Metropolia

Mikko Peurala

Automated RF Line Testing

Test setup to execute RF measurements using
microwave switches with Python

Metropolia University of Applied Sciences
Bachelor of Engineering

Electrical and Automation Engineering
Bachelor’s Thesis

19.02.2022

Abstract

Author(s): Mikko Peurala

Title: Automated RF Line Testing

Number of Pages: 32 pages + 4 appendices

Date: 19" of February 2022

Degree: Bachelor of Engineering

Degree Programme: Electrical and Automation Engineering
Professional Major: Automation Technology

Instructor(s): Erkki Rasanen, Principal Lecturer

Russell Lake, Director Quantum Applications

This thesis describes the automation of RF line measurements and processing of
measurement data using Python. The thesis includes the requirements of the devices,
the design and programming of the software, and the structure of the Python code.

The purpose of the thesis work was to speed up and standardize the measurement
process. The goal was to create software that would be able to perform measurements,
store data, and process it in a single interface. Making RF measurements took a lot of
time, and the aim was to reach only a fraction of the time spent.

The test setup contains a vector network analyzer and two switch matrices which are
controlled by Python code. The device being tested contains 24 high-frequency
transmission lines that are connected to switch matrices, which in turn are connected to
the vector network analyzer. Python code performs measurements by activating ports
of the switch matrices one at a time and stores the measurement data in a user-defined
file location. After measurements, the data can be processed in the same Python
interface.

First, all measuring devices were connected to a private network to make their
operation possible using Python. Subsequently, the structure of the software was
planned and implemented using Python's QCodes module. QCodes utilizes software
drivers to control the measurement instruments. Therefore, programming the drivers
was essential to the results of the thesis work. The structure of the software was
updated and developed as the work progressed according to the objectives set by
Bluefors Oy.

The result of the thesis work is a testing station that simplifies and speeds up the test
process.

Keywords: Python, RF, VNA, Switch, QCoDeS

Tiivistelma

Tekija: Mikko Peurala

Otsikko: Automatisoitu RF-linjojen Testaus
Sivumaara: 32 sivua + 4 liitetta

Aika: 19.02.2022

Tutkinto: Insindori (AMK)

Tutkinto-ohjelma: Sahké- ja automaatiotekniikka
Ammatillinen paaaine: Automaatiotekniikka

Ohjaajat: Yliopettaja Erkki Rdsanen

Director Quantum Applications Russell Lake

Tama opinnaytetyd kuvaa RF-linjojen mittausten suorittamisen ja mittausdatan
automatisointia Pythonin avulla Bluefors Oy:lle. Tydssa kaydaan lapi laitteiden
vaatimukset, ohjelmiston suunnittelu ja ohjelmointi seka Python-koodin rakenne.

Opinnaytetydn tarkoituksena oli nopeuttaa ja standardisoida prosessia. Tavoitteena oli
luoda ohjelmisto, joka pystyisi suorittamaan mittaukset, tallentamaan datan ja
kasittelemaan sen yhdessa kayttoliittymassa. RF-mittausten tekeminen vei paljon aikaa
ja tavoitteena oli paasta vain murto-osaan kaytetysta ajasta.

Testiasema sisaltaa vektoripiirianalysaattorin seka kaksi kytkinmatriisia, joita ohjataan
Python-koodin avulla. Testattava laite sisaltda 24 korkeataajuuksista siirtolinjaa, jotka
kytketaan kytkinmatriiseihin, jotka puolestaan ovat kytkettyna vektoripiirianalysaattoriin.
Python-koodi suorittaa mittaukset aktivoimalla kytkinmatriisien portteja yksi kerrallaan
ja tallentaa mittausdatan kayttajan maarittelemaan tiedostosijaintiin. Mittausten jalkeen
data voidaan kasitelld samassa Pythonin kayttoliittymassa.

Aluksi kaikki mittalaitteet kytkettiin yksityiseen verkkoon, jotta niiden operointi olisi
mahdollista Pythonin avulla. Tdman jalkeen ohjelmiston rakennetta alettiin suunnitella
ja toteuttaa Pythonin QCoDeS-moduulin avulla. QCoDeS tarvitsee ajurit toimiakseen,
joten niiden ohjelmointi oli oleellista tyon tuloksen kannalta. Ohjelmiston rakennetta
paivitettiin ja kehitettiin tydn edetessa Bluefors Oy:n asettamien tavoitteiden
mukaisesti.

Opinnaytetyon tuloksena syntyi testausasema, jolla testausprosessi yksinkertaistui ja
nopeutui huomattavasti.

Avainsanat: Python, Radiotaajuus, VNA, Kytkin, QCoDeS

Contents

List of Abbreviations

1 Introduction

2 Specification of Requirements

3 Transmission Line

3.1
3.2
3.3

Definition of Transmission Line
Coaxial Cable
Cryogenic Coaxial Cable

4 Python

41
4.2
4.3

Anaconda
Jupyter Notebook
QCoDeS

5 Hardware Selection

5.1
5.2
5.3

Network Analyzer

RF Switch Matrix

Cables and Connectors

5.3.1 VNA Cables

5.3.2 SMA-SMPM Adapter Cables
5.3.3 Extension Cables

5.3.4 SMA Feedthroughs

6 Work Process

6.1
6.2

6.3

Test Setup

QCoDeS Drivers

6.2.1 Driver for Network Analyzer
6.2.2 Driver for Switch Matrices
Programming

6.3.1 Additional Steps in the Program

6.3.2 Version Controlling

7 Results

a »~ b~ W

o O O

~

O ©O© © © © 0o N N

-

N N D A A
© N N O oo o O

N
(]

References
Appendices

Appendix 1. Flowchart of the Old Style
Appendix 2. Flowchart of the New Style
Appendix 3. Time Estimation

Appendix 4. N52xx_modified

31

List of Abbreviations

DUT:

dB:

dBm:

HDW:

IDE:

Hz:

RF:

SCPI:

SMA:

SMPM:

TDR:

VNA:

VSWR:

Device Under Test

Decibel

Decibel-Milliwatt

High-Density Wiring

Integrated Development Environment

Hertz

Intermediate Frequency

Radio Frequency

The Standard Commands for Programmable Instruments

Sub Miniature version A

Sub Miniature Push-On Micro

Time-Domain Reflection

Vector Network Analyzer

Voltage Standing Wave Ratio

1 Introduction

Bluefors Oy manufactures dilution refrigerator measurement systems for
different research fields in science and technology. The most rapidly growing
field is quantum computing which requires experimental wiring inside the
cryostat, such as high frequency coaxial lines for drive and readout lines of the
qubits. Bluefors offers different wiring options that are tested to operate reliably
in cryogenic temperatures. In this thesis work, the focus was on Radio
Frequency (RF) lines and High-Density Wiring (HDW). Picture of a HDW with

72 lines can be seen in figure 1.

Figure 1. Bluefors High-Density Wiring [1].

HDW is an experimental wiring option for a modular XLD side-loader (XLDsl)
dilution refrigerator measurement system [2]. An XLDsl can be equipped with a
maximum of 1008 high frequency RF lines divided into 6 ports. High frequency
RF lines are used to carry input and output signals to the device under test

(DUT). The need for such many lines comes from the evolution of quantum

chips. Two years ago, people were talking about 25 qubits but now the leaders
of the quantum race have more than 100. And the more qubits there are, the

more RF lines are needed.

All RF lines are individually tested after installation, and the possibility to have
such many lines in one system increases workload greatly. The purpose of this
thesis work was to design and build an automated test setup to test multiple
lines with a single attachment. The main goal was to make the testing process
faster, easier, and more reliable. Having consistent data would also help data

analysis when developing and improving RF products in Bluefors.

2 Specification of Requirements

Testing HDW had two main problems: it was taking too much time and process
flow was illogical. All lines were tested one by one with VNA, and the test data
was saved to a USB stick. Testing lines one by one caused problems to test
cables because they could not handle so many mating cycles and they had to
be replaced frequently. Test data needed to be verified by plotting it on a
computer with Python script and this was the reason why data was saved to a
USB stick. If data indicated that something was broken, the technician needed
to use a different Python script to perform time-domain reflection (TDR)

analysis. Flowchart of the old style can be seen in appendix 1.

Requirements for this project were specified in the project plan for Bluefors as

following:

o Ability to test 24 lines with a single attachment at room temperature
to make testing faster.

o Easier and more logical workflow for a technician.

o Python code for executing the measurements.

HDW is divided into modules of 24 RF lines, so it would be convenient to test

the full module at once. This was easily achieved since the HDW design has a

multi-connector feature that allows you to attach multiple lines to the end
interfaces of HDW.

One of the main goals was to reduce the steps technicians needed to make.
Saving and naming files could be automated, and test data could be saved
directly into a computer where data could be analyzed. All this should be
operated in one user interface which makes the testing easier for the technician.

A flowchart of the new style can be seen in appendix 2.

The biggest reason to do this project was time-saving possibilities with
automation. The old way of testing required a lot of manual work from
technicians e.g., plugging test cables, saving data, naming files, analyzing
results, and so on. Estimation of how much time could be saved by automating

the test setup can be found in appendix 3.

3 Transmission Line

3.1 Definition of Transmission Line

A transmission line is typically a cable that conducts electromagnetic waves. A
basic electrical cable can carry low frequency alternating current but cannot
carry currents in radio frequency. Special cable structure and impedance
matching enable transmission lines to carry high frequency signals without
power losses. It has a uniform shape all the way which defines its

characteristics impedance and prevents return losses.

Frequency is measured in hertz (Hz), and it tells how many cycles per second
the wave takes. RF lines are often categorized into three classes: low, medium,
and high frequency. The spectrum band of these lines ranges from 30 Hz to 300

GHz. High frequency RF lines are defined to operate from 3MHz upwards. [3.]

To clarify what a high frequency line means, it is called a transmission line
because it acts differently than a low frequency line. This means that the high

frequency line must be analyzed based on its characteristics of signal
propagation. All the high frequency interconnects are not automatically
categorized as transmission lines; length needs to be bigger than 25% of the

signal wavelength to be called so. [4.]

3.2 Coaxial Cable

The most common transmission line is a coaxial cable. Coaxial cable is
composed of two concentric conductors and in between of them is dielectric
material where electromagnetic field propagates [5, 72]. Characteristic
impedance for coaxial cable can vary from 32 to 124 Q but the typical value for
the transmission line is 50 Q. This was studied to be the best value in Bell Labs
1929 [6; 7].

Coaxial cables can be divided into three different groups: flexible, semi-rigid,
and rigid cables. The biggest discrepancy between flexible and rigid cables is
that flexible cable has a braided shield when rigid cables have solid metal outer
surface. Solid metal surface provides better performance especially in higher

frequencies because it can create 100% RF shielding. [8.]

Coaxial cable can be called a two-port network. Both ports can reflect, pass,
and/or absorb RF energy. To measure these values, we need to understand
scattering parameters, more commonly known as S-parameters. There are four
S-parameters in a two-port network: S11, S21, S12, and S22. S11and S22 represent
reflection coefficients and S12and Sz1 represent transmission coefficients. The
reflection coefficient means how much power is reflected into the output port
and the transmission coefficient indicates gain or loss between input and output
port. Indexation of S-parameter follows the rule: Sxy, where x=output port and

y=input port. [9.]

3.3 Cryogenic Coaxial Cable

Bluefors manufactures its own coaxial cables to meet the strict requirements to

operate reliably in the cryogenic temperatures and survive repeating thermal

cycling [10]. Materials of the wires are specified to have low thermal
conductance and all wires are thermalized to different temperature stages
inside Bluefors cryostat with attenuators. Coaxial lines must be attenuated to
block thermal radiation, otherwise the cryostat would not cool down to its base

temperature so well.

4 Python

Python is an interpreted programming language with superior features for data
analysis. Python is easy to use and read, and you can accomplish difficult tasks
with only a few lines of code. However, the main reason to choose Python for
this project was the enormous library of packages. Using these powerful
libraries saves you lots of time and you can focus on the core task. There is
also a big community working with Python so you can easily find help online if
needed. [11.]

Codes for plotting the data and TDR analysis were already made with Python,

so it was easy to integrate these into this test setup.

4.1 Anaconda

Anaconda is a distribution of Python which is widely used in data analysis and
industry. A huge advantage of Anaconda is that it comes with lots of pre-
installed packages needed for data analysis, so it saves a lot of time for the
end-user. Also, Anaconda’s package manager conda is useful because it
simplifies package management and saves a lot of time when installing new or

updating old packages. [12.]
4.2 Jupyter Notebook

Jupyter Notebook is an open-source computational environment that runs a
web application, and it comes with Anaconda. It is constructed from two
components: cell and kernel. The user writes the code into a cell and when

running it, Jupyter Notebook runs it in the back-end kernel and returns the
result. In Jupyter Notebook you can combine multiple different file types in one
document, for example, code, text, and picture which is not possible in a normal
integrated development environment (IDE). Jupyter Notebook works with
various programming languages, such as Julia, Python and R. Name Jupyter is

formed out of these three languages. [13.]

Jupyter Notebook was selected for this thesis work due to its superior usability
in creating and debugging your code. You do not need to run your whole code
because Jupyter Notebook is made of cells that can be run individually. This cell
structure allows you to quickly test different approaches and decide which
works best for you. Also, the fact that you can include text and pictures in your
notebook makes it handy to be used in production. For example, you can easily
write instructions on how to use the code inside the notebook instead of having

a separate instruction sheet.

4.3 QCoDeS

QCoDeS is a software framework for data acquisition, and it is mainly used in
experimental quantum physics. It is a Python-based open-source project
developed by Copenhagen, Delft, Sydney, and Microsoft quantum computing
consortium. It has lots of useful features from multiple drivers for lab
instruments to data storage and free documentation. Using QCoDeS will make
things easier for the user and it is a very modern software project which updates

all the time thanks to the big community working with it. [14.]

The main reason to select QCoDeS for this thesis work was the driver for the
VNA. Even though there was not the exact model driver available, the existing
driver could be modified to be suitable for this. Using a driver makes reading
and writing commands to VNA easier than going through the manual to find the
right standard commands for programmable instruments (SCPI). Another
powerful feature that QCoDeS has is called station. A station is a set of

instruments that you have in your setup. When you have your station set up,

you can use automatic logging whenever you run it. Logging will save all the log
messages with timestamps of your station, and this might be useful in case
debugging is needed in the future. With the station, you can also print a
snapshot of your whole station. Snapshot means that QCoDeS will list all the

devices and their parameters to the output panel for easy scrutiny.

5 Hardware Selection

5.1 Network Analyzer

A network analyzer is a device used to perform microwave measurements. A
typical network analyzer consists of a display, a signal generator, one or more
receivers, and a measuring element. Two basic types of network analyzers are
scalar network analyzer and vector network analyzer (VNA). In this thesis work,
a VNA was selected to be used since it can measure the magnitude and phase
element of the S-parameters when a scalar network analyzer is only capable of

measuring magnitude. [5, 816.]

At the time of doing this thesis work, Bluefors had a few different kinds of VNAs.
One of these models was selected to be used also in this project, Keysight
E5063A. It is a benchtop version that can be mounted to an IT rack, and it has
two built-in ports with a dynamic range of 117 decibels (dB), a maximum

frequency of 18 GHz, and an output power of 0 decibel-milliwatt (dBm).

5.2 RF Switch Matrix

To measure RF signals between multiple input and output ports an RF switch is
needed. RF switch matrix is an array of RF switches. The selected RF switch
matrices for this project were LXI Microwave Multiplexers with 36 Sub Miniature
version A (SMA) channels. This model can be mounted to an IT rack, and it has
a bandwidth of 18 GHz, typical insertion loss is 3 dB at 18 GHz, and the voltage
standing wave ratio (VSWR) is 2.2:1 at 18 GHz.

5.3 Cables and Connectors

This setup required lot of different hardware with different connector types.

Schematic picture of the devices, cables and connectors can be seen in figure

2.

VNA

Port 1

Port2

MWX221

COM(SMA

Switch matrix 1

1 / 34 35 36
DO 00 BB

Bluefors high-density RT cable

MWX221

COM(SMA

Switch matrix 2

SO 000 e 6

34 35 36

CBL-2M-SMSM+

Break-out panel

HDW

Bluefors high-density interface
N

\4

D000 -

Viewer does not support full SVG 1.1

Microbend MR-12
2@ o00®-

Figure 2. Schematic view of the test setup.

5.3.1 VNA Cables

Keysight VNA has type N connectors and switch matrices have SMA
connectors. The cables selected were armored type Junkosha MWX221 with
type N plug on the other end and SMA plug on the other. Armoring on the cable
prevents it to be over bent but it still maintains its flexibility. Typical insertion
loss of the cable is 1.2 dB per meter and VSWR is 1.33:1 at 26.5 GHz.

5.3.2 SMA-SMPM Adapter Cables

HDW uses Sub Miniature Push-On Micro (SMPM) connectors on the other end
so to do measurement it is needed to have adapter cable between VNA cable
and HDW. The cable selected for this purpose was Huber+Suhner Astrolab
Microbend MR-12 with an SMA plug on the other end and an SMPM jack on the
other. It is ruggedized and suitable for congested installations due to its small
outer diameter. Typical insertion loss of the cable is 1.81 dB and VSWR is
1.45:1 at 18 GHz.

5.3.3 Extension Cables

All the test devices are mounted in a separate IT rack, so it was necessary to
have extension cables to reach the test area. The cables selected for this were
Mini-Circuits CBL-2M-SMSM+ with an SMA plug on both ends. The cable has
extra-rugged construction and strain reliefs on both ends for longer life and steel
SMA connectors provide long mating-cycle life. Typical insertion loss of the
cable is 4 dB and VSWR is 1.17:1 at 18 GHz.

5.3.4 SMA Feedthroughs

Extension cables and HDW have SMA plugs so an SMA jack-jack adapter was
needed. These adapters were attached to a plate and the plate was attached to
the test table to avoid any excess movement of the cables. Selected adapters
were Mini-Circuits SF-SF50+. These adapters have a rugged stainless-steel

10

body, typical insertion loss is 0.24 dB at 18 GHz and VSWR is 1.40:1 at 18
GHz.

6 Work Process

6.1 Test Setup

The first thing to do was to set up a connection between the computer and
devices. This was done with a LAN connection. The computer had two LAN
ports, one for the company network and one for the private network which was
created for this setup. Devices on the private network were connected by a

network switch. Circuit diagram for the setup can be seen in figure 3.

Private network

[Port 1 Port 2 X

Switch matrix 1) EEEE— Switch matrix 2
1 > < 1
COom 2..23 > puT < 2..23 Com
24 > < 24
R

Figure 3. Circuit diagram of the test setup.

11

This setup required static IP addresses for the computer, VNA, and both switch
matrices. These addresses were given and set up by Bluefors IT personnel.
Both VNA and switch matrices have a software tool that can be used to set up
IP addresses. Keysight Connection Expert was used with VNA and LXI
Discovery Tool with switch matrices. After IP addresses were set, the

connection could be verified with the same software tools.

To get reliable measurement data, the calibration of the setup needed to be
accurate. One option would have been to calibrate each channel of the switch
matrices separately and save a calibration file of each of them. Then the correct
file would need to be opened in the code every time before the channel is
activated. This is possible but it would require a lot of work. In this project, it was

decided to do tests first to see how much each channel varies from the other.

VNA was calibrated with Keysight ECal module N4691D and channel 1 open on
both switch matrices. Reference planes were needed to be at the end of the
SMA connectors on switch matrices. ECal module could not be plugged directly
into both channels, so an adapter cable had to be used in between the ECal
module and switch matrix 2. After calibration, a port extension function was
performed on the VNA that allows you to electrically move the calibration

reference plane to get rid of the adapter cable.

Mini-Circuits extension cables were used as test devices because their
electrical lengths should be the same. 24 cables were attached to the first 24
channels of the switch matrices and test run was saved as .s2p files. Plotted S-
parameters S21 and S11 of this test can be seen in figures 4 and 5. Figures
show that cables are not broken and there are no significant differences
between them and channels. Figures 6 and 7 show plotted S-parameter S21
and S11 of channels 1 and 2. Here we can see bit better that the uncalibrated
channel 2 has < 0.5 dB difference on insertion loss at 18 GHz and it is a bit

noisier. Return loss of the channels is < 5dB.

12

0.0

—0.5

—1.0

71.5,
— 1821
—— 2,871
— 3,871
— 4,521
| — ssn

20 — 6,521
—— 7,821
— 8,821
9,521
—— 10,521
—2.54 — 11,521
—— 12,521
— 13,521
— 14,521
— 15,521
— 16,521
—— 17,521
—— 18,521
19,521
—— 20,521
— 21,821
_3.5{ — 22,521
— 23,821
— 24,521

Magnitude (dB)

—3.01

0.001 0.01 01 1 10
Frequency (GHz)

Figure 4. Plotted S-parameter S21 of 24 Mini-Circuits CBL-2M-SMSM+ to compare switch
channels between each other’s.

—10

—20

—30

Magnitude (dB)
|
FY
o

—50

—60

-70 —— 23,511

2 4 6 8 10 12 14 16 18
Frequency (GHz)

Figure 5. Plotted S-parameter S11 of 24 Mini-Circuits CBL-2M-SMSM+ to compare switch
channels between each other’s.

13

— 1521
— 2,521
0.0

—0.54

—1.04

|
=
n

Magnitude (dB)
b
o

—2.54

—3.01

—3.54

0.001 0.01 01
Frequency (GHz)

Figure 6. Plotted S-parameter S21 of 2 Mini-Circuits CBL-2M-SMSM+ to compare switch
channels between each other’s.

—10

— 1,511

|
w
o

! L AR ‘1 | M
{

Magnitude (dB)
3

—50

—60

8 10 12 14 16 18
Frequency (GHz)

Figure 7. Plotted S-parameter S11 of 2 Mini-Circuits CBL-2M-SMSM+ to compare switch
channels between each other’s.

14

The next step was to find out the electrical length and time delay of the
channels. Bluefors had already code to calculate these, so it was used. Figure 8
shows mean time delay, mean electrical length, the standard deviation of time

delay, and the standard deviation of electrical length.

mean time delay is: 9568.746 ps

standard deviation time delay is: 5.14 ps

mean electrical length is: 2886.37 mm

standard deviation electrical length is: 1.88 mm

550 9555 9560 9565 9570
Tirne [ps]

Figure 8. Deviation of the cables in time.

The biggest deviation in electrical length between channels was calculated to
be 4,6 millimetres and in time delay the biggest deviation was 17 picoseconds.
This result was good enough to proceed with just having the calibration on one

channel and using it on the others.

6.2 QCoDeS Drivers

QCoDes has premade drivers for various lab instruments which help users to
operate them. When using the driver, basic communication works with a set ()
and get () commands. These are standardized methods to perform
Instrument.write () and Instrument.ask () commands in QCoDeS.
Operating instruments with SCPI commands would take much more time and

the code itself would become hard to understand. Own functions can be also

15

defined into the driver. Using functions makes the code easier to read and

modify.

In this case, there was not the exact driver for Keysight E5063A VNA available
so an existing driver for a different model Keysight VNA needed to be modified.
The selected base driver from QCoDeS Keysight instrument drivers’ catalog
was N52xx and the specified driver for the VNA was N5245A.

RF switch matrix did not have a driver that could have been used, so a new one
needed to be done. Making a driver from the scratch is a big task so it was

decided to do just a bare minimum to get it working.

6.2.1 Driver for Network Analyzer

QCoDeS driver for N52xx was used as a base for the new driver called
N52xx_modified. There were few issues in the driver with def traces (self)
-> ChannelList: section which was supposed to update channel list with
active traces and return the new list. To fix this, some of the commands were
commented out. Some other smaller sections in the original driver were also
commented out. All new functions and changes made to existing ones in the
driver will be presented in chapter 6.3. The whole N52xx_modified driver can be

seen in appendix 4.

A specified driver for Keysight 5063A was created by using the base of the
existing driver of N5245A. Frequency, power limits and the number of ports
were changed to correct ones based on the VNA model used. Also, the
imported base file was changed to be the modified one. This driver can be seen

in figure 9.

16

1 from typing import Any
from . import N5Zxx modified

< %class ESD63A(NS2xx modifie=d.FPlAxBase):

def init (=self, name: str, address: str, *%kwargs: ILny):
7 super(). init (nams, address,
min freg=100e3, max freg=13ed,
min power=-20, max power=0,
1C nports=2,
11 - *¥EWargs)
13 ocptions = self.get options()
14 = if "4159" in options:
15 self. set power limits(min power=-350, max power=l13})
16 if "OZ0" in options:

1 self. enakle fom()

Figure 9. Driver for ES063A.

6.2.2 Driver for Switch Matrices

Creating driver for switch matrices (figure 10) was done based on the way how
the driver was made for 5063A. Imported dependencies for switches are the
Python library for LXI Driver pi1xi from Pickeringtest and Instrument from
QCoDeS. Pickeringtest has examples for different languages on how to operate

the switches. Examples for Python were studied to create this driver.

A function called set port state was created for the driver. This function
specifies the state of the channel, and it takes two arguments: port and state.
Port defines which channel on the switch is activated and the state defines

whether the channel is on (1) or off (0). Usage of this function can be seen in

figure 20.

17

This Python file uses the following encoding: utf-8
2 from typing import Any

3 import pilxi

3 from goodes.instrument.bkase import Instrument

7T Eclass LXT (Instrument) :

12 = def init (self, name: str, IP: str, #**kwargs) -> None:
13 super(). init (name=name, ¥*kwargs})

15 self.IP = IP
1& self.gesgsion = pilxi.Pi Session(self.IF)

17 self.bus = 1

11 self.device = 0

1 - self.card = self.session.0penCard({self.bus, self.device)
21 [% def =zet port state(self, port: int, state: int) -> None:

22 self.card.CpBit(l, port, state)

Figure 10. Driver for switch matrix.

6.3 Programming

Programming was made in Jupyter Notebook with an activated QCoDeS
environment. This section describes how these steps were made and what is

their function in the whole code.

First, all necessary dependencies are imported (figure 11). In Python, importing
works with the import -command. If the whole dependency is not needed, it
can be imported using from X import Y -command. To make the coding
easier, packages are often imported with the import as -command which
allows you to use the package with a shorter and easier name. All

dependencies will be described in more detail later when they are used.

18

Import dependencies

import os

import glob

from natsort import natsorted, ns

import skrf as rf

import matplotlib.pyplot as plt

import matplotlib.ticker

import numpy as np

import time

import pyvisa as visa

import qcodes as qc

import qcodes.instrument drivers.Keysight.ES5@863A as ES@63A
import qcodes.instrument_drivers.Bluefors.LXI as LXI

Figure 11. List of imported dependencies.

In the next cell, a connection between the computer and instruments is opened
(figure 12). This is done by creating new variables called pna, switcherl,
and switcher2. These variables will use imported dependencies 5063A or
LXI. The reason why the variable name was pna instead of ena is that the
5063A driver is made for a PNA network analyzer, not for ENA which is used in

this project.

Open instruments

try:
#open network analyzer
pna = ESB63A.ESR63A("pna’, 'TCPIPB::1092.168.111.28::inst@::INSTR")

open switch matrixes
switcherl = LXT.LXTI("SW1","'192.168.111.38")
switcher2 = LXI. LIIl: 'SW2','192.168.111.46° :J

except KeyError:
print(' Connection to instruments is already open')

Figure 12. Opening connection to the instruments.

19

In both dependencies’ driver files, thereisa def ~ init -section which is a
constructor for a class of the instrument. This constructor demands two
arguments: name and address. Given names are pna, SW1, and SW2 and
addresses are static IP addresses for the devices. If the connection is already
opened to the network analyzer, a KeyError will be raised, and this is the reason
why opening the instruments section was placed inside a try-except
structure. If the error is raised, the user will only see the text “Connection to

instruments is already open” and can continue to the next cell.

The next cell is a function that recalls a correct state to the VNA (figure 13).
When recalling a file, VNA opens a state that has all the parameters set and

active calibration.

Recall state

pna.open_hdw_state()

Figure 13. Recall state function.

Function open hdw state is defined in the driver (figure 14). This function
was not included in the original driver, so it was made for this project. It writes a

SCPI command to open a file called HDW.sta from root D in VNA.

deft open_hdw state(self) -> None:
recall state for HDW

selft.write(' :MMEMory: LOAD:STATe "&ks"' % ('D:\\HDW.sta')})

Figure 14. Function to recall state in VNA.

The power of QCoDeS can be seen in figure 15 where VNA parameters can be
modified with simple commands. These parameters are already set in the
opened state file but in this cell, the user can easily try different settings if it is

needed. In this case, the settings are:

J start frequency = 300 MHz

o stop frequency = 18 GHz

o output power = -5 dBm

o trigger source = bus

o number of points = 1601

J intermediate frequency (IF) bandwidth = 1 KHz
J trace format = logarithmic magnitude

o sweep type = linear frequency.

Add parameters to network analyzer

#set start freg
pna.start.set(368688)

#set stop freg
pna.stop.set(18688608008)

set power
pna.power.set(-5)

set trigger source
pna.trigger source.set('BUS")

set points
pna.points.set(1681)

set IF bandwidth
pna.if bandwidth.set(1888)

set trace format
pna.trace format.set(MLOG")

set sweep type
pna.sweep type.set{ 'LIN")

Figure 15. List of added parameters to the network analyzer.

20

21

All the commands were in the original driver except the ones for trace format
and sweep type. These were added as new parameters to the driver (figures 16
and 17). Get_cmd and set _cmd commands are defined with correct SCPI
commands and a variable vals has trace formats and sweep types that are
available in VNA.

Trace format

self.add parameter('trace format’,
label="Format",
get cmd=":CALCulate:TRACe:FORMat?',
set_cmd=":CALCulate:TRACe:FORMat {}°,
vals=Enum("MLIN", "MLOG", "REAL", "PHAS"))

Figure 16. New parameter for trace format.

Sweep type
self.add parameter(sweep type’,
label="Type",
get cmd="SENS:SWE:TYPE?',
set cmd="SENS:SWE:TYPE {}°,
vals=Enum("LIN", "LOG", "SEGM"))

Figure 17. New parameter for sweep type.

Also trigger source was missing the needed type “BUS” which means that the

trigger is activated by software. This was added to variable vals (figure 18).

Trigger Source

self.add_parameter(trigger source’,
get cmd="TRIG:S0URZ?",
set _cmd="TRIG:SOUR {}",
vals=Enum("EXT", “INT", "MAN", “BUS"))

Figure 18. Updated parameter for trigger source.

22

Before running the actual measurement, the user needs to specify the file
directory where the data will be saved, and this can be seen in figure 19. The
file path can be copied straight from the file explorer and pasted between
quotations marks. Letter r before quotes means that Python creates a raw string
from the pasted file path. Raw string treats backlashes as literal characters, not
as escape characters as they are in a normal string. After this, a new variable
called path is created that uses the f-string method to add one backlash to the

end of the file path.

File Path

. ce . . o
paste file path between

file path = r'INSERT FILE PATH HERE'
path = f'{file path}/’

Figure 19. Defining a file directory.

The next cell, seen in figure 20, is making the actual measurements. First, a for
loop is created to run measurement 24 times. At each loop, the sequence

number is saved to a variable called 1ine.

23

Execute measurements

Loop measurement from 1 to 24
for line in range(l,25):

switch ports on
switcherl.set port_state(line,1)

switcher2.set port_state(line,1)

create variables for traces

pha = []
mag = []
freqs = np.linspace(pna.start.get(),pna.stop.get(),pna.points.get())

activate single trigger function
pna.single trigger()

while True:
try:
wait sweep time
time.sleep(pna.swesp_time.get())

if pna.operation_complete():

Loop traces from 1 to 4 and append Lists
for trace in range(1,5):
pna.selact trace(trace)
pna.autoscale(trace)
pha.appand(pna.phase.get())
mag.append(pna.magnitude.get())

except visa.VisalOError:
print{ 'Check delay')
continue

break

save to s2p file.
pna.save_s2p(path, (f'{line}.s2p"),fregs,mag,pha)

#switch ports off

switcherl.set port state(line,g)
switcher2.set port _state(line,g)

Figure 20. Run measurements for channels 1-24.

At the start of each loop, the set port state -function is activated. This
function was defined in the driver for switch matrix (figure 10). It uses a variable

1ine to define the channel which needs to be switched on.

24

After this, 3 new variables are created: pha, mag, and fregs. Pha and
mag are empty lists, and freqgs is a list of a start frequency, stop frequency
and number of points. These values are processed with the np.linspace -
method from the imported dependency numpy which returns the values evenly

spaced. These 3 variables are needed when saving the measurement data.

Next, a function called single trigger is activated. It starts a sweep that
stops after the sweep is done. The function was added to the driver, and it

writes a SCPI command to VNA to run a single sweep (figure 21).

def single trigger(self) -> None:

return self.write("TEIG: SIHGE™)

Figure 21. Function to activate a single trigger.

The next phase is placed inside a while loop with Boolean value True. This
means that the loop will continue if the value is true. Inside while loop is a
try-except structure and command break. First Python goes to try section
and if it can’t be completed, it will move to except. If it can be completed,
except will be skipped, and the break command will stop the while loop.
Except structure uses imported dependency pyvisa to identify

VisaIOError.

The first thing inside try is an operation time.sleep () from imported
dependency time to wait the time it takes to do a single sweep. To get the time
required for the single sweep, a QCoDeS command sweep time.get () was
used. After this a condition statement i f was used to check if function
operation complete () is ready. This function was added to the driver
(figure 22). It returns a string O if some operation is still ongoing and 1 when all
pending operations are completed. If this function returns 0, Python will move to

except section that prints a string “Check delay” to the output panel so that the

25

user knows there is something wrong with the wait time. After this, a command

continue will activate try from the beginning.

def operation complete(self) -> str:
return self.ask("*CEFCT™)

Figure 22. Function to check if an operation is completed.

When testing HDW, there are four different traces on the VNA screen: S11,
S12, S21, and S22. All these traces are looped through in the next step. First, a
function called select trace () selects the trace using variable trace which
is an integer defined by the running number of the loop. This function did not
exist in the driver, so it was created (figure 23). This function requires one
argument trace number which needs to be an integer and it writes a SCPI

command to select a given trace.

=N
1]
H
11}
[1]
I

m

ct_trace(self, trace number: int):

self.write (f"CALC:PAR{trace number}:SEL")

Figure 23. Function to select trace.

Next, a function called autoscale () is activated. It uses the same variable
trace to identify which trace needs to be scaled. This function didn’t exist in

the driver, so it was created (figure 24). It requires one argument

trace_ number that needs to be an integer and it writes a SCPl command to

auto-scale given trace.

def autoscale(self, trace number: int):

self.write(f"::DISFlay:WINDowl:TRACe {trace number}:¥:SCALs:RTOTO")

Figure 24. Function to scale selected trace.

26

The next two steps are saving phase and magnitude information to existing
empty lists pha and mag using the Python list append -method. Saved
information is gathered using QCoDeS commands phase.get () and

magnitude.get () .

Data is saved into Touchstone format using a function called save s2p that
requires five variables: path, line, fregs, mag, and pha. The
variable line is used with the f-string method to add the string “s.2p” to the end
of it to save it in Touchstone format. This function did not exist in the driver, so it
was added (figure 25). It requires 5 arguments: path, fname, fregs,

mag, and pha. The path is the file directory where data is saved, and it is
defined by the user in a variable path (figure 19). Fname is the name of the file,
and it is defined in the variable 1ine. This means that test results will be
saved as .s2p files by number (1.s2p, 2.s2p, 3.s2p etc.). Arguments fregs,

mag, and pha are using variables with the same names which are Python lists.

def save_ sip(self,path,fname,freqgs,mag,pha):

if not os.path.exists(patch):
os.makedirs (path)

f = open(path+fname, "w+") #overwrites file!
f.write("!52P File: Meam 5 < S21, 512, 522:\n")
f.write("# Hz 35 dB E

f.close()

with open(path+fname, "z2") as £:
for 1 in range{len(fregs)):
it.erf. = “.:=.: _==.:' _==.:' _==.:' _==.:' _==.:' .==-:' .==-:' .==-:'“ %
(fregs[i] Mag[0] [1],Pha[0] [1],Mag[2][1],Phal2][1],Mag[l] [1],Phall][1i],Mag[3][1],Fha[3][1])
f.write(str(item)+""n")

f.close()

Figure 25. Function to save data in Touchstone format.

After data is saved, switcher channels are switched off using function
set port state which was defined in the driver (figure 10). The same
function was used earlier to switch channels on by giving arguments 1ine and

integer 1 but this time the second argument is integer 0.

27

The last cell in the program is to close connections to instruments (figure 26).

Close instruments

close switch matrixes
switcherl.close()
switcher2.close()

close network analyzer
pna.close()

Figure 26. Closing connection to instruments.

6.3.1 Additional Steps in the Program

There are three additional steps in the program which are used when testing
HDW: loopback measurement, data plotting, and TDR. To measure lines inside
a cryostat, individual lines need to be connected to pairs on the bottom of the
HDW. To measure this setup, the main code was modified to a new code (figure
27). Switch matrices have 36 channels so there were still 12 unused. These 12
channels were decided to be used for the loop measurements. The main idea
for the code is the same as in figure 14 but there are few differences. This code
starts with defining two variables, first and second, which are used as
counters, and the for loop is modified to run measurements from channels 25
to 36. The actual measurement section works the same way, but the difference
comes when saving the file. Because we are now measuring two lines at the
same time, the file needs to be saved with both line numbers. This is done
using f-string in save s2p function to insert variables first and second with
a hyphen in between. The last step is to add integer 2 to counter variables

first and second to measure the next pair in the next round of the loop.

Execute measurements with loopbacks

first = 1
second = 2

channels from 25 to 26

for line in range{25,37}:

switch ports on
switcherl.set_port_state(line,1}
switcher2.set_port_state(line,1}

regd traces
Pha = []
Mag = []
fregs = np.linspace{pna.start.get(}),pna.stop.get{}),pna.points.get(})

P . L
activate single _trigger function

pna.single_trigger()

while True:
try:
walt sweep time
time.sleepi{pna.sweep_time.get{})

if pna.operation_complete(}:

loop traoces from 1 to 4 and gppend Lists

for trace in range({1,5):
pna.select_trace(trace)
pna.autoscale(trace)
Pha.append{pna.phase.get())
Mag.append{pna.magnitude.get{}}

except wisa.visaIOError:
print{"Check delay'}
continue

break

sgve to s2p file.

pna.save_s2p{path, (f*{first}-{second}.s2p"'),freqgs,Mag,FPha}
#switch ports off

switcherl.set_port_state(line,8}

switcher2. set_port_state{line,8)

first = first + 2
second = second + 2

Figure 27. Run measurements for channels 25-36 in pairs.

For plotting the data and running TDR analysis, Bluefors made scripts were

28

used. Imported dependencies glob, natsort, skrf, and matplotlib

are used for these. Scripts were modified to use the same variables to read

saved data from the right file directory and save the plotted figures there. Both

scripts are in their cells in Jupyter Notebook for easy operation.

29

6.3.2 Version Controlling

This project was created over three different computers so proper version
control was needed. USB stick can get lost or corrupted, so version controlling

was chosen to be done via Git.

Git is a version control system that tracks changes made to the files and allows
users to go back to older files if an error was noticed in the new file [15]. With
Git | used GitLab that offers cloud storage to store a copy of the repository that

contains all the files and revision history.

7 Results

This project was finished and taken into production in August 2021. Some
modifications were still made in September when there was a bit more
experience from production, but all the main functions and ideas stayed the
same. Before starting the project, it was estimated that measuring 24 lines
would take 5 minutes and this was proved to be very close to the truth. The
actual measurement section takes around 3 minutes and when you add the
time that takes attaching test wires, we are close to the estimation. This is a
massive time saving compared to the old style which could take up to 60

minutes to perform the same tests.

Another benefit of this project was to simplify and standardize the test process.
Now it is easy for a technician to plug in the test cables and run all the
measurements in the same user interface. There is no need any more to run
multiple tests and save them to USB sticks to get them analyzed. If some error
occurs in the validation, a technician can quickly debug it while HDW is still

plugged into the test setup.

All required functions were included in this project but during it, there were
multiple new improvement ideas for this setup. QCoDeS has a built-in function

for logging which was tried to be implemented, but it was noticed to be a too big

30

task for this time frame. Since this setup was using the modified driver for the
VNA and switch matrices had the bare minimum driver, logging did not work as
it was intended. It is anyhow possible to have, and it would be a great addition
to this. Another improvement idea was to improve plotting and TDR with Python
module Scikit RF. Now, these functions plot the data for the user, but they could
also do the validation automatically. This would require a lot of testing, but this

is something that could make employees' work easier.

Hardware for the test setup will be updated after more testing is done and the
best practices are found. Now the setup has a bit too long test cables and
wrong genders. It would be good to calibrate each channel of the switch
matrices after the hardware is updated to perform more accurate

measurements.

Based on the results of this thesis work, Bluefors has decided to purchase
similar test setup to be used in cryohall where cryostats are built. Final
validation of the HDW is done in cryogenic temperatures inside the cryostat so
that setup is much needed. It is expected to have similar time saving as in this

thesis work and it also standardizes measurements performed in cryohall.

31

References

1 Bluefors Oy. High-Density Wiring. Digital photograph. https://bluefors.com/wp-

content/uploads/2020/02/bluefors-high-density-wiring-side-loading-tree4-e-800-
2.png Accessed 16.01.2022.

2 Bluefors Oy. High-Density Wiring. Online. https://bluefors.com/products/high-

density-wiring/#product-overview Read 16.01.2022.

3 Scarpati, Jessica. 2021. Radio frequency (RF, rf). Search Networking. Online.
https://searchnetworking.techtarget.com/definition/radio-frequency Updated
February 2021. Read 22.07.2021.

4 All about circuits. Practical Guide to Radio-Frequency Analysis and Design.

EETech Meadia, LLC. Online. https://www.allaboutcircuits.com/textbook/radio-

frequency-analysis-design/real-life-rf-signals/what-is-a-transmission-line/ Read
22.07.2021.

5 Sorrentino, Roberto; Bianchi, Giovanni & Chang, Kai. 2010. Microwave and RF
Engineering. John Wiley & Sons, Incorporated 2010, p. 72 & 816.

6 Lampen, Steve. 2012. 50 Ohms The Forgotten Impedance. Belden. Online.
https://www.belden.com/blogs/broadcast/50-ohms-the-forgotten-impedance/
27.08.2012. Read 23.07.2021.

7 Techplayon. 2017. Why characteristics impedance of RF transmission lines is kept
50 Ohms? Techplayon. Online. https://www.techplayon.com/characteristics-
impedance-rf-transmission-lines-kept-50-ohms/ 30.08.2017. Read 23.07.2021.

8 Customcable.ca. 2012. Flexible vs. Semi Rigid vs. Rigid RF (Coax) Cable
Assemblies. Customcable.ca. Online. https://customcable.ca/flexible-semi-rigid-rf-
coax-cable-assemblies/ 13.01.2012. Read 23.07.2021.

9 Rohde Schwarz. 2019. Understanding S parameters. Video.
https://www.youtube.com/watch?v=-PiOUbErHTY 18.10.2019. Accessed
26.07.2021.

https://bluefors.com/wp-content/uploads/2020/02/bluefors-high-density-wiring-side-loading-tree4-e-800-2.png
https://bluefors.com/wp-content/uploads/2020/02/bluefors-high-density-wiring-side-loading-tree4-e-800-2.png
https://bluefors.com/wp-content/uploads/2020/02/bluefors-high-density-wiring-side-loading-tree4-e-800-2.png
https://bluefors.com/products/high-density-wiring/#product-overview
https://bluefors.com/products/high-density-wiring/#product-overview
https://searchnetworking.techtarget.com/definition/radio-frequency
https://www.allaboutcircuits.com/textbook/radio-frequency-analysis-design/real-life-rf-signals/what-is-a-transmission-line/
https://www.allaboutcircuits.com/textbook/radio-frequency-analysis-design/real-life-rf-signals/what-is-a-transmission-line/
https://www.belden.com/blogs/broadcast/50-ohms-the-forgotten-impedance/
https://www.techplayon.com/characteristics-impedance-rf-transmission-lines-kept-50-ohms/
https://www.techplayon.com/characteristics-impedance-rf-transmission-lines-kept-50-ohms/
https://customcable.ca/flexible-semi-rigid-rf-coax-cable-assemblies/
https://customcable.ca/flexible-semi-rigid-rf-coax-cable-assemblies/
https://www.youtube.com/watch?v=-Pi0UbErHTY

32

10 Bluefors Oy. Coaxial Wiring. Online. https://bluefors.com/products/coaxial-wiring/
Read 16.01.2022.

11 Zhidkov, Roman. 2020. Why Python is Essential for Data Analysis. RT Insights.
Online. https://www.rtinsights.com/why-python-is-essential-for-data-analysis/
13.01.2020. Read 27.07.2021.

12 Nishad, Rohit. 2021. What Is Anaconda? Anaconda Vs python Programming
(2021). 360 Tech Explorer. Online. https://360techexplorer.com/what-is-anaconda-
anaconda-vs-python-programming/ 05.03.2021. Read 29.07.2021.

13 Perkel, Jeffrey M. 2018. Why Jupyter is data scientists’ computational notebook of
choice? Nature. Online https://www.nature.com/articles/d41586-018-07196-1
30.10.2018. Read 15.08.2021.

14 QuantAcademy. 2020. QCoDeS - Intro and why to use it. Video.
https://www.youtube.com/watch?v=5r4vBAsN6hY 20.05.2020. Accessed
29.07.2021.

15 Noble Desktop. 2018. What Is Git & Why Should You Use 1t? Noble Desktop.
Online. https://www.nobledesktop.com/blog/what-is-git-and-why-should-you-use-it
21.09.2018. Read 21.08.2021.

https://bluefors.com/products/coaxial-wiring/
https://www.rtinsights.com/why-python-is-essential-for-data-analysis/
https://360techexplorer.com/what-is-anaconda-anaconda-vs-python-programming/
https://360techexplorer.com/what-is-anaconda-anaconda-vs-python-programming/
https://www.nature.com/articles/d41586-018-07196-1
https://www.youtube.com/watch?v=5r4vBAsN6hY
https://www.nobledesktop.com/blog/what-is-git-and-why-should-you-use-it%2021.09.2018
https://www.nobledesktop.com/blog/what-is-git-and-why-should-you-use-it%2021.09.2018

Appendices

Appendix 1. Flowchart of the Old Style

Appendix 1

|J
3

Assembly

v

Testing

« One by one
« Saving and naming to USB

stick

Yes

— Was it last line? ~——— | No

Yes

A J

Flotiing data from USB
stick

» External computer
with Python

«— Was the data good? ——» No

—_—

> Finish

\ /

TDR

« External computer
with Python

Figure 28. Flowchart showing how testing was performed before this project.

Appendix 2

Appendix 2. Flowchart of the New Style

Assembly r'-.

Y

Testing

All the lines at once
Automated naming
Automated saving
Automated plotting
Automaied TDR

Yes +—— Was the data good?

b 4

Mo

=| Finish

Figure 29. Flowchart showing how testing was performed after this project.

Appendix 3
Appendix 3. Time Estimation

Estimated time for testing HDW
450
400
350
= 300
£ 250
£ 200
= 150
100
50

24 48 72 96 120 144 168
Qty of lines (pcs)

e Time old style (min) e====Time new style (min)

Figure 30. Estimated time for testing 1 full port of HDW.

Appendix 4
1(14)
Appendix 4. N52xx_modified

1 from typing import Sequence, Union, Any

2 import time

3 import re

4 | import logging

5 | import os

7 | import numpy as np

g from pyvisa import visaIOError, errors

o from gcodes import (visaInstrument, InstrumentChannel, ArrayParameter,
18 ChannelList)
11 from goodes.utils.vallidators import Ints, Mumbers, Enum, Bool

3

logger = logging.getLogger()

15 | class PHASwWesp{ArrayParameter):
16 def __init_ (=elf,
1 name: str,

18 instrument: 'PMABaze',

13 Fpwargs: Any) -> None:

21 super{}.__init__{name,

22 instrument=instrument,
23 shape=(2,},

24 setpoints=((8,),},

[Fa I -

F¥wargs)

gproperty & type: ignorefoverride]
def shape{self) -» sSequence[int]: # twpe: ignoreloverride]
if self._instrument is None:
return {2,}
return (self._instrument.root_instrument.points(),)

LRI N T — i s v RN i e |

gshape.setter
def shape({self, val: sequence[int]) -» None:
pass

(g}

gproperty # type: ignorefoverride]
def setpoints{self) -» Sequence[np.ndarray]: # type: ignars[override]
if self._instrument is None:
raise RuntimeError{"Cannct return setpoints if not attached "
"to instrument"™)
start = self._instrument.root_instrument.start()
stop = self._instrument.rcot_instrument.stop()
return (np.linspace(start, stop, self.shape[d]),)

L L L g g L L L R RD B RS R

s

[Y e O |
oL pa 2 oD oDa

T U

s

g=zetpoints.setier
def setpoints{self, wval: Sequence[int]) -»> None:
pass

[e
]

(sl n iy a)

mn

Figure 31. N52xx_modified rows 1-50.

51

u
[=]

oo
Ly [-y I

U unounoun
MO RO =] h

on ohoo

o o
Bowd pao

e It B B e e T = = T]
Bd = @ M0 RO =] Enoun

R L L |
ALY I T

T

0O 0O =] =] =]
[l = Y = I = R |

[o]

Lo A
R

ca
i

T

[= g R e R e |
[~ Y = R = TN |

[=]

[T QY]
]

w
un

T

[¥s)
=

Appendix 4
2(14)

class Formattedsweep{PNASWeep):

Mag

will run a sweep, including averaging, before returning data.

ag such, wait time in a loop is not needed.

def

def

_init__ (=elf,
name: str,
instrument: 'FHNABase’,
sweep_format: str,
label: =tr,
unit: str,
memory: bool = False) -» None:
super{}.__init {name,
instrument=instrument,
label=1label,
unit=unit,
setpoint_names=("frequency’,},
setpoint_labels=('Frequency”,),
setpoint_units={"Hz',}
]
self.sweep_format = sweep_format
self.memory = memory

get_raw(self) -» Sequence[float]:
if =zelf._instrument is mNone:
raise rRuntimeerror{"Cannot get data without instrument™)

root_instr = self._instrument.root_instrument

Check if we should run a new sweep

#1F root_instr.outo_sweep{):

prev_mode = self._instrument. run_sweep()

Ask for data, setting the jFormat to the requested fForm

self._instrument.formati{self.sweep_tormat)

data_t = roct_instr.visa_handle.gquery_binary_values('CALC1:DATA:FDAT?",
datatype="1",
is_big_endian=True}

data_t = np.array{data_t}
data = data_t[::2]
#print{ ‘Bozingal ')

Restore previous stote if it wos changed
#1F root_instr.outo_sweep{):
root_instr.sweep_mods(prev_mode)

return data

Figure 32. N52xx_modified rows 51-97.

Appendix 4

3(14)
92 class puaPort{InstrumentChannel):
128 Allow operations on individual PNA ports,
181 Mote: This cam be expanded to include a large number of extra parameters...
103
124 def __init_ (self,
1a5 parent: 'PHABase’,
186 name: str,
187 port: imt,
12s min_power: Union[imt, float],
1e9 max_power: Union[int, float]) -» None:
118 super{}.__init__(parent, name)
111
112 self.port = int{port)
113 if self.port < 1 or self.port » 4
114 raise valueerrcr("Port must be between 1 and £.7)
115
116 pow_cmd = TUSOUR:POW{self.port}"”
117 self.add_parameter{"source_power"”,
118 label="power",
119 unit="dem",
128 get_cmd=""{pow_cmd}?",
121 set_cmd="{pow_cmd} {{}}",
122 get_parser=float,
123 vals=Numbers{min_value=min_power,
124 max_value=max_power}}
125
126 def _set_power_limits(self,
127 min_power: Unicn[int, float],
128 max_power: Unicn[int, float]) -> None:
128 et port power limits
-_31 mmn
132 self.source_power.vals = Humbers{min_value=min_power,
123 max_value=max_power)
124
135

Figure 33. N52xx_modified rows 98-135.

Appendix 4

4(14)
126 | class PHATrace{InstrumentChannel}:
127 e
138 Allow operations on individual PHNA traces.
139 e
148
141 def __init_ (self,
142 parent: 'PHABase",
143 name: str,
144 trace_name: str,
145 trace_num: int) -»> None:
14& super{}.__init__({parent, name)
147 self.trace_name = trace_name
148 self.trace_num = trace_num
149
158 # nNome of parameter (i.e. 511, 521 ...}
151 self.add_parameter{'trace’,
152 label="Trace",
153 get_cmd=self._Sparam,
154 set_cmd=self._set_sparam)
155 # Format
15& # Note: Currently parometers that return complex values are not
157 # supported as there isn't really o good way of saving them into the
158 # dotaset
159 self.add_parameter{ format”®,
168 label="Format",
161 get_cmd="CALC:FORM?",
162 set_cmd="CALC:FORM {}',
163 vals=Enum{ "MLIN", "MLOG", "PHAS",
164 "UPH", "IMAGR", "REAL"))
165

Figure 34. N52xx_modified rows 136-165.

Appendix 4
5(14)

And a List of individual formats
self.add_parameter{ 'magnitude’,

o o oh o

168 sweep_format="MLOG",

169 label="Magnitude',

178 unit="de"',

171 parameter_class=FormattedSweep)
172 self.add _parameter{"linzar_magnitude',

173 sweep_format="MLIN",

174 label="Magnitude',

175 unit="ratio',

176 parameter_class=FormattedSweep)
177 self.add_parameter({ phasa’,

178 sweep_format="PHAS",

179 label="Phaze"',

188 unit="deg',

181 parameter_class=FormattedSweep)
182 self.add_parameter{"unwrapped_phase',

183 sweep_format="UFH',

184 label="Phaze",

185 unit="deg',

136 parameter_class=FormattedSweep)
187 self.add_parameter{“group_delay",

188 sweep_format="GDEL",

189 label="Group Delay"',

198 unit="s",

191 parameter_class=FormattedSweep)
192 self.add_parameter{real’,

193 sweep_format="REAL",

194 label="Real',

195 unit="LinMag",

196 parameter_class=FormattedSweep)
197 self.add_parameter{"imaginary',

198 sweep_format="IMAG",

199 label="Imaginary',

288 unit="LinMag",

281 parameter_class=FormattedSweep)

T

Figure 35. N52xx_modified rows 166-202.

Appendix 4

6(14)
283 def run_sweep(self) -» str:
284 o
285 Run a set of sweeps on the network analyzer.
286 Mote that this will rum all traces on the current channel.
287 o
283 reot_instr = self.rect_instrument
289 # Stars previous mode
218 #prev_mode = root_instr.sweep_mode()
211 # Taoke instrument out of continuous mode, and send triggers egual to
212 # the number of averoges
213 if root_instr.averages_enabled{):
214 avg = root_instr.averages()
215 root_instr.reset_averages()
216 root_instr.group_trigoer_count{avg}
217 #root_instr.sweep_mode('GRO ")
218 else;
219 #root_instr.swesp_mods('SING")
228 print('testl")
221
222 # Once the sweep mode 1s in hold, we know we're done
223 try:
224 while root_instr.sweep_mode{} != "HOLD':
225 time.sleep{®.1)
226 except KevboardInterrupt:
227 # If the user aborts becouse (s)he is stuck in the infinite Loop
228 # mentioned above, provide a hint of what con be wrong.
229 msg = "User abort detected. ©
228 source = root_instr.trigger_source()}
231 if source == "MAN™:
232 msg += "The trigger source is manual. Are you sure this is " &
233 "correct? Please set the correct source with the " 3
234 "'trigger_socurce" parameter"
235 elif source == "EXT":
236 msg += "The trigger source is external. Is the trigger " \
237 "source functiomal?”
238 logger.warning{msg)
239
248 # Return previous mode, incase we wont to restore this
241 #return prev_mode
242 return Hone
243

Figure 36. N52xx_modified rows 203-243.

o s s s s e n
= o W 0O =] g W]

Jd Pd Pd B P Bed BJ d ed

(&
[5a]
g2

=]

Pud
o
]

I

255
256

L

=]

=]

o
[=a e |

(&

=]
0

(&
[

(=]

B B L . T T SO - - - I -
WO W0 s u s pa @

-}

Pod Pd fod Pod Bd Pud Fod BJ Pud [od Bd PBd B Pd Bd B3 I BJ BI [
od

J
[V [IS B L Ty Y

-}

def

def

def

def

Appendix 4
7(14)

write{self, cmd: str) -> None:

telect correct trace before guerying
self.roct_instrument.active_trace(self.trace_num)
super{}.uritef{cmd)

aski{zelf, cmd: str) -» str:

telect correct trace before guerying

mmmn
self.root_instrument.active_trace(self.trace_num)
return super{}.ask{cmd)

_Sparam(self) -» str

Extract 5_parameter from returned PNA format
paramspec = self.roct_instrument.get_trace_catalog(}
specs = paramspec.split{’,")
for spec_ind in range{len{specs}i/i2):

name, param = specs[spec_ind*2:{spec_ind+1)%*2]

if name == szelf.trace_name:

return param

raise RumtimeError{"Can't find selected trace on the PHA"}

_set_sSparam{self, wal: str} -> None:
tet an S-parameter, iIn the format S<ax, where @ and b
can range from 1-4
if mot re.match({"sS[1-4][1-2]", wval):

raise ValueError("Invalid 5 parameter spec")
self.write{f"CALC:PARIMOD:IEXT \“{val}y"")

Figure 37. N52xx_modified rows 244-279.

Appendix 4

222 class PHaBase{visaInstrument):

8(14)

281 n

282 Base gcodes driver for Agilent/Keysight series PNAas

283 http://na.support.keysight.com/pna/helps/latest/Programming/aP-18_cCommand_Finder/SCPI_cCommand_Tree.htm
284

285 Note: Currently this driver only expects a single channel on the PHA. We
286 can handle multiple traces, but using traces across multiple channels
287 may have unexpected results.

28 n

28

98 def __init_ (self,

91 name: str,

92 address: str,

93 # set fregquency ranges

min_freq: union[int, float], max_freq: union[int, float],
Set power raonges
min_power: Union[imt, float], max_power: Union[int, float],
nports: int, # wNumber of ports on the PNA
*Elwargs: Any) -> None:
super{}.__init__{mame, address, terminator="'n', **kwargs)
self.min_freq = min_freq
self.max_freg = max_freq

BwmE©WEm -~

#Ports

ports = ChannelList(self, "PNAPorts", PNAPOrt}

for port_num in range(l, nports+1)
port = PHAPort{self, f"port{port_num}", port_num,

min_power, max_power)

ports.append({port)
self.add_submodule{f"pocrt{poert_num}”, port)

ports.lock()

self,add_submodule{"ports”, ports)

MM m M m

n

~

S W W

Orive power

self.add_parameter({ 'powsr’,
label="Power",
get_cmd="SOUR:POW? ",
get_parser=flecat,
set_cmd="SOUR:POW {:.2F}",
unit="dem',
vals=Numbers{min_value=min_power,

max_value=max_powsr})

S - R T R TTR R SR R)

WL LD L L L LD L L L LU L L L L L L L LU L L L L P R R PRI PRI R R PRI R R R B

[

Figure 38. N52xx_modified rows 280-322.

IF bandwidth
self.add_parameter("if_bandwidth',
label="IF Bandwidth®,
get_cmd="SENS:BAND?",
get_parser=fleat,
set_cmd="SENS:BAND {:.2F}",
unit="Hz",
vals=HNumbers{min_wvalue=1, max_value=15e&})

S = T Ty QY R Y |

[=a]

Number of auerages (olso resets grerages)
self.add_parameter({ averages_enabled’,
label="Averages Enabled’,
get_cmd="SENS:AVER?",
set_cmd="SENS:AVER {}",
val_mapping={True: "1', False: '2'})
self.add_parametery{'averages’',
label="Averages',
get_cmd="SENSAVER:COUNT",
get_parser=int,
set_cmd="SENS:AVER:COUN {:d}',
unit="",
vals=Humbers{min_wvalue=1, max_walue=E5535))

o i R3O WD

= o

2]

e T T TV R TN R N Y TW FW I TN iy Wy % Ty 5 gy Oy % Iy "y Iy ¥ |

=

[
L R = 0D LD

=

|x

L N N e A EE]

b
[Ny

Figure 39. N52xx_modified rows 323-345.

Appendix 4
9(14)

1

setting freguency range
self.add_parameter{'start’,
label="Start Freguency',
get cmd="'SENS:FREQ:STAR?",
get_parser=float,
set_cmd="SENS:FREQ:STAR {}°,
unit="Hz"',
vals=Numbers{min_value=min_fregq,
max_value=max_fregld

T WU R s Y R e

self.add_parameter{ 'stop’,
label="Stop Freguency’,
get_cmd="SENS:FREQ:STOR?",
get_parser=float,
set_cmd="SENS:FREQ:STOF {1},
unit="Hz"',
vals=Numbers{min_value=min_fregq,

max_value=max_fregld

(= Y BT Y RN I TR, Y Iy BT, (R CR DAY (M
| oo

o

(=5}

T TR R S R s w N u R e

self.add_parameter{ 'center’,
label="Center Freguency',
get_cmd="SENS:FREQ:CENT?",
get_parser=float,
set_cmd="SENS:FREQICENT {}",
unit="Hz"',
vals=Humbers{min_wvalue=min_freq,

max_value=max_freql}}

o Iil'l

o
| th i

o

o

S

self.add_parameter{'span’,
label="Freguency Span',
get_cmd="SENS:FREQ:SPANZ",
get_parser=float,
set cmd='SENS:FREQ:SPaN {}°,
unit="Hz"',
vals=Humbers{min_wvalue=min_freq,

max_value=max_fregql)

ne B I I N I B | 1]
= I W g B U R I % B PR <Y« I

]

Number of points in o sweep
self.add_parameter{ 'points’,
label="Points",
gt _cmd="SENS:SWE:POIN?',
get_parser=int,
set _cmd="SENS:SHWE:POIN {3},
unit="",
vals=Numbers{min_value=1, max_value=128281))

B3 B3 Ba 64
I

2]
e L BJ = 00 WO DO

Ba Ba
1 o

L L L L L L L LA L L L L L L L L LR L LA L L L LA L LA L L L L L L LR L LA L L LA L L L L L
Ba . o]

2]
e}

Figure 40. N52xx_modified rows 346-388.

Appendix 4

10(14)
389 # Electrical delay
398 self.add_parameter{ electrical_delay’',
391 label="Electrical Delay’',
392 get_cmd="CALC:CORR:EDEL: TIME?',
393 get_parser=float,
334 set_cmd="CALCICORRIEDEL:TIME {:.88}"',
335 unit="s",
396 vals=Humbers{min_value=8, max_valus=122208))
397
398 # Sweep Time
399 self.add_parameter{’'sweep_time",
488 label="Time',
481 get_cmd="SENS:SHE:TIME?',
482 get_parser=float,
483 unit="s",
424 vals=Humbers{e, 1ls&}}
425 # Sweep Mode
435 self.add _parameter{'sweep_mode',
487 label="mMode',
433 get_cmd='SENS:SHE:MODE?',
4@9 set_cmd='SENS:SWE:MODE 3",
418 vals=Enum("HoLD", "CONT", "GRO", "SING"))
411 # Sweep Ltype
412 self.add_parameter{'sweep_tyvpe’,
413 label="Tvpe',
414 get_cmd="SENS:SHE:TYPE?',
415 set_cmd="SENS:SWE:TYPE {}",
416 vals=Enum("LIN", "LOG", "SEGM"})
417
418 # Trace format
419 self.add parameter{'trace_format',
42 label="Fformat"’,
471 get_cmd=":CALCulate:TRACES:FORMaL?",
422 set_cmd=":CALCulate:TRACE:FORMat {}',
423 vals=Enum("MLIN", "MLOG", "REAL", "FHAS"))
425 # Group trigger count
428 self.add_parameter('group_trigger_ count’,
427 get_cmd="SENS:SHWE:GRO: COUN?",
428 get_parser=int,
429 set_cmd="SENS:SHE:GRO:COUN {}",
438 vals=Ints(1l, 2988828)})
431 # Trigger Source
432 self.add_parameter{ trigger_source',
433 get_cmd="TRIG:SOUR?",
434 set_cmd="TRIG:S0UR {}",
435 vals=Enum("EXT", "INT", "MAN","BUS"))
436

Figure 41. N52xx_modified rows 389-436.

Appendix 4

11(14)
437 # Traces
438 self.add_parameter{ 'active_trace®,
439 label="active Trace®,
448 get_cmd="CALC:PAR MNUMI",
441 get_parser=int,
4432 set_cmd="CALC:PAR:MHUM {1},
=z vals=Humbers{min_wvalue=1, max_value=24})
—zs # Note: Troces will be accessed through the troces property which
—-E # updates the channellist to include only active troce numbers
445 self._traces = ChannellList{self, "FNATraces", PMATrace)
447 self.add_submodule{"traces”, self._traces)
448 # Add shortcuts to first troce
445
458 tracel = self.traces[a]
451 params = tracel.parameters
452 if not isinstance{params, dict):
453 raise RuntimeError{f"Expected trace.parameters tc be a dict got "
454 f*{type{params)}"}
455 for param in params.values{):
455 self.parameters[param.name] = param
457 # And also add @ Link to run sweep
458 self.run_sweep = tracel.run_sweep
459 # Set this troce to be the defoult (it's possible to end up in a
468 # situation where no traces ere selected, causing parometer snapshots
451 # to fail
453 #self.active_trece{trocel. troce_num)
455 # Set guto_sweep parameter
456 # If we wont to return multiple troces per setpoint without sweeping
457 # multiple times, we should set this fo folse
458
459
478 self.add_parameter{ 'auto_sweep',
471 label="Autao Sweep',
472 set_cmd=None,
473 get_cmd=None,
474 vals=Bool(),
475 initial_wvalue=True)
476
477 # A default output format on imitiolisation
478 self.write(" :FORMat:DATA REAL2Z")
479 self.write(" :FORM:BORD MNORM')
488 print{ Connecting PHA Base')
481 self.connect_message()
482
483 @property
434

Figure 42. N52xx_modified rows 437-484.

Appendix 4

12(14)
485

486

487

438 def traces{self) -» ChannelList:

439 e

498 Update channel list with active traces and return the new list
491 e

492

493 # Keep trock of which trace was agctive before. This command may Fail
494 # 1f nmo traces were selected.

495 #Lry:

495 # agctive_trace = self.active_troce()

497 #except VisgIDError gs e:

498 # if e.error_code == errors.StatusCode.error_timeout:

499 # active_trace = None

Cag # else:

Se1 # raise

a2

583 # Get a List of traces from the instrument and Fill in the troces Llist
= #parlist = self.get_troce_catalog().split{", ")}

585 self._traces.clear{}

L2kE

Se7 #trace_num = self.select_traoce_by_name{troce_name)

585 pna_trace = PRATrace(self, f"tr{1}",

59 "1', 13

518 self._traces.append{pna_trace)

511

512 # Restore the active trace if there was one

513 #if active_troce:

514 # self.active_tracefactive_trace)

L15

GlE # Return the Llist of traces on the instrument

517 return self._traces

518

519

528 def get_options{self) -» Sequence[str]:

521 # Query the instrument for whaot options ore installed

522 return self.ask('*CPT2").strip{""').5plit{", ")

523

Figure 43. N52xx_modified rows 485-523.

(T T T RT ET, |
Fed Pod Pod Pod Pod Pud
MO BO sd oo s

o
[EE R AR
= o

(5]
LiJ
J

i

(% W NN R o R R R I R R]
[0 S R A K LY T S RO N Y
W L B =

W0 =] o

uounoun
oo
L Rd =

G54
555
55k
G57
GLE
554G

o oh oh o
Pu L pa

nowounounounoun

=3}

oo

def

def

def

def

def

def

Appendix 4
13(14)
get_trace_catalog{self) -»> str:

aet the trace catalog, that is a list of trace and sweep types
from the FMA.

The format of the returned trace is:
trace_name,trace_type,trace_name,trace_type...

return self.aski{"CALC:PARICAT I EXT?"). stripl """}

#return self.aski":CALCulate:PARameter:DEFine?"). stripi{'" ")

select_trace_by_name(self, trace_name: str) -» int:

celect a trace on the PMNA by name.

Returns:
The trace number of the selected trace

self.write(f"CALC:PARIZEL "{trace_name} ")
return self.active_trace{)

select_trace({self, trace_number: int}:

celect a trace by number

self.write(f"CaLC:PAR{Trace_number}:SEL™)

autoscale(self, trace_number: int):

Asutoscale szelected trace

self.write(f" :DISPlay :WINDCcwWl:TRACe{trace_number}:v:SCALe:AUTO"}
reset_averages{self} -» Hone:

Reset averaging

self.write({"SENSAVER:CLE"}

cperation_complete{self) -» str:
return self.ask("*oPC2")

Figure 44. N52xx_modified rows 524-566.

Appendix 4
14(14)

def cpen_hdw_state(s=lf} -» None:

recall state for HDW

£78 wan

571 self.write(' :MMEMOryY:LOAD:STATe "Xs"' % ('D:\\HDW.sta'))
572

573 def save_s2p(self,path,fname,freqs,Mag,rha):

S7a

575 save to s2p file

576

577 if mot os.path.exists({path}:

578 os.makedirs (path}

573

588 f = open(path+fname,"w+") #overwrites file!

581 f.urite("!s2r File: Measurements: S11, 521, 512, S22:%Wn"}
582 f.urite("s Hz 5 dB R 5@\n")

533 f.close()

534

535 with open{path+fname, "a")} as f:

=14 for i in range{len{fregs)):

5a7 item = “Hd ¥&F Ef AFf A Ef XFf Xf EF" X (fregs[il,mag[el[il,rha[e][il,Mag[2][i],Pha[2][i],Mag[1][1],Pha[1]1[i],Mag[3]

[1],Pha[31[1])

£

f.write(str{item)+"4n")

i

f.close()

i

def cont_meode(self) -» None:
return self.write("INIT1:CONT 17}

o

']

won o omonm o
]
BowRp e ® 0

def single_trigger(self) -» None:

trigger the measurement

return self.write{"TRIG:SING")
def averages_on{self) -> None:
Turn on trace averaging

self.averages_enabled(True}

def averages_off{self) -> None:

Turn off trace averaging

self.averages_enabled(False)

611

Figure 45. N52xx_modified rows 567-612.

G
G
-
G
=
-
G
=
-
-
G
G
-
-
G
G

13 def _set_power_limits{self,

14 min_power: Unicn[int, float],

15 max_power: Unicn[int, float]) -> None:
17 Set port power limits

._E mmn

9 self.power.vals = Mumbers({min_value=min_power,

& max_value=max_power)

1 for port inm self.ports:

2 port._set_power_limits{min_power, max_power)

=]

class PHAXEBase{PMABase):
def _enable_fom{self) -> None:

1 oo

NA-x units with two sources have an encrmous 1list of functions &
configurations. In practice, most of this will be set up manually on
the unit, with power and freguency wvaried in a suweep.
self.add_parameter(aux_freguency’,

label="aAux Frequency"”,
get_cmd="SENS:FOM:RANGS: FREQ:CW? ",
get_parser=float,
set_cmd="SENS:FOM:RANGA::FREQ:CW {:.2f}",
unit="Hz"',
vals=Numbers{min_value=self.min_freq,
max_value=self.max_{freq))

W pd = D W0 0O

1 o i

W W W W W bR R R R PRI D B

(== N = R a]

Figure 46. N52xx_modified rows 613-640.

	1 Introduction
	2 Specification of Requirements
	3 Transmission Line
	3.1 Definition of Transmission Line
	3.2 Coaxial Cable
	3.3 Cryogenic Coaxial Cable

	4 Python
	4.1 Anaconda
	4.2 Jupyter Notebook
	4.3 QCoDeS

	5 Hardware Selection
	5.1 Network Analyzer
	5.2 RF Switch Matrix
	5.3 Cables and Connectors
	5.3.1 VNA Cables
	5.3.2 SMA-SMPM Adapter Cables
	5.3.3 Extension Cables
	5.3.4 SMA Feedthroughs

	6 Work Process
	6.1 Test Setup
	6.2 QCoDeS Drivers
	6.2.1 Driver for Network Analyzer
	6.2.2 Driver for Switch Matrices

	6.3 Programming
	6.3.1 Additional Steps in the Program
	6.3.2 Version Controlling

	7 Results
	References
	Appendices
	Appendix 1. Flowchart of the Old Style
	Appendix 2. Flowchart of the New Style
	Appendix 3. Time Estimation
	Appendix 4. N52xx_modified

