

Mikko Peurala

Automated RF Line Testing

Test setup to execute RF measurements using
microwave switches with Python

Metropolia University of Applied Sciences

Bachelor of Engineering

Electrical and Automation Engineering

Bachelor’s Thesis

19.02.2022

Abstract

Author(s): Mikko Peurala

Title: Automated RF Line Testing

Number of Pages: 32 pages + 4 appendices

Date: 19th of February 2022

Degree: Bachelor of Engineering

Degree Programme: Electrical and Automation Engineering

Professional Major: Automation Technology

Instructor(s): Erkki Räsänen, Principal Lecturer

 Russell Lake, Director Quantum Applications

This thesis describes the automation of RF line measurements and processing of
measurement data using Python. The thesis includes the requirements of the devices,
the design and programming of the software, and the structure of the Python code.

The purpose of the thesis work was to speed up and standardize the measurement
process. The goal was to create software that would be able to perform measurements,
store data, and process it in a single interface. Making RF measurements took a lot of
time, and the aim was to reach only a fraction of the time spent.

The test setup contains a vector network analyzer and two switch matrices which are
controlled by Python code. The device being tested contains 24 high-frequency
transmission lines that are connected to switch matrices, which in turn are connected to
the vector network analyzer. Python code performs measurements by activating ports
of the switch matrices one at a time and stores the measurement data in a user-defined
file location. After measurements, the data can be processed in the same Python
interface.

First, all measuring devices were connected to a private network to make their
operation possible using Python. Subsequently, the structure of the software was
planned and implemented using Python's QCodes module. QCodes utilizes software
drivers to control the measurement instruments. Therefore, programming the drivers
was essential to the results of the thesis work. The structure of the software was
updated and developed as the work progressed according to the objectives set by
Bluefors Oy.

The result of the thesis work is a testing station that simplifies and speeds up the test
process.

Keywords: Python, RF, VNA, Switch, QCoDeS

Tiivistelmä

Tekijä: Mikko Peurala

Otsikko: Automatisoitu RF-linjojen Testaus

Sivumäärä: 32 sivua + 4 liitettä

Aika: 19.02.2022

Tutkinto: Insinööri (AMK)

Tutkinto-ohjelma: Sähkö- ja automaatiotekniikka

Ammatillinen pääaine: Automaatiotekniikka

Ohjaajat: Yliopettaja Erkki Räsänen

 Director Quantum Applications Russell Lake

Tämä opinnäytetyö kuvaa RF-linjojen mittausten suorittamisen ja mittausdatan
automatisointia Pythonin avulla Bluefors Oy:lle. Työssä käydään läpi laitteiden
vaatimukset, ohjelmiston suunnittelu ja ohjelmointi sekä Python-koodin rakenne.

Opinnäytetyön tarkoituksena oli nopeuttaa ja standardisoida prosessia. Tavoitteena oli
luoda ohjelmisto, joka pystyisi suorittamaan mittaukset, tallentamaan datan ja
käsittelemään sen yhdessä käyttöliittymässä. RF-mittausten tekeminen vei paljon aikaa
ja tavoitteena oli päästä vain murto-osaan käytetystä ajasta.

Testiasema sisältää vektoripiirianalysaattorin sekä kaksi kytkinmatriisia, joita ohjataan
Python-koodin avulla. Testattava laite sisältää 24 korkeataajuuksista siirtolinjaa, jotka
kytketään kytkinmatriiseihin, jotka puolestaan ovat kytkettynä vektoripiirianalysaattoriin.
Python-koodi suorittaa mittaukset aktivoimalla kytkinmatriisien portteja yksi kerrallaan
ja tallentaa mittausdatan käyttäjän määrittelemään tiedostosijaintiin. Mittausten jälkeen
data voidaan käsitellä samassa Pythonin käyttöliittymässä.

Aluksi kaikki mittalaitteet kytkettiin yksityiseen verkkoon, jotta niiden operointi olisi
mahdollista Pythonin avulla. Tämän jälkeen ohjelmiston rakennetta alettiin suunnitella
ja toteuttaa Pythonin QCoDeS-moduulin avulla. QCoDeS tarvitsee ajurit toimiakseen,
joten niiden ohjelmointi oli oleellista työn tuloksen kannalta. Ohjelmiston rakennetta
päivitettiin ja kehitettiin työn edetessä Bluefors Oy:n asettamien tavoitteiden
mukaisesti.

Opinnäytetyön tuloksena syntyi testausasema, jolla testausprosessi yksinkertaistui ja
nopeutui huomattavasti.

Avainsanat: Python, Radiotaajuus, VNA, Kytkin, QCoDeS

Contents

List of Abbreviations

1 Introduction 1

2 Specification of Requirements 2

3 Transmission Line 3

3.1 Definition of Transmission Line 3

3.2 Coaxial Cable 4

3.3 Cryogenic Coaxial Cable 4

4 Python 5

4.1 Anaconda 5

4.2 Jupyter Notebook 5

4.3 QCoDeS 6

5 Hardware Selection 7

5.1 Network Analyzer 7

5.2 RF Switch Matrix 7

5.3 Cables and Connectors 8

5.3.1 VNA Cables 9

5.3.2 SMA-SMPM Adapter Cables 9

5.3.3 Extension Cables 9

5.3.4 SMA Feedthroughs 9

6 Work Process 10

6.1 Test Setup 10

6.2 QCoDeS Drivers 14

6.2.1 Driver for Network Analyzer 15

6.2.2 Driver for Switch Matrices 16

6.3 Programming 17

6.3.1 Additional Steps in the Program 27

6.3.2 Version Controlling 29

7 Results 29

References 31

Appendices

Appendix 1. Flowchart of the Old Style

Appendix 2. Flowchart of the New Style

Appendix 3. Time Estimation

Appendix 4. N52xx_modified

List of Abbreviations

DUT: Device Under Test

dB: Decibel

dBm: Decibel-Milliwatt

HDW: High-Density Wiring

IDE: Integrated Development Environment

Hz: Hertz

IF: Intermediate Frequency

RF: Radio Frequency

SCPI: The Standard Commands for Programmable Instruments

SMA: Sub Miniature version A

SMPM: Sub Miniature Push-On Micro

TDR: Time-Domain Reflection

VNA: Vector Network Analyzer

VSWR: Voltage Standing Wave Ratio

1

1 Introduction

Bluefors Oy manufactures dilution refrigerator measurement systems for

different research fields in science and technology. The most rapidly growing

field is quantum computing which requires experimental wiring inside the

cryostat, such as high frequency coaxial lines for drive and readout lines of the

qubits. Bluefors offers different wiring options that are tested to operate reliably

in cryogenic temperatures. In this thesis work, the focus was on Radio

Frequency (RF) lines and High-Density Wiring (HDW). Picture of a HDW with

72 lines can be seen in figure 1.

Figure 1. Bluefors High-Density Wiring [1].

HDW is an experimental wiring option for a modular XLD side-loader (XLDsl)

dilution refrigerator measurement system [2]. An XLDsl can be equipped with a

maximum of 1008 high frequency RF lines divided into 6 ports. High frequency

RF lines are used to carry input and output signals to the device under test

(DUT). The need for such many lines comes from the evolution of quantum

2

chips. Two years ago, people were talking about 25 qubits but now the leaders

of the quantum race have more than 100. And the more qubits there are, the

more RF lines are needed.

All RF lines are individually tested after installation, and the possibility to have

such many lines in one system increases workload greatly. The purpose of this

thesis work was to design and build an automated test setup to test multiple

lines with a single attachment. The main goal was to make the testing process

faster, easier, and more reliable. Having consistent data would also help data

analysis when developing and improving RF products in Bluefors.

2 Specification of Requirements

Testing HDW had two main problems: it was taking too much time and process

flow was illogical. All lines were tested one by one with VNA, and the test data

was saved to a USB stick. Testing lines one by one caused problems to test

cables because they could not handle so many mating cycles and they had to

be replaced frequently. Test data needed to be verified by plotting it on a

computer with Python script and this was the reason why data was saved to a

USB stick. If data indicated that something was broken, the technician needed

to use a different Python script to perform time-domain reflection (TDR)

analysis. Flowchart of the old style can be seen in appendix 1.

Requirements for this project were specified in the project plan for Bluefors as

following:

• Ability to test 24 lines with a single attachment at room temperature
to make testing faster.

• Easier and more logical workflow for a technician.

• Python code for executing the measurements.

HDW is divided into modules of 24 RF lines, so it would be convenient to test

the full module at once. This was easily achieved since the HDW design has a

3

multi-connector feature that allows you to attach multiple lines to the end

interfaces of HDW.

One of the main goals was to reduce the steps technicians needed to make.

Saving and naming files could be automated, and test data could be saved

directly into a computer where data could be analyzed. All this should be

operated in one user interface which makes the testing easier for the technician.

A flowchart of the new style can be seen in appendix 2.

The biggest reason to do this project was time-saving possibilities with

automation. The old way of testing required a lot of manual work from

technicians e.g., plugging test cables, saving data, naming files, analyzing

results, and so on. Estimation of how much time could be saved by automating

the test setup can be found in appendix 3.

3 Transmission Line

3.1 Definition of Transmission Line

A transmission line is typically a cable that conducts electromagnetic waves. A

basic electrical cable can carry low frequency alternating current but cannot

carry currents in radio frequency. Special cable structure and impedance

matching enable transmission lines to carry high frequency signals without

power losses. It has a uniform shape all the way which defines its

characteristics impedance and prevents return losses.

Frequency is measured in hertz (Hz), and it tells how many cycles per second

the wave takes. RF lines are often categorized into three classes: low, medium,

and high frequency. The spectrum band of these lines ranges from 30 Hz to 300

GHz. High frequency RF lines are defined to operate from 3MHz upwards. [3.]

To clarify what a high frequency line means, it is called a transmission line

because it acts differently than a low frequency line. This means that the high

4

frequency line must be analyzed based on its characteristics of signal

propagation. All the high frequency interconnects are not automatically

categorized as transmission lines; length needs to be bigger than 25% of the

signal wavelength to be called so. [4.]

3.2 Coaxial Cable

The most common transmission line is a coaxial cable. Coaxial cable is

composed of two concentric conductors and in between of them is dielectric

material where electromagnetic field propagates [5, 72]. Characteristic

impedance for coaxial cable can vary from 32 to 124 Ω but the typical value for

the transmission line is 50 Ω. This was studied to be the best value in Bell Labs

1929 [6; 7].

Coaxial cables can be divided into three different groups: flexible, semi-rigid,

and rigid cables. The biggest discrepancy between flexible and rigid cables is

that flexible cable has a braided shield when rigid cables have solid metal outer

surface. Solid metal surface provides better performance especially in higher

frequencies because it can create 100% RF shielding. [8.]

Coaxial cable can be called a two-port network. Both ports can reflect, pass,

and/or absorb RF energy. To measure these values, we need to understand

scattering parameters, more commonly known as S-parameters. There are four

S-parameters in a two-port network: S11, S21, S12, and S22. S11 and S22 represent

reflection coefficients and S12 and S21 represent transmission coefficients. The

reflection coefficient means how much power is reflected into the output port

and the transmission coefficient indicates gain or loss between input and output

port. Indexation of S-parameter follows the rule: Sxy, where x=output port and

y=input port. [9.]

3.3 Cryogenic Coaxial Cable

Bluefors manufactures its own coaxial cables to meet the strict requirements to

operate reliably in the cryogenic temperatures and survive repeating thermal

5

cycling [10]. Materials of the wires are specified to have low thermal

conductance and all wires are thermalized to different temperature stages

inside Bluefors cryostat with attenuators. Coaxial lines must be attenuated to

block thermal radiation, otherwise the cryostat would not cool down to its base

temperature so well.

4 Python

Python is an interpreted programming language with superior features for data

analysis. Python is easy to use and read, and you can accomplish difficult tasks

with only a few lines of code. However, the main reason to choose Python for

this project was the enormous library of packages. Using these powerful

libraries saves you lots of time and you can focus on the core task. There is

also a big community working with Python so you can easily find help online if

needed. [11.]

Codes for plotting the data and TDR analysis were already made with Python,

so it was easy to integrate these into this test setup.

4.1 Anaconda

Anaconda is a distribution of Python which is widely used in data analysis and

industry. A huge advantage of Anaconda is that it comes with lots of pre-

installed packages needed for data analysis, so it saves a lot of time for the

end-user. Also, Anaconda’s package manager conda is useful because it

simplifies package management and saves a lot of time when installing new or

updating old packages. [12.]

4.2 Jupyter Notebook

Jupyter Notebook is an open-source computational environment that runs a

web application, and it comes with Anaconda. It is constructed from two

components: cell and kernel. The user writes the code into a cell and when

6

running it, Jupyter Notebook runs it in the back-end kernel and returns the

result. In Jupyter Notebook you can combine multiple different file types in one

document, for example, code, text, and picture which is not possible in a normal

integrated development environment (IDE). Jupyter Notebook works with

various programming languages, such as Julia, Python and R. Name Jupyter is

formed out of these three languages. [13.]

Jupyter Notebook was selected for this thesis work due to its superior usability

in creating and debugging your code. You do not need to run your whole code

because Jupyter Notebook is made of cells that can be run individually. This cell

structure allows you to quickly test different approaches and decide which

works best for you. Also, the fact that you can include text and pictures in your

notebook makes it handy to be used in production. For example, you can easily

write instructions on how to use the code inside the notebook instead of having

a separate instruction sheet.

4.3 QCoDeS

QCoDeS is a software framework for data acquisition, and it is mainly used in

experimental quantum physics. It is a Python-based open-source project

developed by Copenhagen, Delft, Sydney, and Microsoft quantum computing

consortium. It has lots of useful features from multiple drivers for lab

instruments to data storage and free documentation. Using QCoDeS will make

things easier for the user and it is a very modern software project which updates

all the time thanks to the big community working with it. [14.]

The main reason to select QCoDeS for this thesis work was the driver for the

VNA. Even though there was not the exact model driver available, the existing

driver could be modified to be suitable for this. Using a driver makes reading

and writing commands to VNA easier than going through the manual to find the

right standard commands for programmable instruments (SCPI). Another

powerful feature that QCoDeS has is called station. A station is a set of

instruments that you have in your setup. When you have your station set up,

7

you can use automatic logging whenever you run it. Logging will save all the log

messages with timestamps of your station, and this might be useful in case

debugging is needed in the future. With the station, you can also print a

snapshot of your whole station. Snapshot means that QCoDeS will list all the

devices and their parameters to the output panel for easy scrutiny.

5 Hardware Selection

5.1 Network Analyzer

A network analyzer is a device used to perform microwave measurements. A

typical network analyzer consists of a display, a signal generator, one or more

receivers, and a measuring element. Two basic types of network analyzers are

scalar network analyzer and vector network analyzer (VNA). In this thesis work,

a VNA was selected to be used since it can measure the magnitude and phase

element of the S-parameters when a scalar network analyzer is only capable of

measuring magnitude. [5, 816.]

At the time of doing this thesis work, Bluefors had a few different kinds of VNAs.

One of these models was selected to be used also in this project, Keysight

E5063A. It is a benchtop version that can be mounted to an IT rack, and it has

two built-in ports with a dynamic range of 117 decibels (dB), a maximum

frequency of 18 GHz, and an output power of 0 decibel-milliwatt (dBm).

5.2 RF Switch Matrix

To measure RF signals between multiple input and output ports an RF switch is

needed. RF switch matrix is an array of RF switches. The selected RF switch

matrices for this project were LXI Microwave Multiplexers with 36 Sub Miniature

version A (SMA) channels. This model can be mounted to an IT rack, and it has

a bandwidth of 18 GHz, typical insertion loss is 3 dB at 18 GHz, and the voltage

standing wave ratio (VSWR) is 2.2:1 at 18 GHz.

8

5.3 Cables and Connectors

This setup required lot of different hardware with different connector types.

Schematic picture of the devices, cables and connectors can be seen in figure

2.

Figure 2. Schematic view of the test setup.

 iewer does not support ull .

9

5.3.1 VNA Cables

Keysight VNA has type N connectors and switch matrices have SMA

connectors. The cables selected were armored type Junkosha MWX221 with

type N plug on the other end and SMA plug on the other. Armoring on the cable

prevents it to be over bent but it still maintains its flexibility. Typical insertion

loss of the cable is 1.2 dB per meter and VSWR is 1.33:1 at 26.5 GHz.

5.3.2 SMA-SMPM Adapter Cables

HDW uses Sub Miniature Push-On Micro (SMPM) connectors on the other end

so to do measurement it is needed to have adapter cable between VNA cable

and HDW. The cable selected for this purpose was Huber+Suhner Astrolab

Microbend MR-12 with an SMA plug on the other end and an SMPM jack on the

other. It is ruggedized and suitable for congested installations due to its small

outer diameter. Typical insertion loss of the cable is 1.81 dB and VSWR is

1.45:1 at 18 GHz.

5.3.3 Extension Cables

All the test devices are mounted in a separate IT rack, so it was necessary to

have extension cables to reach the test area. The cables selected for this were

Mini-Circuits CBL-2M-SMSM+ with an SMA plug on both ends. The cable has

extra-rugged construction and strain reliefs on both ends for longer life and steel

SMA connectors provide long mating-cycle life. Typical insertion loss of the

cable is 4 dB and VSWR is 1.17:1 at 18 GHz.

5.3.4 SMA Feedthroughs

Extension cables and HDW have SMA plugs so an SMA jack-jack adapter was

needed. These adapters were attached to a plate and the plate was attached to

the test table to avoid any excess movement of the cables. Selected adapters

were Mini-Circuits SF-SF50+. These adapters have a rugged stainless-steel

10

body, typical insertion loss is 0.24 dB at 18 GHz and VSWR is 1.40:1 at 18

GHz.

6 Work Process

6.1 Test Setup

The first thing to do was to set up a connection between the computer and

devices. This was done with a LAN connection. The computer had two LAN

ports, one for the company network and one for the private network which was

created for this setup. Devices on the private network were connected by a

network switch. Circuit diagram for the setup can be seen in figure 3.

Figure 3. Circuit diagram of the test setup.

11

This setup required static IP addresses for the computer, VNA, and both switch

matrices. These addresses were given and set up by Bluefors IT personnel.

Both VNA and switch matrices have a software tool that can be used to set up

IP addresses. Keysight Connection Expert was used with VNA and LXI

Discovery Tool with switch matrices. After IP addresses were set, the

connection could be verified with the same software tools.

To get reliable measurement data, the calibration of the setup needed to be

accurate. One option would have been to calibrate each channel of the switch

matrices separately and save a calibration file of each of them. Then the correct

file would need to be opened in the code every time before the channel is

activated. This is possible but it would require a lot of work. In this project, it was

decided to do tests first to see how much each channel varies from the other.

VNA was calibrated with Keysight ECal module N4691D and channel 1 open on

both switch matrices. Reference planes were needed to be at the end of the

SMA connectors on switch matrices. ECal module could not be plugged directly

into both channels, so an adapter cable had to be used in between the ECal

module and switch matrix 2. After calibration, a port extension function was

performed on the VNA that allows you to electrically move the calibration

reference plane to get rid of the adapter cable.

Mini-Circuits extension cables were used as test devices because their

electrical lengths should be the same. 24 cables were attached to the first 24

channels of the switch matrices and test run was saved as .s2p files. Plotted S-

parameters S21 and S11 of this test can be seen in figures 4 and 5. Figures

show that cables are not broken and there are no significant differences

between them and channels. Figures 6 and 7 show plotted S-parameter S21

and S11 of channels 1 and 2. Here we can see bit better that the uncalibrated

channel 2 has < 0.5 dB difference on insertion loss at 18 GHz and it is a bit

noisier. Return loss of the channels is < 5dB.

12

Figure 4. Plotted S-parameter S21 of 24 Mini-Circuits CBL-2M-SMSM+ to compare switch
channels between each other’s.

Figure 5. Plotted S-parameter S11 of 24 Mini-Circuits CBL-2M-SMSM+ to compare switch
channels between each other’s.

13

Figure 6. Plotted S-parameter S21 of 2 Mini-Circuits CBL-2M-SMSM+ to compare switch
channels between each other’s.

Figure 7. Plotted S-parameter S11 of 2 Mini-Circuits CBL-2M-SMSM+ to compare switch
channels between each other’s.

14

The next step was to find out the electrical length and time delay of the

channels. Bluefors had already code to calculate these, so it was used. Figure 8

shows mean time delay, mean electrical length, the standard deviation of time

delay, and the standard deviation of electrical length.

Figure 8. Deviation of the cables in time.

The biggest deviation in electrical length between channels was calculated to

be 4,6 millimetres and in time delay the biggest deviation was 17 picoseconds.

This result was good enough to proceed with just having the calibration on one

channel and using it on the others.

6.2 QCoDeS Drivers

QCoDes has premade drivers for various lab instruments which help users to

operate them. When using the driver, basic communication works with a set()

and get() commands. These are standardized methods to perform

Instrument.write() and Instrument.ask() commands in QCoDeS.

Operating instruments with SCPI commands would take much more time and

the code itself would become hard to understand. Own functions can be also

15

defined into the driver. Using functions makes the code easier to read and

modify.

In this case, there was not the exact driver for Keysight E5063A VNA available

so an existing driver for a different model Keysight VNA needed to be modified.

The selected base driver from QCoDeS Keysight instrument drivers’ catalog

was N52xx and the specified driver for the VNA was N5245A.

RF switch matrix did not have a driver that could have been used, so a new one

needed to be done. Making a driver from the scratch is a big task so it was

decided to do just a bare minimum to get it working.

6.2.1 Driver for Network Analyzer

QCoDeS driver for N52xx was used as a base for the new driver called

N52xx_modified. There were few issues in the driver with def traces(self)

-> ChannelList: section which was supposed to update channel list with

active traces and return the new list. To fix this, some of the commands were

commented out. Some other smaller sections in the original driver were also

commented out. All new functions and changes made to existing ones in the

driver will be presented in chapter 6.3. The whole N52xx_modified driver can be

seen in appendix 4.

A specified driver for Keysight 5063A was created by using the base of the

existing driver of N5245A. Frequency, power limits and the number of ports

were changed to correct ones based on the VNA model used. Also, the

imported base file was changed to be the modified one. This driver can be seen

in figure 9.

16

Figure 9. Driver for E5063A.

6.2.2 Driver for Switch Matrices

Creating driver for switch matrices (figure 10) was done based on the way how

the driver was made for 5063A. Imported dependencies for switches are the

Python library for LXI Driver pilxi from Pickeringtest and Instrument from

QCoDeS. Pickeringtest has examples for different languages on how to operate

the switches. Examples for Python were studied to create this driver.

A function called set_port_state was created for the driver. This function

specifies the state of the channel, and it takes two arguments: port and state.

Port defines which channel on the switch is activated and the state defines

whether the channel is on (1) or off (0). Usage of this function can be seen in

figure 20.

17

Figure 10. Driver for switch matrix.

6.3 Programming

Programming was made in Jupyter Notebook with an activated QCoDeS

environment. This section describes how these steps were made and what is

their function in the whole code.

First, all necessary dependencies are imported (figure 11). In Python, importing

works with the import -command. If the whole dependency is not needed, it

can be imported using from X import Y -command. To make the coding

easier, packages are often imported with the import as -command which

allows you to use the package with a shorter and easier name. All

dependencies will be described in more detail later when they are used.

18

Figure 11. List of imported dependencies.

In the next cell, a connection between the computer and instruments is opened

(figure 12). This is done by creating new variables called pna, switcher1,

and switcher2. These variables will use imported dependencies 5063A or

LXI. The reason why the variable name was pna instead of ena is that the

5063A driver is made for a PNA network analyzer, not for ENA which is used in

this project.

Figure 12. Opening connection to the instruments.

19

In both dependencies’ driver iles, there is a def __init__ -section which is a

constructor for a class of the instrument. This constructor demands two

arguments: name and address. Given names are pna, SW1, and SW2 and

addresses are static IP addresses for the devices. If the connection is already

opened to the network analyzer, a KeyError will be raised, and this is the reason

why opening the instruments section was placed inside a try-except

structure. If the error is raised, the user will only see the text “Connection to

instruments is already open” and can continue to the next cell.

The next cell is a function that recalls a correct state to the VNA (figure 13).

When recalling a file, VNA opens a state that has all the parameters set and

active calibration.

Figure 13. Recall state function.

Function open_hdw_state is defined in the driver (figure 14). This function

was not included in the original driver, so it was made for this project. It writes a

SCPI command to open a file called HDW.sta from root D in VNA.

Figure 14. Function to recall state in VNA.

The power of QCoDeS can be seen in figure 15 where VNA parameters can be

modified with simple commands. These parameters are already set in the

opened state file but in this cell, the user can easily try different settings if it is

needed. In this case, the settings are:

20

• start frequency = 300 MHz

• stop frequency = 18 GHz

• output power = -5 dBm

• trigger source = bus

• number of points = 1601

• intermediate frequency (IF) bandwidth = 1 KHz

• trace format = logarithmic magnitude

• sweep type = linear frequency.

Figure 15. List of added parameters to the network analyzer.

21

All the commands were in the original driver except the ones for trace format

and sweep type. These were added as new parameters to the driver (figures 16

and 17). Get_cmd and set_cmd commands are defined with correct SCPI

commands and a variable vals has trace formats and sweep types that are

available in VNA.

Figure 16. New parameter for trace format.

Figure 17. New parameter for sweep type.

Also trigger source was missing the needed type “BUS” which means that the

trigger is activated by software. This was added to variable vals (figure 18).

Figure 18. Updated parameter for trigger source.

22

Before running the actual measurement, the user needs to specify the file

directory where the data will be saved, and this can be seen in figure 19. The

file path can be copied straight from the file explorer and pasted between

quotations marks. Letter r before quotes means that Python creates a raw string

from the pasted file path. Raw string treats backlashes as literal characters, not

as escape characters as they are in a normal string. After this, a new variable

called path is created that uses the f-string method to add one backlash to the

end of the file path.

Figure 19. Defining a file directory.

The next cell, seen in figure 20, is making the actual measurements. First, a for

loop is created to run measurement 24 times. At each loop, the sequence

number is saved to a variable called line.

23

Figure 20. Run measurements for channels 1-24.

At the start of each loop, the set_port_state -function is activated. This

function was defined in the driver for switch matrix (figure 10). It uses a variable

line to define the channel which needs to be switched on.

24

After this, 3 new variables are created: pha, mag, and freqs. Pha and

mag are empty lists, and freqs is a list of a start frequency, stop frequency

and number of points. These values are processed with the np.linspace -

method from the imported dependency numpy which returns the values evenly

spaced. These 3 variables are needed when saving the measurement data.

Next, a function called single_trigger is activated. It starts a sweep that

stops after the sweep is done. The function was added to the driver, and it

writes a SCPI command to VNA to run a single sweep (figure 21).

Figure 21. Function to activate a single trigger.

The next phase is placed inside a while loop with Boolean value True. This

means that the loop will continue if the value is true. Inside while loop is a

try-except structure and command break. First Python goes to try section

and i it can’t be completed, it will move to except. If it can be completed,

except will be skipped, and the break command will stop the while loop.

Except structure uses imported dependency pyvisa to identify

VisaIOError.

The first thing inside try is an operation time.sleep() from imported

dependency time to wait the time it takes to do a single sweep. To get the time

required for the single sweep, a QCoDeS command sweep_time.get() was

used. After this a condition statement if was used to check if function

operation_complete() is ready. This function was added to the driver

(figure 22). It returns a string 0 if some operation is still ongoing and 1 when all

pending operations are completed. If this function returns 0, Python will move to

except section that prints a string “Check delay” to the output panel so that the

25

user knows there is something wrong with the wait time. After this, a command

continue will activate try from the beginning.

Figure 22. Function to check if an operation is completed.

When testing HDW, there are four different traces on the VNA screen: S11,

S12, S21, and S22. All these traces are looped through in the next step. First, a

function called select_trace() selects the trace using variable trace which

is an integer defined by the running number of the loop. This function did not

exist in the driver, so it was created (figure 23). This function requires one

argument trace_number which needs to be an integer and it writes a SCPI

command to select a given trace.

Figure 23. Function to select trace.

Next, a function called autoscale() is activated. It uses the same variable

trace to identi y which trace needs to be scaled. This unction didn’t exist in

the driver, so it was created (figure 24). It requires one argument

trace_number that needs to be an integer and it writes a SCPI command to

auto-scale given trace.

Figure 24. Function to scale selected trace.

26

The next two steps are saving phase and magnitude information to existing

empty lists pha and mag using the Python list append -method. Saved

information is gathered using QCoDeS commands phase.get() and

magnitude.get().

Data is saved into Touchstone format using a function called save_s2p that

requires five variables: path, line, freqs, mag, and pha. The

variable line is used with the f-string method to add the string “s.2p” to the end

of it to save it in Touchstone format. This function did not exist in the driver, so it

was added (figure 25). It requires 5 arguments: path, fname, freqs,

mag, and pha. The path is the file directory where data is saved, and it is

defined by the user in a variable path (figure 19). Fname is the name of the file,

and it is defined in the variable line. This means that test results will be

saved as .s2p files by number (1.s2p, 2.s2p, 3.s2p etc.). Arguments freqs,

mag, and pha are using variables with the same names which are Python lists.

Figure 25. Function to save data in Touchstone format.

After data is saved, switcher channels are switched off using function

set_port_state which was defined in the driver (figure 10). The same

function was used earlier to switch channels on by giving arguments line and

integer 1 but this time the second argument is integer 0.

27

The last cell in the program is to close connections to instruments (figure 26).

Figure 26. Closing connection to instruments.

6.3.1 Additional Steps in the Program

There are three additional steps in the program which are used when testing

HDW: loopback measurement, data plotting, and TDR. To measure lines inside

a cryostat, individual lines need to be connected to pairs on the bottom of the

HDW. To measure this setup, the main code was modified to a new code (figure

27). Switch matrices have 36 channels so there were still 12 unused. These 12

channels were decided to be used for the loop measurements. The main idea

for the code is the same as in figure 14 but there are few differences. This code

starts with defining two variables, first and second, which are used as

counters, and the for loop is modified to run measurements from channels 25

to 36. The actual measurement section works the same way, but the difference

comes when saving the file. Because we are now measuring two lines at the

same time, the file needs to be saved with both line numbers. This is done

using f-string in save_s2p function to insert variables first and second with

a hyphen in between. The last step is to add integer 2 to counter variables

first and second to measure the next pair in the next round of the loop.

28

Figure 27. Run measurements for channels 25-36 in pairs.

For plotting the data and running TDR analysis, Bluefors made scripts were

used. Imported dependencies glob, natsort, skrf, and matplotlib

are used for these. Scripts were modified to use the same variables to read

saved data from the right file directory and save the plotted figures there. Both

scripts are in their cells in Jupyter Notebook for easy operation.

29

6.3.2 Version Controlling

This project was created over three different computers so proper version

control was needed. USB stick can get lost or corrupted, so version controlling

was chosen to be done via Git.

Git is a version control system that tracks changes made to the files and allows

users to go back to older files if an error was noticed in the new file [15]. With

Git I used GitLab that offers cloud storage to store a copy of the repository that

contains all the files and revision history.

7 Results

This project was finished and taken into production in August 2021. Some

modifications were still made in September when there was a bit more

experience from production, but all the main functions and ideas stayed the

same. Before starting the project, it was estimated that measuring 24 lines

would take 5 minutes and this was proved to be very close to the truth. The

actual measurement section takes around 3 minutes and when you add the

time that takes attaching test wires, we are close to the estimation. This is a

massive time saving compared to the old style which could take up to 60

minutes to perform the same tests.

Another benefit of this project was to simplify and standardize the test process.

Now it is easy for a technician to plug in the test cables and run all the

measurements in the same user interface. There is no need any more to run

multiple tests and save them to USB sticks to get them analyzed. If some error

occurs in the validation, a technician can quickly debug it while HDW is still

plugged into the test setup.

All required functions were included in this project but during it, there were

multiple new improvement ideas for this setup. QCoDeS has a built-in function

for logging which was tried to be implemented, but it was noticed to be a too big

30

task for this time frame. Since this setup was using the modified driver for the

VNA and switch matrices had the bare minimum driver, logging did not work as

it was intended. It is anyhow possible to have, and it would be a great addition

to this. Another improvement idea was to improve plotting and TDR with Python

module Scikit RF. Now, these functions plot the data for the user, but they could

also do the validation automatically. This would require a lot of testing, but this

is something that could make employees' work easier.

Hardware for the test setup will be updated after more testing is done and the

best practices are found. Now the setup has a bit too long test cables and

wrong genders. It would be good to calibrate each channel of the switch

matrices after the hardware is updated to perform more accurate

measurements.

Based on the results of this thesis work, Bluefors has decided to purchase

similar test setup to be used in cryohall where cryostats are built. Final

validation of the HDW is done in cryogenic temperatures inside the cryostat so

that setup is much needed. It is expected to have similar time saving as in this

thesis work and it also standardizes measurements performed in cryohall.

31

References

1 Bluefors Oy. High-Density Wiring. Digital photograph. https://bluefors.com/wp-

content/uploads/2020/02/bluefors-high-density-wiring-side-loading-tree4-e-800-

2.png Accessed 16.01.2022.

2 Bluefors Oy. High-Density Wiring. Online. https://bluefors.com/products/high-

density-wiring/#product-overview Read 16.01.2022.

3 Scarpati, Jessica. 2021. Radio frequency (RF, rf). Search Networking. Online.

https://searchnetworking.techtarget.com/definition/radio-frequency Updated

February 2021. Read 22.07.2021.

4 All about circuits. Practical Guide to Radio-Frequency Analysis and Design.

EETech Meadia, LLC. Online. https://www.allaboutcircuits.com/textbook/radio-

frequency-analysis-design/real-life-rf-signals/what-is-a-transmission-line/ Read

22.07.2021.

5 Sorrentino, Roberto; Bianchi, Giovanni & Chang, Kai. 2010. Microwave and RF

Engineering. John Wiley & Sons, Incorporated 2010, p. 72 & 816.

6 Lampen, Steve. 2012. 50 Ohms The Forgotten Impedance. Belden. Online.

https://www.belden.com/blogs/broadcast/50-ohms-the-forgotten-impedance/

27.08.2012. Read 23.07.2021.

7 Techplayon. 2017. Why characteristics impedance of RF transmission lines is kept

50 Ohms? Techplayon. Online. https://www.techplayon.com/characteristics-

impedance-rf-transmission-lines-kept-50-ohms/ 30.08.2017. Read 23.07.2021.

8 Customcable.ca. 2012. Flexible vs. Semi Rigid vs. Rigid RF (Coax) Cable

Assemblies. Customcable.ca. Online. https://customcable.ca/flexible-semi-rigid-rf-

coax-cable-assemblies/ 13.01.2012. Read 23.07.2021.

9 Rohde Schwarz. 2019. Understanding S parameters. Video.

https://www.youtube.com/watch?v=-Pi0UbErHTY 18.10.2019. Accessed

26.07.2021.

https://bluefors.com/wp-content/uploads/2020/02/bluefors-high-density-wiring-side-loading-tree4-e-800-2.png
https://bluefors.com/wp-content/uploads/2020/02/bluefors-high-density-wiring-side-loading-tree4-e-800-2.png
https://bluefors.com/wp-content/uploads/2020/02/bluefors-high-density-wiring-side-loading-tree4-e-800-2.png
https://bluefors.com/products/high-density-wiring/#product-overview
https://bluefors.com/products/high-density-wiring/#product-overview
https://searchnetworking.techtarget.com/definition/radio-frequency
https://www.allaboutcircuits.com/textbook/radio-frequency-analysis-design/real-life-rf-signals/what-is-a-transmission-line/
https://www.allaboutcircuits.com/textbook/radio-frequency-analysis-design/real-life-rf-signals/what-is-a-transmission-line/
https://www.belden.com/blogs/broadcast/50-ohms-the-forgotten-impedance/
https://www.techplayon.com/characteristics-impedance-rf-transmission-lines-kept-50-ohms/
https://www.techplayon.com/characteristics-impedance-rf-transmission-lines-kept-50-ohms/
https://customcable.ca/flexible-semi-rigid-rf-coax-cable-assemblies/
https://customcable.ca/flexible-semi-rigid-rf-coax-cable-assemblies/
https://www.youtube.com/watch?v=-Pi0UbErHTY

32

10 Bluefors Oy. Coaxial Wiring. Online. https://bluefors.com/products/coaxial-wiring/

Read 16.01.2022.

11 Zhidkov, Roman. 2020. Why Python is Essential for Data Analysis. RT Insights.

Online. https://www.rtinsights.com/why-python-is-essential-for-data-analysis/

13.01.2020. Read 27.07.2021.

12 Nishad, Rohit. 2021. What Is Anaconda? Anaconda Vs python Programming

(2021). 360 Tech Explorer. Online. https://360techexplorer.com/what-is-anaconda-

anaconda-vs-python-programming/ 05.03.2021. Read 29.07.2021.

13 Perkel, Je rey M. 20 8. Why Jupyter is data scientists’ computational notebook o

choice? Nature. Online https://www.nature.com/articles/d41586-018-07196-1

30.10.2018. Read 15.08.2021.

14 QuantAcademy. 2020. QCoDeS – Intro and why to use it. Video.

https://www.youtube.com/watch?v=5r4vBAsN6hY 20.05.2020. Accessed

29.07.2021.

15 Noble Desktop. 2018. What Is Git & Why Should You Use It? Noble Desktop.

Online. https://www.nobledesktop.com/blog/what-is-git-and-why-should-you-use-it

21.09.2018. Read 21.08.2021.

https://bluefors.com/products/coaxial-wiring/
https://www.rtinsights.com/why-python-is-essential-for-data-analysis/
https://360techexplorer.com/what-is-anaconda-anaconda-vs-python-programming/
https://360techexplorer.com/what-is-anaconda-anaconda-vs-python-programming/
https://www.nature.com/articles/d41586-018-07196-1
https://www.youtube.com/watch?v=5r4vBAsN6hY
https://www.nobledesktop.com/blog/what-is-git-and-why-should-you-use-it%2021.09.2018
https://www.nobledesktop.com/blog/what-is-git-and-why-should-you-use-it%2021.09.2018

Appendix 1

Appendices

Appendix 1. Flowchart of the Old Style

Figure 28. Flowchart showing how testing was performed before this project.

 Appendix 2

Appendix 2. Flowchart of the New Style

Figure 29. Flowchart showing how testing was performed after this project.

Appendix 3

Appendix 3. Time Estimation

Figure 30. Estimated time for testing 1 full port of HDW.

0

50

100

150

200

250

300

350

400

450

24 48 72 96 120 144 168

T
im

e
 (

m
in

)

Qty of lines (pcs)

Estimated time for testing HDW

Time old style (min) Time new style (min)

Appendix 4

 1(14)

Appendix 4. N52xx_modified

Figure 31. N52xx_modified rows 1-50.

Appendix 4

 2(14)

Figure 32. N52xx_modified rows 51-97.

Appendix 4

 3(14)

Figure 33. N52xx_modified rows 98-135.

Appendix 4

 4(14)

Figure 34. N52xx_modified rows 136-165.

Appendix 4

 5(14)

Figure 35. N52xx_modified rows 166-202.

Appendix 4

 6(14)

Figure 36. N52xx_modified rows 203-243.

Appendix 4

 7(14)

Figure 37. N52xx_modified rows 244-279.

Appendix 4

 8(14)

Figure 38. N52xx_modified rows 280-322.

Figure 39. N52xx_modified rows 323-345.

Appendix 4

 9(14)

Figure 40. N52xx_modified rows 346-388.

Appendix 4

 10(14)

Figure 41. N52xx_modified rows 389-436.

Appendix 4

 11(14)

Figure 42. N52xx_modified rows 437-484.

Appendix 4

 12(14)

Figure 43. N52xx_modified rows 485-523.

Appendix 4

 13(14)

Figure 44. N52xx_modified rows 524-566.

Appendix 4

 14(14)

Figure 45. N52xx_modified rows 567-612.

Figure 46. N52xx_modified rows 613-640.

	1 Introduction
	2 Specification of Requirements
	3 Transmission Line
	3.1 Definition of Transmission Line
	3.2 Coaxial Cable
	3.3 Cryogenic Coaxial Cable

	4 Python
	4.1 Anaconda
	4.2 Jupyter Notebook
	4.3 QCoDeS

	5 Hardware Selection
	5.1 Network Analyzer
	5.2 RF Switch Matrix
	5.3 Cables and Connectors
	5.3.1 VNA Cables
	5.3.2 SMA-SMPM Adapter Cables
	5.3.3 Extension Cables
	5.3.4 SMA Feedthroughs

	6 Work Process
	6.1 Test Setup
	6.2 QCoDeS Drivers
	6.2.1 Driver for Network Analyzer
	6.2.2 Driver for Switch Matrices

	6.3 Programming
	6.3.1 Additional Steps in the Program
	6.3.2 Version Controlling

	7 Results
	References
	Appendices
	Appendix 1. Flowchart of the Old Style
	Appendix 2. Flowchart of the New Style
	Appendix 3. Time Estimation
	Appendix 4. N52xx_modified

