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Abstract. A time-domain algorithm for damage detection is introduced. It is
based on hardware redundancy in which the number of sensors is greater than
the number of excited modes plus the number of environmental variables.
Therefore, for a structure with complex modes, the minimum number of sensors
is expected to be higher than that of the same structure with real modes. A two-
step detection algorithm is proposed. First, the accuracy of each sensor is in-
creased by Bayesian virtual sensing. Second, the signal of each sensor is esti-
mated using the remaining sensors utilizing a correlation model of the training
data under different environmental conditions. The residual is used to detect
damage. The algorithm was studied in a numerical experiment of a frame struc-
ture having a discrete damper element, which resulted in complex mode shapes.
A comparison was made with the same structure having real modes due to pro-
portional damping. The performance of damage detection was higher with real
modes and virtual sensors outperformed the raw measurements. Damage locali-
zation was also relatively successful revealing the region close to the actual
damage.

Keywords: Complex Modes, Virtual Sensing, Environmental Effects, Damage
Detection, Hardware Redundancy, Time-Domain Structural Health Monitoring.

1 Introduction

Structural health monitoring (SHM) utilizes sensor data to get an early warning of
structural failure. Vibration-based SHM is a non-destructive technique, in which
damage can be detected remotely from the sensors. Damage detection can be ap-
proached using time-domain or feature-domain techniques. In this paper, time-domain
data analysis is studied. It is assumed that a sensor network is installed on the struc-
ture. Training data are needed from an undamaged structure under different environ-
mental or operational conditions. With the proposed approach it is possible to take
into account the influences of the environmental or operational variability [1]. The
excitation or the environmental or operational variables are not measured.
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In the data analysis for damage detection, each sensor reading is estimated using
the data from the remaining sensors. Therefore, the sensor network has to be redun-
dant. The required number of sensors in the network depends on the number of active
modes as well as the number of environmental or operational variables. Generally, the
mode shapes are complex due to viscous damping. Only in a special case of propor-
tional damping the modes are real.

For under-critical damping, at each natural frequency there exist two complex con-
jugate modes. The response can be expressed using mode superposition. This means
that the response, which is a real number, is expressed with twice the number of terms
compared to the case with real modes.

A two-step algorithm is proposed for damage detection [2]. First, noise reduction is
performed applying Bayesian virtual sensing to the measurement data. This is an im-
portant step, because according to detection theory, the probability of detection de-
pends on the signal-to-noise ratio (SNR) [3]. The result of the first step is virtual sen-
sors that are more accurate than the corresponding physical sensors. Second, applying
a correlation model of the training data, each (virtual) sensor is estimated using the
remaining (virtual) sensors in the network resulting in a residual vector. The residual
is the difference between the (virtual) sensor reading and the corresponding estimate
and its increase beyond a threshold is an indication of damage.

This paper is organized as follows. Complex modes are introduced in Section 2.
Bayesian virtual sensors are derived in Section 3. The proposed algorithm for damage
detection is presented in Section 4. A numerical experiment comparing damage detec-
tion with real or complex modes using either physical or virtual sensors is studied in
Section 5. Finally, concluding remarks are given in Section 6.

2 Complex Modes

Complex modes occur if damping is non-proportional. Then, the real modal matrix
cannot diagonalize the damping matrix and the equations of motion remain coupled.
Highly complex modes can occur for example, if there exist discrete damper ele-
ments.

Starting with the second order equation of motion

)(tfkuucum =++ &&& (1)

where m, c, and k are respectively the mass, damping, and stiffness matrix of the
structure, u = u(t) is the displacement vector, f(t) is the load vector, and t is time. Eq.
(1) can be written in a state space form, resulting in a first-order differential equation
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where [ ]Tt uux &=)(  is the state vector and M, K, and F(t) are defined by the above
equations. The objective is to derive a truncated mode superposition solution to Eq.
(3) and study the vector space of the response. The eigenvalue analysis of Eq. (3) is
first performed resulting in eigenvalues lr that are complex for underdamped modes,
and negative real numbers for overdamped modes. Also the mode shapes are complex
for underdamped modes, and real for overdamped modes. The complex eigenvalues
and mode shapes exist in conjugate pairs, because the response x(t) must be real.
Therefore, for each natural frequency, there exist two modes. The eigenvalues are
related to the natural frequencies wr and modal damping zr by

21 rrrrr i VwVwl -±-= (4)

Eqs. (3) can be made independent with the transformation
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where N is the number of degrees-of-freedom (DOF) in the finite element model,
Nn << is the number of active modes, fs is the mode shape vector, and )(tqs the

modal, or generalized, coordinate of mode s.
Substituting Eq. (5) into Eq. (3), multiplying with T

rf from the left, and taking into
account the orthogonality of the eigenvectors [4], results in
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or

)()()( ttqktqm T
rrrrr Ff=+& (7)

which is the equation of motion for mode r, where r
T
rrm ff M= is the modal mass

and r
T
rrk ff K= is the modal stiffness, which are generally complex. There are 2N

such single-degree-of-freedom equations, one for each mode. In the truncated model,
it is assumed that only the 2n lowest modes correspond significantly to the response.
The solution )(tqr for Eq. (7) can be found analytically or numerically.

Let us assume that solution )(tqr  is available. It depends on the loading and the in-
itial conditions. In the underdamped case, the solutions exist in complex conjugate
pairs, for example for the first two modes:
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Their contribution to the physical response according to Eq. (5) is
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which shows that the solution x(t) lies in a space spanned by vectors 1Ref  and 1Imf .
Therefore, the dimension of the vector space is two. In other words, two basis vectors
are needed to describe the physical response if the active mode is complex.

On the other hand, if damping is zero, the eigenvalues and modes are purely imag-
inary, resulting in response

)(Im2)( 11 tqt If-=x (10)

In this case the solution x(t) lies in a space spanned by vector 1Imf only. The dimen-
sion of the vector space is one.

With overdamped modes, the eigenvalues and modes are real, and the response is

)()( 11 tqt Rf=x (11)

In this case the solution x(t) lies in a space spanned by vector 1f only. The dimension
of the vector space is one.

3 Bayesian Virtual Sensing

Virtual sensing (VS) gives an estimate of a quantity of interest using the available
measurements. The objective of this study is to design virtual sensors that are more
accurate than the hardware [1]. Empirical virtual sensing is applied, and no mathemat-
ical model of the structure is needed. In addition, the excitation is not measured or
estimated. Hardware redundancy is assumed with a sufficiently large number of sen-
sors measuring the response of the structure.

Consider a sensor network measuring p simultaneously sampled responses y = y(t)
at time instant t. The measurement y includes a measurement error w = w(t):

wxy += (12)

where x = x(t) are the true values of the measured degrees of freedom. The objective
is to find an estimate of the true values x utilizing the noisy measurements y from the
sensor network. Eq. (12) can be written in the following form at each time instant t
[5].
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For simplicity but without loss of generality, assume zero-mean variables x and y.
The partitioned covariance matrix is:
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where E(×) denotes the expectation operator and the measurement error w is assumed
to be zero mean Gaussian, independent of x, with a (known) covariance matrix Sww.
The covariance matrix Sxx is not known, but Syy can be estimated from the measure-
ment data, and if the noise covariance matrix can be approximated, then the following
estimate applies: Sxx = Syy – Sww. In this study, the measurement errors are assumed
uncorrelated between sensors resulting in a diagonal noise covariance matrix. In addi-
tion, because Sxx must be positive definite, an upper bound of the noise level in each
sensor can be derived [1].

A linear minimum mean square error (MMSE) estimate for yx |  (x given y) is ob-
tained by minimizing the mean-square error (MSE) [5]. The expected value, or the
conditional mean, of the predicted variable is:

yΣΣyΣΣΣyxx 11)()|(ˆ -- =+== yyxxwwxxxxE (15)

and the estimation error is

xxyyxxxxxxwwxxxxxx ΣΣΣΣΣΣΣΣΣyx 11)()|cov( -- -=+-= (16)

4 Damage detection

Residual generation is an integral part of damage detection. The residual can be de-
fined as a difference between the actual and estimated data:

yyr ˆ-= (17)

where y represents either the physical or virtual sensors, ŷ  is the estimate of the sen-
sor reading obtained as follows.

Each sensor in turn is estimated using the remaining sensors in the network by ap-
plying the MMSE estimation [2]. The measured response y is partitioned into ob-
served variables v and estimated variables u (typically a single sensor u):
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For simplicity but without loss of generality, assume zero-mean variables y. The data
covariance matrix Sy is estimated using the training data consisting of several meas-
urements under different environmental or operational conditions.
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Similarly to the previous section, a linear minimum mean square error (MMSE) esti-
mate for the conditional mean of yu | yv is obtained by minimizing the mean-square
error (MSE):

vvvyuvyvuu E yΣΣyyy 1
,,)|(ˆ -== (20)

and the MSE is

vuyvvyuvyuuyvu ,
1
,,,)|cov( ΣΣΣΣyy --= (21)

The residual for the sensor u is then generated:

)|( vuuu E yyyr -= (22)

Once damage occurs, the correlation structure does not fit the experimental data pro-
ducing a larger residual, which will then trigger an alarm.

Residuals are standardized according to the training data. Principal component
analysis (PCA) is applied to all data, and the first principal component (PC) is only
retained indicating the direction with the largest change in the data space. The one-
dimensional PC score vector of the residuals is then subjected to statistical analysis.

The PC scores are divided into batches of d data points. Extreme value distribu-
tions are estimated both for the block minima and block maxima of the training data
[6, 7]. The extreme values are plotted on a control chart [8] with corresponding con-
trol limits. The control limits are computed for a specified probability of exceedance.
In the present study, the subgroup size of d = 100 and the probability of exceedance of
0.001 were used. If the plotted data points exceed the control limits, an alarm is trig-
gered indicating possible damage.

5 Numerical Experiment

A numerical experiment was performed to investigate damage detection of a structure
having real or complex modes.

The structure was a two-dimensional steel frame (Fig. 1) with a height of 4.0 m
and  a  width  of  3.0  m.  Both  columns  were  fixed  at  the  bottom.  The  frame  was  also
supported with a horizontal spring and a discrete viscous damper at an elevation of
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2.75 m with a spring constant of k = 2.0 MN/m and viscous damping coefficient of c
= 11 kNs/m. For the structure with real modes, the discrete damper was absent. The
frame was modelled with 44 simple beam elements with equal lengths of 250 mm and
a square hollow section of 100 mm ´ 100 mm ´ 5 mm.

The lowest natural frequencies and the corresponding damping ratios of the un-
damaged structure with real or complex modes under nominal environmental condi-
tion were computed using Eq. (4) and are listed in Table 1. Notice that all modes were
underdamped and in the case of complex modes there were two complex modes for
each natural frequency. Modal damping was the only source of damping for real
modes, whereas for the complex modes damping was composed both of the discrete
damper and modal damping.

Horizontal random loading was applied to the right column at elevations of 4 m, 3
m, and 2 m (Fig. 1). The loads F1(t), F2(t), and F3(t) were mutually independent. The
maximum frequency of the excitation was 50 Hz.

k c

F3(t)

F2(t)

F1(t)

2 m

1 m

1 m

3 m

2.75 m

100 mm

100 mmt = 5 mm

Fig. 1. Steel frame.

Table 1. Seven lowest natural frequencies and damping ratios of the two structures.

Mode
number

Real modes Complex modes
fn (Hz) z fn (Hz) z

1    13.9257     0.0100    14.2361     0.0828

2    37.3384     0.0100    39.0230     0.0453

3    50.2279     0.0150    54.3517     0.3515
4    59.8129     0.0200    58.6689     0.0322

5   112.6560     0.0200   110.0559     0.2782

6   120.1176     0.0200   113.0101     0.0209

7   167.8757     0.0200   166.2691     0.0317
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Steady state analysis with modal superposition was applied to compute the response
of the structure. Periodic pseudorandom excitations in the frequency range between 0
and 50 Hz with random amplitudes and phases were generated [9], and the analysis
was performed in the frequency domain [4]. Seven lowest modes were included in the
analysis.

The analysis period was 4.096 s with a time increment of 4 ms resulting in 1024
data points. Transverse accelerations were measured with 43 sensors located at the
nodes of the FE model. Gaussian noise was added to each sensor. The average SNR
was 30 dB and noise standard deviations were equal in all sensors. For validation and
comparison, exact transverse accelerations were also recorded.

A relatively complex environmental model was applied. The temperature of the left
corner, T17 varied randomly between –25°C and +40°C. The subscript 17 indicates the
node number. The temperature of the other end points varied randomly: T29 = T17 ±
5°C; T1 = T17 ± 3°C; and T45 = T29 ± 3°C. Temperature variation between the afore-
mentioned points was linear. The relationship between temperature and the Young’s
modulus, E, was stepwise linear as shown in Fig. 2a. Sample distributions of the
Young’s modulus in the elements are plotted in Fig. 2b. Within each short measure-
ment, the distribution did not change.

Due to the temperature effect, the natural frequencies varied between measure-
ments. Fig. 3a shows the frequency variation for the structure having real modes,
while Fig. 3b shows the frequency variation for the structure having complex modes.
The data  points  to  the  right  of  the  dashed vertical  lines  are  from the  damaged struc-
ture. Visually, it is difficult to detect damage from the frequency changes due to the
strong environmental effect.

Damage was removal of material inside a beam element due to corrosion. The
damaged element was located at the bottom of the left leg. Five different damage
levels  were  considered  with  the  wall  thicknesses  of  4.5,  4.0,  3.5,  3.0,  and  2.5  mm.
Notice that as the material was removed, both the stiffness and mass were decreased.

The first 40 measurements were taken from the undamaged structure and each
damage level was monitored with two measurements. Training data were the first 20
measurements. The extreme value statistics (EVS) control charts were designed using
the same training data.
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Fig. 2. (a) Young’s modulus versus temperature. (b) Sample distributions of the Young’s mod-
ulus.

0 10 20 30 40 50
0

50

100

150

200

Measurement Number

f i(H
z)

0 10 20 30 40 50
0

50

100

150

200

Measurement Number

f i(H
z)

(a)                (b)

Fig. 3. Variation of the seven lowest natural frequencies due to temperature and damage for the
structure with (a) real modes and (b) complex modes.

5.1 Dimensions of the data space

Studying first the noiseless response in a single measurement with constant environ-
ment, the data matrix consisted 1024 data points from 43 accelerometers. The rank of
the data matrix was 7 if the modes were real, and 14 if the modes were complex.
These observations support the discussion in Section 2. When noise was present and
several measurements were included with different environmental conditions, full
rank data matrices resulted with either model. Even in a noiseless case, the data ma-
trix had a full rank, because the complex relationship between temperature and
Young’s modulus could not be completely eliminated using linear MMSE.

5.2 Damage detection

Fig. 4 shows the SNR of each physical sensor and the corresponding virtual sensor
for both models. It can be seen that the SNRs of the virtual sensors were always larger
than those of the hardware. Due to different acceleration levels at different regions of
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the structure, the SNRs varied considerably. In particular, damage was located in a
region with a low SNR (closest to sensor 1).

The residuals were first subjected to principal component analysis. The first PC
scores were only retained, and the PC scores of the training data were used to identify
the probability density functions (PDF) of the extreme values. Separate PDFs for the
minima and maxima (or negative maxima) were identified using a subgroup size of
100. The histograms of the minima and negative maxima for the complex mode case
are plotted in Fig. 5 together with the fitted PDFs. It can be seen that the theoretical
PDFs closely agree with the data. Similar results were obtained for the real mode
case.

EVS control  charts  for  the  first  PC scores  of  the  residual  with  a  subgroup size  of
100 are shown in Fig. 6 for real modes and in Fig. 7 for complex modes. Control
charts were plotted both for the actual measurement data (left) and virtual sensor data
(right). The leftmost vertical line corresponds to the end of training data, and the other
vertical lines indicate the five damage levels. It can be seen that the virtual sensors
were capable of detecting smaller damage than the physical sensors in both models.
This is because virtual sensors had a larger SNR than the physical sensors.

For the structure with real modes, three largest damage levels were detected using
the physical measurements, whereas with virtual sensors, all five damage levels could
be detected. For a structure with complex modes, damage detection missed all dam-
age levels if physical measurements were used, whereas with virtual sensors, the four
largest damage levels could be detected. Damage detection with complex modes was
therefore more difficult than with real modes in this particular case. Similar results
were obtained if damage was located at the bottom of the right leg. Quite surprisingly,
the results were similar also in the case with no environmental effects. The noise ef-
fect was probably more significant compared to the remaining environmental influ-
ences that could not be eliminated.

5.3 Damage localization

Damage  was  assumed  to  locate  in  the  vicinity  of  the  sensor  with  the  largest  Ma-
halanobis distance (MD) [10] of the residual, Eq. (22). The MDs of the residuals for
each sensor are plotted both for the structure with real modes (Fig. 8a) and complex
modes (Fig. 8b). In both cases, damage was localized to sensor 3 that was relatively
close to the actual damage location. The closest sensor was sensor 1. The inaccuracy
in  damage localization  was  probably  due  to  the  low SNR of  sensors  1  and 2,  which
were closer to damage than sensor 3.
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Fig. 5. Identified EVS distributions and histograms for the first PC scores of the residual of the
training data: (a) minima, (b) negative maxima. The data were from the structure with complex
modes.
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Fig. 6. Damage detection for the structure with real modes: (a) raw data, (b) virtual sensors.
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Fig. 7. Damage detection for the structure with complex modes: (a) raw data, (b) virtual sen-
sors.
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Fig. 8. Damage localization using virtual sensors: (a) real modes, (b) complex modes. The
actual location of damage was close to sensor 1.
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6 Conclusion

Damage detection of structures having complex modes was studied. Data analysis
was made directly in the time domain. A redundant sensor network with a large num-
ber of sensors was assumed. Detection performance was compared using physical or
virtual sensors. In addition, the same structure with real modes was analyzed. It  was
shown that virtual sensors outperformed the corresponding hardware, because the
SNR of the virtual sensors was higher than that of the physical sensors. Damage de-
tection was easier for a structure with real modes than for a similar structure with
complex modes. The main conclusion is that for the same detection performance in
the time domain, a structure with complex modes must be equipped with a larger
number of sensors than the same structure having real modes. Damage localization
performance was similar in both cases revealing the region where inspection could be
concentrated. The localization did not, however, result in the closest sensor to dam-
age. An experimental study is still needed to verify the findings made in this paper.
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