

Phuoc Trinh

CONTROLLER DEVICE FOR EXTENDED
REALITY

School of Technology
2021

 2

VAASAN AMMATTIKORKEAKOULU
UNIVERSITY OF APPLIED SCIENCES
Information Technology

ABSTRACT

Author: Trinh Huu Phuoc
Title: Controller Device for Extended Reality
Year: 2021
Language: English
Pages: 38
Name of supervisor: Chao Gao

Extended reality is expected to be widely adopted in the near future, including
mixed reality, virtual reality, and augmented reality. New technologies regarding
both hardware and software are being developed to meet the expectation, with
the objective is to create a truly wearable device that can be comfortably used
daily, even in outdoor environment. The development comes with many
challenges, one of which is an input solution for seamless interactions.

In this project, with the help of Bao Vu regarding the hardware implementation,
the idea of a thumb mounted controller is transformed into a working prototype.
The prototype comprises an Adafruit Feather Sense development board and
Ohmite FSR05 force sensitive resistors, the software is developed using Arduino
for processing input from users and Unity for showcasing the usability of the
controller in an augmented reality environment. The prototype controller
communicates with an augmented reality device using Bluetooth Low Energy.

Keywords Augmented reality, Bluetooth Low Energy,

Extended Reality, Unity, Virtual Reality

 3

CONTENTS

ABSTRACT

1 INTRODUCTION .. 7

1.1 Background ... 7

1.2 Objectives ... 8

1.3 System Structure Overview .. 8

2 THEORY AND BACKGROUND INFORMATION ... 10

2.1 Augmented Reality ... 10

2.2 Bluetooth Low Energy ... 11

2.2.1 GAP ... 12

2.2.2 GATT .. 13

2.3 Adafruit Feather Sense nRF52840 .. 15

2.4 Force Sensors .. 16

2.5 Arduino ... 16

2.5.1 Development environment ... 16

2.5.2 Adafruit Bluefruit nRF52 library .. 16

2.6 Unity ... 17

2.6.1 Script ... 18

2.6.2 AR Foundation ... 19

2.6.3 Bluetooth LE for iOS, tvOS and Android 19

3 IMPLEMENTATION ... 21

3.1 XR Controller device ... 21

3.1.1 Development Kit Setup ... 21

3.1.2 Sensors configurations .. 21

3.1.3 Sensors data processing .. 22

3.1.4 Gestures recognition ... 24

3.1.5 BLE Configurations .. 30

3.1.6 BLE Advertising .. 30

3.1.7 BLE Communication .. 31

3.2 Augmented reality device ... 31

 4

3.2.1 Input Demonstration ... 31

3.2.2 BLE Communications ... 32

3.2.3 Build for iOS .. 33

3.3 Evaluation ... 33

4 CONCLUSION AND FUTURE WORKS ... 36

4.1 Conclusion .. 36

4.2 Future Works .. 36

REFERENCES .. 37

 5

LIST OF ABBREVIATIONS

ADC Analog to Digital Converter

ADV Advertisement

AR Augmented Reality

ATT Attribute

BLE Bluetooth Low Energy

Bluetooth SIG Bluetooth Special Interest Group

CCCD Client Characteristic Configuration Descriptor

DPS Degree per Second

FSR Force Sensitive Resistor

GAP Generic Access Profile

GATT Generic Attribute Profile

GPIO General-purpose Input/Output

HID Human Interface Device

IMU Inertial Measurement Unit

ISM Industrial, Scientific, and Medical Band

MEMS Micro-electromechanical Systems

MIC Message Integrity Check

MR Mixed Reality

PDU Protocol Data Unit

RX Receiver

TX Transmitter

UUID Universally Unique Identifier

VR Virtual Reality

XR Extended Reality

 6

LIST OF FIGURES

Figure 1. Physical VR controller and hand tracking in a VR environment 7

Figure 2. XR controller system diagram .. 9

Figure 3. System process diagram .. 10

Figure 4. An AR application with the XR Controller 11

Figure 5. GAP state diagram ... 12

Figure 6. BLE connection diagram .. 14

Figure 7. The Unity AR app’s structure in this project 18

Figure 8. Mock-up of the prototype ... 21

Figure 9. Force sensitive resistors set up .. 22

Figure 10. Reading force sensors output .. 22

Figure 11. Force levels .. 23

Figure 12. 3D axes of Feather Sense ... 23

Figure 13. Code snippet for rotation processing .. 24

Figure 14. Gesture recognition diagram ... 25

Figure 15. Implemented touch states ... 26

Figure 16. Thumb movement along the index finger 27

Figure 17. Swiping left/right process diagram .. 27

Figure 18. Level of force applied output for swiping down and up 28

Figure 19. Process diagram for swiping up and down 28

Figure 20. Quick press and long press from an FSR’s output 29

Figure 21. Process diagram for Quick Press and Long Press sensing 30

Figure 22. BLE Profile overview .. 30

Figure 23. Peripheral list in LightBlue ... 31

Figure 24. Gameplay during runtime .. 32

Figure 25. Process diagram for BLE handling .. 32

Figure 26. The XR controller mounted on a thumb 34

Figure 27. Working demo ... 34

 7

1 INTRODUCTION

1.1 Background

Extended Reality (XR) including Virtual reality (VR) and augmented reality (AR)

have been in research and development since the late 1970s, but for the consumer

market, the technology has only been available for about 10 years. Even so, there

are still limitations that prevent us from having a truly wearable AR/VR device for

everyday use, one of which is an appropriate input solution. Two main approaches

for inputting in AR/VR are physical controllers and hand tracking with the physical

controller being the more popular approach. A typical physical controller is usually

equipped with a set of buttons and a joystick which can be used for manipulating

AR/VR elements; however, it is usually bulky and is likely to cause arm and hand

fatigue for long time usage. Hand tracking, on the other hand, requires no external

hardware making it a more natural experience but it can only be operated within

the tracking range of a tracking device such as a camera or short-range radar, and

the accuracy may be a problem in low-light environments. Figure 1 shows the

representations of the physical controllers and hand tracking are used for

manipulating a menu in a VR environment.

Figure 1. Physical VR controller and hand tracking in a VR environment

 8

As can be seen in figure 1, to manipulate a VR menu using a controller, the user

can either use a pointer projected from the controller or the buttons on the

controller for navigating and selecting items within the menu. In the case of hand

tracking, it requires the user to maintain their hands on the tracking field to be

able to move the cursor projected from their hands and perform finger gestures

for navigating and selecting. In some usage scenarios, hand tracking can be

compromised when a finger is in shadow and cannot be seen by the tracking

device, further leading to input errors thus finger gestures are usually limited to

index finger pinching onto thumb and it must be performed clearly in front of the

tracking device.

1.2 Objectives

The objective of this project is to propose an input device to be worn on a user’s

thumb which uses thumb movements as input data for controlling in XR, such

device can operate independently without being tracked and is less likely to cause

arm and hand fatigues, thus can be implemented in the future augmented reality

and virtual reality systems. For such an approach, the input device must be capable

of detecting thumb gestures and movements and processing them for user-

desired input.

1.3 System Structure Overview

Figure 2 illustrates the system comprising an XR controller and an AR device, with

the XR controller is based on an Adafruit Feather nRf52840 Sense board which

takes the user’s thumb gestures as input parameters for controlling an AR

application on the AR device, in this project is a tablet. For input processing, a

program is developed using Arduino to measure movement and contact data from

a built-in inertial measurement unit (IMU) along with two force sensitive resistors

connected to the Adafruit board’s analog inputs, the measured data is further

processed and converted to input states and is transmitted to the AR device over

BLE. On the AR device, an AR application is developed using Unity and ARKit, and

it takes received input states to manipulate AR elements in the application.

 9

Figure 2. XR controller system diagram

 10

2 THEORY AND BACKGROUND INFORMATION

Figure 3 shows the process diagram of the augmented reality system in this

project, the process begins with device initialization including Bluetooth Low

Energy (BLE) and sensors setup. Once the device initialization is finished, the XR

controller starts advertising its service to other BLE devices around it. On the AR

device side, the process begins with application initialization including AR scene

generation and BLE setup, then it starts to scan for XR controller around, if the XR

controller is found, a connection between the AR device and XR controller is

established. After the connection has been made, the XR controller starts to

measure and process data from the force resistors sensors and gyroscope for the

user’s input gestures. The input data is then notified to the AR device every 20ms,

which is used for manipulating a menu in AR environment on the AR device.

Figure 3. System process diagram

2.1 Augmented Reality

Augmented reality is referred to an experience in which the virtual information

and objects are visually overlayed onto the image of the real world therefore users

 11

are not isolated from reality and can still be able to interact with it. In this project,

AR is chosen as the main approach for demonstrating the usability of the XR

controller as it can be implemented without the need for a dedicated XR headset,

instead, a smartphone or tablet can also play the role of an AR device.

 Figure 4 shows an AR application is controlled using the controller developed in

this project, in this application the AR device is a tablet that uses its camera for

tracking the surrounding environment and overlaying AR elements onto it.

Figure 4. An AR application with the XR Controller

2.2 Bluetooth Low Energy

Bluetooth Low Energy (BLE) is a short-range radio communication stack developed

by Bluetooth Special Interest Group (Bluetooth SIG) for operating at a very low

power rate. BLE uses 40 channels in the 2.4Ghz unlicensed ISM frequency band, in

which 37 channels are for data transmitting and 3 channels for advertising /1/.

Considering the specifications of a thumb-mounted input device that is most likely

 12

to be powered by a relatively small battery yet requires low latency wireless

communication, BLE was chosen as the main wireless communication protocol in

this project. Another reason that makes BLE appealing in this project is this

communication stack has been widely adopted making it possible to implement in

a wide range of mobile devices.

2.2.1 GAP

Generic Access Profile (GAP) is a layer of the BLE protocol stack responsible

for BLE advertising and connections. GAP handles the access modes and

procedures of a BLE device including device discovery, link establishment, link

termination, initiation of security features, and device configuration. /2/

Device roles

GAP defines various roles for BLE devices, in which two key concepts are

central devices and peripheral devices.

Figure 5. GAP state diagram

Figure 5 /2/ shows a state diagram defined by the GAP layer wherein:

- Standby: The device is in the idle state, during this state, there is no data

transmission or reception. /2/

- Advertiser: the BLE device will transmit an advertising packet including device

address and additional data such as device name and available services for

letting other initiating devices within transmission range know that it is a

connectible device. /2/

 13

- Scanner: The device listens for advertising packets from advertisers, when the

advertising packet is received the scanning device sends a scan request to the

advertiser. The advertiser responds with a scan response. This process is called

device discovery. The scanning device is aware of the advertising device and

can initiate a connection with it. /2/

- Initiator: A peer device’s address to connect is specified so that when the

advertising packet is received with the matching address the initiator will send

a connection request for establishing a connection with the advertising device.

/2/

- Peripheral/Central: When a connection is formed, the device functions as a

peripheral if the advertiser and a central if the initiator. /2/

Regarding this project, both the XR controller and the AR device begin with

standby role before the controller becomes an advertiser and the AR device

becomes a scanner. On the AR device side, being the scanner, it scans for nearby

XR controller, once an available XR controller matched the name and UUID defined

in the AR device program is found, the AR device send a connection request for

establishing connection with the controller then becomes a central. Being the

advertiser, the XR controller transmit its advertiser packets to nearby BLE device,

once it receives a connection request from the AR device it becomes a peripheral.

2.2.2 GATT

While GAP handles the connection establishments between two BLE devices,

Generic Attribute Profile (GATT) is responsible for data transceiving between

peripheral and central devices using Services and Characteristics concepts. It

makes use of a generic data protocol called the Attribute Protocol (ATT), which

is used to store Services, Characteristics, and related data in a simple lookup

table using 16-bit IDs for each entry in the table. /3/

GATT Transactions

Server/client relationship is an important concept in GATT. In this relationship, a

peripheral device plays the role of GATT server which holds the ATT lookup data,

 14

service, and characteristic definitions and GATT Client is a central device that

sends a request to the GATT server. All transactions are started by the GATT Client,

which receives a response from the GATT Server. Figure 6 /3/ shows a connection

diagram between a peripheral and a central device. When establishing a

connection, the peripheral will suggest a 'Connection Interval' to the central

device, following the suggestion, the central device will try to reconnect every

connection interval to see if any new data is available, etc. However, the

central device may not be able to reconnect at every connection interval when

it's busy talking to another peripheral or lacking system resources. /3/

Figure 6. BLE connection diagram

Application throughput

To calculate the application throughput, first the protocol data unit (PDU) need

to be clarified, a BLE PDU data packet comprises a header with the size of 2

bytes, a payload in our case is 1 bytes of data for the input state and a message

integrity check (MIC) with the size of 4 bytes.

The theoretical application data throughput therefore can be calculated as:

𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡	 = 	𝐷𝑎𝑡𝑎	𝑝𝑎𝑐𝑘𝑒𝑡	𝑝𝑒𝑟	𝑠𝑒𝑐𝑜𝑛𝑑		 ∗ 	𝐷𝑎𝑡𝑎	𝑝𝑒𝑟	𝑝𝑎𝑐𝑘𝑒𝑡	/4/

Regarding the BLE communication between the XR controller and the AR device,

the minimum connection interval is set to 20ms to comply with “Bluetooth

Accessory Design Guidelines for Apple Products” /5/. In an ideal scenario, one

packet with data size of 1 byte is transmitted per connection interval, therefore

throughput equals 1000 * 7/20 = 350 bytes per second.

 15

Services and Characteristics

GATT transactions in BLE are based on high-level, nested objects

called Profiles, Services, and Characteristics, in which:

- Profile is a pre-defined collection of Services that has been compiled by either

the Bluetooth SIG or by the peripheral designers. For example, Human

Interface Device (HID) over GATT profile is the collection of services including

HID service, Battery Service, Device Information Service, and Scan parameter

service. /3/

- Service is a container to hold data as logic entities called characteristics. The

service can have one or more characteristics, and each service distinguishes

itself from other services using a unique numeric ID called universally unique

identifier (UUID), which can be either 16-bit for officially adopted BLE Services

or 128-bit for custom services to avoid collisions. /3/

- Characteristic is the lowest level concept in GATT transactions, which

encapsulates a single data entity. Characteristics contain various parts

including a type, a value, some properties, and some permissions. /3/

2.3 Adafruit Feather Sense nRF52840

In this thesis project, an Adafruit Feather nRF52840 Sense board is used, hereby is

referred to as Feather Sense, is a BLE development board powered by nRf52840,

a multi-protocol chipset from Nordic semiconductor which can be used as both a

microcontroller and a Bluetooth Low Energy (BLE) interface. Feather Sense’s

firmware is based on the standard Nordic UART RX/TX connection profile for

'transparently' transmitting back and forth from BLE devices. This BLE

development board also comes with a built-in inertial measurement unit (IMU),

STMicroelectronics LSM6DS33, a MEMS-based gyroscope + accelerometer which

is used in this project as the main approach for sensing user thumb’s movement.

To control LSM6DS33, the Adafruit_LSM6DS33.h library is used, this library

includes custom classes for handling the built-in accelerometer and gyroscope

on the board. For the general-purpose input/output (GPIO) handling, the

 16

Feather Sense’s firmware includes an adjustable successive-approximation

analog-to-digital (ADC) which can be configured to convert data with up to 14-

bit resolution (0-1023), and the reference voltage can be adjusted up to 3.6V

internally. /6/

2.4 Force Sensors

Force sensitive resistor (FSR) is a type of variable resistor that decreases its

electrical resistance in response to physical force or pressure is apply to the force

sensing area on it. In this thesis project, two force resistors Ohmite FSR05 were

used, according to the manufacturer /7/, the Ohmite FSR05 is capable of sensing

a pressure as low as 30g which makes it suitable for sensing the contact when the

user applies thumb to a surface. To read the output from the FSRs, a 10-bit analog

to digital converter (ADC) is used to convert the output voltage from the analog

inputs, in which the FSRs are connected, to the level of force applied.

2.5 Arduino

2.5.1 Development environment

By default, the Feather Sense board can be programmed using Arduino IDE or

CircuitPython, regarding this thesis project, Arduino is chosen as the main

development environment to upload programs and communicate with the

Feather Sense through its native USB port. An Arduino wrapper library

developed by Adafruit comes with full control over how the board behaves,

including the ability to define and manipulate customized GATT services and

characteristics or change the way that the device advertises itself. /6/

2.5.2 Adafruit Bluefruit nRF52 library

Communication over BLE with Nordic Semiconductor nRF52 Series system on chip

(SoC) requires the implementation of SoftDevice, a wireless protocol stack built

for handling BLE communication. Adafruit nRF52 is a library built based on

SoftDevice, which includes custom classes for handling BLE GAP and GATT.

Regarding this project, the following classes are used:

 17

- Bluefruit is the main entry point to the nRF52 API which exposes

essential functions and classes for BLE communications such as

peripheral and advertising configurations, connection status, GATT

services, and characteristics on the BLE device. /6/

- BLEService is a wrapper class for BLE GATT service records and can be

used to define custom service definitions or acts as the base class for

any service helper class. /6/

- BLECharacteristic is a wrapper class for a BLE GATT characteristic

record, which can be used to define custom characteristics, or acts as

the base class for any characteristic helper classes. /6/

2.6 Unity

Unity is a platform for creating and operating interactive, real-time 3D content

with built-in features such as 3D rendering, plane, and collision detection, build

tools, etc. With multi-platform support, games and applications developed by

Unity can be built to run on different devices. /8/

Figure 7 shows a hierarchy of the Unity application developed in this project

consisting of a scene, in which further comprises four gameObjects, a concept in

Unity for every object in a game or application. The GameObjects including:

- AR Session is a gameObject from AR Foundation framework which controls

the lifecycle of an AR experience by enabling or disabling AR on the AR

device. /9/

- AR Session origin is also a gameObject from AR Foundation framework to

transform AR objects into their final pose (position & orientation) and scale

in the Unity Scene. This gameObject helps with interaction and

manipulation with transformed objects. During the AR Session, the AR

device provides its data in session space, an unscaled space relative to the

beginning of the AR session. AR Session Origin includes an AR Camera

 18

that uses the device's camera and image analysis to track specific points in

the world and uses these points to build a map of its environment. /9/

- Input Handler is a gameObject includes a script from the plug-in Bluetooth

LE for iOS, tvOS and Android and an input processor for handling received

inputs.

- Input Demo is a gameObject which includes visual AR components

arranged as a menu, this gameObject is controlled by the Input Handler

gameObject.

Figure 7. The Unity AR app’s structure in this project

2.6.1 Script

An important element in Unity is the script, which is attached to a GameObject

and consists of one or more event functions. Event function is a concept wherein

Unity passes control, in response to an event in gameplay, to a script intermittently

by calling a certain function that is declared inside the script, after the function has

finished executing, the control is passed back to Unity. In this project, on the AR

device side, a customized script for BLE communication is attached to a

GameObject and is used for establishing a connection with the XR controller, this

script is also responsible for handling received input states from the controller.

/10/

 19

In this thesis project, a customized script is used for handling input from the XR

controller over BLE is attached to the Input Handler GameObject. This script is

responsible for handling BLE communication including scanning for BLE devices,

sending notification requests, and processing received input data from the XR

controller for manipulating the Input Demo GameObject.

2.6.2 AR Foundation

AR Foundation is a cross-platform framework for augmented reality development,

consisting of features from common software development kit ARkit, ARCore,

Hololens and Magic Leap for multi-platform augmented reality development

purposes. For iOS AR applications development in Unity requires ARKit XR, a plug-

in provided by Apple to enable ARKit support via Unity's multi-platform XR API.

The ARKit XR Plugin implements the native iOS endpoints required for building

Handheld AR apps using Unity's multi-platform XR API. However, this package

doesn't expose any public scripting interface of its own, instead, scripts, prefabs,

and assets provided by AR Foundation are used as the basis for AR applications.

Regarding this thesis project, customized GameObjects from AR Foundation are

used for creating an AR session with environment tracking and overlayed AR

elements. /9/

2.6.3 Bluetooth LE for iOS, tvOS and Android

By default, Unity does not support BLE communication for iOS and Android builds,

Bluetooth LE for iOS, tvOS and Android, hereby is referred to as BLE plug-in, is a

plugin developed by Shatalmic, LLC to overcome the issue. The plug-in consists of

several parts including Objective-C codes, which communicate with BLE devices

from iOS using CoreBluetooth framework, C# scripts which provide Unity-Plugin

interface and helper methods to make calls into the Objective-C codes thus

communicate with BLE devices, and an editor preprocessor for dealing with BLE

usage permission on iOS devices. Regarding this project scope, the

BluetoothHardwareInterface and BluetoothDeviceScript classes from the BLE plug-

in are used. The BluetoothHardwareInterface is a class that contains static

 20

methods to make calls into the Objective-C code. The BluetoothDeviceScript is

used to receive messages passed back to Unity from the Objective-C code. /11/

 21

3 IMPLEMENTATION

In this chapter, we talk about the XR controller and how on-board gyroscope and

FSR sensors are used, then we will describe how BLE communication between

Feather Sense board and the Unity AR application, at the end of this chapter we

focus on AR application development in Unity.

3.1 XR Controller device

3.1.1 Development Kit Setup

Figure 8 shows a case has been made for housing the Feather Sense and 2 FSRs,

which can be mounted on a user’s thumb. The mock-up also shows the placement

of two touch zones in which each touch zone comprises one FSR and is connected

to the GPIO pin A0 on the Feather Sense for the first touch zone, and A1 for the

second touch zone.

Figure 8. Mock-up of the prototype

3.1.2 Sensors configurations

Contact detection

Regarding this thesis project, two Ohmite FSR05 FSRs are used to measure the

applied force on 2 force sensing zones with a voltage divider circuit, comprising

two FSRs and 2 pull-up resistors, is implemented as the figure 9 /12/.

 22

Figure 9. Force sensitive resistors set up

Gyroscope

To scope with fast thumb swiping, the measurement range of angular rate of the

LSM6DS33 is set up to 500 degrees per second with the data update frequency of

208Hz.

3.1.3 Sensors data processing

Force levels

As two FSRs are connected to the GPIO pin A0 and A1, their outputs can be read

by the ADC input of the microcontroller from the Feather Sense using the code in

figure 10. When a force is applied to either the first or second force sensing zone,

the function analogRead() returns a number between 0 and 1023 that is

proportional to the amount of the force applied to that force sensing zone.

Figure 10. Reading force sensors output

The force applied output is further divided into three levels of touch: non-contact

with value range 0-50, normal touch in 51-600 range, and pressing for the value

greater than 600 as shown in figure 11.

 23

Figure 11. Force levels

Angular velocity

Figure 12 /12/ shows the gyroscope axes of the Feather Sense, regarding the

thumb movements, the rotation along the Z-axis (yawn) is used to calculate the

angle of thumb rotation.

Figure 12. 3D axes of Feather Sense

The gyroscope on LSM6DS33 outputs the rate of change of the angular position

over time in radian/s, for calculating convenience the output is converted to

degree per millisecond. For rotation of the thumb, angular velocity is integrated

as:

𝜃(𝑡) = 	7 𝜔(𝑡)𝑑𝑡
!

"

 24

𝜃(𝑡):	𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛	𝑖𝑛	𝑑𝑒𝑔𝑟𝑒𝑒

𝜔(𝑡): angular velocity in degree per millisecond

𝑑𝑡:	𝑡𝑖𝑚𝑒	𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒	𝑖𝑛	𝑚𝑖𝑙𝑙𝑖𝑠𝑒𝑐𝑜𝑛𝑑

Figure 13 shows the code implemented for horizontal swiping sensing based on z

axis angular velocity reading. In this code snippet:

A swiping interval of 1000ms is implemented using the countdown timer timer1,

during one interval, zAxisRotation accumulates the rotation resulted from the

integration of angular velocity on z axis event.gyro.z (in radians per second, further

is converted to degrees per second by multiplying with SENSORS_RADS_TO_DPS)

over one gyroscope data event. The duration of the gyroscope data event is

determined by the subtraction of TimerRef1, which is the timestamp from the

previous gyroscope data event and millis(), a function that returns the number of

milliseconds passed since Arduino board began running. Once the accumulated

rotation reached SWIPING_ANGLE constant or its negative value or when the

timer1 passed 0, the function moves to the next swiping interval.

Figure 13. Code snippet for rotation processing

3.1.4 Gestures recognition

Touch states

 25

Figure 14 shows the process of gesture sensing which is further listed as 17 states

of input in Figure 15, in which each state holds a value from 0 to 16. Each state can

be described as a single keystroke sent to a central device over BLE. The Idling

state is the starting point of the input processing process in which there is no

contact from either of the force sensitive resistors. Once a contact is detected, the

program processes the ADC data for identifying on which force sensitive resistor

the contact has occurred and the force level of the event. In the case of Normal

Touch, the program uses the angular velocity data outputted from the gyroscope

for calculating traveled angle for detecting swiping horizontal direction. In the case

of Pressing, the program starts with a timer of 250ms, if the user presses and holds

for a duration longer than 250ms the state will be switched to Press Down, in case

the user stops pressing before the timer reach 0 the state will be Quick Press.

Touch release occurs when the user releases the device off the touching surface,

once the program reaches the state of Touch Release, a function is called for up,

down swiping detection based on previous and next touch events, in case no touch

event occurs after Touch Release, the state will be switched back to Idling.

Figure 14. Gesture recognition diagram

 26

Figure 15. Implemented touch states

Swiping left/right

Swiping can be defined as a thumb moving along a finger from the tip to at least

the second phalange of the same finger or in the opposite direction, this

movement can be measured as angular rotation along the saddle joint of the

thumb. For demonstration purposes, the rotation angle measured as shown in

figure 16 from my hand with the value of 16° is used, this value may vary on

different users’ hands. Figure 17 illustrates the detailed process of thumb rotation

sensing, by maintaining contact to either of the FSRs with normal touch level of

force will start the swiping interval with the duration of 1000ms, during an interval

once the calculated rotation reaches 16° or -16° the state will be set to the left or

right accordingly. After the state is switched to either left or right, a packet is sent

to the central to inform about the swiping interaction, then the state is set back

to Touching for further gestures sensing.

 27

Figure 16. Thumb movement along the index finger

Figure 17. Swiping left/right process diagram

Swiping up/down

Figure 18 illustrates the output of two FSRs as a user swiping a finger on the

sensing zones in down and up directions, as can be seen in figure 18 the force

applied moves from one FSR to another depending on which direction the user

swiped.

 28

Figure 18. Level of force applied output for swiping down and up

Based on the output of the FSRs, figure 19 illustrates the diagram of swiping

up/down sensing implementation, which is different from swiping left/right as it

occurs on more than one FSR, once the force applied drops to below normal touch

level on one FSR, the state is set to Touch Release which a countdown timer of

100ms is activated, during this duration if the force level on the other FSR raises

to normal touch level the state is set to up/down depends on the previous state

before touch release, in the case of FIRST_POINT_TOUCHING, the state will be set

to DOWN and UP if the previous state before TOUCH_RELEASE is

SECOND_POINT_TOUCHING.

Figure 19. Process diagram for swiping up and down

Pressing

Figure 20 shows the output from an FSR when a user performs pressing gestures.

Pressing can be defined as the user applying a force greater than a normal touch

 29

and is defined in the program, based on the duration of a press event, it can further

be divided into 2 types of press: Quick Press and Long Press. The difference

between a Quick Press and a Long Press as can be seen in figure 20 is mostly in

their durations, with the event of quick press occurring in a shorter duration.

Figure 20. Quick press and long press from an FSR’s output

Figure 21 shows a process diagram of Long Press and Quick Press sensing, the

process begins when the force applied on either FSR is greater than pressing the

level defined earlier, the state is set to FIRST_POINT_START_PRESS or

SECOND_POINT_START_PRESS depending on which FSR the event has occurred,

at either of these state a countdown timer of 250ms is activated, during this

duration if the force applied is maintained at pressing level passes the zero point

of the timer the state is switched to Long Press, otherwise the state is switched to

Quick Press.

 30

Figure 21. Process diagram for Quick Press and Long Press sensing

3.1.5 BLE Configurations

Bluefruit.h library is imported to the Arduino sketch for BLE configurations, it

includes Bluefruit class with peripheral profile and methods for setting up

connection and advertisement. For Apple devices compatibility, the connection

interval is set to the minimum of 20ms and a maximum of 30ms to scope with

Apple BLE requirement /5/, in which a peripheral must have a minimum

connection interval of 20ms. Figure 22 shows the BLE profile structure on the XR

controller, it includes an input service that further comprises a characteristic

storing the input state data. Once the XR controller received a notification request

from a central device, the XR controller will start notifying its value continuously,

in this case, the characteristic holds the input state as one byte of data.

Figure 22. BLE Profile overview

3.1.6 BLE Advertising

For the XR Controller to be discoverable to the AR device, we need to configure

BLE advertisement on the Feather Sense. During the advertisement process,

advertising packets are sent as a fixed interval, also known as advertising interval,

in our case the controller is set to advertise at 20ms minimum interval as

recommended in Apple’s general advertising guidelines /5/. The advertising

packet also includes a service UUID for further scanning on the AR device.

 31

3.1.7 BLE Communication

LightBlue is used for testing the BLE communication from the XR controller,

LightBlue is an application for BLE development with a BLE profile that can be set

to either peripheral or central, for connection testing with the XR controller, the

central profile is enabled. Figure 23 shows LightBlue is used for scanning nearby

peripherals, in which the second result is the XR controller with the name

“XRController”.

Figure 23. Peripheral list in LightBlue

By choosing the XR controller from the list in figure 23, a connection (link) is

established between LightBlue and the XR controller. Once a link is established,

LightBlue can send a notify request for a characteristic to subscribe to value

change notifications. Once the notification for the characteristic is enabled, a

stream of input data will be sent to the central device, which is displayed on

LightBlue as HEX values.

3.2 Augmented reality device

In Unity, an AR application is developed to use with the XR controller, this

application is built using AR Foundation’s gameObjects for capturing environment,

adjusting, and tracking the position of AR components on captured image.

3.2.1 Input Demonstration

Figure 24 show the AR menu in Unity for input testing, the menu includes a top

bar that is controlled by swiping left/right on the first sensing zone and a grid of

cells below it to be controlled by swiping up/down/left/right and pressing on the

 32

second force sensing zone. This menu is controlled by the Input Demo gameObject

which comprise a script which takes the input state received from the XR controller

as a parameter for further handling swiping, pressing on the menu in AR.

Figure 24. Gameplay during runtime

3.2.2 BLE Communications

Figure 25 is a diagram for handling BLE communication on the AR device side,

which is executed one per frame during the AR session.

Figure 25. Process diagram for BLE handling

Figure 25/13/ illustrates the procedure for BLE communication in which the AR

device establish a connection to the XR controller. On the XR controller, it

advertises over BLE advertising channel 37, 38, 39 at 20ms interval with

advertising time of 30 seconds. To distinguish from other BLE advertiser, the

advertising packet of the XR controller includes an UUID for the input service, this

service UUID will be used later by the AR device when scanning for the XR

controller. On the AR device side, a script for BLE handling is attached on the Input

 33

Handler gameObject, this script defined the XR controller name and its service

UUID for further scanning. To scan for the XR controller, the AR device listen to

the BLE advertising channels 37, 38, 39 for peripheral with defined name and

service UUID, this is done by the ScanForPeripheralsWithServices() method from

the class BluetoothLEHardwareInterface which takes service list with services’

UUIDs and return name and physical address of the discovered peripherals. Once

the matched XR controller is found, the AR device sends a connection request to

the XR controller for establishing the link, the method ConnectToPeripheral() uses

the device address found earlier for establishing a connection (link) to the

matching peripheral. Once the connection is established, the AR device sends a

notification request to notify value change on the input characteristic UUID using

the method SubscribeToService(). The XR controller then starts to notify the states

change in response to user input at the connection interval of 20ms, subscribing

to this data the AR device makes visual changes on the Input Demo gameObject

based on the user input. If there’s no notification received on the AR device within

5 seconds, the method DisconnectPeripheral() is called to terminate the BLE

connection, after the BLE link has been terminated and the AR device will start the

scanning phase again.

3.2.3 Build for iOS

Unity converts the game/application to an XCode project which is written in

Objective-C. Once the XCode project is created, the AR application can be ported

to the iOS device or an iOS simulator using the build feature on XCode.

3.3 Evaluation

After the AR application was successfully installed on an iPad, a test for gesture

sensing and BLE communication was conducted. For the testing purpose, instead

of using a micro-USB port on the Feather sense for powering, the controller is

powered by an external lithium-polymer battery pack as can be seen in figure 26.

 34

Figure 26. The XR controller mounted on a thumb

The testing includes running the AR application on an iPad and swiping vertically

and horizontally on the force sensing zones, pressing with multiple quick presses

and long presses on the controller. Figure 27 shows the applications running in an

AR environment with the controller connected.

Figure 27. Working demo

 35

The connection between the controller and the iPad has been made successfully,

the controller was able to manipulate the Input Demo GameObject in the

application.

 36

4 CONCLUSION AND FUTURE WORKS

4.1 Conclusion

Regarding the thesis scope, an input solution for controlling in AR/VR using thumb

movements as an input parameter was proposed. To demonstrate the usability

and performance of the proposed solution, a prototype based on the BLE

development board Adafruit Feather nRF52840 Sense and two AR applications

were built. The prototype detects user inputs by processing thumb movements

data from an external array of force sensing resistors and a built-in gyroscope. The

user input is then sent from the prototype to an iPad with two AR applications

installed over BLE. From the testing, the user was able to navigate within the AR

applications in response to the thumb input gestures.

In conclusion, the thesis project has shown that a thumb mounted device can work

as an input device in AR/VR environments, with the relatively small form factor yet

responsive, it can be considered for future AR/VR systems.

4.2 Future Works

From my own testing, the gestures of pressing, swiping to left and to right are

more responsive than swiping up/down, this could be caused by the gap between

the two FSRs, to overcome this problem more FSRs with smaller sizes could be

used.

User comfort can be improved with a smaller form factor prototype, for example

with an external IMU circuit mounted on user’s thumb connected to the

development board on user’s wrist will help reduce the size of the device on the

user’s thumb significantly.

For better usability, the XR controller can be used with a hand tracking system for

tracking the position and orientation of the XR controller thus providing more

control in the AR/VR environment.

 37

REFERENCES

/1/ Bluetooth SIG. Bluetooth Technology Overview. Accessed 20
December 2021. https:www.bluetooth.com/learn-about-
bluetooth/tech-overview/

/2/ Texas Instruments. Generic Access Profile (GAP). Accessed 20

December 2021. https://software-
dl.ti.com/simplelink/esd/simplelink_cc2640r2_sdk/3.20.00.21/exports/
docs/blestack/ble_user_guide/html/ble-stack-3.x/gap.html

/3/ Kevin, T. 2014. Introduction to Bluetooth Low Energy: GATT. Accessed

21 December 2021. https://learn.adafruit.com/introduction-to-
bluetooth-low-energy/gatt

/4/ Mohammad, A. Bluetooth 5 speed: How to achieve maximum

throughput for your BLE application. Accessed 21 January 2022.
https://www.novelbits.io/bluetooth-5-speed-maximum-throughput/

/5/ Apple. Using the correct Bluetooth LE Advertising and Connection

Parameter for a stable connection. Accessed 3 January 2022.
https://developer.apple.com/library/archive/qa/qa1931/_index.html

/6/ Adafruit. Feather nRF52840 Sense.Adafruit Feather nRF52840 Sense.
Accessed 28 December 2021. https://learn.adafruit.com/adafruit-
feather-sense/

/7/ Ohmite. Ohmite FSR series. Accessed 28 December 2021.

https://www.ohmite.com/assets/docs/res_fsr.pdf

/8/ Unity. Homepage. Accessed 28 December 2021. https://unity.com

/9/ Unity. UnityEngine.XR.ARFoundation. Accessed 7 January 2022.
https://docs.unity3d.com/Packages/com.unity.xr.arfoundation@2.1/a
pi/UnityEngine.XR.ARFoundation.html

/10/ Unity. Unity Manual, Scripting. Accessed 3 January 2022.

https://docs.unity3d.com/Manual/ScriptingSection.html

/11/ Shatalmic, LLC. Unity Bluetooth LE Plugin for iOS. Plugin Overview, 5-5.

Accessed 4 January 2022.

/12/ Adafruit. Feather nRF52840 Sense. Accessed 28 December 2021.
https://www.adafruit.com/product/4516

/13/ Sarkar, Sopan & Liu, Jianqing & Jovanov, Emil. (2019). A Robust

Algorithm for Sniffing BLE Long-Lived Connections in Real-time.

 38

Accessed 23 Feburary 2022.
https://www.researchgate.net/publication/334783317_A_Robust_Alg
orithm_for_Sniffing_BLE_Long-Lived_Connections_in_Real-time

