigate the ability for alternative 
microcontrollers to outperform the Raspberry Pi, which is the most common microcontroller device 
on the market. The common deployment of the Raspberry Pi device results in a large portion of 
research and education being carried out on one device, with the competing products often 
overlooked as a result. By attempting to compare the devices, it can be determined whether there 
are better alternatives for both education and personal use for monitoring and experimentation. 
Although the scope of this project is limited to two microcontroller devices the idea is that the 
system should be designed in such a way that it can be implemented on any microcontroller 
device and have the experiments conducted in the exact same way.  

In this project, the Raspberry Pi and Odroid devices-are paired to a Bluetooth weather station 
which then takes selective measurement values consisting of humidity, pressure, and 
temperature and performs a series of mathematical operations on the data using principles of 
edge computing to determine how well each device performs. The use of Linux distributions which 
support Python is key to the universal nature of the experimentation being successful. If a 
microcontroller device supports a Linux operating system and can run Python scripts, then the 
experiments can be repeated exactly as listed and compared to the findings in this study. 
Regarding the findings it was initially expected for the Raspberry Pi device to be the clear favorite 
due to the superior hardware components available to the device. Contrary to the initial 
expectation, while the hardware advantage allowed the Raspberry Pi to perform better on pure 
mathematical operations it was not quite as dominant in other areas and even lost in performance 
to the Odroid device at times. For example, one of the aspects that the Odroid device performed 
better at was accessing and returning information directly from data storage. 

The key takeaway of the project and experimentation is that there are many more consumer 
microcontroller devices available than just the Raspberry Pi and as demonstrated through the 
experiments, some will perform better in their niches. While the experimentation is not fully 
comprehensive, it looks at the most common solutions and deployments and crafts a rough 
estimate of a device’s abilities. While the Raspberry Pi is still a very good option for most 
microcontroller experimentations, hopefully, the results and findings can compel a look into 
alternative microcontrollers as well. 
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LIST OF ABBREVIATIONS 

ARM A type of lightweight computer architecture used by 

processors with set instructions.  

DB Database, is a file system used to organize and stored 

collections of data and information electronically. 

IoT  Internet of Things, a descriptor of a system or device which 

transmits information, measurements, or other data over the 

internet or other networks. 

MQTT A publish/subscribe network that transports messages 

between devices 

OS Operating system, the default base installation for any device 

from microcontrollers to home computers. 

SQL Structured Query Language, used for communicating with 

databases and database management systems. 

STEM It refers to any subjects in the categories of science, 

technology, engineering, and mathematics. 
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1 INTRODUCTION 

When developing systems for automation and measurement there is a need for devices 

which are capable of handling complex mathematical procedures, storing data, or 

transmitting information. The most commonly used devices are called IoT devices which 

are comprised of a processor, memory, storage, and a communications interface found 

in every typical computing system. The distinct difference is that IoT devices are smaller 

in scale since the environment they are used for is often remote tasks or measurements 

where the information is sent to a larger computing system with more available 

processing power. Although with increased advancements in the technology being used, 

that is set to change with the advent of edge computing becoming more widely used and 

available. This means that much of the processing and computing can be carried out at 

the sensor location as well. 

The Raspberry Pi 4 Model B and Odroid-C4 are two readily available, open source 

devices on the market that can be used for IoT development. To better understand the 

benefits in hardware and platforms offered by these devices, near identical IoT 

deployments will be built on each device and tested to determine their strengths and 

weaknesses. The IoT system in question will take a measurement, store the data on a 

database,and generate an analysis based on various sizes of selected datasets over a 

pre-determined timescale. The system will be measured for speed, accuracy, ease of 

development, and the ability of each device to be set-up from a freshly flashed state. 

The objective is to examine a number of factors that go into using IoT microcontroller 

devices especially with their increased useage in education. For example in [1] the 

authors state a need for microcontroller devices (specifically the Raspberry Pi) to help 

bridge the gap in STEM education especially in developing due to the low cost required 

to purchase these devices. They put a large emphasis on the amount of benefit 

integrating microcontrollers into education helps a nation’s STEM growth when 

implemented at a high school and secondary school level. 

However not all of these factors can be selected for using purely mathematical analysis, 

since some factors such as manufacturer support, price, and project scope could 

outweigh the pure computational benefits one device may offer over the other. According 

to the authors in [2] IoT is set to see exponential growth and integration in all of our lives 

and the availability of open access to data provided by these systems will help both 
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citizens and the government better understand what is happening in the areas these 

monitoring systems are established at. With IoT projects, an increasing number of 

environmental, weather, and other monitoring systems will be able to be established at 

a wider array of locations creating a dispersed network of sensor with more real-time 

information coming in all the time. 

The goal of this project is to explore alternative microcontroller devices for both 

educational and consumer use and test them versus the most commonly used 

microcontroller on the market, the Raspberry Pi. The idea is that this could open up more 

avenues for research and development, or may make educational opportunities better 

using alternatives to the Raspberry Pi. The hope is that these other devices may perform 

just as well at a lower price point, or offer a certain niche use where it outperforms the 

Raspberry Pi. Having a broader knowledge of microcontroller devices is also  a net 

benefit for students as it allows them to explore the inner workings of the devices more 

in depth due to the minute difference in how they operate. 

When researching other projects which investigated IoT systems, one of the most 

common types of projects was monitoring weather and air quality. One of the perceived 

reasons for this was listed in [3], citing the instability of climate and weather changes 

having an effect on everyone, but the current monitoring solutions are not accessible to 

average individuals and, therefore, there is a large amount of research and development 

going into creating low-cost IoT weather solutions. For that reason, it made sense to also 

create a simple, useful, and low-cost system in order to use as a base for comparison 

between different microcontroller devices. 

The thesis is organized as follows, Chapter 2 describes the two IoT devices being used 

in the experiments as well as the Bluetooth temperature sensor being used to relay 

measurements to the devices. Chapter 3 discuses the types of software, measurements, 

and programming choices that were made to have as close a comparison as possible 

between the devices. Chapter 4 goes into the results and observations made throught 

the experimentation and gives explanation as to how the data was collected and what 

the differences between devices means. Chapter 5 complites the findings and evidence 

reached throughout the investigation and how these findings might be useful when 

testing other microcontroller devices, as well as how establishing how the Raspberry Pi 

and Odroid devices performed overall. 
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2 DEVICES 

The selection for devices was done by initially choosing the Raspberry Pi 4 Model B 

since it is the most commonly used microcontroller in schools and personal development. 

As such it has a lot of support online for it’s development and a custom operating system 

that is easy to install (Rasbian OS). The Odroid-C4 device was chosen since it is around 

the same price range and has comparable hardware performance to the Raspberry Pi 

allowing a direct comparison without factors like processing power or other hardware 

differences being too large of a factor between devices. 

Although the devices chosen are similar in price range and hardware components there 

are still some difference between the devices hardware and software environments that 

will be expanded upon below. 

2.1 Raspberry Pi 4 Model B  

The device pictured below (Figure 1) uses the Raspbian OS which is a closed-source 

linux distribution that has support for many languages but promotes Python as the 

primary programming language and is the one that will be used for this project. The 

noteable hardware components for the IoT device is an ethernet port, a WiFi interface, 

and 40 GPIO pins. The processor is a Quad Core ARMv8 64bit processor clocking at 

1.5GHz, with 8GB DDR4 memory, and a slot for a Micro-SD card [4].  

 

Figure 1. An image of the Raspberry Pi 4 Model B device 
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2.2 Odroid-C4 

The Armbian OS is an open-source operating system similar to Rasbian but available for 

all microcontrollers and will allow the programs to be written in Python allowing the code 

scripts that will operate on each device to be identical. The device which can be seen 

below (Figure 2) contains an ethernet port, 25 GPIO pins, a serial console port, and Wi-

Fi receiver. The processor is a Quad Core ARMv8 64bit processor at 2.0GHz, with 4GB 

DDR4 memory, and a slot for a Micro-SD card for storage [5]. 

 

Figure 2. An image of the Odroid C4 device. 

2.3 Ruuvi Bluetooth Weather Station 

The Bluetooth component as seen in the image below (Figure 3) is designed to send 

data through beacon advertisements displaying multiple data types but for the purposes 

of a weather installation it only needs to select for temperature, humidity, and pressure. 

It is most commonly accessed through pairing with a phone or other device using Ruuvi’s 

own “Ruuvi Station” Application available on any app store. But for developers the device 

can be directly interfaced with using the “Ruuvitag_sensor” Python library available as 

an open-source development tool hosted on Github. This allows both the Odroid-C4 and 

Python devices to receive updates from the sensor to track weather readings in a more 

direct, barebones manner which will allow better analysis of the raw differences in data 

transmission. 
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Figure 3. An image of the RuuviTag Bluetooth device. 
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3 IOT STRUCTURE 

The proposed design shown in the UML diagram below (Figure 4) dictates how the 

process should work within both the Raspberry Pi and Odroid device. None of the code 

scripts, database format, or the dashboards need to be adjusted or changed between 

devices. The idea of a generalized solution for all IoT microcontroller devices makes it 

so that the device itself is being measure rather than optimizations or changes within the 

code or the devices own internal structure. Since this includes the programming 

language being used; Python was chosen since it handles real-time movement of data 

the best and is lightweight meaning it can be deployed and modified easily.  

 

Figure 4. UML diagram showing the movement of data from the RuuviTag device through 
a generic microcontroller (Raspi/Odroid) to a Grafana dashboard. 

The added benefit of the design is that while it currently only handles a singular Bluetooth 

beacon sending data to the microcontroller it can be expanded to include more beacons 

or other sensors broadcasting data to the same microcontroller device. By using a more 

simplistic approach, the design is able to be expanded later to create a more complex 

system without needing to restart the design from scratch.  
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3.1 Software choices 

The main difference in deployments between the devices was the selection of OS for 

each device. The reason for using Rasbian on the Raspberry Pi instead of Ubuntu ARM 

which was used for the Odroid was that Rasbian is a natively supported OS for the Pi 

and is a major selling point of the device due to its ease of set-up.Therefore the choice 

to use different OS was made since it is one of the major reasons behind the devices 

success.  

Each device will need to run a local database and a script that receives a Bluetooth 

transmission from the sensor and forwards the information into the database. For the 

database, initial testing was done using an SQLite3 database but was changed to 

InfluxDB database after issues were found due to the SQLite3 database losing entries, 

and having massive differences in storage time between devices. While the goal of using 

SQLite3 was that it was lightweight and quick to set-up it came with too many issues and 

problems to continue its use. 

InfluxDB was instead chosen due to it’s easy integration with Grafana which allows for 

real time monitoring of the data, as well as a visual representation of the results. It is also 

a time-series database which means that every entry is automatically tagged with the 

current time and is not reliant on the devices to do it manually. To communicate with the 

Bluetooth sensor, a series of simple Python scripts will be written that send the results 

from the ruuvi_sensor library (available on Ruuvi’s GitHub) directly to the database using 

the “influxdb” Python library. All data values are sent as a JSON dictionary object which 

can be natively stored within InfluxDB.  

3.2 Considerations for measurement choices 

While there are many measurement types to consider such as monitoring CPU 

temperature which was done for computer vision algorithms in [6], or when looking at 

power consumption using simple randomized algorithm problems in [7]. These 

measurements were meant more for the devices health rather than the success of an 

IoT sensor deployment. Rather looking within the implementation for points where the 

systems might diverge in success it came down to the following sections: 

A. Communication with the sensor 
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B. Sending data to the database 

C. Retrieving data from the database 

D. Applying operations to the data 

Looking at these main points where a majority of the data was being sent, stored, and 

retrieved these sections would be where the largest discrepancies between devices 

would be found. After looking at the datasheet available for the Ruuvi weather station it 

was decided to store Temperature, Humidity, and Pressure. Next looking at the example 

in [8] there was a very thorough monitoring for the delay of data sent from the sensor. 

While the implementation in that case was using MQTT it felt important to use the delay 

in messaging for Bluetooth as well. This is especially important in this case since the 

Odroid device does not have innate Bluetooth and must use a dongle, whereas the 

Raspberry Pi has it built-in. This difference in the method of achieving Bluetooth 

connectivity might have an impact on the speed and accuracy of data collection. 

The final aspect was looking at retrieving and processing the data, the selection was 

made to use a small and large dataset which was set to be a 24-hour period and then a 

7-day week of measurements. The data would then use a simple algorithm and 

compared to the built-in SQL measurements for median, mean, and count. This gives an 

indication of how fast the baseline method is, how fast the simple algorithm is calculated 

with the device, and how the different devices compare in each category.  

3.3 Programming decisions 

The simplest method to test connectivity, process data, and store data is to use Python 

scripts executed locally on the device. Python is an interpreted language meaning it does 

not need to be compiled to run which makes it easier to set-up, and faster to modify. The 

code will be designed to receive a sensor reading over Bluetooth, modify and attach the 

time delay to the data, and store the response in a database for access by Grafana in 

order for a simple graphing dashboard to be created. Creating an interpreter on a 

microcontroller device that operates between a sensor, and a remote user is a very 

common IoT implementation.  

This type of IoT solution is called edge computing and it solves the common problem of 

how to deal with the large influx of data. One of the primary reasons that edge computing 

is implemented in IoT systems is to handle and sort the large amount of data being 
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generated by the sensors before sending it remotely to be stored. As indicated by [9] the 

establishment of edge computing helps the end user receive a pre-processed response 

with a low response time due to the real-time processing of the sensors data at the local 

or “edge” level of the system. 

The way it is created will be to first attempt to connect to the Ruuvi device using the 

“Ruuvitag_sensor” library and denote whether the connection was a success or a failure. 

If the connection was a success the device will proceed to open a connection to the local 

database in order to send the most recent average temperature, time the length of the 

process from first receiving the Bluetooth connection to when the data is successfully 

stored, and lastly to format the received data and store it using an SQL command. The 

result will be a database consisting of sorted data readings which can be queried in a 

variety of ways and will later be accessible on a remote device for analysis. 
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4 TRIALS AND RESULTS 

Using the IoT structure described in Figure 4. both microcontroller devices will be 

undergoing timed analysis of the scripts when entering values into the database, as well 

as the scripts that query data from the dataset to check their speed, accuracy, and to 

note any problems or irregularities which occurred. The testing is intended to produce 

results and highlight drawbacks between these devices. 

4.1 Bluetooth Connectivity and Data Storage 

The first portion of the trial was to create a link from the microcontroller devices, to the 

Bluetooth beacon and to stored the results on the microcontroller device in a database. 

The code seen in Figure 5. is what was used to create a list of entires and archive the 

time it took to write the entries to the database. 

#Variable to set the timeout speed of the RuuviTag sensor. 

timeout_in_sec = 2 

 

#Function to read the beacon and get a response back. 

def read_beacon(): 

    time_start = time.time() #Starting the timer 

    data_packet = RuuviTagSensor.get_data_for_sensors(sensor_id, timeout_in_sec) 

    time_stop = time.time() #Ending the timer 

    time_result = time_stop - time_start  #Getting the resulting time 

 

    #Adding measured time to the JSON data object 

    data_packet[sensor_id]['retrieval_time'] = time_result 

    return data_packet[sensor_id]    

Figure 5. The code snippet which handles how fast the RuuviTag sensor is checked. 

Initial testing of the devices resulted in a huge discrepancy when measuring the Odroid-

C4 device when compared to the Raspberry Pi. When taking into account the time it took 

to receive a broadcast from the RuuviTag device the “timeout” used was lowered to the 

minimum acceptable value. This resulted in the timeout value being 2 seconds for the 

Raspberry Pi and 3 seconds for the Odroid-C4 device. The way the minimum value was 

determined was running the program over one hour and if the timeout value was too low 

the rate of exceptions quickly resulted in the device missing over 50% of it’s attempts to 
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get a response from the beacon. As indicated in Table 1, the result from a one hour test 

was that the Raspberry Pi and Odroid-C4 devices are similar in the number of entries 

dropped or missed during a session with both devices dropping approximately 11% of 

broadcasts sent to each device. 

Table 1. Results of one hour trial processing data into storage (Ratio indicated the % of 
entries that succeeded in being reached). 

Device # of entries # of exceptions Ratio (%) speed 

Raspberry Pi 1,345 157 89.547 2.402s 

Odroid-C4 594 72 89.189 5.499s 

 

The discrepancy between devices is highlighted with the ability of the Raspberry Pi to 

process and store entries at a rate 228.9% faster than the Odroid-C4 device. This 

discrepancy was initially attributed to using a Bluetooth dongle for network connectivity 

on the Odroid-C4 which was believed to be resulting in a larger time delay between 

entries. Even running both devices for a shorter period of time and mirroring the timeout 

to 4 seconds, the Raspberry Pi device still averaged a speed of 4.3 seconds, and the 

Odroid-C4 device an average time of 6.4 seconds. 

The initial results from a one hour trial in Table 1 were conducted using SQLite 3 and the 

default Python SQL library. When the testing was re-done using InfluxDB and the 

influx_db Python library it was far more optimized and the result was decreased from a 

3 second difference to a 0.3 second difference in retrieval and storage speed. This may 

have been the result of SQLite 3 having a worse impact that affected the Ordoid-C4 

device more than the Raspberry Pi.  

The first assumption was that the Bluetooth connection was worse using the dongle on 

the Odroid-C4 device, but changing database software caused the discrepancy to be 

greatly reduced without requiring hardware changes. Unfortunately due to 

implementation differences the ratio of exceptions or missed entries is not available but 

instead the average, minimum, and maximum time to retrieve entries is available. As 

shown in the data results from Table 2, both devices had a minimum value close to 2.8s 

which is likely close to the maximum rate the Ruuvi beacon can broadcast, however the 

Raspberry Pi had a much higher maximum delay for its response time. 
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Table 2. Results of one week processing data into storage 

Device # of entries min max average 

Raspberry Pi 154,809 2.83s 7.6ms 3.09s 

Odroid-C4 166,525 2.85s 6.42s 3.25s 

 

Using the calculations that a week contains 604,800 seconds which when accounting for 

a 3.09s average time, should result in 195,728 entries being generated over a period of 

one week, likewise the Odroid should produce 186,092 entries with a 3.25s response 

time. Using this approximation we can make the assertion that the Raspberry Pi was far 

more likely to lose entries during long term testing, than the Odroid device. This is 

contrary to the results found during a short 1 hour initial testing period. As noted in a 

paper published regarding the topic of weather monitoring [10]. The ability for an IoT 

system to be low-cost while maintaining accuracy and reliability is one of the biggest 

challenges facing IoT systems and as such is why the exception rate of entries was 

chosen as a metric to be monitored. 

4.2 Data Accuracy and Long Term Analysis 

The second test being done takes into account the availability of most SQL libraries 

ability to handle median, mean, and other simple models of statistical analysis using 

built-in library functions. In InfluxDB the primary functions MEAN() and MEDIAN() will be 

used in queries and the time it takes to process will be compared to a custom function 

solely within Python to determine whether the mean and median are accurate, and 

whether the speed of the library or native Python code is faster. The data will be scaled 

on a range of 24 hours, 3 days, and 7 days, similar to those often found when checking 

the forecast allowing the larger datasets to test the machines processing power at 

varying scales. 

While leaving the Odroid-C4 and Raspberry Pi devices running it quickly became evident 

that there were issues immediately. The Odroid-C4 device was slower at collecting 

entries, but the Raspberry Pi would crash unexpectedely. During the data collection trial 

the length was increased from 7 days to 10 days due to periods of time where the 

Raspberry Pi would crash and quit out from collecting data entries.Using Grafana allows 
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the creation a dashboard for each device showing the retrieval time for entries based off 

of the datetime when they were entered. 

Looking at the bottom graph in Figure 6. we can see that it contains large gaps where 

the Raspberry Pi device was no longer processing and storing entries. Even with 

monitoring, the scripts would be shown to be active but no results would be generated. 

While the Raspberry Pi does have a better processing performance as a result of having 

comparatively better hardware than the Odroid device, it should be noted that this level 

of instability and crashing while running identical code is a huge issue in the devices long 

term useability. Even though minimalistic and identical code was run on both devices 

with the same dependencies, the Raspberry Pi device was subject to much more 

instability issues and crashing.  

 

Figure 6. The comparative data retrieval issues between Raspberry Pi and Odroid 
Devices. 
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4.3 Daily Calculation Testing 

The first test conducted selected for a full 24-hour time period within the dataset and 

checking the number of entries generated, the mean hourly values, and the median 

hourly values. The code seen in Figure 7. Is what was used to parse through the 

database for a selected length of time. Then operations are done comparing the time 

taken to manually calculate the median, median, and count and using the InfluxDB built-

in libraries. It also checks to make sure that both the manually calculated value and the 

value produced by InfluxDB libraries are identical. To calculate this, the microcontroller 

would query the database for the desired measurement type (humidity, pressure, or 

temperature) and submit the results, this is then repeated for each desired measurement 

type. 

def query_mean(): 

    today = datetime.datetime.now() 

    today = today - datetime.timedelta(days=1) 

    listed_hours = [] 

    n = 0 

    while (n < 24): 

        start = today.replace(hour=n, minute=0, second=0) 

        if n == 23: 

            stop = stop + datetime.timedelta(days=1) 

            stop = stop.replace(hour=0, minute=0, second=0) 

        else: 

            stop = today.replace(hour=n+1, minute=0, second=0) 

        start = start.strftime("%Y-%m-%dT%H:%M:%SZ") 

        stop = stop.strftime("%Y-%m-%dT%H:%M:%SZ") 

        sql_query = f'SELECT MEAN({field}) FROM \"{table}\"  WHERE time 

>= \'{start}\' AND time <= \'{stop}\'' 

        test = db.query(f'{sql_query}', database=db_name) 

        values = test.get_points() 

        for i in values: 

            listed_hours.append(i['mean']) 

        start = datetime.datetime.strptime(start, "%Y-%m-%dT%H:%M:%SZ") 

        stop = datetime.datetime.strptime(stop, "%Y-%m-%dT%H:%M:%SZ") 

        n += 1 

    return listed_hours  

Figure 7. Code snippet showing how the mean value for a 24-hour time period are 
retrieved from the database using built-in InfluxDB libraries. 
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The results are output to the command line and reformated manually into a more easily 

readable format. The outcome of this experiment was meant as a shorter term analysis 

of the devices within a smaller time window and the expected difference between the 

devices was expected to be within 500ms of each other. The reason for using a shorter 

time frame initially was to see if the devices showed any difference when run for a short 

time period compared to a longer time period. It was an important consideration due to 

the discrepancies found between short term and long term population of the database 

that was shown during the initial set-up and could potentially result in a discrepancy 

again.  

As is displayed in Table 3, a a simple test was conducted to find how many entries were 

generated within the time period provided. The results were calculated both manually 

and using the SQL COUNT function which showed that the Raspberry Pi performed 

better in both metrics. The next step was to check if the results held true for all available 

metrics stored within the database, so the calculation was done for both devices on every 

data metric available to query. 

Table 3. A comparison of an average 24 hour sample between devices. 

Device # of entries (hourly) # of entries (total) speed manual db speed 

Raspberry Pi 1,065 25,567 773ms 136ms 

Odroid-C4 982 23,577 882ms 197ms 

 

The code featured in Figure 8. shows how the values in Table 3 were calculated. Both 

devices requested automatic and manual queries in the functions 

“data_handler.query_manual()” and “data_handler.query_auto()” respectively. The 

length of the period and type of measurement being requested at was stored within those 

function as well. Then the program timed how long each operation took, checked to 

determine whether the results calculated automatically and manually matched. If the 

values were found to be identical, the results were posted to the command prompt and 

manually added to the table. 
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def data_test(): 

    time_start = time.time() 

    manual = data_handler.query_manual() 

    time_stop = time.time() 

    time_result = time_stop - time_start 

    print("Manual timing took: " + str(time_result)) 

    time_start = time.time() 

    auto = data_handler.query_auto() 

    time_stop = time.time() 

    time_result = time_stop - time_start 

    print("Auto timing took: " + str(time_result)) 

    for i in range(len(manual)): 

        print("Does " + str(manual[i]) + " equal " + str(auto[i]) + "? " + 

str(manual[i] == auto[i]))  

Figure 8. The code snippet used to conduct a test for manual and automatic retrieval of 
database entries. 

Upon repeating the operation for all data types the following data was found and 
collected below. Table 4 contains the information on the Raspberry Pi’s performance 
across all data types: Counting the number of entries within the time period, finding the 
mean temperature, and determining what the median value was. Table 5. uses identical 
methods to those found in Table 4, but instead calculated on the Odroid device.  

Table 4. Raspberry Pi hourly calculation speeds with and without database libraries. 

Raspberry Pi 

Measurement Count Mean Median 

Temperature (Manual) 787ms 754ms 817ms 

Temperature (Database) 136ms 164ms 164ms 

Pressure (Manual) 787ms 813ms 834ms 

Pressure (Database) 148ms 170ms 164ms 

Humidity (Manual) 797ms 769ms 786ms 

Humidity (Database) 140ms 141ms 198ms 
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Table 5. Odroid C4 hourly calculation speeds with and without database libraries. 

Odroid C4 

Measurement Count Mean Median 

Temperature (Manual) 881ms 868ms 867ms 

Temperature (Database) 194ms 192ms 236ms 

Pressure (Manual) 898ms 881ms 909ms 

Pressure (Database) 194ms 196ms 207ms 

Humidity (Manual) 909ms 877ms 886ms 

Humidity (Database) 193ms 193ms 249ms 

 

Looking at the results found in Table 4 and Table 5, the result shown is the same result 

as the initial single 24-hour sample conducted in Table 3. The Raspberry Pi device 

performed better across every category when calculating results using the shorter time 

period. The range of how much faster the Raspberry Pi performed depends on the type 

of measurement being done, and was found to generally be between 20ms to 100ms 

faster at calculations than the Odroid device. 

4.4 Weekly Calculation Testing 

As shown in Figure 9, the time period is set as a number of days. In this case the number 

of days is set to 7 but for the 24-hour period the number of days is set to 1. It also looks 

specifically for temperature in this example, and the code is changed for each 

measurement being analyzed. The processes uses same methodology as presented in 

“Section 4.3: Daily Calculation Testing”, the only difference is that it instead queries a 

larger dataset with more entries spanning a week instead of a single day. 
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def query_manual(): 

    today = datetime.datetime.now() 

    today = today - datetime.timedelta(days=7) 

    listed_hours = [] 

    n = 0 

    while (n < 24): 

        start = today.replace(hour=n, minute=0, second=0) 

        if n == 23: 

            stop = stop + datetime.timedelta(days=1) 

            stop = stop.replace(hour=0, minute=0, second=0) 

        else: 

            stop = today.replace(hour=n+1, minute=0, second=0) 

        start = start.strftime("%Y-%m-%dT%H:%M:%SZ") 

        stop = stop.strftime("%Y-%m-%dT%H:%M:%SZ") 

        sql_query = f'SELECT {field} FROM \"{table}\"  WHERE time >= \'{start}\' 

AND time <= \'{stop}\'' 

        test = db.query(f'{sql_query}', database=db_name) 

        values = test.get_points() 

        count = 0 

        total = 0 

        for i in values: 

            count += 1 

            total += i['temperature'] 

        mean_temp = total/count 

        listed_hours.append(mean_temp) 

        start = datetime.datetime.strptime(start, "%Y-%m-%dT%H:%M:%SZ") 

        stop = datetime.datetime.strptime(stop, "%Y-%m-%dT%H:%M:%SZ") 

        n += 1 

    return listed_hours  

Figure 9. Code snippet showing how the manual value for a 7-day time period are 
retrieved from the database and calculated manually. 

The reasoning behind conducting the seconda test was the evidence which showed the 

Raspberry Pi being less stable during longer-term time periods. This meant that while it 

might perform well on small datasets gathered over a shorted period of time,  it might 

become less effective as the dataset size or time-period increases.  

Similarly to how the daily testing was conducted, the results from a 7-day period were 

collected into tables identical to those seen above. Due to having approximately seven 

times the expected entries as the 24-hour dataset the expectation was that the 

Raspberry Pi would should be around 500ms faster than the Odroid when it came to 



24 

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Jonathan Ecker 

calculations if the trend from the smaller dataset continues. Table 6 shows the results 

found when doing a simple request for all entries generated during a 7-day period. 

Table 6. A comparison of an average 7-day sample between devices. 

Device # of entries (daily) # of entries (total) speed manual db speed 

Raspberry Pi 22,115 154,809 4168ms 105ms 

Odroid-C4 23,789 166,525 5,360ms 119ms 

 

As seen above (Table 6) the number of entries produced is reasonably close, although 

a lower number of entries is found for the Raspberry Pi device. Although both devices 

had a similar number of entries, the Rasperry Pi had a much faster computation speed 

when manually calculating the results of larger datasets even when taking into account 

the difference in how many entries were found. This indicates that the trend of the 

Raspberry Pi being the faster deviceshould continue even when using larger sets of data. 

However using the values generated from manual and automatic requests across all 

data types Table 7 and Table 8 show a different pattern than the expected results found 

in Table 6. 

Table 7. Raspberry Pi weekly calculation speeds with and without database libraries. 

Raspberry Pi 

Measurement Count Mean Median 

Temperature (Manual) 4,218ms 4,147ms 4,165ms 

Temperature (Database) 96ms 114ms 684ms 

Pressure (Manual) 4,366ms 4,291ms 4,329ms 

Pressure (Database) 97ms 129ms 679ms 

Humidity (Manual) 4,231ms 4,114ms 4,238ms 

Humidity (Database) 106ms 121ms 693ms 
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Table 8.  Odroid C4 weekly calculation speeds with and without database libraries. 

Odroid C4 

Measurement Count Mean Median 

Temperature (Manual) 5,279ms 5,262ms 5,262ms 

Temperature (Database) 114ms 111ms 532ms 

Pressure (Manual) 5,463ms 5,429ms 5,455ms 

Pressure (Database) 117ms 114ms 504ms 

Humidity (Manual) 5,258ms 5,286ms 5,298ms 

Humidity (Database) 119ms 118ms 436ms 

 

Unlike the initial sample in Table 6 the evidence suggests that while the Raspberry Pi 

calculations done manually are still much faster than those of the Odroid, with manual 

calculations sometimes being finished over a full second faster. The Odroid device 

actually performs better on larger datasets when making use of the built-in Influx DB SQL 

commands. This suggest that there is either some hardware difference or perhaps a 

difference in how the Rasbian distribution interacts with InfluxDB than Armbian does for  

the Odroid device. 
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5 CONCLUSION 

The goal of the project was to use a simple IoT deployment to determine how alternative 

microcontrollers would compared to the Raspberry Pi. This experiment was conducted 

using a Raspberry Pi and Odroid device connected to a Ruuvi Bluetooth beacon which 

collected weather data and stored it in an InfluxDB database. This data was then 

processed using manually created functions and with the baseline SQL commands 

available to InfluxDB, to calculate the performance of each device. The two main trials 

performed were measuring a smaller dataset which observed a 24-hour time period, and 

a larger dataset which observed a 7-day time period. Due to the better hardware found 

in the Raspberry Pi the expectation was that the Raspberry Pi would perform marginally 

better across all testing methods when compared to the Odroid device.  

The experiments began with the Raspberry Pi showing that is was the superior device in 

initial limited testing, such as 1 hour trials, for both creating database entries and 

calculating values from those entries. Unlike what was expected, when observed over 

longer time-periods the Raspberry Pi began to display issues with keeping the programs 

running, timing out, and failing to reach the beacon to create entries. There was no 

physical change between the conditions that the Raspberry Pi and the Odroid device 

were operating in, and the devices also used the same code and set-up so there was 

nothing in the environment that contributed to it achieving poorer results over longer 

stretches of time. Indeed, without a second Raspberry Pi device to test, it is impossible 

to know whether it was this specific microcontroller with issues, or the platform as a 

whole. 

The Raspberry Pi still performed much better at raw calculations even taking into account 

the observed instability and as a result would still be the recommended microcontroller 

for conducting some type of edge computing or when requiring heavier data processing. 

There was one area where the Odroid device outperformed the Raspberry Pi, which was 

doing computations with built-in SQL commands. The Odroid device also was not 

affected by instability and was much more stable during the periods it was set to monitor 

and record incoming data. This gives the Odroid device an advantage in IoT deployments 

which rely heavily on reliability and consistency. The end result is that while both devices 

are relatively similar for a vast majority of use cases, it is still worth noting that each 
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device may have some advantages or disadvantages depending on what kind of IoT 

deployment is being created. 

When reviewing the methodology for testing, all of the tests conducted were consistent 

and there was no issue with the quality of the data being produced or the reliability of the 

calculations being done. For future consideration an expansion of the IoT deployment to 

include the full range of measurements provided by the RuuviTag sensor, would allow 

for more diverse calculations to be done. The measurements could then be compared to 

real-time measurements conducted by local meteorological stations to determine the 

accuracy of the RuuviTag sensor. This type of more complex and detailed computation 

would be beneficial for comparing microcontroller devices because it allows for different 

areas of comparison, and larger computations which could indicate more areas in which 

devices differ. 

Additionally, there is a concern with limitation of using only two microcontroller devices 

during experimentation. Since the scope of the project was limited to just the Raspberry 

Pi and Odroid, there may be other microcontroller devices that perform better in certain 

cases or outperform these devices entirely. This concern also includes the limitation of 

having only a single unit for each microcontroller. It is unknown whether the instability 

and InfluxDB limitations noted for the Raspberry Pi are a common problem with all 

Raspberry Pi devices, or whether it was specific to only the device used in these tests. 
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