Jamal Armel

Web application development with Laravel PHP
Framework version 4

Helsinki Metropolia University of Applied Sciences
Bachelor of Engineering

Media Engineering

Thesis

11 April 2014

@Zmpolia

Abstract

Author(s) Jamal Armel

Title Web application development with Laravel PHP Framework ver-
sion 4

Number of Pages 53 pages

Date 11 April 2014

Degree Bachelor of Engineering

Degree Programme Media Engineering

Specialisation option .NET application development and Hybrid Media

Instructor(s) Aarne Klemetti, Senior Lecturer

The purpose of this thesis work was to learn a new PHP framework and use it efficiently to
build an eCommerce web application for a small start-up freelancing company that will let
potential customers check products by category and pass orders securely. To fulfil this set
of requirements, a system consisting of a web application with a backend was designed and
implemented using built in Laravel features such as Composer, Eloquent, Blade and Artisan
and a WAMP stack.

The web application was built using the Laravel framework version 4, a modern PHP frame-
work that aims at making PHP development easier, faster and more intuitive. The web ap-
plication was built following the MVC architecture pattern. Admin panels were created for
easily updating and managing the categories and products and uploading product images
as well. A public interface was made available also to let registered users to log in and add

orders to their carts and proceed to check out using PayPal.

The application is easily expandable and features can be added or removed effortlessly
thanks to the Laravel’'s ability to manage packages through Composer’s Packagist online

repository.

The results proved that Laravel 4 is effectively a premium choice for a PHP framework that

helps developers rapidly build secure, upgradable web applications.

Keywords PHP, Laravel 4, MVC, Database, eCommerce

[
Metropolia

Contents

List of Abbreviations

1 Introduction

2 Laravel’s main features

2.1

2.2

2.3

24

Architecture

MVC

2.2.1 Model
2.2.2 Views
2.2.3 Control
2.2.4 Database

Composer

Artisan

3 Creating the workflow and configuring our environment

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

Operating system

Terminal

Text editor

Bootstrap as the HTML5/CSS3/Javascript framework

Apache-MySQL—-PHP package

Installing Composer

Installing Laravel 4

Database

4 Building the application with Laravel 4

4.1

Designing our application
41.1 The ldea
4.1.2 Entities, relationships and attributes

g o b~ b~ b

10

11
11
11
11
12
13
14
15

16

20

20
20
20

i
Metropolia

4.1.3 Map of the application 21

4.2 Creating a new application 23
4.2.1 Creating a main view 23

4.2.2 Creating the Eloquent models and their respective schemas 25

4.2.3 Image managing as an example of dependency management 30

4.2.4 Creating the Controllers and their respective Routes 32

4.2.5 Creating the views 38

4.3 Authentication and security 44
4.3.1 Authenticating users 44

4.3.2 Securing the application 48

5 Conclusion 50
References 52

/ Metropolia

List of abbreviations

MVC

WAMP

PHP

DBMS

SQL

MySQL

ORM

Apache

HTTP

CRUD

CSRF

HTML

CSS

JSON

URL

XML

API

ul

Model, View and Control

Windows, Apache, MySQL, and PHP

Personal Home Page

Database Management System

Structured Query Language

My Structured Query Language

Object Relational Mapper

Apache HTTP Server

HyperText Transfer Protocol

Create, Read, Update and Delete

Cross-Site Request Forgery

HyperText Markup Language

Cascading Style Sheets

JavaScript Object Notation

Uniform Resource Locator

Extensible Markup Language

Application Programming Interface

User Interface

(&
Metropolia

1 Introduction

The purpose of this thesis work is to learn a new PHP framework and use it efficiently to
build an eCommerce web application for a small start-up freelancing company that will
let potential customers check products by category and pass orders securely. To fulfil
this set of requirements, a system consisting of a web application with a backend will be

designed and implemented using a modern MVC framework.

It is worthwhile considering the use of a PHP framework when time is a limitation and
the developer’s PHP coding skills do not match the high level demanded to build a com-
plex application. Frameworks handle all the repetitive basic tasks of a PHP project, letting
the developer concentrate her/his efforts on the business logic and the general structure
of the project as a whole, in doing so, frameworks are becoming an ideal tool used by
said developers to rapidly build complex operational prototypes in a matter of hours with
minimal time spent on coding. Frameworks offer also whole range of ready-made utilities

and libraries.

The use of a robust framework is recommended when the security of the web application
is an essential requirement. It even becomes a necessity when the developer lacks the
necessary know-how to prevent security breaches from happening. Most of the modern
frameworks have built-in security features that range from input sanitising to automatic

cookie encryption.

Organised structure of the project as a whole, clear and clean code are required when
working in an organisation or co-developing an application in a team of developers.
Frameworks permit the organisation of said code into a logical architecture, thus facili-
tating its maintainability and expandability. To achieve this, modern PHP frameworks

follow the Model-View-Controller (MVC) architecture pattern.

Among the highly popular PHP frameworks, Laravel stands out with its claim in its ability
to produce a development process that is agreeable for the developer without losing the
application’s functionality. That is one of the many reasons it was chosen as the frame-
work of choice for building an eCommerce web application for Armel Solutions freelance
start-up. This thesis work will study if Laravel lives up to its claim by evaluating its ability

in building an up and running secure eCommerce web application in minimal time.

[
Metropolia

2 Laravel’s main features

This study will focus only on the features used during the building of the eCommerce
web application, otherwise this work will not be large enough to cover the entirety of the

features of the whole Laravel 4 framework.

2.1 Architecture

Laravel is a web application framework that tries to ease the development process by
simplifying repetitive tasks used in most of today’s web applications, including but not

limited to routing, authentication, caching and sessions. [1]

Since it manages to do all essential tasks ranging from web serving and database man-
agement right to HTML generation, Laravel is called a full stack framework. This vertically
integrated web development environment is meant to offer an improved and smooth

workflow for the developer. [2]

Unlike other vertically integrated environments, Laravel is unique in its way of prioritizing
convention over configuration. In fact, while many PHP frameworks demand a heavy-
duty XML configuration before starting the actual project, Laravel needs only a few lines
of PHP code to be edited and it becomes ready to use. Avoiding or using a minimum
amount of configuration files gives all Laravel web applications a similar code structure
which is very characteristic and identifiable. This might be considered at first glance as
serious constraint on how a developer might wish to organize the structure of her/his
own web application. However, these constraints make it actually a lot easier to build

web applications. [2]

All the new Laravel projects come out of the box equipped with a full directory tree and
also many placeholder files resulting in a structure permitting a quick start of the actual
development process. This structure is nevertheless fully customizable. Here in the fol-

lowing figure is shown what such a structure looks like: [3, 16.]

f
Metropolia

. ArmelSolutions
Laravel application
| app PR
. commands command line scripts
, config Configuration files
packages
l. testing
. controllers Controllers
- migrations Migrations
seeds Seeders
, lang
Localization variables
. BN
i models Classes used to represent entitites
. start Startup =cripts
ot Cache and logs direct
ache and legs directo
, cache . v
, logs
. meta
|, SEs5Ions
| VIEWS
, tests Tezt cazes
. Views
) Templates that are rendered to HTHML
, emails
| auth
| bootstrap Application bootzrapping scripts
| public Cocument root
I packages
\ wendor Third-party dependencies installed through composer
| | .gitattributes
|| gitignore
L| artisan Artizan command line utility
| | composer.json Project dependencies
| | composerlock
|| CONTRIEUTING.md
J phpunit Test configuration file for PHPUnit
readme.md

—
i ¥
g SEMVEr

Local development server

Figure 1. A New Laravel 4 project directory structure

Metropolia

22 MVC

The term MVC was briefly mentioned earlier in this work and it is worthwhile mentioning
now that Laravel is actually a fully-fledged MVC framework. MVC rapidly became the
industry’s standard practice used in every modern development environment. Many
frameworks such as Ruby on Rails, ASP.NET, CakePHP and Codelgniter make use of

it to separate the logic behind the application from the representation layer. [4, 8.]

An MVC architecture pattern let the web application have many different views of a single
common model. That is, in our current context of building an eCommerce web applica-
tion, a Category page, for example, can have multiple views such as the Product List
View or Product Gallery View. In an MVC development environment, one model for the
Category table will be created and via that one model multiple views can be created. [4,
8.]

The MVC architecture pattern let the developer write a code that can be divided on the

basis of the following three things:

2.2.1 Model

A Model is the mode by which the developer can manipulate the data. It consists of a
layer residing between the data and the application. The data itself can be stored in
various types of database systems such as MySQL or even simple XML or Excel files.
[4,8]

2.2.2 Views

Views are the visual representation of our web application (presentation layer), they are
responsible for presenting the data that the Controller received from the Model (business
logic). They can be easily built using the Blade template language that comes with
Laravel or simply using plain PHP code. Blade is driven by template inheritance and
sections. When Laravel renders these Views it examines first their file extension, and
depending on it being either “.blade.php” or simply “.php”, determines if Laravel treats

our View as a Blade template or not. [3, 14.]

f
Metropolia

2.2.3 Control

The primary function of a Controller is to handle requests and pass data from the Model
to the Views. Thus a Controller can be considered as the link between our Model and
Views. [4, 8.]

The developer has the option to write her/his business logic either in Routers or Control-
lers. Routers can be useful when dealing with a small web application, or in rapidly de-
fining static pages. Writing Controllers for every single page of the web application is
thus not necessary. [4, 12.]

1. GET /cats 2. Cat:all() 3. SELECT * FROM cats;

Data Source

Client Controller Model PostgreSQL
Web Browser Routes Eloguent Models Nongcos
API Consumer Controlers Service Providers WIEh
Resources Redis

File

\\ /I
R g

~
S ——

8. HTTP 200 ... 5. Data (as object) 4. Raw data

7. <html>... 6. View::make('cats', $data);

View
PHP Templates
Blade Templates

Figure 2. Interactions between all the constituent parts of an MVC architecture pattern. [3, 15]

2.2.4 Database
¢ Eloquent ORM

The Eloquent ORM provided with Laravel includes a simple PHP ActiveRecord imple-
mentation which lets the developer issue database queries with a PHP syntax where
instead of writing SQL code, methods are simply chained. Every table in the database

possess a corresponding Model through which the developer interact with said table. [5]

/Metropolia

. Schema builder

The Laravel Schema class provides a database agnostic (i.e. can function with a multi-
tude of DBMS) way of managing all database related work such as creating or deleting
tables and adding fields to an existing table. It works with a multitude of databases sys-
tems supported by Laravel and MySQL being the default one. The Schema class has
the same API across all of these database systems. [6]

. Managing the database with Migrations

Migrations can be considered as a form of version control for our database. They allow
us to change the database schema and describe and record all those specific changes
in a migration file. Each Migration is usually associated with a Schema Builder to effort-
lessly manage our application's database. A migration can also be reverted or “rolled

back” using the same said file. [7]

Using our terminal we can issue the following commands to create or drop tables in our

database:
Command Description
$ php artisan migrate:install Creates the migration repository
$ php artisan migrate:make Creates a new migration file
$ php artisan migrate:refresh Resets and reruns all the migrations
$ php artisan migrate:reset Rollback all the database migrations
$ php artisan migrate:rollback Rollback the last database migration

Table 1. A collection of commands related to migrations. [4, 29]

(&
Metropolia

e Seeders

The Seeder class lets us seed data into our tables. This feature is very valuable since
the developer may insert data into her/his database’s tables every time she/he wants to
test the web application. [4, 59.]

When the backend is empty we can populate it with some data by simply issuing the

following command in the terminal:

$ php artisan db:seed
2.3 Composer

Another feature that makes Laravel stand out from the other frameworks is that itis Com-
poser ready. In fact Laravel is itself a mixture of different Composer components, this

adds a much needed interoperability to the framework.

Composer is a dependency management tool for PHP. Essentially, Composer’s main
role in the Laravel framework is that it manages the dependency of our project’s depend-
encies. For example, if one of the libraries we are using in our project is dependent on
three other libraries and that there is a need to upgrade all those libraries, then there is
no necessity to manually find and update any files. It is possible to update all four libraries

via a single command through the command-line, which is, “$ composer update”. [8]

Composer has the ability to manage a dependency up to a given nth level, meaning that
all dependencies of our project can be managed via a single tool which is a really handy
option to have when we are dealing with a multitude of libraries. Another advantage of
using Composer is that it generates and handles an autoload file at the root of our ven-
dor/ directory, which will contain all the project’s dependencies that wires up the auto-
loading of classes when it is included in a PHP script. In doing so, there is no need from
the developer side to remember all dependencies’ paths and include each of them on
every file of the project, she/he just needs to include the autoload file provided by Com-
poser. [4, 11.]

[
Metropolia

Composer is installed in the form of a PHP executable that is added to the PATH envi-
ronment variable. A PATH environment variable is the listing of locations that is explored
when a command is run in the terminal. When Composer is installed properly, the devel-
oper can execute it through the command-line from any place in the file system using
the “$ composer” command. The project, and its dependencies, are defined within a
JSON file, named composer.json. [3, 22.]

Composer is the way the PHP community is heading to, thus there are thousands of
thoroughly tested packages already available in the Composer package archive. Laravel
was designed in such a way that it integrates Composer packages easily. All what Com-
poser needs to do is to read the contents of the composer.json file and connect to Pack-
agist, which is an online repository of packages, to resolve all the dependencies, recur-
sively. These dependencies are then downloaded to our local directory called vendor/,

and then their state is recorded to a file named composer.lock. [3, 25.]

(&
Metropolia

Packagist
The PHP package archivist.

Submit Package

Packagist is the main Composer repository. It aggregates all sorts of PHP packages that are installable with Composer.

Browse packages or submit your own.
Search packages...

Getting Started
Define Your Dependencies

Put a file named composer json at the root of your project,
containing your project dependencies:

: "require”: |
"wvendor/package"”: "1.3.
"vendor/package2™: "1.*"
"vendor/package3d™: ">=Z.

}

Install Composer In Your Project

Run this in your command line:

curl -3 http://getcomposer.org/installer | php
COr download composer.phar into your project root.

Install Dependencies

Execute this in your project root.

php composer.phar install

Autoload Dependencies

If all your packages follow the PSR-0 standard, you can autoload
all the dependencies by adding this to your code:

require 'wvendor/sutolcad.php':

Publishing Packages
Define Your Package

Put a file named composer json at the root of your package,
containing this information:

"name”: "your-vendor-name,/package-name",
"descripticn”: "A& short description of
what yvour package does",
"require”: {
"php": "»=5.3.0",
"another-vendor/package™: "1.*"

}

This is the strictly minimal information you have to give.

For more details about package naming and the fields you can
use to document your package betier, see the about page.

Commit The File
You surely don't need help with that.
Publish It

Login or register on this site, then hit the big fat green button
above that says submit.

Once you entered your public repository URL in there, your
package will be automatically crawled periodically. You just have
to make sure you keep the composer json file up to date.

Figure 3. A view from Packagist, the online repository for Composer [7]

Laravel combined with the power of Composer gives the developer more freedom in

choosing what kind of packages she/he would like to use with her/his web application.

For example, if she/he do not like the default Mail component that comes with Laravel,

which is Swift Mailer, and she/he wants to replace it with a more preferred package like

the PHPMailer component for example, which is likewise Composer ready; thus, switch-

ing between the two packages would be a very easy task. The developer can replace

components at will and with ease when there is need to do so via the Composer and

Laravel configuration. [4, 12.]

Metropolia

10

2.4 Artisan

A developer would have to usually interact with the Laravel framework using a command-
line utility that creates and handles the Laravel project environment. Laravel has a built-
in command-line tool called Artisan. This tool allows us to perform the majority of those
repetitive and tedious programming tasks that most of developers shun to perform man-
ually. [4, 13.]

Artisan can be utilized to create a skeleton code, the database schema and build their
migrations which can be very handy to manage our database system or repair it. We
may as well create database seeds that will allow us to seed some data initially. It can
also be employed to generate the basic Model, View and Controller files right away via
the command-line and manage those assets and their respective configurations. [4, 13.]

Artisan let us even create our very own commands and do convenient things with them
such as sending pending mails to recipients or anything that can be necessary to
properly run our web application. Unit tests for our web application can also be run
through Artisan. [4, 13.]

(&
Metropolia

11

3 Creating the workflow and configuring our environment
3.1 Operating system

Laravel is a cross platform framework which is built with interoperability in mind. It can
be used on top of a variety of operating systems, including but not limited to Linux, Mac
OSX and Windows. The operating system of choice for this project is Microsoft’'s Win-

dows version 8.1, which is the latest offering from the software giant.

3.2 Terminal

As it was discussed earlier in this work, a developer usually interacts with Laravel frame-
work through a command-line. The Windows operating system comes equipped with two
of such command-lines, that is, the Command prompt and the Powershell. However, for
our project we are going to use a popular third party terminal named Cygwin. So why
make such a choice? The reason is that one of the major inconveniences that a devel-
oper can face in a modern development environment is supporting her/his application

across heterogeneous platforms. [9]

Cygwin offers a standard UNIX/Linux shell environment, together with many of its greatly
handy commands to the Windows platform. By utilizing Cygwin, a developer may handle

various environments in a reliable and effective way. [9]

To install Cygwin we need to download the executable file from the author’s website [9]
and double click on the downloaded file and just follow the instructions, the installation

is done automatically. [9]

3.3 Text editor

For this project the text editor of choice to build our web application will be Sublime Text
3. Itis a web developer's editor that can do few useful tasks from the editor window itself.
Therefore, the developer does not have to constantly switch between windows and run

tasks from other applications. Another important aspect of the Sublime Text editor is its

[
Metropolia

12

Package Control, this package manager allows us to add the package's features. [4,
226]

3.4 Bootstrap as the HTML5/CSS3/Javascript framework

Bootstrap is arguably the industry’s most popular frontend web development framework.
It offers a full range of user-friendly, cross-platform and tested pieces of code for fre-
quently used standard Ul conventions. Bootstrap significantly speeds up the undertaking
of building a frontend web interface because of its ready-made, thoroughly tested blend
of HTML markup, CSS styles, and JavaScript behaviour. With these essential founda-

tions rapidly set up, we can confidently modify the Ul on top of a solid basis. [10, 7.]

There are many ways to download Bootstrap, but not all these ways of downloading
Bootstrap are equal. For this project though, and for the sake of rapidity, we will use
Initializr which generates templates based on HTML5 Boilerplate by permitting the de-
veloper to select which components she/he wants from it. [11]

Then after clicking on the download button we will get the following directories and files,
logically grouping common assets and providing both compiled and minified variations.

The directory and file tree will look like this: [12]

bootstrap/

— css/
| — bootstrap.css

| |— bootstrap.min.css
| |— bootstrap-theme.css

| L— bootstrap-theme.min.css
—js/
| — bootstrap.js

| L— bootstrap.min.js
L— fonts/

|— glyphicons-halflings-regular.eot

f
Metropolia

13

|— glyphicons-halflings-regular.svg
|— glyphicons-halflings-regular.ttf

L glyphicons-halflings-regular.woff

Please note that this thesis work is mainly focusing on the Laravel framework, therefore
the use of the Bootstrap framework or the HTML markup, CSS styling and the JavaScript

actions of our web application will not be discussed further than this present chapter.

3.5 Apache-MySQL-PHP package

A database is a collection of data with a predefined structure. The set of data it repre-
sents can range from as little as a shopping list to a large volume of information in a
corporation’s network. A database management system is needed to manipulate the

data stored in a computer database. [13]

One of the most popular database management systems is MySQL server, it uses the
Structured Query Language commonly referred to as SQL. SQL is arguably the most
commonly used standardized language for manipulating databases. SQL statements
can be used in various ways, they might be entered directly or embedded into a code
written in a different language, or use an API that hides the SQL syntax altogether. In
our project we will use the second option of embedding the SQL statements into a differ-

ent programming environment. [13]

The Laravel framework has a very few system requirements, however it explicitly needs
PHP version 5.3.7 or above and MCrypt PHP Extension, the latter comes bundled with

newer versions of PHP. [15]

Our WAMP stack of choice for this project is WampServer. To install it we need to down-
load the executable file from the author’'s website [14] and double click on the down-
loaded file and just follow the instructions, the installation is done automatically. The
WampServer package is delivered with the latest releases of Apache, MySQL and PHP,
that is, Apache: 2.4.4, MySQL: 5.6.12, PHP: 5.4.12 and PHPMyAdmin: 4.0.4. [14]

[
Metropolia

14

Jamal@Jamal-PC ~

: Feb 25 2013 00:29:22)

Zend Engine wZ.4.0, Copyright (c) 19953-2013 Zend Technologies
with Xdebug v2.2.3, Copyright (c) 2002-2013, by Derick Rethans

Jamal@Jamal-PC ~

5 |

Figure 4. The version of the installed PHP
3.6 Installing Composer

As it was mentioned earlier in this work, Laravel framework utilizes Composer to manage
its dependencies. To install Composer on our Windows machine we need to be sure
beforehand that we have an appropriate version of PHP installed, then we can get the
Composer Windows installer from the author’s website [8] and download the Composer-
Setup.exe file. During the process of installation, the installer will ask for the location of
the PHP executable in our system, and since we are using WAMP the location is
C:/wamp/bin/php/php5.4.12/php.exe. The installation will continue automatically then by
finalizing the install of Composer and adding the php and Composer commands to our
PATH. [3, 24.]

To make sure that Composer is installed properly, we open a new terminal window and

enter the command “$ composer —v”, this command should output the version infor-

mation message. [3, 24.]

Metropolia

15

Jamal@lamal-PC ~
% composer -wv

Composer version 70a20ebccldflealab0954adfbdce208b30085e7 2014-03-12 16:07:58

Usage:

[options] command [arguments]
Optiaons

--help -h Dizplay thiz help mezzage.

--gquiet -q Do not output any message.

--verboze -v|vv|wwy Increase the verbozity of meszzagez: 1 for normal ou
tput, 2 for more verbose output and 3 for debug

--version -V Di=splay this application wversion.

--ansi Force ANSI output.

--no-ansi Disabhle ANSTI output.

--no-interaction -n Do not ask any interactive gquestion.

--profile Msplay timing and memory usage informatian

--working-dir -d If specified, uze the given directory as working directory

Available commands:

about Short information about Composer

archive Create an archive of this composer package

config Set config options

create-project Create new project from a package into given directory.

depends Shows which packages depend on the giwven package

diagnosze Diagnoses the system to identify common errors.

dump-autoload Dumps the autoloader

dumpautoload Dumps the autoloader

g]u?a] Allows running commands in the global composer dir (3COMPOSER
_HOME) .

help Dizplays help for a command

init Creates a basic composer.json file in current directory.

inztall Inztalls the project dependenciesz from the composer.lock file
1f present, or falls back on the composer.json.

licenzes Show information about Ticenzes of dependencies

Tist Lists commands

require Adds required packages to your composer.json and installs the
m

run-script Run the scripts defined in composer.json.

zearch search for packages

self-update Updates composer.phar to the latest wversiaon.

zelfupdate Updates composer.phar to the Tatest wer=zion.

show Show information about packages

status Show a Tist of locally moditied packages

update Updates your dependencies to the latest version according to
composer. json, and updates the composer.lock fTile.

validate Validates a composer.json

Jamal@lamal-PC ~
5

Figure 5. Composer version information message

3.7 Installing Laravel 4

We may install Laravel by simply issuing the “$ composer create-project laravel/laravel’
command in our terminal followed by the name of the project, but before that we have to
be sure that we change the directory to our development folder. [15]

Metropolia

16

Jamal@Jamal-PC
§ cd c:/wampSwew

Jamal@Jamal- cygdrive,/c/wamp e
§ composer create project 1arave1flaravel ArmelSolutions|

Figure 6. Command issued to create a new Laravel project

After a successful installation, Laravel may still require one set of permissions to be con-
figured, that is, the folders within the app/storage directory require write access by the
web server. This can be achieved by issuing the command “$ chmod —R 755" followed

by the name of the directory.” [15]

Application key [23ZDxrEwhlsgZeeHd47tojaeqxEiT1lPdd] set successtully.

Jamal@lamal-PC /oyadrive,/c/wamp

5 cd c:fwamp/SwewSArmelSalutions -

Jamal@lamal-PC /foyadrive,/ o/ wamp ww iel5olutions
%5 chmod -R 755 app/storage

Figure 7. Changing the permission to access app/storage directory

3.8 Database

To create the database for our Laravel project, we simply open the phpMyadmin panel
in our browser of choice and we proceed to create the database by giving it a name and
editing the security credentials.

Metropolia

17

s hittp:/flocalhost/phpmy 2~ & [1) localhost / localhost / arme... %

phpMyAdmin M8 -T|gcalhost » @ armel_solutions
& 83908 W Structure [SQL 4 Search

| (Recent tables) ... ‘ Mo tables found in database

s |
| armel_solutions _< i3 Create table |

| ecomm

| information_schema Name- |

I mysql

-'J performance_schema Number of columns: |
| solutions
| test

Figure 8. The created database

Before getting started, we need to be sure to configure the database connection in
app/config/database.php file by editing the lines of PHP code containing the credentials
to match our database’s credentials. Laravel's default database, which is MySQL will be

kept as our database management system for our current project.

Metropolia

18

File Edit

FOLDERS

¥ Armelsolutions
¥ app

Selection Find View Goto Teools Project Preferences Help

database.php

Database Connections
» commands
¥ config

P packages Here are each of the database connections setup
Of course, examples of configuring each database

supported by Laravel is shown below to make deve]:

- testing
app.php
auth.php
cache.php
compile.php

All database work in Laravel is done through the|-=
so make sure you have the driver for your partic
choice installed on your machine before you begi

database.php
mail.php

queue.php
remote.php
session.php
view.php
workbench.php
¥ controllers
P database
P lang
> models
b start
b storage
P tests
P views
filters.php
routes.php
P bootstrap
P public
¥ vendor
.gitattributes
.gitignore
artisan
COMPOSEerjson
composer.lock

Line 61, Column 35

Figure 9.

/

'connections' =» array(

'sqlite" => array(
'driver’ =>

'database’ => _ DIR__.'/../database/produc

"prefix’ =>

)’

"mysgql' => array(
"driver’ =>
"host' =>
'database’ =>
'username’ =3
'password’ =»
'charset’ =>
'collation' =»
"prefix’ =>

),

'sglite’,

v
2

mysql',
'localhost’,
"armel_solutions®,
root',

'[J

utfe’ |
"utf8_unicode_ci”',

e
3

Tab Size: 4

Database connection set-up

After configuring the database we can start our application without the need for firing up

our WAMP local server as Laravel utilizes the built-in development server that is bundled

with PHP version 5.4 or newer. To start our development server, we simply use the Arti-

san command “$ php artisan serve”. [3, 32.]

Jamal@lamal-PC ~

5 cod c:/wamp/Swew/ArmelSolutions

Jamal@lamal-PC

cyodrive/c/wampwew/Armel 5o

% php artisan serve

Laravel development server started on http://Tocalhost:8000

Figure 10. Starting the Laravel’s built-in development server

Metropolia

19

To check that our application is up and running and that our Laravel installation is done
properly we open our web browser and we enter the following URL: http://localhost:8000.
We should be greeted with Laravel's welcome message.

el el

- O
| 5 5% @63

ei.?_ :?3'|@ http://localhost:2000/ O ~ © || & Laravel PHP Framewaork

\\S
N\ _

You have arrived.

Figure 11. Screenshot of a successful Laravel installation

This ends the first half of this work where we introduced the Laravel framework and cre-
ated and configured a development environment for our eCommerce project. Next, the
building process of our web application will be covered fully.

Metropolia

20

4 Building the application with Laravel 4
4.1 Designing our application

4.1.1 The ldea

The aim of this project is to build a browsable database of categories and products. An
administrator will be able to create pages for her/his categories and products and input
simple information such as the name, availability, and image for each product. Our web
application will support the basic Create-Retrieve-Update-Delete operations (CRUD).
We will create also pages available for the public with the option to filter products by
category and letting the users log in and pass their order and proceed to checkout using
PayPal. All of the security, authentication, and permission features will be covered in

more details in the chapter “Authentication and security”.

4.1.2 Entities, relationships and attributes

Initially, the application’s entities must be defined. An entity is a place, a thing or a single
person about which data can be stored or classified and have stated relationships to
other entities. From the initial requirements, we can define the following entities and their

respective attributes: [3, 30.]
» Categories, which have an identifier and a name.

* Products, which have a numeric identifier, a title, a description, a price, an avail-

ability and an image.

» Users, which have a numeric identifier, a first name, a last name, an email and a

telephone and whether or not he’s an admin (default is not an admin)
This information is essential in assisting us with building our database schema that will

store the predefined entities, relationships, and their attributes and Models, that is, the

PHP classes representing the objects in our database. [3, 30.]

f
Metropolia

21

categories

CategorylD

users
name

firstname
lastname
email
ProuctID
telephone
CategoryID
password
title
admin
description
price
availability

image

Figure 12. Relationship between constituents of the database

NB: PK->Primary Key and FK->Foreign Key.

From the diagram we can see that categories will have a “hasMany” relationship with the
products and products will have a “belongTo” relationship with categories. This will be

discussed further more when we will build our Models.

4.1.3 Map of the application

Presently, the URL structure of our web application must be defined. There are many
advantages in making sure to have expressive and clean URLs. From the usability point
of view, navigating our web application will be done with ease and appear less daunting

Metropolia

22

to the visitor. They, the URLs, will also usually rank high in search engine results espe-

cially if they have appropriate keywords. We are going to utilize the following routes [18]

in our web application to fulfil the initial set of requirements: [3, 31.]

Method Route Description
GET / Index
GET admin/categories/index Overview page
GET admin/categories/create Form to create a new category page
GET admin/categories/destroy | Form to confirm deletion of page
GET admin/products/index Overview page
GET admin/products/create Form to create a new product page
PUT admin/products/index Form to update a product page
GET admin/products/destroy Form to confirm deletion of page
GET store/category/id Overview of single category
GET store/view/id Overview of single product
GET store/cart Overview page
GET store/contact Overview page

Table 2. The application’s set of routes

(&
Metropolia

23
4.2 Creating a new application

4.2.1 Creating a main view

As explained earlier in this work, Blade templating let us create hierarchical layouts by

letting the templates be nested and/or extended. [3, 40]

The procedure is quite straight forward, that is, we copy the “index.html” file that comes

with our Bootstrap installation and we save it as app/views/layouts/main.blade.php.
We will use Laravel helpers instead of regular HTML code, which will help us write more
concise code and also escape from any HTML entities. We do these changes following
these examples: [16]
For styles: <link rel="stylesheet" href="css/main.css"> becomes
{{ HTML.::style(‘css/main.css’) }}
For scripts: <script src="js/vendor/modernizr-2.6.2.min.js"></script> becomes
{{ HTML::script('js/vendor/modernizr-2.6.2.min.js") }}
For images: becomes

{{ HTML::image('img/user-icon.gif', 'Sign In") }}

To define a main Blade template we use the following basic structure: [17]

(&
Metropolia

24

<html>
<body>
@section(‘'sidebar")
This is the main sidebar.
@show

<div class="container">
@yield('content’)
</div>
</body>
</html|>

Then we can use the main Blade template from within another View by using this basic
structure:[17]

@extends('layouts.main)

@section('sidebar’)

@parent

<p>This is appended to the main sidebar.</p>
@stop

@section(‘content’)
<p>This is the body content.</p>
@stop

The “@yield” command is a placeholder for the many sections that a nested view can fill
and override. While the “@section” and “@stop” commands both define the blocks of
content that are going to be injected into the main template. A schematization of this
whole process can be seen in the following diagram:[3,40.]

f
Metropolia

25

main.blade.php index.blade.php

@extends(‘main’)

@section(‘header’)

Message (if any)

@section(‘section’)

Figure 13. Blocks of content being injected into main template [3, 40]

Practically we empty our main content section in the main.blade.php file and replace it
with @yield(‘content’). The resulting code will be the "main" template that each of our

views in our web application will use. [3, 40.]

A notification area between the header and the page content has been prepared in case
there is a need to inform the user about the outcome of certain actions. This flash mes-

sage originates from the Session object.

The next step is to bring the other resources for our main View, to do so we copy all the
css/js/img/fonts assets that come with our Bootstrap installation and we place them in-
side our app/public directory. [3, 40.]

The creation of the individual views for each section of our web application will be cov-

ered in full details later in the “Creating views” section of this work.

4.2.2 Creating the Eloquent models and their respective schemas

As we have previously seen, Laravel 4 comes bundled with an ORM of its own named
Eloquent, this powerful tool will let us define our entities, map them to their respective
database tables, and manipulate them by simply using PHP methods instead of SQL
syntax.

Metropolia

26

We begin with defining the models with which our application is going to interact. We
previously recognised three main entities, categories, products and users. It is a conven-
tion among Laravel developers to write a model’'s name in the singular form; a model
named Product will map to the products table in the database, and the Category model
will map to the categories.

The Category model, saved inside app/models/Category.php, will have a “hasMany” re-
lationship with the Product model [21]

File Edit Selection Find View Goto Tools Project Preferences Help

ategory.
¥ ArmelSolutions gen:php

¥ app <?php

» commands
» config class Category extends Eloguent {

» contrallers

b database

> lang

¥ models
Category.php

protected $fillable = array('name’);
public static $rules = array(’'name’=>'required|min:3");

public function products() {

Userphp return $this-rhasMany('Product’);

b start 1
b storage l|
P tests
P views
filters.php
routes.php
P bootstrap
» public
W vendar
gitattributes
.gitignore
artisan
COMPOsEr.json
composer.lock
CONTRIEUTING.md
phpunit.xml
readme.md

server.php

Line 12, Column 2 Tab Size: 4

Figure 14. Category model

To create the migration for this model we issue the command “$ php artisan mi-

grate:make” followed by the name of the migration.

Metropolia

27

Jamal@Jamal-PC cygdrive/c/wamp/ wew/ ArmelSolutions

§ php artisan migrate:make create_categories_table
Created Migration: 2014_04_02_ 225011 create_categories_table
Generating optimized class Toader

Figure 15. Migration creation

We then open the migration file inside app/database/migrations and we write the schema

using the Schema class. [21]

File Edit Selection Find View Goto Tools Project Preferences Help
FOLDERS
¥ Armel5olutions

2014_04_02_225011_create_categories_table.php =

¥ app <?php
b commands
use Illuminate‘\Database\S5chema\Blueprint;

use Illuminate\Database\Migrations\Migration;

» config
P contrallers
¥ database
O GRS class CreateCategoriesTable extends Migration {
gitkeep
2014 04_02_225071_cre:
2014_04 07_112650_cred
P seeds
production.sglite
P lang public function up()
» models {
b start

FE:S

[N T+« L s R W R N T SR Y

* Run the migrations.
P
* @return void

ey
i

Schema: :create(' categories’, function($table){
I storage $table->increments(id");
P tests $table->string(name’);
> views $table->timestamps();
filters.php }) H
routes.php }
» bootstrap
- public
b vendor
.gitattributes
.gitignare

l,l':(:l:

* Reverse the migrations.
.

* @return void

:-r.l,a'

public function down()

composer.lock i
COMTRIBUTING. md 1
phpunit.xml -

artisan
COMpPOoserjson

Schema: :drop(‘categories’),l

readme.md

server,php

Figure 16. Schema builder with create and drop methods

To create the table in the database all we have to do now is to issue the command “$
php artisan migrate”.

Metropolia

28

Jamal@lamal-PC /cygdrive/c/wamp /v Armel Solutions

% php artizan migrate
Migration table created successfully.)
Migrated: 2014_04_02_225011_create_categories_table

Figure 17. Artisan migrate to create the table in the database

Name Type Collation Attributes Null Default Extra
] 1id int(10) UNSIGNED Ng None AUTO_INCREMENT
[] 2 name varchar(255) utfé unicode ci No None
[[] 3 created at timestamp No 0000-00-00 00:00:00
[] 4 updated_at timestamp No 0000-00-00 00:00:00

Figure 18. Categories table created successfully

We follow the same previous steps to create the Product model, which is saved inside
app/models/Product.php, and it will have a “belongsTo” relationship with the Category
model. [21]

File Edit Selection Find View Goto Tools Project Preferences Help
FOLDERS
¥ ArmelSolutions
¥ app <?php
¥ commands
> config class Product extends Eloquent {

Product.php

b controllers
b database protected $fillable = array('category id', 'title’
» lang , 'description', 'price', 'availability', '
¥ models image');
Category.php
Product.php public static $rules = array(
User.php "category_id'=>'required|integer’,
b start "title'=>'required|min:2",
» storage "description'=>"required|min:28",
b tests 'price'=>"required|numeric’,
b views ‘availability'=>"integer’,
filters.php "image'=>'required|image|mimes:jpeg, jpg,bmp,
routes.php png,gif'
P bootstrap);
P public
» vendor public function category() {
.gitattributes return $this->belongsTo('Category');
.gitignare ¥
artisan i‘l
COmMpOser.json
composer.lock
CONTRIBUTING.md
phpunitxml
readme.md

server.php

Line 19, Column 2 Tab Size: 4

Figure 19. Product model

Metropolia

29

File Edit Selection Find View Goto Tools Project Preferences Help

FOLDERS
. 2014_04_07_112650_create_products_table.php »
W ArmelSolutions

<?php

¥ app

P commands
use Illuminate‘\Database\Schema\Blueprint;

use Illuminate‘\Database\Migrations\Migration;

» config
P controllers
V¥ database

class CreateProductsTable extends Migration {
¥ migrations -

[Y Y

.gitkeep

2014_04_02_225011_create.

2014_04_07_112650_create|
P seeds

Ju
* Run the migrations.
«

* @return void
production.sqlite =

¥ lang public function up()
b models {
¥ start Schema: :create('products’, function($table){
P storage $table->increments(id’);
P tests $table->integer(category id")->unsigned();
b views $table->foreign('category_id")-»references('id')-»on('categories’);
filters.php $table->string(‘title’);
routes.php $table->text(description”);
» bootstrap $table->decimal('price’, 6, 2);
» public $table-»boolean(availability’)->default(l);
$table->string(image’);
$table->timestamps();

bR

b vendor
.gitattributes
.gitignore }

artisan

COMPOSEr.json JER

composerlock . . .
> * Reverse the migrations.

CONTRIBUTING. md -

phpunit.xml * @return void

readme.md =7

server.php public function down()

{
¥

Schema: :drop(' products’);

Figure 20. Product schema

The types must be always the same. So we need to be careful to always make the foreign

key column unsigned when it references an incrementing integer. [6]

Name Type Collation Attributes Null Default Extra
[] 1id int{10) UNSIGHED No MNone AUTO INCREMENT
[] 2 category_id int(10) UNSIGHED Np None
[] 3 title varchar(255) utf8_unicode ci No Mone
[] 4 description fexi utfs_unicode_ci No MNone
[] &5 price decimal(6,2) No MNone
[] 6 availability finyint(1) No 1
[] 7 image varchar(255) utid_unicode_ci No None
[[] & created at timestamp No 0000-00-00 00:00:00
[] 9 updated at timestamp No 0000-00-00 00:00:00

Figure 21. Products table created successfully

The User model is a special case because of its security implications, it will be covered
later in the “Authenticating users” section of this work.

Metropolia

30

4.2.3 Image managing as an example of dependency management

For our products viewed in the store we need to upload images and resize them to be
able to preview them as thumbnails. To do so, we need to utilize an external package
named Intervention/image. To add this new dependency, we must install it through Com-

poser. We head to our composer.json file and add the following highlighted line: [4, 109.]

File Edit Selection Find View Goto Tools Project Preferences Help
FOLDERS
¥ ArmelSolutions
b app
» bootstrap
b initializr
» public
P vendor
.gitattributes
.gitignare

COMPOSErjsan

{

"name": "laravel/laravel”,
"description”: "The Laravel Framework.",
"keywords": ["framework", "laravel"],
"license": "MIT",
"reguire": {
"laravel/framework": "4_.1_%",
Pinterventioniimage":'"dev—master"

artisan

(=T = I B VI [R NN N

¥y
"autoload": {

"classmap": [
"app/commands",
"app/controllers”,
"app/models",
"app/database/migrations”,
"app/database/seeds",
“app/tests/TestCase.php”

COMPOSser.json

[y
]

composer.lock
CONTRIBUTING.md
phpunit.xml

[
[T Ny

readme.md

[y
=9

senver.php

[
00 = LA

]

[y
=]

¥s
"scripts": {
"post-install-cmd": [
"php artisan clear-compiled",
"php artisan optimize"

ST LS S S
BwWok R ®

1,

"post-update-cmd": [
"php artisan clear-compiled",
"php artisan optimize"

[S N ¥
GO = o un

1,
"post-create-project-cmd": [
"php artisan key:generate”

[Y
fd = I D

Figure 22. Adding a new dependency through Composer

And then we run the following Composer command in our terminal: “$ composer update”.

This will install the Intervention package in the vendor directory. To make sure that
Laravel autoloads it we also need to add the service provider of the class. We need to

Metropolia

31

go to app/config/app.php in the service provider array section and add the following high-

lighted line for Intervention:

File Edit Selection Find View Gote Tools Project Preferences Help
FOLDERS
. app.php
¥ ArmelSolutions
¥ app Autoloaded Service Providers
b commands 000 [l /0 TS C oo C oo oC o oooooooooooooo -
¥ config The service providers listed here will be automatically loaded on the
» packages request to your application. Feel free to add your own services to
Bhicsing this array to grant expanded functionality to your applications.
E 3 l,a'
app.php !
auth.php . .
cache.php ‘providers’ =» array(
ile.ph . . - - - . .
:":i'” : 'I1luminate\Foundation\Providers\ArtisanServiceProvider’,
a_ ALY 'T1luminate\Auth\AuthServiceProvider’,
malcho *I1luminate\Cache\CacheServiceProvider®
¥
TUELEITE *I1luminate\Session‘\CommandsServiceProvider’,
remote.php ‘I1luminate‘\Foundation‘\Providers\ConsoleSupportServiceProvider’,
session.php *I1luminate\Routing\ControllerServiceProvider’,
view.php 'I1luminate\Cookie\CookieServiceProvider®,
workbench.php ‘Illuminate’\Database\Database5ServiceProvider’,
b controllers 'I1luminate\Encryption\EncryptionServiceProvider”,
b database 'I1luminate\Filesystem\FilesystemServiceProvider”,
» lang 'I1luminate\Hashing\HashServiceProvider’,
» models 'T1luminate\Html\HtmlServiceProvider’,
» start ‘I1luminate’\Log\logServiceProvider®,
» storage 'T1luminate\Mail\MailServiceProvider’,
™ e 'Il1luminate\Database\MigrationServiceProvider®,
> views 'I1luminate\Pagination\PaginationServiceProvider”,
filters.php 'I1luminate\Queue\QueueServiceProvider’,
routes.php 'I1luminate\Redis\RedisServiceProvider’,
N ' 'I1luminate\Remote\RemoteServiceProvider”,
ootstra . s . s = .
A 2 'TI1luminate’\Auth\Reminders\ReminderServiceProvider’,
n 'a_ = 'I1luminate\Database‘\SeedServiceProvider”,
- *I1luminate\Session\SessionServiceProvider’,
F vendar *I1luminate\Translation\TranslationServiceProvider’,
-gitattributes ‘Il1luminate\Validation\ValidationServiceProvider®,
-gitignore *I1luminate\View\ViewServiceProvider’,
artisan ‘I1luminate‘\Workbench\WorkbenchServiceProvider®,
composerjson ['Inter‘vent:'Lon\Image\ImageSer‘vicePr‘ovider",|
composer.lock

Figure 23. Binding the service provider with the Laravel setup

After finishing the previous step, we can have access to the Intervention library through
the image alias autoloaded by Laravel. To do so, and in the class aliases section of the
same file we need to add the Facades [19], so we can simply access it via an alias in our

alias array: [4, 109.]

Metropolia

32

File Edit Selection Find View Goto Toels Project Preferences Help
FOLDERS
¥ Armelsolutions
¥ app | the aliases are “lazy” loaded so they don't hinder performance.

app.php L4

!
P commands !

G "aliases” = array(

P packages
b testing "App’ => "Illuminate\Support\Facades\App',
"Artisan’ 'Illuminate’\Support\Facades\Artisan’,
"Auth’ 'I1luminate\Support\Facades\Auth',
ST 'Blade’ 'Illuminate\Support\Facades\Blade',
cache.php "Cache’ =» 'Illuminate‘\Support\Facades\Cache’,
compile.php 'Classleader’ 'I1luminate\Support\ClassLoader’,
'Config' 'I1luminate\Support\Facades\Config",
) "Controller’ 'Illuminate’\Routing\Controller”,
mail.php "Cookie’ 'I1luminate\Support\Facades\Cookie",
gueue.php "Crypt’ 'I1luminate\Support\Facades\Crypt’',
remate.php ‘DB’ 'I1luminate’\Support\Facades\DB",
"Elogquent’ => "Illuminate\Database\Eloquent\Model’,
'Event’ 'I1luminate\Support\Facades\Event',
view.php 'File’ => 'Illuminate\Support\Facades\File",
workbench.php ‘Form’ 'I1luminate’\Support\Facades\Form",
'Hash' 'I1luminate\Support\Facades\Hash"',
"HTML' 'I1luminate’\Support\Facades\HTML",
"Input’ 'I1luminate\Support\Facades\Input’,
lang 'Lang’ 'I1luminate\Support\Facades\lang"’,
madels 'Log’ 'I1luminate\Support\Facades\Log",
start "Mail’ 'I1luminate’\Support\Facades\Mail",
'Paginator’ 'I1luminate’\Support\Facades\Paginator’,
'Password’ => "Illuminate\Support\Facades\Password",
P tests "Queue’ 'I1luminate’\Support\Facades\Queue',
» views 'Redirect’ 'I1luminate\Support\Facades\Redirect’,
'Redis’ 'I1luminate’\Support\Facades\Redis",
'Request’ 'Illuminate\Support\Facades\Request’,
'Response’ 'I1luminate\Support\Facades\Response”,
» bootstrap 'Route’ 'I1luminate’\Support\Facades\Route',
» initializr "Schema’ 'Illuminate\Support\Facades\Schema’,
'Seeder’ 'I1luminate‘\Database\Seeder",
'Session’ => "Illuminate\Support\Facades\Session’,
¥ vendor "SSH' 'Illuminate\Support\Facades\5SH',
.gitattributes ‘str’ 'I1luminate\Support\str’,
"URL' 'I1luminate\Support\Facades\URL',
'Validator® 'Illuminate\Support\Facades\Validater’,
'View' =» 'Illuminate‘\Support\Facades\View",
composerjson [Image® - ---------- => "Intervention\Image\Facades\Image',|
composer.lock

database.php

session.php

controllers
database

b storage

filters.php
routes.php

» public

.gitignore
artisan

Figure 24. Adding the Facade for Intervention

The last step is to create a location to store our uploaded images. We will add a folder

named “products” to the directory public/image/.

The image save and resize methods will be used in our products controller.

4.2.4 Creating the Controllers and their respective Routes

As we've seen earlier in this work, the primary function of a Controller is to handle re-
guests and pass data from the Model to the Views. Thus a Controller can be considered
as the link between our Model and Views.

e Categories controller

Metropolia

33

To create the Categories Controller, inside app/controllers directory we add the following
CategoriesController.php file [21]

File Edit Selection Find View Goto Tools Project Preferences Help

FOLDERS
X CategoriesController.php ®
¥ ArmelSolutions

¥ app

class CategoriesController extends BaseController {
P commands
P config public function _ construct() {
¥ controllers $this->beforeFilter('csrf', array('on'=>'post'));
}
.gitkeep
BaseCantroller.php public function getIndex() {
CategoriesContraller.php return View: :make{'categories.index"}
HomeController.php ->with({'categories’, Category::all(});
' }
b database

» lang public function posgtCreate() {
¥ models $validator = Validator::make(Input::all(), Category::$rules);

Category.php

if ($validator-:passes()) {

User.php fcategory = new Category;
P start fcategory->name = Input::get('name’);
» storage $category->save();

P tests return Redirect::to{ admin/categories/index")

P views -»>with('message’', 'Category Created');
filters.php }
routes.php return Redirect::to('admin/categories/index"})
bootstrap -:with('message’, 'Something went wreng')
public -:withErrors($validator)
IR ->withInput();

.gitattributes ¥

.gitignore public function postDestroy() {

artisan fcategory = Category::find(Input::get(id’'});

composerjson if (Scategory) {
fcategory->delete();

CONTRIBUTING.md return Redirect::to('admin/categories/index')

phpunit.xml ->with{ 'message’', 'Category Deleted');

composer.lock

readme.md }

server.php return Redirect::to(admin/categories/index"}

-»with('message’', 'Something went wrong, please try again');

Figure 25. Categories Controller

Then we can register the corresponding route in app/routes.php file. To do so we add

the following highlighted line to the aforementioned file which will indicate the URI:

Metropolia

34

File Edit Selection Find View Goto Tools Project Preferences Help

FOLDERS
X routes.php
¥ ArmelSolutions

¥ app

> commands
P config
¥ controllers
.gitkeep
EEeEIT el Here is where you can register all of the routes for an application
CategoriesCaontroller.php It's a breeze. Simply tell Laravel the URIs it should respond to
HomeController.php and give it the Closure to execute when that URI is requested.
database
lang
models Route::get("/", function()

start
return View::make("hello');

e

- storage
P tests

P views [Route: : controller(admin/categories’, 'CategoriesController');)
filters.php

routes.php
bootstrap
initializr
public
vendar
.gitattributes
.gitignore
artisan
COMPOSErjson
composer.lock
CONTRIBUTING. md
phpunit.xml
readme.md

server.php

Figure 26. Tying the categories Controller’s action to a set of routes

The app/routes.php file will be edited later to include more routes from other Controllers.

¢ Products controller

Similarly we create the products Controller with the following code inside app/control-
lers/ProductsController.php:

Metropolia

35

<?php
class ProductsController extends BaseController ({

public function _ construct() {
$Sthis->beforeFilter ('csrf', array('on'=>'post'));

}

public function getIndex() {
Scategories = array();

foreach (Category::all() as S$category) {
Scategories[S$Scategory->id] = S$category->name;

}

return View::make ('products.index")
->with ('products', Product::all())
->with ('categories', $categories);
}
public function postCreate() {
Svalidator = Validator::make (Input::all(), Product::S$rules);

if ($validator->passes()) {
Sproduct = new Product;
Sproduct->category id = Input::get ('category id'");
Sproduct->title = Input::get('title’);
Sproduct->description = Input::get('description’);
$Sproduct->price = Input::get('price');

$image = Input::file('image');

Sfilename = time () ."-".$image->getClientOriginalName () ;

Image: :make ($Simage->getRealPath ())->resize (468,249) ->save (pub-
lic_path().'/img/products/'.$filename) ;

$Sproduct->image = 'img/products/'.$filename;

Sproduct->save () ;

return Redirect::to('admin/products/index")
->with ('message', 'Product Created');

}

return Redirect::to('admin/products/index")
->with ('message', 'Something went wrong')
->withErrors ($validator)
->withInput () ;
}
public function postDestroy () {
Sproduct = Product::find(Input::get('id"));

if ($product) {
File::delete('public/'.$product->image) ;
Sproduct->delete () ;
return Redirect::to('admin/products/index"')
->with ('message’', 'Product Deleted');
}
return Redirect::to('admin/products/index"')
->with ('message', 'Something went wrong, please try again');

}

public function postToggleAvailability () {

Sproduct = Product::find(Input::get('id"));

if ($product) {
$Sproduct->availability = Input::get('availability');
Sproduct->save () ;
return Redirect::to('admin/products/index')->with('message', 'Product Up-

dated');
}

return Redirect::to('admin/products/index")->with('message', 'Invalid
Product') ;
}
}

/ 4

Metropolia

36

Then we update again our set of routes by adding the following line to app/routes.php:

Route::controller('admin/products’, 'ProductsController’);

e Store controller

<?php
class StoreController extends BaseController {

public function _ construct() {
Sthis->beforeFilter('csrf', array('on'=>'post'));

}

public function getIndex() {
return View: :make ('store.index')
->with ('products', Product::take(4)->orderBy('created at', 'DESC')->get());
}

public function getView ($id) {
return View::make ('store.view')->with('product', Product::find($id));

}

public function getCategory(Scat id) {
return View: :make ('store.category')
->with ('products', Product::where('category id', '=', $cat id)->paginate (6))
->with ('category', Category::find($Scat id));
}

public function getSearch() {
$keyword = Input::get('keyword');

return View: :make ('store.search')
->with ('products', Product::where('title', 'LIKE', '%'.S$keyword.'%')->get())
->with ('keyword', $keyword) ;
}

public function postAddtocart () {
$Sproduct = Product::find(Input::get('id"));
Squantity = Input::get ('quantity');

Cart::insert (array (
'id'=>$product->id,
'name'=>$product->title,
'price'=>$product->price,
'quantity'=>$quantity,
'image'=>$product->image

))

return Redirect::to('store/cart');

}

public function getCart () {
return View::make('store.cart')->with('products', Cart::contents());

}

public function getRemoveitem ($identifier) {
$item = Cart::item($identifier);
Sitem->remove () ;
return Redirect::to('store/cart');

}

public function getContact () {
return View: :make ('store.contact');

}

Metropolia

37

e Base Controller

To be able to view our products by category. We will start by updating the dropdown
menu so that it actually uses our categories from the database instead of the static links
that our layout is using. Our entire web application uses that categories dropdown menu
so that means that when we go to populate it, all our Views need to have access to that
categories data. In order to do this, we need to set up a before filter in our Base Control-
ler's constructor to ensure that all of our Controllers inherit it and thus all the Views site

wide will share that same categories data. [21]

File Edit Selection Find View Gotc Tools Project Preferences Help
FOLDERS

¥ ArmelSolutions
¥ app

BaseController.php .
<?php

| GrmEmiE class BaseController extends Controller {

» config

¥ controllers public function __construct() {
$this-rbeforeFilter(function() {
View::share('catnav', Category::all());

hE

.gitkeep
BaseController.php
CategoriesController.php

[T= I T R R T S

i

HomeController.php
ProductsController.php

* setup the layout used by the controller.

StoreController.php
b database * fireturn void

» lang /
» libs B protected function setuplLayout()

- e { if (! is_null($this->layout))

P start

P storage fthis-:layout = View::make($this->layout);
b tests

P views

filters.php

Figure 27. Base Controller

Now we need to update all our controllers to instead of overwriting the Base Controller’s
constructor they just append to it. We add the following highlighted line to all our control-

lers:

Metropolia

38

File Edit

FOLDERS
¥ ArmelSolutions

¥ app 1

2

Selection Find View Goto Tools Project Preferences Help

CategoriesController.php &

<?php

¥ commands 3% class CategoriesController extends BaseController {

¥ config

W controllers
gitkeep
BaseCaontroller.php

CategoriesController.php
HomeCantraller.php
ProductsCaontroller.php
StoreController.php

b database

> lang

P libs

> maodels

b start

b storage

P tests

P views

Y

public function construct(} {
[parent::__construct();
$this->beforeFilter('csrf', array('on'=>"post'});

b

public function getIndex() {
return View::make('categories.index’)
-»with(categories’, Category::all());

¥

public function postCreate()} {

$validator = Validator::make(Input::all(), Category:

it ($validator-:passes()) {
$category = new Category;
$category->name = Input::get('name");
$category->save();

return Redirect::to(admin/categories/index")
-»with('message’, 'Category Created');

5

filters.php

Figure 28. Appending to the Base Controller

e Users controller

The making of this Controller will be covered in full details in the “Authenticating users”

section.

4.2.5 Creating the views

As was explained before in this work, Views receive data from a Controller (or Router)
and inject it into a template, therefore, helping us to separate the business logic from the
presentation layer in your web application.

o Categories View

To add our first View, that is, the categories view, we simply create a file called in-

dex.blade.php inside app/views/categories and add the following content to it:

This is the View used by the admin to manage the categories:

Metropolia

39

@extends ('layouts.main')
@section('content')
<div id="admin">
<hl>Categories Admin Panel</hl><hr>
<p>Here you can view, delete, and create new categories.</p>
<h2>Categories</h2><hr>

@foreach ($categories as $category)

{{ $category->name }} -
{{ Form: :open (array('url'=>'admin/categories/destroy’,
'class'=>"'form-inline')) }}
{{ Form::hidden('id', $category->id) }}
{{ Form: :submit('delete') }}
{{ Form::close() }}

@endforeach

<h2>Create New Category</h2><hr>

Rif ($errors->has())
<div id="form-errors'">
<p>The following errors have occurred:</p>

Rforeach ($errors->all() as S$Serror)
{{ $error }}</1i>
@endforeach

</div><!-- end form-errors —-->
Rendif

{{ Form: :open (array('url'=>'admin/categories/create')) }}
<p>
{{ Form::label('name') }}
{{ Form::text('name') }}
</p>
{{ Form: :submit('Create Category', array('class'=>'secondary-cart-
btn')) }1}
{{ Form::close() }}
</div><!-- end admin -->

@stop

e Products View

This is the View used by the admin to manage the products.

(&
Metropolia

40

@extends ('layouts.main')

@section('content')

<div id="admin">
<hl>Products Admin Panel</hl><hr>
<p>Here you can view, delete, and create new products.</p>
<h2>Products</h2><hr>

@foreach ($products as $product)
<1li>
{{ HTML: :image ($product->image, $product->title, array('width'=>'50')) }}
{{ $product->title }} -
{{ Form: :open (array('url'=>'admin/products/destroy', 'class'=>'form-in-
line')) }}

{{ Form::hidden('id', $product->id) }}
{{ Form: :submit('delete') }}
{{ Form::close() }} -

{{ Form: :open (array ('url'=>'admin/products/toggle-availability',

'class'=>'form-inline')) }}

{{ Form::hidden('id', $product->id) }}

{{ Form::select('availability', array('l'=>'In Stock', '0'=>'Out of Stock'),

$product->availability) }}

{{ Form::submit('Update') }}
{{ Form::close() }}
</1i>
@endforeach

<h2>Create New Product</h2><hr>
Qif ($Serrors->has())
<div id="form-errors">
<p>The following errors have occurred:</p>

@foreach ($errors->all() as $error)
{{ $error }}</1li>

@endforeach

</div><!-- end form-errors -->
Qendif
{{ Form: :open (array ('url'=>'admin/products/create', 'files'=>true)) }}
<p>

{{ Form::label('category_ id', 'Category') }}
{{ Form::select('category id', $categories) }}
</p>
<p>
{{ Form::label('title') }}
{{ Form::text('title') }}
</p>
<p>
{{ Form: :label ('description') }}
{{ Form::textarea('description') }}

{{ Form::label('price') }}
{{ Form::text('price', null, array('class'=>'form-price')) }}

</p>

<p>
{{ Form::label('image', 'Choose an image') }}
{{ Form::file('image') }}

</p>

{{ Form::submit ('Create Product',6 array('class'=>'secondary-cart-btn')) }}
{{ Form::close() }}
</div><!-- end admin -->

@stop

Store Views

(&
Metropolia

41

All the Store Views listed here are those Views that a non-admin user can View and

interact with. The following code for the Index View is used as the basis for the following

Views.

@extends ('layouts.main')

@section('promo')

<section id="promo">
<div id="promo-details">
<h1>Today's Deals</hl>
<p>Checkout this section of

products at a discounted price.</p>
Shop Now

</div><!-- end promo-details -->
{{ HTML: :image ('img/promo.png', 'Promotional Ad')}}
</section><!-- promo -->

@stop

@section('content')

<h2>New Products</h2>
<hr>
<div id="products">
@foreach ($products as S$product)
<div class="product">
id }}">
{{ HTML: :image ($product->image, $product->title, ar-

ray ('class'=>'feature', 'width'=>'240', 'height'=>'127')) }}

<h3>id }}">{{ $product->title

}}</h3>

<p>{{ $product->description }}</p>

<h5>
Availability:
availabil-
ity) ">
{{ Availability: :display($product->availability) }}

</h5>
<p>
{{ Form: :open(array('url'=>'store/addtocart')) }}
{{ Form::hidden('quantity', 1) }}
{{ Form::hidden('id', $product->id) }}
<button type="submit" class="cart-btn">
{{ $product->price }}
{{ HTML: :image ('img/white-cart.gif', 'Add to Cart') }}
ADD TO CART
</button>
{{ Form::close() }}
</p>
</div>
@endforeach
</div><!-- end products -->
@stop

il

/ Metropolia

42

For the “Availability” class which can be inStock or outOfStock. Our availability filed value
in the database is either 0 or 1. So we need to write two helper methods, one which will
return either the inStock or outOfStock class name and another one which will return the
value In Stock or Out of Stock which we can use to display inside this View. We create
a new folder named libs inside the app directory to hold our personal libraries. And we
add this Availability file: [21]

File Edit Selection Find View Goto Tools Project Preferences Help
FOLDERS

¥ Armelsolutions
¥ app

Availability.php

<?php

b commands

class Availability {

P config

P controllers

P database

P lang

V¥ libs
Availability.php }

P maodels }

P start public static function displayClass(%
b storage availability) {
> tests if ($availability == @) {
echo "outofstock™;
} else if (%availability == 1) {
echo "instock”;

public static function display($availability) {
if ($availability == @) {
echo "Out of Stock™;
} else if ($availability == 1) {
echo "In Stock”;

[E=J - O VI SETR S

P views
filters.php
routes.php T

bootstrap

public

vendor

.gitattributes

.gitignore

artisan

COMPOSErjson

composer.dock

COMNTRIBUTING.md

phpunit.xml

readme.md

server.php

Figure 29. Availability class with the helper methods

Then we need to make sure that Laravel downloads it for us. To do so we go to
app/start/global.php file and we add the following highlighted line:

Metropolia

43

File Edit Selection Find View Goto Tools Project Preferences Help
FOLDERS

¥ Armel5olutions
¥ app

global.php

P commands
P config

P controllers
b database
P lang

(s WV R - T S

[=]

In addition to using Composer, you may use the La
¥ libs load your contrellers and models. This is useful 4
Availability.php your classes in the "glebal™ namespace without Con

> models
¥ start

artisan.php ClassLoader::addDirectories(array(

global.php
app_path()."'/commands’,

app_path(). ' /contrellers’,
P storage app_path(). ' /models',
b tests app_path(). ' /database/seeds’,

» views [app_path().'/1ibz",)
filters.php

local.php

routes.php
P bootstrap
» public
P vendor
.gitattributes
.gitignore Here we will configure the error logger setup for
is built on top of the wonderful Monolog library.

i
artisan build a basic log file setup which creates a singl

COMPaserjson
compaoser.lock
CONTRIBUTING.md

Figure 30. Adding a path to our libraries folder

And similarly, we add the other Views for the Store which include:

= Category: Where the user can view the products by category.

= View: Where the user can view products individually.

= Search: Where the user can search the whole website using a keyword.

= Cart: Where the user can view and edit the details of her/his order before check-
ing out (through moltin package and using class Cart).

= Contact: Where the user can find the details for contacting the business.

Metropolia

44
e Users View

The making of this View will be covered in full details in the “Authenticating users” sec-

tion.

4.3 Authentication and security

4.3.1 Authenticating users

Now we will work on our authentication system. In order for the customers to place orders
and review their previous order history they will need to have an account. First we are

going to need a table to store our users’ data in.

We create a new migration file by issuing the following command in our terminal:

$ php artisan migrate:make create_users_table

Then we build our users Model schema by editing the created migration.

i
Metropolia

45

File Edit Selection Find View Gote Tools Project Preferences Help
FOLDERS

¥ Armel5olutions
¥ app

2014_04 09 213205_create_users_table.php #

<?php

. comr.nands uze Illuminate\Database\Schema\Blueprint;
P config use Illuminate\Database\Migrations\Migration;
P controllers

¥ database class CreatelsersTable extends Migration {

¥ migrations T

(=T = I [RV, B N WY S S

gitkeep
2014 04 09 145828 cre
2014_04_09_153153_crd
ESRE public function up()
b seeds i
production.sglite Schema: :create('users’, function($table){
$table->increments("id");
$table->string(' firstname");
P libs ftable-:string('lastname’);
P models ftable-:string(email’);
» start ftable-:string(' password’);
$table->string('telephone’);
$table-*boclean(' 'admin')->default(a);
P tests $table->timestamps();
¥ views 1
P categories

* Run the migrations.

* f@return void
®

» lang
b storage

P emails)

¥ layouts % Reverse the migrations.
main.blade.php

P products

¥ store

* [@return wvoid
public function down()
category.blade.php {

index.blade.php Schema: :drop('users’);

search.blade.php b

view.blade.php

Figure 31. Schema for the users table

As was mentioned earlier in this work, by default users are not administrators (default).

We run the migration to create the table in our database using the following command:

$ php artisan migrate

Since we do not have any backend data yet, we are going to use a Seeder to populate

it with some data. We issue the following command:

Metropolia

46

Jamal@Jamal-PC /cygdrive/c/v

% php artizan db:zeed
Seeded: UsersTableSeeder

Figure 32. Seeding the database

We then create under app/database/seeds directory the Users Table Seeder file con-

taining the following code:

File Edit Selection Find View Gote Tools Project Preferences Help
FOLDERS

¥ Armelsolutions
¥ app

UsersTabieSeederphp %

|<2php

IS class UsersTableSeeder extends Seeder {

P config

¥ controllers public function run() {

Fuser = new User;

fuser->firstname = "Jon';

fuser-:lastname = 'Doe’;
CategoriesController.php $user->email = 'jonf@doe.com’;
HomeController.php fuser-:password = Hash::make('mypassword');
$Suser-:telephone = '5557771234°;
Fuser->admin = 1;
Suser-ssave();

.gitkeep
BaseController.php

[Tl RN T I TR R

ProductsController.php
StoreController.php
UsersController.php

¥ database

> migrations

¥ seeds
.gitkeep
DatabaseSeeder.php
UsersTableSeeder.php

production.sglite
> lang
P libs

Figure 33. Adding an admin through the Seeder

Then we make our Categories and Products admin panels accessible only to the logged-
in admins. We do so by adding the following highlighted line to both files:

Metropolia

File Edit Selection Find View Goto Tools Project Preferences Help

oEs CatagoriesControlle
a iesController, ®
¥ ArmelSolutions ohe
¥ app <?php

[ceomEREE class CategoriesController extends BaseController {

> config

¥ controllers public function _ construct(} {
parent::__construct();
$this->beforeFilter(csrf', array('on'=>"post’));

|$this->beforeFilter(admin’);

.gitkeep

BaseController.php

WDOED e O M e L R

CategoriesController.php

1

HomeController.php

ProductsController.php 11 public 'unct:lL:un gEtInd?x() 1] . .
12 return View::make(' categories.index')
storeController.php 13 ->with('categories”, Category::all()});

UsersController.php }

P database

» lan 16 public function postCreate() {

- & 17 $validator = Validator::make(Input::all(), Category
libs

> maodels 19 if (fvalidator-:passes()) {

» start 28 $category = new Category;) .

O SoEE 21 $category:>name —.Input. cget("name’);

22 Scategory-:save();

P tests

P views return Redirect::to('admin/categories/index"}
filters.php -:with('message’, 'Category Created');

Figure 34. An admin before filter

Then we need to go to the appf/filters.php file to add the admin filter’s route.

File Edit Selection Find View Goto Tools Project Preferences Help
FOLDERS

¥ ArmelSolutions

¥ app

filtersphp

P commands

config

controllers

database The "guest" filter is the counterpart of the authentication filters as
it simply checks that the current user is not logged in. A redirect

lan
¢ response will be issued if they are, which you may freely change.

libs
models
start
storage

tests if (Auth::check()) return Redirect::to('/');
views 1

Route::filter('guest’, function()

YYYYYYYYYY

filters.php
routes.php /* Admin Filter */
¥ bootstrap Route::filter('admin', function()
» public
P vendor
.gitattributes

.gitignore

if (lauth::user() || Auth::user()->admin != 1) return Redirect::to('/');
1)

artisan

COMPOSErjson

Figure 35. Adding the admin filter.

47

After all the above steps only the logged-in admin can access the categories and prod-

ucts panels. Other users will be redirected to the Store view.

Metropolia

48

4.3.2 Securing the application

Our web application in its present form has a number of vulnerable endpoints. And they
cannot be addressed all in this work but the most serious one will be fixed here. Attacks
are conducted by targeting a URL that has side-effects (that is, it is performing an action
and not just displaying information). First of all, all the URLs that handle user input are
not checking this CSRF token.

To address this Cross-site request forgery (CSRF) we add the following highlighted line
to all our Controllers: [3, 58]

File Edit Selection Find View Goto Tools Project Preferences Help
OLDERS
¥ Armelsolutions
¥ app

CategoriesController.php %

<?php

| GmEnGE class CategoriesController extends BaseController {

W config

¥ controllers public function _ construct() {
parent:: construct();
[$this->beforeFilter(csrf', array(on'=>"post'));|
$this->beforeFilter(admin');

gitkeep

[= N R T I R FT R ST

BaseController.php

CategoriesController.php 1

HomeController.php
public function getIndex() {
return View: :make('categories.index")
->with('categories’, Category::all(});

ProductsController.php
StoreController.php
UsersController.php

b database
public function postCreate(} {

o $validator = Validator::make(Input::all(), Category::$n

P libs
¥ models if ($validator-:passes()) {
Category.php $Scategory = new Category;

Figure 36. Adding a CSRF before filter

Then we need to go to the appf/filters.php file to add the CSRF filter’s route.

Metropolia

49

File Edit Selection Find View Goto Tools Project Preferences Help
FOLDERS

¥ ArmelSolutions

¥ app

filters.php

» commands
config
controllers
database
lang

libs.
models
start

The CSRF filter is responsible for protecting your applicatif-
cross-site request forgery attacks. If this special token inf===
session does not match the one given in this request, we'll

storage ey

tests

views Route::filter(csrf’, function() |
filters.php { [
routes.php if- (Session::token()-!=-Input::get(’_token')) |
» bootstrap —{ [
» public ————throw-new-I1luminate\Session\TokenMismatchException;]

>
>
>
>
>
>
>
>
>
>

» vendor
.gitattributes
.gitignore

Figure 37. The CSRF filter

And that concludes our process of building an eCommerce web application using Laravel

4 framework.

Metropolia

50

5 Conclusion

Working on this project | faced a typical PHP developer problem, which is to be able to
build a descent looking and feature rich web application in a few days. | needed to find
a modern PHP framework that would let rapid developing, while also providing options
for expandability on a large scale. After examining different PHP frameworks and com-
paring their abilities at handling an MVC architecture pattern | came up with the ideal
choice for a PHP MVC framework, which is Laravel. At first, learning a new framework
might seem an overwhelming task, but it was it was not the case with Laravel, thanks to
its clear and concise documentation, and its developers that make a lively active com-
munity. Furthermore, | found a good CRUD web application on GitHub which appeared
to be a good introduction to Laravel's world. The said application uses twitter's Bootstrap

as well and it was a great help while developing this project. [20]

Early on in the development process with Laravel, one would feel at ease with its sim-
plicity and ease of use. My own experience with another big framework, that is, .NET
framework is that one ends up investing an important amount of time struggling with
incomprehensible XAML configuration settings, complex syntax, unfinished documenta-
tion, and a feeling in the end that the framework’s purpose of saving time and effort was
not truly achieved. It is the other way around with Laravel, which is actually one of its
major strengths. My own experience with Laravel is that it made my development pro-

cess a more enjoyable experience.

Laravel is lightweight enough not to undermine the project’s planning and development
process yet it does still offer an adequate structure and balanced amount of built-in fea-
tures which let one pay more attention to the business logic part of their web application
rather than waste too much time with the tedious basics and reinventing the wheel each
time when starting a new project. Among these features, we can mention Laravel’s very
own ORM, named Eloquent which is a simple implementation of PHP ActiveRecord,
which works in a simple yet effective way. Indeed, the schema for our project was not
very complex but not very basic either and yet no problems were encountered. Laravel
is also Composer ready which comes in handy in managing the dependency of our pro-
ject’s dependencies. Other features worth mentioning are Artisan, Blade, authentication

and security.

[
Metropolia

51

The requirements of our project were to create a CRUD eCommerce web application for
the Armel Solutions freelance start-up. It required also admin panels for the creation and
deletion of new categories and products. Authenticating users and accepting their orders.

| succeeded in building a browsable web application that fulfils all the requirements in a
relatively short period of time. The majority of that time was in fact spent on planning the
business logic of the application and its data modelling. Minimal time was allocated for
the development process itself.

Although developing with Laravel was a great experience, there is still room for improve-
ment for example, when having a closer look at the documentation, the transition be-
tween the introductory “getting started” section and the documentation for the API itself

is quite abrupt.
Another problem faced is the rarity of academic references for Laravel 4, which might

improve with time especially if we take into account the fact that Laravel is a relatively
young framework.

(&
Metropolia

52

References

1 Intoduction to Laravel [online].
URL: http://laravel.com/docs/introduction
Accessed: 3 April 2014.

2 Architecture of Laravel Applications [online].
URL: http://laravelbook.com/laravel-architecture/
Accessed: 3 April 2014.

3 Raphaél S. Getting Started with Laravel 4. Packt Publishing Limited, Birmingham 2014.

4 Hardik D. Learning Laravel 4 application development. Packt Publishing Limited, Bir-
mingham 2013.

5 Eloquent [online]
URL: http://laravel.com/docs/eloquent
Accessed: 3 April 2014.

6 Schema Builder [online]
URL: http://laravel.com/docs/schema
Accessed: 3 April 2014.

7 The PHP package archivist [online]
URL.: https://packagist.org/
Accessed: 3 April 2014.

8 Getting started with Composer [online].
URL: https://getcomposer.org/doc/00-intro.md
Accessed: 3 April 2014.

9 Cygwin [online]
URL: http://www.redhat.com/services/custom/cygwin/
Accessed: 3 April 2014.

10 David C, lan W. Bootstrap site blueprints. Packt Publishing Limited, Birmingham
2014.

11 Initializr [online]
URL: http://www.initializr.com
Accessed: 4 April 2014.

(&
Metropolia

http://laravel.com/docs/introduction
http://laravelbook.com/laravel-architecture/
http://laravel.com/docs/eloquent
http://laravel.com/docs/schema
https://packagist.org/
https://getcomposer.org/doc/00-intro.md
http://www.redhat.com/services/custom/cygwin/

12 Getting started with Bootstrap [online]
URL: http://getbootstrap.com/getting-started/
Accessed: 4 April 2014.

13 What is MySQL? [online]
URL.: http://dev.mysqgl.com/doc/refman/5.6/en/what-is-mysqgl.html
Accessed: 4 April 2014.

14 WAMPserver [online]
URL: http://www.wampserver.com/en/
Accessed: 4 April 2014.

15 Laravel installation [online]
URL: http://laravel.com/docs/installation
Accessed: 5 April 2014.

16 Helper functions [online]
URL: http://laravel.com/docs/helpers
Accessed: 5 April 2014.

17 Templates [online]
URL: http://laravel.com/docs/templates
Accessed: 5 April 2014.

18 Routing [online]
URL: http://laravel.com/docs/routing
Accessed: 5 April 2014.

18 Facades [online]
URL: http://laravel.com/docs/facades
Accessed: 6 April 2014.

20 Laravel 4 E-Commerce [online]
URL: https://medium.com/laravel-4/c5afca925f28
Accessed: 6 April 2014.

21 Build an eCommerce App in Laravel [online]
URL: https://tutsplus.com/course/laravel-ecommerce-application/
Accessed: 6 April 2014.

53

(&
Metropolia

http://getbootstrap.com/getting-started/
http://dev.mysql.com/doc/refman/5.6/en/what-is-mysql.html
http://www.wampserver.com/en/
http://laravel.com/docs/helpers
http://laravel.com/docs/templates
http://laravel.com/docs/routing
https://medium.com/laravel-4/c5afca925f28

