
Examensarbete, Högskolan på Åland, Utbildningsprogrammet för Informationsteknik

MIGRATION OF THE USER
INTERFACE OF A WEB

APPLICATION
- From Thymeleaf to Angular

Jennie Eriksson

2022:02

Datum för godkännande: 09.03.2022
Handledare: Björn-Erik Zetterman

EXAMENSARBETE
Högskolan på Åland

Utbildningsprogram: Informationsteknik

Författare: Jennie Eriksson

Arbetets namn: Migrering av användargränssnitt för en webbapplikation

Handledare: Björn-Erik Zetterman

Uppdragsgivare: Crosskey Banking Solutions

Abstrakt
Syftet med uppdraget är att införa ramverket Angular till Crosskey:s webbapplikation
crosskey.io. Applikationens användargränssnitt ska på så sätt serveras på klientsidan med
Angular istället för, som i nuläget, på serversidan med Thymeleaf.

Utvecklingen av användargränssnittet genomfördes med hjälp av programmeringsspråket
TypeScript och ramverket Angular. Backend-applikationen utvecklades med hjälp av Java
och ramverket Spring Boot. För implementering av REST API:t användes verktyget
Swagger.

Resultatet av konverteringen till Angular blev ett användargränssnitt med högre prestanda
och snabbhet än tidigare.

Nyckelord (sökord)
Angular, TypeScript, Thymeleaf, användargränssnitt, SPA, Selenium, Spring Boot, Java,

REST, Swagger

Högskolans
serienummer:

ISSN: Språk: Sidantal:

2022:02 1458-1531 Engelska 40 sidor

Inlämningsdatum: Presentationsdatum: Datum för godkännande:
08.02.2022 01.03.2022 09.03.2022

2

DEGREE THESIS
Åland University of Applied Sciences

Degree Programme: Information Technology
Author: Jennie Eriksson
Title: Migration of the User Interface for a Web Application

Academic Supervisor: Björn-Erik Zetterman
Commissioned by: Crosskey Banking Solutions

Abstract

The purpose of this assignment is to introduce the Angular framework to Crosskey’s web
application crosskey.io. The user interface of the application will thus be served on the client
side with Angular instead of, as at present, on the server side with Thymeleaf.

For the development of the user interface, the programming language TypeScript and the
Angular framework was used. The backend application was developed using Java and the
Spring Boot framework. The REST API was implemented with the help of Swagger tools.

The result of the conversion to Angular was a user interface with higher performance and
speed than before.

Keywords
Angular, TypeScript, Thymeleaf, user interface, SPA, Selenium, Spring Boot, Java, REST,

Swagger

Serial number: ISSN: Language: Number of pages:
2022:02 1458-1531 English 40 pages

Handed in: Date of presentation: Approved:
08.02.2022 01.03.2022 09.03.2022

3

TABLE OF CONTENTS

1. INTRODUCTION 6
1.1 Background 6

1.1.1 Crosskey 6
1.1.2 Crosskey.io 6

1.2 Purpose 7
1.3 Requirement specification 7
1.4 Methodology 8
1.5 Definitions 8

2. ARCHITECTURES AND DESIGN PATTERNS 10
2.1 REST 10

2.1.1 Client-server communication 10
2.2 Model-View-Controller 12
2.3 IoC and dependency injection 13

3. FRONTEND TECHNOLOGIES 15
3.1 Thymeleaf 15
3.2 Angular 15

3.2.1 Angular architecture 16
3.2.1.1 Modules 16
3.2.1.2 Components and templates 17
3.2.1.3 Metadata 17
3.2.1.4 Data binding and directives 18
3.2.1.5 Services and dependency injection 18
3.2.1.6 Pipes 19

3.3 Server-side rendering versus client-side rendering 19

4. FRAMEWORKS AND TOOLS 21
4.1. Spring Boot 21
4.2. Swagger 21

4.2.1 OpenAPI specification example 22
4.2.2 OpenAPI Generator 23
4.2.3 Swagger UI 23

4.3 Selenium 24

5. APPLICATION DEVELOPMENT 26
5.1 Preparation 26
5.2 Frontend development 26

5.2.1 Application file structure 26
5.2.2 Backend communication 28

4

5.2.3 Handling user input 29
5.2.4 Using pipes 30

5.3 Angular file compression 31
5.4 Design and implementation of the REST API 32
5.5 Testing 34

5.5.1 End-to-end testing with Selenium 34
5.5.2 API testing 36

6. CONCLUSION 37
6.1. Result 37
6.2. Reflections 37

REFERENCES 39

5

1. INTRODUCTION

1.1 Background

1.1.1 Crosskey

The commissioner for this assignment is Crosskey Banking Solutions. Crosskey is an IT

company and wholly owned subsidiary of Ålandsbanken Abp. Crosskey’s area of business is

delivering IT services to banks and other actors conducting banking, card or capital market

operations. The company has over 300 employees who work at offices situated in

Mariehamn, Stockholm, Turku and Helsinki (About Crosskey, 2015).

1.1.2 Crosskey.io

Crosskey’s C°OPEN platform, Crosskey.io, is a cloud-based open platform for developers,

banks and fintech companies, wishing to act as providers for different types of open banking

services, such as account information and payment initiation services. The platform offers a

market of open banking APIs that connects banks and third parties with data, channels and

functionality. It provides a simple and cost effective way for banks and financial institutions

to collaborate and integrate their products and services (Open Banking - PSD2 as a Service,

2018). Figure 1 is a screenshot of the homepage of the crosskey.io web platform.

Figure 1. The homepage of crosskey.io (Open Banking Market-Crosskey, n.d.).

6

https://paperpile.com/c/eKmSuJ/YO47
https://paperpile.com/c/eKmSuJ/HDtl
https://paperpile.com/c/eKmSuJ/HDtl
https://paperpile.com/c/eKmSuJ/jQyM

1.2 Purpose

The purpose of this assignment is to migrate the user interface (UI) of Crosskey’s web1

application crosskey.io from server-side/backend to client-side/frontend. This involves a

change in technology as well as the architecture of the system. The system will go from only

consisting of a server application that serves the user interface using the template engine

Thymeleaf, to serving the user interface as a separate client application running on the

browser using the Angular framework.

The main reason for this shift towards a client-side rendered web application, is to increase

the performance of the UI, thereby providing a better experience for the users of the website.

1.3 Requirement specification

Listed below are the pages that must be converted to Angular UI:

1. The homepage.

2. The tutorial page, which contains instructions on how to get started using an API.

3. The APIs page, which displays the APIs of a bank selected on the homepage.

4. The terms and conditions page.

5. The privacy page.

6. The dashboard page, which a user is directed to after successful login.

7. The teams page, which contains all the teams a user is a member of.

8. The team page, which is showing info about a specific team selected from the teams

page.

9. The applications page, which contains all the applications a user has subscribed to.

Listed below are the pages that would be nice to have converted to Angular UI:

10. The contact page.

11. The register page.

1 Crosskey Banking Solutions, https://www.crosskey.fi/

7

1.4 Methodology

The development work will be done in small increments or steps, where one page at a time is

completed before another one is started. After an initial version of a page is complete, the

code written for that page will be reviewed by members of my team, who will provide

feedback and suggestions for improvements. Based on the feedback, I will then refine the

code and again put it up for review. These steps will be repeated until a final version of the

page is approved and moved to the test environment. In the test environment the process of

feedback and refinement is renewed, since my team now can test the new version of the UI.

This cycle of feedback and refinement follows the method of Evolutionary Prototyping. The

idea with this method is to improve the quality of the software by thorough testing. This way

errors or missing functionality can be detected early in the process (Davis, 1992).

The code for the backend application will be written in Java using the Spring Boot

framework. The frontend application will be written in Typescript using the Angular

framework. Intellij will be used as the development environment since it is the standard IDE

used at Crosskey.

1.5 Definitions

The list below gives a short description of some commonly used terms and abbreviations

used in this essay:

● API: Application Programming Interface. An API is a set of definitions and protocols

that explains how applications communicate with each other (What Is a REST API?,

2020).

● Backend: Represent the data access layer in a computer system responsible for

storing and managing data (Techopedia, 2011).

● Client: A system that accesses remote services from a server (van Mulligen &

Timmers, 1994).

● CSR: Client-Side Rendering.

8

https://paperpile.com/c/eKmSuJ/Lhxs
https://paperpile.com/c/eKmSuJ/yCGS
https://paperpile.com/c/eKmSuJ/yCGS
https://paperpile.com/c/eKmSuJ/xXVG
https://paperpile.com/c/eKmSuJ/L3PV
https://paperpile.com/c/eKmSuJ/L3PV

● CSS: Cascading Style Sheets. Language used to describe the appearance of HTML

documents (Krause, 2016).

● DOM: Document Object Model. Defines the logical structure and content of a web

document, and how a document is accessed and manipulated (Introduction to the

DOM, n.d.).

● Frontend: Represent the presentation layer in a computer system that interacts

directly with the end user (Techopedia, 2011).

● HTML: Hyper Text Markup Language. The standard language for describing the

structure of a web page (Krause, 2016).

● IDE: Integrated Development Environment.

● JavaScript: Language for defining the functionality/behavior of a web page (Krause,

2016).

● JIRA: Issue tracking tool used in agile development that helps teams plan and

manage their work (Atlassian, n.d.).

● JSON: JavaScript Object Notation. Text format used for storing and transporting data

objects (JSON, n.d.).

● OAS: Open API Specifikation.

● Server: A system that provides various functionality to other systems (van Mulligen

& Timmers, 1994).

● SASS: Syntactically Awesome Style Sheets.

● SEO: Search Engine Optimization.

● SPA: Single Page Application.

● SSR: Server-Side Rendering.

● UI: User Interface.

● YAML: Yet Another Markup Language. Human readable data serialization standard

(The Official YAML Web Site, n.d.).

9

https://paperpile.com/c/eKmSuJ/hpFa
https://paperpile.com/c/eKmSuJ/0EsV
https://paperpile.com/c/eKmSuJ/0EsV
https://paperpile.com/c/eKmSuJ/xXVG
https://paperpile.com/c/eKmSuJ/hpFa
https://paperpile.com/c/eKmSuJ/hpFa
https://paperpile.com/c/eKmSuJ/hpFa
https://paperpile.com/c/eKmSuJ/6GVc
https://paperpile.com/c/eKmSuJ/64GB
https://paperpile.com/c/eKmSuJ/L3PV
https://paperpile.com/c/eKmSuJ/L3PV
https://paperpile.com/c/eKmSuJ/hTTx

2. ARCHITECTURES AND DESIGN PATTERNS

2.1 REST

REST stands for REpresentational State Transfer and is an architecture style that defines a

set of guidelines for creating web APIs. A web API is an interface that defines how

web-based applications communicate with each other. APIs complying with the REST

architecture are known as RESTful APIs or REST APIs. A RESTful system consists of a

client which requests for the resources and a server, which provides the resources. RESTful

systems interact by using HTTP (HyperText Transfer Protocol) (What Is a REST API?, 2020).

Two important constraints of RESTful systems are statelessness and that they implement a

client-server architecture.

A system is stateless if the server and the client can communicate without knowing each

other’s state. This means that a request coming from the client contains in itself all the

information the server needs to handle the request, which eliminates the need to store data

from previous states in the server.

In a RESTful system the client and the server are implemented as separate applications.

This means that changes done in the client code won’t affect the server and vice versa.

These constraints allow the components in a RESTful system to be managed, modified and

reused independently, thus increasing the reliability, performance and scalability of the

system (What Is REST?, 2021).

2.1.1 Client-server communication

Figure 2 shows how a client and server in a typical REST architecture communicate with

each other. In this project, the Angular application serves as the client and the Spring Boot

application as the server.

10

https://paperpile.com/c/eKmSuJ/yCGS
https://paperpile.com/c/eKmSuJ/Y1uS

Figure 2. Client-server communication in a REST architecture (Fadatare, 2021).

In a REST architecture a client sends requests to the server to access or modify resources, and

the server sends back responses. A resource could represent any type of object, data, or

Service. Many web APIs use JSON as the message exchange format, but other formats such

as XML can be used as well.

A request is composed of an HTTP method that defines what type of action to make, a unique

path (URL) to a resource, a header with metadata, and an optional body with data. The most

common HTTP methods are:

● GET - retrieves a resource or a collection of resources

● POST - creates a new resource

● PUT - updates a resource

● DELETE - deletes a resource

The resource path contains all the necessary data to locate a specific resource. It should be

designed in a way that is easy to read and understand. Conventionally only nouns are used in

the path. An example path for retrieving a specific user resource could look like:

http://api.example.com/users/12. The last part is a path parameter, which indicates a user

uniquely identified by the number 12.

11

https://paperpile.com/c/eKmSuJ/NTxi

When a server receives a request from a client it tries to fulfill the request by doing some

operation that often involves modifying the database. It then sends back a response

containing a status code and in some cases also a body with the requested resource. The most

common status codes are (What Is REST?, 2021):

● 200 (OK) - the request was successful

● 201 (OK) - the request was created

● 204 (NO CONTENT) - the request was successful, but response body is empty

● 400 (BAD REQUEST) - the request cannot be processed due to some type of client

error, such as bad request syntax

● 404 (NOT FOUND) - the requested resource could not be found

● 500 (INTERNAL SERVER ERROR) - the generic response if some unexpected

failure happened while processing the request.

2.2 Model-View-Controller

Model-View-Controller (MVC) is a popular software design pattern that divides an

application into three logical components. Those are the model, the view, and the controller

(Bucanek, 2009):

● The model holds the data of the application and defines the logic that manipulates and

processes that data.

● The view is the UI of an application and displays the data from the model.

● The controller functions as a mediator between the model and the view. It maps user

input from the view to operations for modifying the model data. The controller then

passes the updated data back to the view.

Figure 3 illustrates the MVC components and their interaction with each other.

12

https://paperpile.com/c/eKmSuJ/Y1uS
https://paperpile.com/c/eKmSuJ/oPA9

Figure 3. The interaction of the components in the MVC pattern (MVC - MDN Web Docs Glossary, 2021).

The purpose of the MVC pattern is to separate the presentation layer from the business logic,

so that an application will be easier to manage and maintain (MVC - MDN Web Docs

Glossary, 2021)).

2.3 IoC and dependency injection

Inversion of control (IoC) is a design principle, stating that objects should depend on

abstractions (interfaces) for fulfilling specific tasks, not on the implementations themselves

(A Quick Intro to Dependency Injection: What It Is, and When to Use It, 2018).

The dependency injection pattern is an implementation of IoC, where dependencies of an

object are provided externally through a constructor or a setter, rather than the object

constructing them itself. Dependencies are pieces of code that an object depends on for its

functionality (Angular, n.d.-b).

Figure 4 presents an abstract example of how dependency injection works. The MovieLister

class has a dependency to a MovieFinder interface. It does not instantiate the MovieFinder

implementation directly. Instead, an Injector class creates the object and injects it into the

MovieLister, ensuring that this class is totally unaware of how the dependency is created.

13

https://paperpile.com/c/eKmSuJ/rsQn
https://paperpile.com/c/eKmSuJ/rsQn
https://paperpile.com/c/eKmSuJ/rsQn
https://paperpile.com/c/eKmSuJ/WTt0
https://paperpile.com/c/eKmSuJ/yX3g

Figure 4. An example of dependency injection (Fowler, n.d.).

The purpose of dependency injection is to achieve loose coupling between objects so that

they can be more easily extended and tested (A Quick Intro to Dependency Injection: What It

Is, and When to Use It, 2018). Both Spring Boot and Angular are dependency injection

frameworks.

14

https://paperpile.com/c/eKmSuJ/kw3J
https://paperpile.com/c/eKmSuJ/WTt0
https://paperpile.com/c/eKmSuJ/WTt0

3. FRONTEND TECHNOLOGIES

3.1 Thymeleaf

Thymeleaf is a server-side Java template engine for both web and standalone applications. It

is able to process HTML, XML, JavaScript, CSS and plain text. It is commonly used for

serving dynamic web pages (HTML) at the view layer of MVC-based Spring applications

(see chapter 2.2 to learn more about the MVC architecture).

The idea behind template engines is to enforce separation between the application model and

the view. Thymeleaf achieves this by using attributes and variable expressions to insert logic

and data into template files. Variable expressions function as placeholders for the application

data and they are evaluated by attributes. An attribute is associated with a specific HTML

element, which it modifies based on the result of their expression values. Figure 5 is an

example of how the attribute th:text is used to evaluate its value expression and replace the

result with the text inside the HTML tag (Tutorial: Using Thymeleaf, n.d.).

Figure 5. Example of a Thymeleaf attribute used for replacing text in an HTML-tag.

3.2 Angular

Angular is an open-source platform and framework for developing single-page client

applications using HTML and TypeScript (Angular, n.d.-a). A single page application is a

web application that loads a page only once, and then updates the content of the page in

response to user input (SPA (single-Page Application), 2021).

Angular is written in TypeScript, which is a superset of JavaScript, which means TypeScript

is essentially JavaScript but with additional features, such as interfaces and static typing

(Documentation - TypeScript for the New Programmer, n.d.). Static typing means that the

types of variable values are pre-defined (Meyer, 1996). With TypeScript’s type system code

errors get detected during compilation, before any code is running. This reduces runtime

15

https://paperpile.com/c/eKmSuJ/DeEa
https://paperpile.com/c/eKmSuJ/cQuj
https://paperpile.com/c/eKmSuJ/Su8F
https://paperpile.com/c/eKmSuJ/KjJM
https://paperpile.com/c/eKmSuJ/pTZS

errors, which is a strong advantage Typescript has over JavaScript (Documentation -

TypeScript for the New Programmer, n.d.).

3.2.1 Angular architecture

The Angular architecture is modular in its design. The purpose of this design is to subdivide

the system into smaller units called modules, which can be developed independently and then

assembled together. Modularity facilitates code reuse and improves manageability in that

modules are easy to design, implement, test, and debug (4.1 Modular Design Review, n.d.).

The main building blocks in an Angular application are modules, components, templates,

metadata, data binding, services and dependency injection. Figure 6 shows how these

building blocks interact with each other.

Figure 6. The building blocks in the Angular architecture (Angular, n.d.-a).

3.2.1.1 Modules

Angular has its own modularity system called NgModules. The purpose of NgModules is to

collect components and/or services which are closely related into functional sets. Every

Angular application has a root module, which launches the application. The root module can

contain a hierarchy of child modules of any depth (Angular, n.d.-a). An example of a basic

root module can be seen in figure 7.

16

https://paperpile.com/c/eKmSuJ/KjJM
https://paperpile.com/c/eKmSuJ/KjJM
https://paperpile.com/c/eKmSuJ/hn65
https://paperpile.com/c/eKmSuJ/cQuj
https://paperpile.com/c/eKmSuJ/cQuj

Figure 7. An example of a root module (Angular, n.d.-c).

An NgModule needs to include metadata describing which components and directives belong

to it (declarations), as well as other modules it uses (imports)(Angular, n.d.-c). A root module

also includes bootstrap metadata, that contains the root component that Angular creates and

inserts into browser DOM when the application launches (Angular, n.d.-d).

3.2.1.2 Components and templates

Components are the main building blocks of an Angular application. A component is

responsible for how a specific part of the UI looks and behaves. Components consist of:

● a component class, written in TypeScript, that contains application data and logic.

● a template that displays data provided by the component class. A template is HTML

mixed with Angular markup that can modify HTML elements before they are

displayed.

● optional style sheets that apply layout to the template.

The component class and the template communicate with each other through the concept of

data-binding (Angular, n.d.-a).

3.2.1.3 Metadata

Metadata is used to provide Angular with instructions about how a class should be

configured. Angular uses decorators to attach metadata inside classes. As an example, the

@Component decorator marks a class as a component. The metadata for a component

informs Angular where to get the resources needed to create and present the component and

17

https://paperpile.com/c/eKmSuJ/0u7S
https://paperpile.com/c/eKmSuJ/0u7S
https://paperpile.com/c/eKmSuJ/jhN7
https://paperpile.com/c/eKmSuJ/cQuj

its view template. The component metadata usually includes a selector (used for referencing

the component from a template), location of the template file, location of stylesheets, and

what services the component requires (Angular, n.d.-e).

3.2.1.4 Data binding and directives

Binding markup connects application data with the DOM. There are two types of data

binding: event binding and property binding. Event binding allows the application to respond

to events raised by user actions, such as button clicks, by updating the application data.

Property binding lets the component class insert application data into the template HTML.

Template directives are responsible for providing logic in a template. Angular evaluates the

directives and modifies the DOM according to the instructions given by directives before the

view gets displayed. There are three types of directives (Angular, n.d.-f):

1. Structural directives. Structural directives alter the layout of the template by

modifying the structure of the DOM. For example, the *ngFor - directive iterates

through a collection of objects.

2. Attribute directives. Attribute directives modify the behavior and look of DOM

elements. An example of an attribute directive would be the *ngClass-directive,

which adds or removes CSS classes for styling elements.

3. Components. These are directives with a template.

3.2.1.5 Services and dependency injection

Services are helper classes that provide functionality that can be used across multiple parts of

the application. Components typically use services to execute specific tasks with narrow and

well defined purposes. User input validation and server communication, such as fetching

data, are examples of common tasks that should be delegated to a service. The idea behind

using services is to increase modularity and reusability by keeping view-related logic in a

component separate from other types of logic.

Services are made accessible to components by dependency injection. A service class is

defined by using the @injectable decorator, which tells Angular to inject the service into a

18

https://paperpile.com/c/eKmSuJ/5ATC
https://paperpile.com/c/eKmSuJ/f0nJ

component’s constructor as a dependency (Angular, n.d.-g). See chapter 2.3 to learn more

about dependency injection.

3.2.1.6 Pipes

Pipes in Angular are functions used for changing the format in which data, such as strings

and dates, is displayed. An advantage of pipes is that they only need to be declared once.

Then they can then be used throughout the application (Angular, n.d.-h).

3.3 Server-side rendering versus client-side rendering

Since the aim for this project is to implement a change from server-side rendering (SSR) to

client-side rendering (CSR), this chapter will go through the main difference of these two

approaches and discuss some benefits and downsides of each approach.

SSR is the traditional way of serving web pages. When a request for a page is made, the

server uses a template engine, such as Thymeleaf, to build a fully populated HTML page.

This page is then sent to the client’s browser to be displayed. Every time a user navigates to

another URL, the server rebuilds the entire page from scratch.

CSR is a relatively modern way to serve web pages. With the CSR approach, the content of a

a page is rendered dynamically on the browser as the user navigates a website. Instead of a

full-blown HTML page, the server only renders a skeleton HTML container in the initial

page load. The rest of the page rendering is handled by the browser using a JavaScript

framework, which in this case is Angular. CSR applications make it possible to re-render

only the parts of the UI that have updated content, which is much faster than having to

re-render an entire page. Applications using this approach are called single page applications

(SPA).

Below are listed the most important benefits and downsides of SSR and CSR (Vega, 2017).

Benefits of SSR:

● The initial page load of the website is faster than CSR.

● Search engines are able to crawl the site for better SEO (Search Engine Optimization).

19

https://paperpile.com/c/eKmSuJ/Kg1r
https://paperpile.com/c/eKmSuJ/dhlP
https://paperpile.com/c/eKmSuJ/x1K4

Downsides of SSR:

● Lots of server requests.

● Slow rendering if the website has a lot of interactivity

● Full page refresh for each request.

Benefits of CSR:

● Fast and responsive website.

● Many JavaScript frameworks and libraries support CSR.

● Clear separation of the client and the server. The code on the client side can be

modified without affecting server functionality, and vice versa.

Downsides of CSR:

● Slower initial page load, due to all JavaScript that needs to be downloaded and

executed before rendering page content.

● Good SEO can be hard to achieve due to load times and lack of initial HTML content.

20

4. FRAMEWORKS AND TOOLS

4.1. Spring Boot

Spring Boot is a Java-based framework for developing stand-alone, production-grade

applications (Spring Boot, 2021). Spring Boot is built on top of the traditional Spring

framework, which is a popular framework for creating Java enterprise applications. One of

the main issues with Spring based applications is that they need a lot of configuration. In

Spring Boot everything is auto-configured, which means that much less configuration and

setup for the application is required. Autoconfiguration allows developers to focus more on

the business logic, and it also reduces the risk of human error (What Is Java Spring Boot,

2020).

4.2. Swagger

Swagger is a set of tools that helps users design, document, test and consume REST APIs.

The Swagger tools are built around OpenAPI specification (OAS), which is a standard

interface for describing the structure of an API. The specification can be written in either

YAML or JSON, and it is both machine and human readable. The specification typically

contains information about the API’s endpoints and their supported operations, as well as

input and output parameters needed for each operation. It can also include information such

as authentication methods, license and terms of use (About Swagger Specification, n.d.).

Swagger can be used with both top-down and bottom-up development approaches. In the

top-down approach, the OAS is designed before any code is written. A code generator tool

can then be used to create REST API interfaces. In the bottom up, or code first approach,

Swagger generates the documentation automatically from the source code by asking the API

to return a documentation file from its annotations (Swagger API Documentation, n.d.). For

this project the design first method was applied.

21

https://paperpile.com/c/eKmSuJ/XX3b
https://paperpile.com/c/eKmSuJ/hVB4
https://paperpile.com/c/eKmSuJ/hVB4
https://paperpile.com/c/eKmSuJ/hMdM
https://paperpile.com/c/eKmSuJ/Z8RK

4.2.1 OpenAPI specification example

Figure 8 is an example of a simple OpenAPI specification written in YAML.

Figure 8. An example of a simple OpenAPI specification document.

In table 1 are given short descriptions of some of the specification properties from the

example in figure 8.

Table 1. Description of properties from the example OpenAPI specification (About Swagger Specification, n.d.)

Property Description

openapi The current swagger version.

info Metadata about the API, such as version, title and description.

servers Contains the base URL for all endpoints.

components Contains reusable objects, such as schemas, responses and headers,
that are referenced from properties outside the components object.

schemas Defines input and output data types which can be objects, primitives

22

https://paperpile.com/c/eKmSuJ/hMdM

and arrays. In the example a User object is defined, with fields for id,
first name and last name.

paths Holds the paths to the API’s endpoints and their respective operations.
They are appended to the base URL defined in the server object.
In this example the endpoint is /user and the full URL is
https://example.io/v1/user. The operation (HTTP method) is GET,
which is a request to read a specific resource.
A path can contain parameters, which usually are included in the URL
path (/user/{id}) or as query strings (/user?role=admin).

responses Contains the responses of an operation. A response is mapped to at
least one HTTP status code. In the GET /user request from the
example the status code is 200, which indicates a successful
operation. A response can contain a description, header, links and
content (see below).

content Contains the media types consumed by the operation, such as
application/json. It also defines the schema for each media type. In the
example the schema is the User object, which is referred to by using
the $ref property.

4.2.2 OpenAPI Generator

OpenAPI Generator is a tool that can generate client and server side code based on the OAS

(OpenAPI Generator, 2021). OpenAPI Generator originates from Swagger Codegen. The

main difference is that Swagger Codegen is driven by SmartBear while OpenAPI Generator

is community driven (OpenAPI Generator FAQ, 2021).

4.2.3 Swagger UI

Swagger UI automatically generates visual and interactive documentation from the OAS. In

the generated document a user can get a quick overview of the API and try out its operations

(Swagger UI, 2021). An example of how OAS documentation is presented with Swagger UI

can be seen in figure 9.

23

https://paperpile.com/c/eKmSuJ/EXlq
https://paperpile.com/c/eKmSuJ/Bua7
https://paperpile.com/c/eKmSuJ/6bwq

Figure 9. An example of how the documentation for an API looks like with Swagger UI (Swagger UI, 2021).

4.3 Selenium

Selenium is an open source automated testing suite for web applications and can be used by

any browser or platform. It includes Selenium WebDriver, which is a tool that can be used to

create and execute test cases for a web application UI. Tests are created using locators to

identify HTML elements to then carry out actions on those elements, such as opening a web

page, clicking a button, etc. HTML elements can for instance be located by its class name, as

shown in figure 10 below.

Figure 10. A Java example of the mechanism Selenium uses for locating an HTML element by its class name

(Finding Web Elements, n.d.).

24

https://paperpile.com/c/eKmSuJ/6bwq
https://paperpile.com/c/eKmSuJ/jVSw

Selenium test scripts can be written in several different programming languages, but the one

used ín this case was Java. The test scripts interact directly with the browser, driving the

browser just like an actual user would do (WebDriver, 2021). The test scripts for this project

were configured to run in the Chrome browser.

25

https://paperpile.com/c/eKmSuJ/0wzV

5. APPLICATION DEVELOPMENT

5.1 Preparation

Before starting with the application development, I used JIRA as a tool to structure and to

document my work on the project. I could split my work into smaller and more manageable

tasks by writing JIRA stories that described what needed to be done for each task.

There was no need for me to create an Angular application completely from scratch, since the

project of converting the frontend into Angular had been started earlier by other developers in

my team. The only thing I had to do to get started with the frontend development was to

install the Angular CLI on my work computer. Angular CLI is a command-line interface2

tool that comes with a set of commands to facilitate the development of Angular applications.

It was particularly useful in this project for creating new components and services. For

instance, to create a new component you type the command “ng generate component

<component-name>”, and the Angular CLI will create a folder containing all the required

files, and add the necessary configurations.

5.2 Frontend development

5.2.1 Application file structure

An overview of the file structure in the Angular application are presented in figures 11 and 12

below.

2 https://angular.io/cli

26

Figure 11 and 12. The file structure of the Angular application.

The work for this project mainly involved adding or modifying files placed in the app folder.

This folder include:

● pages folder, containing the components that make up a web page.

● components folder, containing reusable components that are used throughout the

application, such as header, footer, etc.

● model folder, containing the interfaces for mapping resource objects from the

backend.

● pipes folder, containing the pipes used throughout the application.

● services folder, containing the service classes used by the page components.

● app.module.ts. The application launches by bootstrapping this module.

● the root component, which represents the entry point of the application. All other

components will branch off from this component. The root component consists of:

○ app.component.ts - the component class defining the view logic.

27

○ app.component.html - the HTML template. This file includes elements that are

present in all pages, such as the header and the footer. An important element to

include in this file as well is <router-outlet>. This element acts as a

placeholder, that Angular dynamically fills with a page component based on

the selected route (URL)..

○ appt.component.spec.ts - unit tests for the component are written in this file.

○ app.component.sass - the stylesheet of the component. All stylesheets in this

application are written in SASS format. SASS is compiled to CSS, but

compared to CSS, it has more features. It introduces variables, functions and

nested rules, among other things (Documentation, n.d.).

● app-routing.module.ts. This file handles the navigation for the web site. Figure 13

shows how app-routing.module.ts has been implemented in this application. The

loadChildren() function is used for lazy loading of modules. Lazy loading means a

module will load only when it’s needed. This results in a smaller initial bundle size,

which helps to achieve a faster initial load time (Angular, n.d.-i).

Figure 13. Routing example with lazy loading.

5.2.2 Backend communication

To be able to communicate with the server using the HTTP protocol, I used Angular’s HTTP

API, the service class HttpClient. This API offers several useful features, among which are

the ability to set the types of the response objects, and to intercept the requests and responses

(Angular, n.d.-j). Figure 14 shows an example of a service method, getTeams(), that fetches

data from the server. The expected response from the request is an array of Team objects.

Figure 14. Server request with httpClient.

As mentioned earlier, HttpClient offers the possibility to intercept HTTP requests and

responses. Interceptors can be used to catch and handle errors that might arise while making

28

https://paperpile.com/c/eKmSuJ/7iWh
https://paperpile.com/c/eKmSuJ/NiJh
https://paperpile.com/c/eKmSuJ/iT3P

requests to the server. Angular’s HttpInterceptor interface is used for handling HTTP errors

globally in the application. The idea is to get consistent error handling by handling common

errors in one single place, and only let specific errors be handled in services or components.

To achieve global error handling I created an error interceptor service class that implements

the HttpInterceptor-interface and registered it as a provider in the root module. Whenever a

request fails on the backend, HttpClient returns an error object. The error interceptor’s handle

method catches this error and handles it differently based on what type of error it is. For

instance, if it's an error with status code 404, meaning the requested resource couldn’t be

found, the interceptor will redirect the user to an page that displays the status code of the

error as well as an appropriate message informing the user what went wrong.

5.2.3 Handling user input

Handling of user input can be done efficiently in Angular by using features like event

binding. DOM elements in the view template can be set to listen for user events, such as

keystrokes, button clicks etc, to then trigger a specific action when an event is detected. The

Angular syntax for binding to an event consists of a target event name within parentheses,

followed by an equal sign and a quoted template statement. An example of event binding is

shown in figure 15. This piece of template code represents the section of the UI for changing

the sort order of store items in the home page. The buttons in the figure listens for click

events, using the (click) target event. Whenever a button is clicked, the sortStores() method

defined in the component class will get called.

Figure 15. Example of event binding in Angular template.

In figure 16 can be seen how the logic for sorting store items is implemented in the

component class. This function adds the sortOrder variable as a query parameter to the

29

current url. The location.go() function is used for changing the current URL to the given

URL without reloading the page.

Figure 16. Implementation of method for sorting stores in Angular component..

With event binding Angular can handle a lot of the logic for user interaction in the browser.

This is an improvement from the previous Thymeleaf UI, where almost all types of user input

was handled by sending HTTP requests to the server using forms, resulting in full page

reloads.

5.2.4 Using pipes

Angular supports a lot of built-in pipes. One of these is DatePipe, which I used in the

application to transform dates into a specific format. It’s also possible to create your own

custom pipes that suit your requirements. For this application I built a simple custom pipe,

seen in figure 17, that would make plurals of words by taking a number as input and return

the letter “s” if the number is larger than 1.

Figure 17. Implementation of a pipe class.

To refer to a pipe in the templates, a pipe operator (|) is used along with the name of the pipe.

An example of how the plural-pipe is used is shown in figure 18.

Figure 18. Usage of a pipe in a template.

30

In the previous UI, the logic for formatting data was added directly in the template. With the

use of pipes, this type of logic could be removed, resulting in cleaner and more readable

templates.

5.3 Angular file compression

When the first two pages of the web platform had been converted to Angular, the

performance of the new UI was measured using a Chrome developer tool called Lighthouse.

Lighthouse audits a web page for performance, accessibility, SEO, among other things. It will

generate a report that includes a score, with a s 0-100 scale grading, on how well the page did

and suggestions for improvement. According to the report the performance had degraded

somewhat from the old version of the UI. This was mainly due to the fact that the initial page

load time (i.e the time it takes for a page to launch the first time) was slower than before. The

report suggested that a faster load time could be achieved by using file compression to

reduce the size of the bundle containing all the JavaScript files that the Angular application

needs to download, parse and execute.

To enable file compression in the Angular application, I installed a file compression tool

called Gzipper. Then I configured Gzipper to automatically run after an Angular build has

been completed. A folder with all compiled resources will then be generated, containing all

the compressed files as well as the original files. Since the resource files will be served by the

backend, I had to configure the Spring Boot application to use the compressed files instead of

the originals.

I could verify that the website uses gzipped files by checking the network tab in the browser’s

developer console. If a file is Gzipped, the response header “Content-Encoding” should

display the value “gzip” as shown in figure 19.

31

Figure 19. The response header “Content-Encoding: Gzip” indicates that a JavaScript file used in the

crosskey.io website has been compressed to Gzip format.

After file compression the Lighthouse performance score increased with about 20 points,

which is an improvement of approximately 30 percent. An exact number is not possible to

give, since the score often varied between different runs. The lowest score that I measured

was 56, and the highest was 85.

5.4 Design and implementation of the REST API

As described in chapter 2.1, REST APIs are used for communication between the client and

the server. I used the top down method, also known as design first method, for developing the

REST API. This means designing the API contract first, before writing any code. The

contract was documented using the OpenAPI Specification (OAS). An OAS document

written in YAML already existed in the project, so I had only to expand this document with

new data. To get a sense of which endpoints, operations and resources (data objects) the API

would need, I studied the code of the controller and model classes, as well as view templates

from the previous MVC architecture.

In figure 20 can be seen how the request, GET /teams/{teamId}, was defined in the OAS. The

tags property defines a category for the request, which is named Teams. It is used by Swagger

UI to group operations of the same category. The URL path contains a required parameter,

teamId, which has a string as its data type. The response property defines the operation’s

32

response, which in this case is successful with the status code 200. The response contains a

resource object called TeamEntity, which is referred to by the $ref property. The

application/json property indicates the resource object format is JSON. More information

about the OAS can be found in chapter 4.2.

Figure 20. Definition of a request in the OAS document

The OAS is documented visually by using Swagger UI. In figure 21 are seen all available

operations and endpoints for team resources.

33

Figure 21. Some of the API documentation displayed with Swagger UI.

Using the OpenAPI generator tool, Spring Boot builds Java interfaces and model classes

based on the requests and resources defined in the OAS document. One interface per main

resource, such as teams and applications, were generated. The next step was to write REST

controllers that implement these interfaces. By annotating the controller classes with

@RestController, the class is marked as a request handler where every request handling

method returns a ResponseEntity object. This represents an HTTP response, including status

code, headers and body. Figure 22 shows the implementation of the GET /teams/{teamId}

request seen defined in figure 20. This simple method uses a service to fetch a team object

from the application model. The team object is then mapped to an API resource, TeamEntity.

The method returns this data with the status code set to OK (200).

Figure 22. Method in a REST controller class for retrieving a team resource.

34

The service classes were injected into the REST controllers using dependency injection. By

annotating a controller constructor with @Autowired, the service classes that are passed to the

constructor are automatically instantiated.

5.5 Testing

5.5.1 End-to-end testing with Selenium

Selenium testing was used for the end-to-end testing of this website's UI. This means the

functionality of the website is tested from a user perspective to make sure that the application

flow is working as expected. Figure 23 shows a sample Selenium script that tests the user

scenario of creating an application. When this test is run, the WebDriver will first log in the

test user. Next, it navigates to the applications page. If the application already exists, it will

get deleted. When an application has been added, a redirect is made to the page with details

about the newly created application. The test will succeed if the application name can be

found on that page.

Figure 23. A Selenium test for creating an application.

A common reason for test failure was that the test scripts tried to locate HTML elements in

an Angular page before the page was fully loaded. I solved this by adding wait methods that

suspends execution of the script until a certain condition has been fulfilled. For instance, to

make the test in figure 23 run successfully, I added a wait statement in the

addApplication-method directly after a new application has been created. This will pause the

35

execution of the test until the page with application details loads its content and the HTML

element holding the name of the new application is found. See figure 24.

Figure 24. The implementation of the addApplication-method for the applications page.

5.5.2 API testing

Some tests were written for the REST Controller classes on the backend to verify that API

requests returned the correct responses. An example test is shown in figure 25. The test is

checking that a request to create a new application object will return a 400 error (Bad

Request) if the application name is invalid. The postWithBody method is a helper method that

makes a mock API request and returns the response. A method, andExpect, can then be used

to extract content from the response and compare it with the expected values.

Figure 25. An API test for checking that a request to create a new application with an invalid name returns an

error response.

36

6. CONCLUSION

6.1. Result

The purpose of this project was to migrate the UI of the web application crosskey.io, from

server-side to client-side, with the end goal to improve the performance of the web

application. Since the focus lay on converting the most commonly used pages, I did not have

time to convert the nice-to-have pages within the time frame for this project. The must-have

pages in the requirement specification listed in chapter 1.3 have, however, been converted

into Angular and they have all been deployed to the production environment.

There are bottlenecks on the server side that make some server calls take quite a long time to

execute, and this is something that should be improved in the future. The overall performance

and speed of the new client-side UI has, however, been noticeably improved compared with

the previous server-side UI. Dynamic content on the website loads fast and seamlessly,

without annoying “page blinks” due to page reloads.

6.2. Reflections

 Working on this project has been both interesting and enjoyable. The difficulty level was

reasonable and I have gained deeper knowledge of quite a few technologies and frameworks.

Above all, I had the opportunity to expand my knowledge of Angular and TypeScript, which

were my personal goals for this project.

One of the things I found a bit challenging with this project was making Selenium tests work

with Angular. There were issues with synchronization and Selenium not having

Angular-specific locating strategies, among other things. A consideration for the future would

be to use another testing framework more suitable for Angular, such as Cypress or Protractor.

Another consideration for the future when the UI has been fully migrated to Angular, is to

deploy the application in the cloud using AWS, which would bring benefits like improved

scalability and reliability.

37

REFERENCES

4.1 Modular Design Review. (n.d.). https://www.mcs.anl.gov/~itf/dbpp/text/node40.html

About Crosskey. (2015, January 12). https://www.crosskey.fi/our-story//

About Swagger Specification. (n.d.). https://swagger.io/docs/specification/about/

Angular. (n.d.-a). https://angular.io/guide/architecture

Angular. (n.d.-b). https://angular.io/guide/dependency-injection

Angular. (n.d.-c). https://angular.io/guide/ngmodules

Angular. (n.d.-d). https://angular.io/guide/bootstrapping

Angular. (n.d.-e). https://angular.io/guide/architecture-components

Angular. (n.d.-f). https://angular.io/guide/glossary

Angular. (n.d.-g). https://angular.io/guide/architecture-services

Angular. (n.d.-h). https://angular.io/guide/pipes

Angular. (n.d.-i). https://angular.io/guide/lazy-loading-ngmodules

Angular. (n.d.-j). https://angular.io/guide/http

A quick intro to Dependency Injection: what it is, and when to use it. (2018, October 18).

freeCodeCamp.org.

https://www.freecodecamp.org/news/a-quick-intro-to-dependency-injection-what-it-is-and-when-

to-use-it-7578c84fa88f/

Atlassian. (n.d.). Jira. Atlassian. https://www.atlassian.com/software/jira

Bucanek, J. (Ed.). (2009). Model-View-Controller Pattern. In Learn Objective-C for Java Developers

(pp. 353–402). Apress.

Davis, A. M. (1992). Operational prototyping: a new development approach. IEEE Software, 9(5),

70–78.

Documentation. (n.d.). https://sass-lang.com/documentation

Documentation - TypeScript for the New Programmer. (n.d.).

38

http://paperpile.com/b/eKmSuJ/hn65
https://www.mcs.anl.gov/~itf/dbpp/text/node40.html
http://paperpile.com/b/eKmSuJ/YO47
https://www.crosskey.fi/our-story//
http://paperpile.com/b/eKmSuJ/hMdM
https://swagger.io/docs/specification/about/
http://paperpile.com/b/eKmSuJ/cQuj
https://angular.io/guide/architecture
http://paperpile.com/b/eKmSuJ/yX3g
https://angular.io/guide/dependency-injection
http://paperpile.com/b/eKmSuJ/0u7S
https://angular.io/guide/ngmodules
http://paperpile.com/b/eKmSuJ/jhN7
https://angular.io/guide/bootstrapping
http://paperpile.com/b/eKmSuJ/5ATC
https://angular.io/guide/architecture-components
http://paperpile.com/b/eKmSuJ/f0nJ
https://angular.io/guide/glossary
http://paperpile.com/b/eKmSuJ/Kg1r
https://angular.io/guide/architecture-services
http://paperpile.com/b/eKmSuJ/dhlP
https://angular.io/guide/pipes
http://paperpile.com/b/eKmSuJ/NiJh
https://angular.io/guide/lazy-loading-ngmodules
http://paperpile.com/b/eKmSuJ/iT3P
https://angular.io/guide/http
http://paperpile.com/b/eKmSuJ/WTt0
http://paperpile.com/b/eKmSuJ/WTt0
https://www.freecodecamp.org/news/a-quick-intro-to-dependency-injection-what-it-is-and-when-to-use-it-7578c84fa88f/
https://www.freecodecamp.org/news/a-quick-intro-to-dependency-injection-what-it-is-and-when-to-use-it-7578c84fa88f/
http://paperpile.com/b/eKmSuJ/6GVc
https://www.atlassian.com/software/jira
http://paperpile.com/b/eKmSuJ/oPA9
http://paperpile.com/b/eKmSuJ/oPA9
http://paperpile.com/b/eKmSuJ/Lhxs
http://paperpile.com/b/eKmSuJ/Lhxs
http://paperpile.com/b/eKmSuJ/7iWh
https://sass-lang.com/documentation
http://paperpile.com/b/eKmSuJ/KjJM

https://www.typescriptlang.org/docs/handbook/typescript-from-scratch.html

Fadatare, R. (2021, May 15). REST API Tutorial. https://www.javaguides.net/p/rest-api-tutorial.html

Finding web elements. (n.d.). Selenium.

https://www.selenium.dev/documentation/webdriver/elements/finders/

Fowler, M. (n.d.). Inversion of Control Containers and the Dependency Injection pattern.

Martinfowler.com. https://martinfowler.com/articles/injection.html

Introduction to the DOM. (n.d.).

https://developer.mozilla.org/en-US/docs/Web/API/Document_Object_Model/Introduction

JSON. (n.d.). https://www.json.org/json-en.html

Krause, J. (2016). HTML: Hypertext markup language. In Introducing Web Development (pp. 39–63).

Apress.

Meyer, B. (1996). Static typing. In Lecture Notes in Computer Science (pp. 57–75). Springer Berlin

Heidelberg.

MVC - MDN web docs glossary. (2021). https://developer.mozilla.org/en-US/docs/Glossary/MVC

OpenAPI generator. (2021). https://openapi-generator.tech/

OpenAPI generator FAQ. (2021). https://openapi-generator.tech/docs/faq

Open Banking Market-Crosskey. (n.d.). Open Banking Market. https://crosskey.io/v2/

Open banking - PSD2 as a service. (2018, January 17). Crosskey.

https://www.crosskey.fi/openbanking/

SPA (single-page application). (2021). https://developer.mozilla.org/en-US/docs/Glossary/SPA

Spring Boot. (2021). https://spring.io/projects/spring-boot

Swagger API documentation. (n.d.).

https://swagger.io/resources/articles/documenting-apis-with-swagger/

Swagger UI. (2021). https://swagger.io/tools/swagger-ui/

Techopedia. (2011, July 4). Front and Back Ends. Techopedia.com; Techopedia.

https://www.techopedia.com/definition/24794/front-and-back-ends

39

https://www.typescriptlang.org/docs/handbook/typescript-from-scratch.html
http://paperpile.com/b/eKmSuJ/NTxi
https://www.javaguides.net/p/rest-api-tutorial.html
http://paperpile.com/b/eKmSuJ/jVSw
https://www.selenium.dev/documentation/webdriver/elements/finders/
http://paperpile.com/b/eKmSuJ/kw3J
http://paperpile.com/b/eKmSuJ/kw3J
https://martinfowler.com/articles/injection.html
http://paperpile.com/b/eKmSuJ/0EsV
https://developer.mozilla.org/en-US/docs/Web/API/Document_Object_Model/Introduction
http://paperpile.com/b/eKmSuJ/64GB
https://www.json.org/json-en.html
http://paperpile.com/b/eKmSuJ/hpFa
http://paperpile.com/b/eKmSuJ/hpFa
http://paperpile.com/b/eKmSuJ/pTZS
http://paperpile.com/b/eKmSuJ/pTZS
http://paperpile.com/b/eKmSuJ/rsQn
https://developer.mozilla.org/en-US/docs/Glossary/MVC
http://paperpile.com/b/eKmSuJ/EXlq
https://openapi-generator.tech/
http://paperpile.com/b/eKmSuJ/Bua7
https://openapi-generator.tech/docs/faq
http://paperpile.com/b/eKmSuJ/jQyM
https://crosskey.io/v2/
http://paperpile.com/b/eKmSuJ/HDtl
https://www.crosskey.fi/openbanking/
http://paperpile.com/b/eKmSuJ/Su8F
https://developer.mozilla.org/en-US/docs/Glossary/SPA
http://paperpile.com/b/eKmSuJ/XX3b
https://spring.io/projects/spring-boot
http://paperpile.com/b/eKmSuJ/Z8RK
https://swagger.io/resources/articles/documenting-apis-with-swagger/
http://paperpile.com/b/eKmSuJ/6bwq
https://swagger.io/tools/swagger-ui/
http://paperpile.com/b/eKmSuJ/xXVG
https://www.techopedia.com/definition/24794/front-and-back-ends

The Official YAML Web Site. (n.d.). https://yaml.org/

Tutorial: Using thymeleaf. (n.d.). https://www.thymeleaf.org/doc/tutorials/3.0/usingthymeleaf.html

van Mulligen, E., & Timmers, T. (1994). Beyond clients and servers. Proceedings / the ... Annual

Symposium on Computer Application [sic] in Medical Care. Symposium on Computer

Applications in Medical Care, 546–550.

Vega, C. (2017, February 28). Client-side vs. server-side rendering: why it’s not all black and white.

freeCodeCamp.org.

https://www.freecodecamp.org/news/what-exactly-is-client-side-rendering-and-hows-it-different-

from-server-side-rendering-bd5c786b340d/

WebDriver. (2021). Selenium. https://www.selenium.dev/documentation/webdriver/

What is a REST API? (2020). https://www.redhat.com/en/topics/api/what-is-a-rest-api

What is Java Spring Boot. (2020). https://www.ibm.com/cloud/learn/java-spring-boot

What is REST? (2021). Codecademy. https://www.codecademy.com/article/what-is-rest

40

http://paperpile.com/b/eKmSuJ/hTTx
https://yaml.org/
http://paperpile.com/b/eKmSuJ/DeEa
https://www.thymeleaf.org/doc/tutorials/3.0/usingthymeleaf.html
http://paperpile.com/b/eKmSuJ/L3PV
http://paperpile.com/b/eKmSuJ/L3PV
http://paperpile.com/b/eKmSuJ/L3PV
http://paperpile.com/b/eKmSuJ/x1K4
http://paperpile.com/b/eKmSuJ/x1K4
https://www.freecodecamp.org/news/what-exactly-is-client-side-rendering-and-hows-it-different-from-server-side-rendering-bd5c786b340d/
https://www.freecodecamp.org/news/what-exactly-is-client-side-rendering-and-hows-it-different-from-server-side-rendering-bd5c786b340d/
http://paperpile.com/b/eKmSuJ/0wzV
https://www.selenium.dev/documentation/webdriver/
http://paperpile.com/b/eKmSuJ/yCGS
https://www.redhat.com/en/topics/api/what-is-a-rest-api
http://paperpile.com/b/eKmSuJ/hVB4
https://www.ibm.com/cloud/learn/java-spring-boot
http://paperpile.com/b/eKmSuJ/Y1uS
https://www.codecademy.com/article/what-is-rest

