

Niko Holopainen

Reactive iOS Development with
RxSwift

Metropolia University of Applied Sciences

Bachelor of Engineering

Information and Communications Technology

Bachelor’s Thesis

09 February 2022

Abstract

Author: Niko Holopainen

Title: Reactive iOS Development with RxSwift

Number of Pages: 37 pages

Date: 09 February 2022

Degree: Bachelor of Engineering

Degree Programme: Information and Communications Technology

Professional Major: Mobile Solutions

Supervisor: Patrick Ausderau, Senior Lecturer

Over the last decade, demand for reactive and scalable mobile applications has
massively expanded. Reading developer news about scalable applications certainly
brings up the benefits of Reactive Extensions (Rx). RxSwift library, which is part of
the larger Rx family, allows using Swift in an entirely new way. Writing rather difficult
asynchronous code in Swift becomes more straightforward using RxSwift.

This study aims to explain the architectural concepts of reactive programming in iOS
development. This study also proposes the usage of RxSwift combined with Model-
View-ViewModel (MVVM) design pattern to create robust iOS applications. In
addition, the study offers an alternative way of building user interfaces without iOS
Storyboards.

During the study, an iOS application was developed with Swift emphasizing the
usage of RxSwift with MVVM design pattern. The resulting application fetches
cryptocurrency data from CoinGecko Application Programming Interface (API) and
presents the data using graphs. A real-time WebSocket chat was also created to
showcase reactive methodologies. User interface for the application was built with
UIKit using SnapKit to provide autolayout capabilities. Created exclusively for the
study, the application is not released to the App Store nor is the source code publicly
available.

The study revealed that while RxSwift is an excellent choice for skilled developers,
high learning curve and the needed knowledge of the Swift programming language
can be challenging. Also, the possibility of introducing strong reference cycles and
misbehaving streams can be challenging to debug.

Keywords: RxSwift, Reactive programming, iOS, MVVM, mobile

Tiivistelmä

Tekijä: Niko Holopainen

Otsikko: Reaktiivinen iOS-kehitys RxSwiftillä

Sivumäärä: 37 sivua

Aika: 9.2.2022

Tutkinto: Insinööri (AMK)

Tutkinto-ohjelma: Tieto- ja viestintätekniikka

Ammatillinen pääaine: Mobile Solutions

Ohjaaja: Lehtori Patrick Ausderau

Viime vuosikymmenen aikana reaktiivisten ja skaalautuvien mobiilisovellusten
kysyntä on kasvanut valtavasti. RxSwift-kirjasto, joka on osa suurempaa Reac-
tive Extensions (Rx) -kirjastoa, mahdollistaa Swift-ohjelmointikielen käytön ai-
van uudella tavalla. RxSwift mahdollistaa yksinkertaisemman asynkronisen
koodin luonnin Swift-ohjelmointikielellä.

Insinöörityön tarkoituksena oli perehtyä reaktiivisen ohjelmoinnin arkkitehtonisiin
käsitteisiin iOS-kehityksessä. Työssä tutkittiin RxSwiftin käyttöä yhdessä Model-
View-ViewModel (MVVM) -suunnittelukuvion kanssa iOS-sovellusten
luomiseksi. Työssä tutkittiin myös vaihtoehtoista tapaa rakentaa käyttöliittymiä
ilman iOS-käyttöjärjestelmän tavanomaisia menetelmiä.

Työn aikana kehitettiin iOS-sovellus, joka perustui RxSwiftin ja MVVM-
suunnittelukuvion käyttöön. Tuloksena syntynyt sovellus noutaa kryptovaluut-
tatietoa avoimesta rajapinnasta ja esittää tiedon käyttämällä kaavioita. Lisäksi
luotiin reaaliaikainen keskusteluominaisuus esittelemään reaktiivisia menetel-
miä. Sovelluksen käyttöliittymä rakennettiin UIKit-kehikolla, johon yhdistettiin
kolmannen osapuolen SnapKit-kirjasto, joka tarjoaa yhtenäisen tavan luoda au-
tomaattisen asettelun ominaisuuksia. Yksinomaan insinöörityötä varten luotua
sovellusta ei julkaistu sovelluskauppaan eikä lähdekoodi ole julkisesti saatavilla.

Insinöörityö osoitti, että vaikka RxSwift on erinomainen valinta taitaville iOS-ke-
hittäjille, kirjaston korkea oppimiskäyrä ja tarvittava Swift-ohjelmointikielen osaa-
minen voivat olla haasteellisia uusille iOS-kehittäjille. Myös muistivuotojen ja
epätoiminnallisten datasekvenssien virheenkorjaus saattaa olla haastavaa.

Avainsanat: RxSwift, reaktiivinen ohjelmointi, iOS, MVVM, mobiili

Contents

List of Abbreviations

1 Introduction 1

2 RxSwift 2

2.1 Asynchronous code 2

2.2 Observable 4

2.2.1 Subscribing 4

2.2.2 Disposing 6

2.3 Subjects 7

2.4 Operators 9

2.5 Schedulers 11

2.6 RxCocoa 14

3 Architecture and protocols 16

3.1 MVC and MVVM 16

3.2 Libraries and frameworks 17

3.2.1 Pusher 17

3.2.2 UIKit and SnapKit 19

4 Practical implementation 21

4.1 Generic API service 22

4.2 Features 24

4.2.1 Chatting 24

4.2.2 Assets 26

4.2.3 Details 30

5 Conclusion 33

References 35

List of Abbreviations

API: Application Programming Interface

ARC: Automatic Reference Counting

DSL: Domain Specific Language

HTTP: Hypertext Transfer Protocol

IDE: Integrated Development Environment

MVC: Model-View-Controller

MVVM: Model-View-ViewModel

Rx: Reactive Extensions

SDK: Software Development Kit

TCP: Transmission Control Protocol

1

1 Introduction

To create reactive and robust mobile applications, the need to handle multitude

of concurrent tasks grows significantly. The tasks can vary from playing audio,

using the camera, making network calls to handling user interface input.

Passing data from one process to another or even just observing that tasks

happen in the correct sequence asynchronously, can cause the developer a lot

of trouble.

Before the announcement of Combine in 2019 for iOS and Kotlin Flow in 2020

for Android, developers had to rely on the relatively complicated native

methodologies to support asynchronous task scheduling [1, p. 16]. Even after

the introduction of these frameworks, the problem of learning and maintaining

knowledge of multiple platforms and syntax for cross-platform development

persists. Furthermore, supporting older iOS devices with Combine, such as the

iPhone 6, is impossible due to the minimum target level being available from

iOS 13 onwards [2].

For many mobile developers, Reactive Extensions (Rx) library offers an

alternative way of building modern mobile applications. Similar reactive syntax

correlates into handling both native mobile platforms almost uniformly. For a

mobile developer, the capability of handling iOS and Android development is

very valuable. Therefore, learning Rx enables developers to quickly learn new

programming patterns and methodologies.

RxSwift combines practises from imperative and declarative programming to

create solutions for side effects and state handling. It enables the developer to

write more efficient code and utilize the full potential of reactive programming by

improving architectural concepts such as code isolation, reusability, and

decoupling. [1, p. 28]

2

2 RxSwift

Back in 2009, a team at Microsoft solved the challenge of asynchronous and

reactive application development thus creating the first ever Rx-library, Rx.NET.

By going open source in 2012, it permitted other platforms to reimplement the

same functionality, therefore making Rx into a cross-platform standard.

Nowadays, almost all mainstream programming languages have the support of

Rx. [1, p. 31-32]

Since Rx is an extension of the observer pattern, it supports data sequencing,

event handling and adds operators that enable declarative programming style.

Furthermore, it tackles the problem of mutable state variables by reacting to

events.

RxSwift is a pure Swift library for iOS, macOS, tvOS and watchOS. It allows for

parameterized runtime execution via schedulers for asynchronous, event-driven

code by using observable streams and functional style operators. In its

essence, RxSwift simplifies developing asynchronous programs by reacting to

new data and process it in a sequential and isolated manner. [3]

2.1 Asynchronous code

Almost all native Swift code, whether it be UI events or network requests,

executes some work asynchronously. An iOS application, at any moment, might

be reacting to tap gestures, playing audio, uploading a large image, or saving

data to local storage. None of these tasks block each other’s execution. iOS

provides multiple different Application Programming Interfaces (API) that allow

for asynchronous and multithreaded execution. However, maintaining code that

is truly running concurrently with native methodologies is complicated. [4, p. 27]

Apple provides multiple APIs in the iOS Software Development Kit (SDK) that

help writing asynchronous code. Some of the most used APIs are

NotificationCenter and UIApplicationDelegate.

3

NotificationCenter runs a code block whenever an event of interest

occurs, such as taking a screenshot or performing a 3D Touch.

UIApplicationDelegate defines an object which acts on behalf, or in

coordination with, another object, such as receiving a remote notification in

AppDelegate. [1, p. 24-26]

Figure 1. Example of API usage within a UIViewController. [1, p. 26]

The hierarchy of implementing delegates, passing closures, and subscribing to

notification events is presented in Figure 1. To handle all three cases, each one

requires its own pattern to be implemented. Since none of the APIs share

universal language, the need to implement multiple delegates and patterns

becomes complicated.

4

2.2 Observable

Observables are the primary building blocks of RxSwift. Provided from the

Observable<T> class, where the T represents a generic data type, produces

sequences of asynchronous events that hold immutable values. Sequences can

be visualized easily by a stream of values within a period. [4, p. 35]

Figure 2. Stream of String values within a period. [4, p. 35]

The stream of observables can hold multiple values. In Figure 2, the value emitted

at each timestamp is different. Duration of the stream can be assumed to be

infinite. Using event sequences within the observable contract, decoupling code

becomes automatically easier. Since the contract does not manage either the

observable or observer, the need to implement any delegates or closure injecting

becomes irrelevant.

2.2.1 Subscribing

Observable allows objects and/or consumers to subscribe for events or values

emitted by another object over time and process those events in real time. The

ObservableType protocol, which Observable<T> implements, can emit four

types of events, onNext, onCompleted, onError and onDisposed. The

next event emits the latest value provided from the observable. This way the

observer collects values from the sequence and continues to do so indefinitely,

5

until a terminating event is emitted. The completed event terminates the

emitting of values in a successful manner. Completion also indicates that the

observable has completed its lifecycle. The error event terminates the emitting

of values and pushes a corresponding error to the sequence. This also

indicates the end of the lifecycle. Lastly, the disposed event which indicates that

the subscription has been deallocated properly. The disposed closure will

always execute as the last event of a sequence. [5]

1 ApiService.instance.getCryptoCurrencies()

2 .subscribe(onNext: { cryptos in

3 // [Crypto]

4 }, onError: { error in

5 // Error

6 }, onCompleted: {

7 // Completed

8 }, onDisposed: {

9 // Disposed

10 }).disposed(by: disposeBag)

Listing 1. Subscribing to an observable and handling all four event types.

An asynchronous function, which performs a network request and returns a

collection of cryptocurrencies is presented in Listing 1. The result of the function

is then subscribed to and handled as events are emitted. Once the network

request is finished in a successful manner, the onNext closure emits an object.

In case of an error, the onError closure executes and the subscription will

terminate. Lastly, the onCompleted closure will terminate the subscription

once the function no longer emits new values and the onDisposed closure

indicates that the subscription is disposed properly. An observable will never

emit events or execute closures before its subscribed to. [6]

Sending a network request, which is mapped to a function that returns an

observable, returns a single sequence of data, and terminates afterwards.

Subscribing to user interface events, will not terminate, unless explicitly told to

end or deallocated from the memory.

As an observable is subscribed to, the number of values emitted can vary from

zero to infinite. Network requests, which are expected to terminate either

6

successfully or unsuccessfully, are considered as finite sequences. Additionally,

user-initiated events such as device orientation or button taps, are considered

as infinite sequences. [7]

1 switcher.rx.isOn

2 .subscribe(onNext: { value in

3 switch value {

4 case true:

5 print("Switch is ON")

6 case false:

7 print("Switch is OFF")

8 }

9 }).disposed(by: disposeBag)

Listing 2. Subscribing to a sequence of UISwitch events.

Subscription to an infinite sequence of UISwitch events is presented in Listing

2. The sequence of the emitted values does not have an ordinary end. During

its lifecycle, the switch might not be toggled at all, thus not emitting any events.

However, the sequence is not terminated because the switch is allocated, and

the subscription is existing. As toggling the switch can only emit onNext or

onCompleted events, the onError closure is not available in the context. The

switch has an initial value of false.

2.2.2 Disposing

The Swift programming language uses Automatic Reference Counting (ARC)

for memory management. When creating a class instance, ARC allocates

memory that is used to store object data. As with all programming languages,

system resources are limited, and any used memory must be freed after use. [8]

Importance of memory management is further emphasized when using RxSwift.

When any subscription is to be freed from memory, it must be deallocated

properly. Managing each subscription independently would become

complicated.

All subscriptions are of type Disposable, which represents a disposable

resource. A DisposeBag object holds references to Disposable objects and

7

properly deallocates them when a subscription has received its last value, the

subscription errors or completes, or when the DisposeBag object gets

deallocated. DisposeBag usually exists within a UIViewController and

deallocates with the UIViewController object. Each subscription should be

disposed either manually or automatically. This way, each subscription

deallocates properly, unless a memory leak is present. [9]

1 deinit {

2 print("Deallocating UIViewController")

3 }

4

5 override func viewDidLoad() {

6 super.viewDidLoad()

7

8 ApiService.instance.getCryptoCurrencies()

9 .subscribe(onNext: { cryptos in

10 // [Crypto]
11 }, onError: { error in
12 // Error
13 }, onCompleted: {
14 // Completed
15 }, onDisposed: {
16 // Disposed
17 }).disposed(by: disposeBag)
18 }

Listing 3. Disposing a subscription with the DisposeBag object.

The full lifecycle and usage of Disposable is presented in Listing 3. Without

properly disposing a disposable, the Swift compiler warns of the unused

subscription. RxSwift will automatically handle all disposable resources, if the

DisposeBag object is used properly.

2.3 Subjects

Observables cannot emit values which are injected during runtime. To manually

push new events to a stream, a subject needs to be used. Subject can behave

as an observable or observer. Each time a subject receives an event, it

broadcasts the emitted value to its subscribers. Some subjects can be initialized

with a buffer size or initial value [10]. Different types and traits of subjects and

relays are presented in Table 1.

8

Table 1. Trait comparison between subjects and relays. [10]

Type Initial

value

Buffer

size

Emits only

new values

Can error Library

PublishSubject No No Yes Yes RxSwift

ReplaySubject Yes Yes No Yes RxSwift

BehaviorSubject Yes No No Yes RxSwift

PublishRelay No No Yes No RxCocoa

ReplayRelay No No Yes No RxCocoa

BehaviorRelay Yes No No No RxCocoa

The RxCocoa library offers a Relay type, which is a wrapper for subject.

RxCocoa is a reactive library which depends on RxSwift. It enables the usage of

Cocoa APIs found within the iOS SDK in a reactive manner. Cocoa includes

frameworks such as the Foundation, which is mandatory and the only

environment to develop iOS applications with. Relays share similar traits as

subjects but cannot error or complete so the onError and onCompleted

closures are not available. As with subjects, some relays cannot emit events

before subscribed to. [11]

9

1 let relay = PublishRelay<String>()

2

3 relay.accept("This wont emit")

4

5 relay

6 .subscribe(onNext: { value in

7 print("Got value: \(value)")

8 }).disposed(by: disposeBag)

9

10 relay.accept("This will emit")

Listing 4. Subscribing to a PublishRelay and emitting events.

The allocation, subscribing and value injecting of a PublishRelay is

presented in Listing 4. Due to PublishRelay requiring a subscription before it

starts emitting values, the first accept trigger on line 3 will not emit any events.

Afterwards, the relay is subscribed to and accept triggered once again, resulting

in a value in the onNext closure.

2.4 Operators

Operators are the key elements of RxSwift. The ability to filter, create and

manipulate data sequences enable reactive paradigms. Like traditional

mathematic functions such as addition and subtraction, operators can be used

in a similar way. Operators can be split into three main categories, transforming

operators, filtering operators, and combining operators. Beyond these

operators, some subcategories exist. Operators such as, utility, mathematical

and conditional are excluded from the study, due to their minimal usages. [12]

Connecting all three operator types to observable sequences, gives RxSwift its

declarative and reactive benefits. Within any observable sequence, an operator

can transform, filter, or combine the current value. Any operated sequence is

dependant of its previous operation. Generally, standard filter operators do not

mutate the original sequence. Transforming operators are the most used

feature in RxSwift. Swift provides similarly named functions such as map(),

flatMap() and compactMap() within collection variables. However, these

functions are not available in observable closures nor behave similarly. [13]

10

1 let id = PublishSubject<String>()

2 let button = UIButton()

3

4 Observable.combineLatest(

5 button.rx.tap.debounce(.milliseconds(300),

6 scheduler: MainScheduler.instance),

7 id) { ($1) }

8 .filter { !$0.isEmpty }

9 .flatMapLatest {

10 ApiService.instance.getCryptoCurrencies(ids: $0)
11 }
12 .subscribe(onNext: { cryptos in
13 // [Crypto]
14 }, onError: { error in
15 // Error
16 }).disposed(by: disposeBag)

Listing 5. Transforming a button tap and a String into a collection of
cryptocurrencies.

Utilization of operators combined with subscribing is presented in Listing 5.

Value and type of the sequence is transformed and filtered during its lifecycle.

Each time a button tap is registered, or the subject value changes, the

sequence is triggered. In case of the filter operators predicate fails, the

sequence comes to a hold and stops emitting any events. However, the

sequence contains an active subscription, thus not disposing.

To prevent multiple network requests, tap gesture of the button is throttled to

only emit events outside a time interval. Any overlapping tap gestures are

ignored and only one is processed onwards in the sequence. Likewise, the

network request itself is mapped inside an operator, which ensures that any

ongoing requests are cancelled prior to performing.

Lastly, in the subscribe closure, either a value is emitted, or an error has

occurred. By chaining operators in sequences, all values are expected to

represent their latest states. Sequences can be transformed multiple times and

are independent of each other. The original button tap, and subject value can

be transformed into something else with another subscription, while keeping the

emitted cryptocurrency collection completely decoupled.

Creating extensions for ObservableType or UIView components are treated

equally as the traditional Swift extension syntax. Custom reactive extensions

11

can conform to multiple protocols and generic types. Furthermore, extensions

can be used in more concise and effective way to produce more maintainable

code.

1 extension Reactive where Base: UIView {

2 var tapGesture: Observable<Void> {

3 let tapGesture = UITapGestureRecognizer()

4 base.isUserInteractionEnabled = true

5 base.addGestureRecognizer(tapGesture)

6 return tapGesture.rx.event.mapToVoid()

7 }

8 }

9

10 extension ObservableType {
11 func mapToVoid() -> Observable<Void> {
12 return self.map { _ in () }
13 }
14
15 func mapTo<C>(constant: C) -> Observable<C> {
16 return self.map { _ in
17 return constant
18 }
19 }
20 }

Listing 6. Custom extensions for UIView and ObservableType.

Extensions for observable sequences and the UIView class are presented in

Listing 6. The mapToVoid() function removes boilerplate code by

encapsulating the map() function, which returns an empty tuple. The

Observable<C> represents any generic data type and the helper function

mapTo() returns any constant given as a parameter.

To extend the Rx namespace for view components, a Base class needs to be

implemented. The extension can be used in any component, which implements

the type of the Base class. All observable sequences implement the

ObservableType protocol, thus being without any Base class

implementations.

2.5 Schedulers

By default, all components within an iOS application run single threaded. All

executed tasks, whether it be user interface event or saving data to user

12

preferences, runs on the main thread. Scheduler is a decoupled context, usually

a thread, in which processes take place in synchronous or asynchronous order.

Common misunderstanding of schedulers is that they behave uniformly with

threads. Since a scheduler is unaware of any relation between itself and the

current thread, it is necessary to verify the context the scheduler is operating in.

The ability to perform tasks concurrently using different threads and schedulers,

independent of each other’s work, can be problematic. [14]

Figure 3. Visualization of two schedulers executing asynchronous workloads.
[14]

The separation of background and main thread tasks into two schedulers is

presented in Figure 3. Scheduler 1 performs network requests, persists the data

on local cache and forwards data onwards within a background thread.

Scheduler 2 receives data from the cache asynchronously, emits events to

subscribers and performs user interface updates within a main thread. All user

interface events must be executed from the main thread.

Within observable sequences, it is possible to switch schedulers with some

limitation related to non-thread-safe objects emitted within the sequence. Non-

thread-safe objects include mutable single scheduler events or values. These

objects cannot be exposed across multiple threads concurrently. However, it is

13

possible to expose such a value using RxSwift, but that would lead in to

violating the core functionality of the application. [15]

1 let gScheduler = ConcurrentDispatchQueueScheduler(

2 queue: .global()

3)

4

5 Observable.just("bitcoin")

6 .subscribe(on: gScheduler)

7 .flatMapLatest {

8 ApiService.instance.getCryptoCurrencies(ids: $0)

9 }

10 .observe(on: MainScheduler.instance)
11 .subscribe()
12 .disposed(by: disposeBag)

Listing 7. Switching schedulers during an observable sequence.

In Listing 7, the network request is processed on Scheduler 1, Figure 3, using a

background thread and the subscribing observer is processed on Scheduler 2,

Figure 3, using the main thread. In case of the network request performing

additional transforming operators within the function call, the operators must

also implement and validate the correct scheduler.

All scheduler and thread switching must be implemented and maintained by the

developer. If the threading is not specified correctly, the observable sequence

will execute tasks within the original thread, from which the sequence started.

Not handling the possible side effects of poorly managed thread and scheduler

execution is known as the hot and cold observables.

Hot observables represent a case of not having any side effects during a

subscription, yet it has its own context in which events are generated. By

default, the context is not accessible to RxSwift nor is it able to determine any

scheduler or thread related information of itself.

In opposition to hot observables, cold observables can contain multiple side

effects and does not produce any events until having a valid subscription by a

subscriber. Therefore, cold observables lack any context of scheduling or

threading, and will not produce events until a subscription is made.

14

Typically, the need to handle unexpected side effects are signs of bad

architectural design. Performing any side effects upon subscription correlates to

the source observable not being shared. Otherwise, all side effects are shared

between subscribers. [16]

2.6 RxCocoa

RxSwift in its essence is unaware of any connection between observables and

the user interface. To provide user interface control between RxSwift and UIKit,

AppKit and WatchKit, a third layer is needed, RxCocoa. Each platform has its

own interpretation of reactive wrappers, providing a set of built-in extensions to

user interface controls. [17]

Figure 4. Linking RxSwift to platform specific user interactions using RxCocoa.
[6]

The hierarchy of RxCocoa between platform specific implementation is

presented in Figure 4. RxCocoa connects reactive methodologies to user

interface actions between all Apple application development environments.

Most importantly, RxCocoa provides reactive traits which allow user interaction

events to be transformed into observable sequences and expose bindable sinks

for reactive sequences. Provided traits include control events, control properties

and binders.

15

Control events provide user interaction specific traits such as button taps or

scroll view scrolling. Control properties describe values that a user interface

element might have such as text or switch state. Binders work in opposite way

from control events and properties, allowing to bind reactive sequences into

user interface elements such as a button alpha value or enabled state. By

utilizing binders, the user interface will always display its latest state.

RxCocoa provides bindable properties for almost any user interface element.

For example, the reactive, non-delegate UITableView binding, which allows

observable sequences to be bound into a table view. By combining operators

found from RxSwift, validation logic for inputs, outputs, custom throttling logic

and retry logic becomes straightforward. The developer can leave delegates

and data sources to be handled by Rx. Building a custom table view logic using

native methodologies, which includes network requests, throttling logic, and

filtering logic, would result into unnecessarily complicated, hard to maintain

code. [18]

1 let tableView = UITableView()

2

3 Observable.just("bitcoin")

4 .flatMapLatest {

5 ApiService.instance.getCryptoCurrencies(ids: $0)

6 }.bind(to:tableView.rx.items(

7 cellIdentifier: "Cell",

8 cellType: CryptoCell.self)

9) { row, item, cell in

10 cell.cryptoName.text = item.parsedName
11 cell.cryptoPrice.text = item.parsedPrice
12 }.disposed(by: disposeBag)

Listing 8. Binding a collection of observable cryptocurrencies into a table view.

Implementation of binding observable sequence into a table view is presented

in Listing 8. The Rx namespace is provided from RxCocoa and it enables the

usage of reactive extensions for the table view. By passing in the cell identifier

and the cell class, Rx will handle all dequeuing and data source

implementations. An anonymous lambda function holds the row index, cell type

and the cell object itself. Like all observable sequences, binding returns a

Disposable object.

16

3 Architecture and protocols

3.1 MVC and MVVM

For a long time, Apple has recommended Model-View-Controller (MVC) as the

architectural design pattern for iOS applications. The MVC design pattern splits

and assigns components of an application to three roles, Model, View, and

Controller. [19]

Figure 5. MVC design pattern. [19]

The hierarchy of MVC design pattern is presented in Figure 5. The Controller

represents an instance of the UIViewController class. Controller acts as the

central role since it updates both the View and Model. View is a representation

of the UIView class, and it will only display data and forward actions such as

button taps to the Controller. Lastly, the Model represents a generic service

which performs network requests or reads and writes data to persist the

application state.

MVC in its essence, provides simple design pattern that is somewhat functional

and easy to start developing iOS applications with. In larger scale applications,

classes might not be either views or models, thus being controllers. A common

pitfall occurs when the controller gets overwhelmed with view and model logic

creating hard to maintain code. Furthermore, MVC lacks scalability and

testability regarding unit testing. Overloading any class is generally bad

practice, and not necessarily a flaw in the MVC pattern. [20]

17

The preferred design pattern to use with RxSwift and RxCocoa is Model-View-

ViewModel (MVVM). MVVM adds an additional role to the MVC pattern,

ViewModel. For many iOS developers the MVVM design pattern is welcomed

due to easily solving numerous issues from MVC. [1, p. 390]

By separating the view lifecycle from the business logic layer, MVVM increases

the testability and scalability of the code. As the ViewModel holds all the

business logic and is decoupled from the presentation layer, it can be re-used to

migrate an iOS application to macOS, watchOS or even tvOS. [1, p. 390-392]

Figure 6. MVVM design pattern within an iOS application. [1, p. 391]

The hierarchy of MVVM design pattern is presented in Figure 6. Typically, in an

iOS application, the MVVM term also includes a Controller. The ViewModel

takes the central role as it is responsible for creating the business logic layer. It

forwards data from the Model and is exposed to the Controller. Model is only

exposed to the ViewModel. Controller binds the needed properties from

ViewModel and View. As with MVC, View only displays the data and exposes

needed actions. Like in the MVC design pattern, the Controller and View in the

MVVM design pattern represent their MVC counterparts.

3.2 Libraries and frameworks

3.2.1 Pusher

Hypertext Transfer Protocol (HTTP), founded in 1991, was created to provide

two-way communication between a client and a server. To this day, HTTP is

used widely within web browsers and other applications that pool data from a

18

server. However, to handle real time or push-based communication between

client and a server can be challenging without wasting request resources. [21]

WebSocket is an application protocol built on top of Transmission Control

Protocol (TCP). It provides the ability to communicate between a client and a

server and vice versa, without performing continuous HTTP requests. To a

certain degree, WebSockets behave similarly as the observer pattern, by

notifying all connected observers of new events. Integrating WebSocket

functionality to an application which utilizes Rx is simple since they both share

similar attributes from the observer pattern. [21]

Pusher is a real time hosted API service utilizing WebSockets. PusherSwift,

which is an iOS implementation of Pusher, is a real time API which provides bi-

directional binding between the client and server. The effect of bi-directional API

enables coupling data from two processes, in this case, the client and the

server. Each end will have its own interpretation of the API and the binding

happens by matching authentication keys and secrets. Authentication

parameters are provided from the Pusher Dashboard. [22]

Pusher offers solutions for almost all mainstream programming languages both

in client and server side. Applications that require real time communication

features such as messaging, notifications, or location tracking, can be

implemented with Pusher. [22]

19

Figure 7. Implementation of bi-directional communication between Pusher, iOS
client and a server. [22]

The ordinary implementation of bi-directional communication is presented in

Figure 7. Whenever an action of interest, such as sending a message, occurs

within the iOS client, it performs a HTTP request to the server. The server then

acknowledges the event and forwards it to the Pusher API. Lastly, Pusher

notifies any connected observers, in this case the iOS clients, with an event,

which is then handled within the clients. The implementation remains the same

regardless of the number of connected observers.

3.2.2 UIKit and SnapKit

UIKit is a framework for constructing and managing event-driven user interface

within iOS and tvOS applications. It provides view hierarchy to implement

multiple functionalities regarding user input and user interface events.

Furthermore, UIKit enables access to native animations, device specific window

information and accessibility features. [23]

When using iOS storyboards, the constraints can be visually set and inspected.

However, due to numerous problems regarding merge conflicts, segue

preparations, and unexpected element behavior with storyboards, building the

20

constraint and layout hierarchy with UIKit combined with SnapKit offers a great

alternative. [24]

SnapKit is a Domain Specific Language (DSL) library which enables easier use

of Auto Layout and constraint capabilities. It provides better, human-readable

syntax of LayoutConstraint class, which allows to create constraints with

code. Furthermore, it removes repeating code blocks used with the

LayoutConstraint class. Auto Layout describes hierarchy and constraints

between views. [25]

1 cryptoListView.translatesAutoresizingMaskIntoConstraints = false

2

3 LayoutConstraint.activate([

4 cryptoListView.leadingAnchor.constraint(

5 equalTo: view.leadingAnchor),

6 cryptoListView.topAnchor.constraint(

7 equalTo: view.topAnchor),

8 cryptoListView.trailingAnchor.constraint(

9 equalTo: view.trailingAnchor),

10 cryptoListView.bottomAnchor.constraint(
11 equalTo: view.bottomAnchor)
12])

Listing 9. LayoutConstraint variant of constraining a view.

The default, LayoutConstraint class variant of constraining a view to the

edges of the screen is presented in Listing 9. The code itself is unnecessarily

long and complex to read. The SnapKit variant of implementing the same logic

is presented in Listing 10, which is more readable and concise.

1 cryptoListView.snp.makeConstraints { make in

2 make.edges.equalToSuperview()

3 }

Listing 10. SnapKit variant of constraining a view.

SnapKit also allows for calculation of available screen estate, Auto Layout

priority setting and less or greater operators to support views that might alter

layout properties. The default constraint maker function is animatable, meaning

it can be called within an animation closure to create visual effects during the

21

layout constraining. Furthermore, the constraint maker function supports

remaking constraints during runtime.

4 Practical implementation

The project consisted of two key parts, an iOS application as the client and a

Node.js server. The client offers a convenient way of inspecting cryptocurrency

prices and historical data. Furthermore, it enables a chatting option with other

users. The server offers a bi-directional API provided by Pusher. For the sake of

simplicity, the server does not forward any data to a database, nor does it run

on any online server.

The application was written in Swift 5.5, RxSwift and RxCocoa 6.2 using Xcode

13.2 as the Integrated Development Environment (IDE). JavaScript combined

with Node.js was used for the server. Dependencies were installed with

Cocoapods 1.11.2.

Cocoapods is a dependency manager for all languages running on the

Objective-C runtime. It resolves dependencies between installable libraries and

generates a workspace which holds a collection of projects namely to include

the installed dependencies. [26]

1 platform :ios, '14.5'

2

3 inhibit_all_warnings!

4

5 target 'cluster' do

6 pod 'RxSwift', '6.2.0'

7 pod 'RxCocoa', '6.2.0'

8 pod 'RxAlamofire'

9 pod 'RxKeyboard'

10 pod 'PusherSwift'
11 pod 'SnapKit'
12 pod 'R.swift'
13 pod 'Kingfisher'
14 pod 'Charts'
15 end

Listing 12. Contents of a Podfile.

22

Cocoapods is installed via Ruby and can be integrated to any iOS, tvOS,

watchOS or macOS project. To install needed dependencies, a Podfile needs to

be generated and configurated. Content of the applications Podfile is presented

in Listing 12. Podfile describes the project specific dependencies and installs

them.

4.1 Generic API service

As the application performs multiple network requests, a maintainable and

scalable API service was created. The ApiService class is treated as a

singleton, thus only one instance of the class is allocated. The initial function

returns an observable HTTP response combined with generic data provided

from the response.

1 private func apiRequest(

2 _ host: ApiHost = .coinGecko,

3 _ method: HTTPMethod,

4 _ path: String,

5 _ headers: HTTPHeaders?,

6 _ params: Parameters?,

7 _ body: Data? = nil,

8 _ encoding: URLEncoding = .default

9) -> Observable<(HTTPURLResponse, Data)> {

10 guard
11 let url = URL(string: host.apiHost + path)
12 else { return Observable.never() }
13 return RxAlamofire.requestData(
14 method,
15 url,
16 parameters: params,
17 encoding: encoding,
18 headers: headers
19)
20 }

Listing 13. Initial generic HTTP request function.

The builder request function is presented in Listing 13. It utilizes the

RxAlamofire library, which provides reactive extensions to Alamofire. Alamofire

is a pure Swift library used for HTTP networking requests. After the initial

request responds, the incoming generic data can be decoded into a Struct,

which is a value type declared in the application. If the request responds with

empty or irrelevant data, the response tuple can be mapped to check for valid

23

response status codes. In case of an error, the function emits a next event to an

observer which displays a message, indicating a failure occurred within the

request and returns with an empty tuple. Currently, the function does not

support any retrying logic nor the ability to perform work after losing network

connection.

1 func getCryptoCurrencies(

2 ids: String = ""

3) -> Observable<[Crypto]> {

4 let path = "/v3/coins/markets"

5 let headers: HTTPHeaders = [

6 "Content-Type": "application/json"

7]

8 let queryParams: Parameters = [

9 "vs_currency": "usd",

10 "ids": ids.lowercased()
11]
12 return apiRequest(
13 .coinGecko,
14 .get,
15 path,
16 headers,
17 queryParams, nil,
18 .default)
19 .map { try decode([Crypto].self, from: $0.1) }
20 .catch {
21 parseError($0)
22 return Observable.just([])
23 }
24 }

Listing 14. Function, which utilizes the initial request builder. It returns an
observable collection of cryptocurrency items.

New request functions presented in Listing 14, are created within the

ApiService class, and are exposed as public functions. The class represents

a Model, which contains different functions to generate data from network

requests. Each function feeds data into a ViewModel, which are bound to

perform layout updates.

24

4.2 Features

4.2.1 Chatting

To power the real time chatting feature, a server was created with Node.js. The

server exposes two endpoints for the clients to utilize. Whenever a user

connects to the chat, a connect endpoint is requested and the event is passed

to Pusher. Lastly, when a user sends a message from the client, a message

endpoint is requested, and the server respectively passes an event to Pusher.

1 const pusher = new Pusher({

2 appId: process.env.APP_ID,

3 key: process.env.KEY,

4 secret: process.env.SECRET,

5 cluster: process.env.CLUSTER,

6 useTLS: process.env.USE_TLS

7 })

8

9 app.post('/connect', function(req, res) {

10 const message = {
11 name: req.query.name
12 }
13 pusher.trigger('chatroom', 'user_joined', message)
14 res.json({success: 200})
15 })
16
17 app.post('/messages', function(req, res) {
18 const message = {
19 text: req.query.text,
20 name: req.query.name
21 }
22 pusher.trigger('chatroom', 'new_message', message)
23 res.json({success: 200})
24 })

Listing 15. Node.js server implementation of Pusher.

The server-side Pusher implementation and exposed endpoints are presented

in Listing 15. Pusher holds a reference to a channel which must be included in

both the client and the server. Performing a HTTP request from the client to the

server endpoint triggers a function within Pusher, which forwards events back to

the client using a channel. The AppDelegate class implements the needed

delegate, which is presented in Listing 16, provided from PusherSwift and

subscribes to two channels.

25

1 AppDelegate.pusher.delegate = self

2 // New message

3 let _ = AppDelegate.channel.bind(

4 eventName: "new_message",

5 eventCallback: { [weak self] (event: PusherEvent) in

6 if let data = event.data {

7 self?.messageService.parseMessage(data: data, type: .other)

8 }

9 })

10 // User joined
11 let _ = AppDelegate.channel.bind(
12 eventName: "user_joined",
13 eventCallback: { [weak self] (event: PusherEvent) in
14 if let data = event.data {
15 self?.messageService.parseMessage(data: data, type: .other)
16 }
17 })

Listing 16. Client-side implementation of PusherSwift within AppDelegate.

Each channel can contain multiple events, which are observed in the

AppDelegate class and handled in custom closures. The closures pass data

into a MessageService class, which acts as a Model and notifies a

ViewModel of new events. Lastly, the ViewModel outputs data to a View, which

inserts new messages into the chat view and performs a layout update.

Figure 8. Real time chat view with both appearance variants.

26

The real time chat user interface is presented in Figure 8. The appearance is

based on the device’s selection and uses default iOS colors, excluding the

highlighted colors. New messages that cause the layout to update also scrolls

the view to the latest message. The visible keyboard dynamically alters the

layout properties of the scroll view to fit the latest message and the keyboard

simultaneously on the screen.

4.2.2 Assets

The asset list presents hundred cryptocurrency items provided from the

CoinGecko API. The assets are sorted by market cap rank in descending order.

Each item is decoded to a Struct, which is presented in Listing 17. Since

decoding can throw an error, each object property is treated as a nullable value

to prevent fatal decoding errors. As Swift is considered as a type safe

programming language, the struct exposes parsed variables that only contain

valid values to minimize nil values within the code.

1 struct Crypto: Decodable {

2 let id: String?

3 let name: String?

4 let image: String?

5 let symbol: String?

6 let current_price: Double?

7 let market_cap: Double?

8 let market_cap_rank: Int?

9 let high_24h: Double?

10 let low_24h: Double?
11 let price_change_24h: Double?
12 let price_change_percentage_24h: Double?
13 let last_updated: String?

Listing 17. Crypto struct which represents a single cryptocurrency asset.

The initial controller, HomeViewController, which is presented in Listing 18,

initializes the cryptocurrency list view and ViewModel The controller passes two

observables into the ViewModel, the UISearchBar text and a

UIRefreshControl event. The text is used to perform HTTP request to fetch

specific cryptocurrency items and the refresh control event allows refreshing of

the list.

27

1 init() {

2

3 self.cryptoListView = CryptoListView()

4 self.viewModel = HomeViewModel(

5 searchText: cryptoListView.searchBar.rx.text.orEmpty

6 .throttle(.seconds(1),

7 scheduler: MainScheduler.instance)

8 .distinctUntilChanged().startWith(""),

9 refresh: cryptoListView.refresher.rx.controlEvent(.valueChanged)

10 .asObservable().startWith(())
11 .throttle(.seconds(1), scheduler: MainScheduler.instance))
12 super.init(nibName: nil, bundle: nil)
13 }

Listing 18. HomeViewController class initialization function.

The usage of Observable binding and SnapKit view constraining is presented

in Listing 19. All Disposable objects, which are generated by the Binder

class, are inserted in to the DisposeBag object for proper deinitialization via

convenience function found from the DisposeBag class. The cryptocurrency

list view is constrained to the edges of the screen with the concise SnapKit

function starting on line 14. The entire listing is executed in the viewDidLoad

function within the HomeViewController class.

1 disposeBag.insert {

2 viewModel.cryptoListLoading

3 .bind(to: animating)

4 viewModel.initialLoading

5 .bind(to: initialLoading)

6 viewModel.cryptoList

7 .bind(to: createCryptoCards)

8 viewDidAppear

9 .bind(to: setTitle)

10 viewWillAppear
11 .bind(to: refresh)
12 }
13
14 cryptoListView.snp.makeConstraints { make in
15 make.edges.equalToSuperview()
16 }

Listing 19. Observable binding and SnapKit constraining within the
HomeViewController class.

Lifecycle observables and a DisposeBag object is provided from

RxViewController, which is presented in Listing 20. The class is a custom

implementation of UIViewController, which holds subjects that generate

28

events for lifecycle events. Gathering lifecycle logic and business logic into a

single closure within a class, allows for concise and understandable approach

to subscribing and binding.

1 class RxViewController: UIViewController {

2 let disposeBag = DisposeBag()

3 private let didAppear = PublishSubject<Void>()

4 private let didDisappear = PublishSubject<Void>()

5

6 var viewDidAppear: Observable<Void> {

7 return didAppear.asObservable()

8 }

9 var viewDidDisappear: Observable<Void> {

10 return didDisappear.asObservable()
11 }
12
13 override func viewDidAppear(_ animated: Bool) {
14 super.viewDidAppear(animated)
15 didAppear.onNext(())
16 }
17 override func viewDidDisappear(_ animated: Bool) {
18 super.viewDidDisappear(animated)
19 didDisappear.onNext(())
20 }
21 }

Listing 20. Observable sequences of lifecycle events within the
RxViewController class.

Lastly, the HomeViewModel class, which is presented in Listing 21, holds the

business logic, and exposes observables for the HomeViewController to

bind. Boolean observables are bound to display activity indicators and to hide

rest of the view when data is being loaded. The collection of Crypto objects is

bound to create the list view.

To minimize the risk of creating strong reference cycles or repeating data

sequences, subscriptions should only exist within the Controller and

observables only on ViewModels. The share operator, which is used on Listing

21, line 20, returns an observable sequence which shares a single subscription

to the underlying source. This enables the result to be safely used to create

other observables sequences within the ViewModel, while keeping a singular

connection between the source and preventing multiple subscriptions to the

same sequence.

29

1 class HomeViewModel {

2 let cryptoList: Observable<[Crypto]>

3 let initialLoading: Observable<Bool>

4 let cryptoListLoading: Observable<Bool>

5

6 init(

7 searchText: Observable<String>,

8 refresh: Observable<Void>

9) {

10 let refreshAndText = Observable.combineLatest(
11 searchText, refresh
12)
13
14 cryptoList = refreshAndText
15 .flatMapLatest {
16 ApiService.instance.getCryptoCurrencies(
17 ids: $0.0
18)
19 }
20 .share(replay: 1, scope: .forever)
21 .startWith([])
22
23 cryptoListLoading = Observable.merge(
24 cryptoList.map {
25 $0.count == 0
26 }.startWith(false),
27 refresh.mapTo(constant: true)
28).startWith(true)
29
30 initialLoading = Observable.merge(
31 cryptoList.mapTo(constant: false).take(2),
32 cryptoList.map {
33 $0.count == 0
34 }.take(2).startWith(true)
35).startWith(true)
36 }
37 }

Listing 21. Business logic and bindable observables within the HomeViewModel
class.

Furthermore, the take operator, which is used on Listing 21, line 31, ensures

that only specific number of contiguous elements, starting from the first, are

included in the sequence. After the sequence has produced the specific number

of elements, it completes, and the underlying source is disposed of.

30

Figure 9. Cryptocurrency asset list view with both appearance variants.

The cryptocurrency asset list view is presented in Figure 9. Typing on the

search bar or performing a pull-down gesture on the view, will cause the list to

refresh and regenerate the list items. The search bar text is throttled to only

include distinct values between a time period to save resources and to prevent

fetching irrelevant data. Each list item holds a subscription to display a detailed

view of a single asset.

4.2.3 Details

The second level navigation presents a detailed view of a single cryptocurrency

asset. Each view contains a graph, which displays historical price data of an

asset. The graph is created with Charts, which is a pure Swift library for iOS,

tvOS and macOS allowing to create graphical representations from numerical

data. [27]

31

Data for the graph is provided from CoinGecko API and is decoded into a

collection of Double arrays. The collection contains two values, timestamp of

the price in Unix format and the price. Timestamp is interpreted either in days,

hours or minutes depending on the query parameter of the HTTP request. [28]

1 let marketChart = daysAndId

2 .flatMapLatest {

3 ApiService.instance.getChartData(

4 id: $0.0,

5 days: $0.1

6)

7 }

8 .share(replay: 1, scope: .forever)

9

10 let yValues = marketChart
11 .filter { $0.prices.count > 0 }
12 .flatMap { chart -> Observable<[ChartDataEntry]> in
13 return Observable.just(chart.prices.map {
14 ChartDataEntry(
15 x: $0[0],
16 y: $0[1].rounded(toPlaces: 3)
17)
18 })
19 }.share(replay: 1, scope: .forever)
20
21 marketChartData = Observable.combineLatest(
22 yValues, cryptoName, dayStream
23)

Listing 22. Business logic for market chart data within the DetailsViewModel
class.

The business logic for displaying market chart data is presented in Listing 22.

The decoded data provided from the HTTP request is converted into a

collection of ChartDataEntry, which is a class provided from Charts. The

class contains entities for x- and y-axis values and represents a single entry in a

chart.

By utilizing the combine operator, the resulting observable sequence is of type

([ChartDataEntry], String, MarketDays), where the String

represents the cryptocurrency name and the MarketDays, the time interval of

the chart entries in an enumerated format. The share operators on Listing 22,

line 45 and line 56, ensure that the sequences are safe to be combined without

performing any additional resource wasting networking requests or generating

multiple subscriptions to the source observable.

32

1 var setData: Binder<(

2 [ChartDataEntry], String, MarketDays

3)> {

4 return Binder(self) { owner, data in

5 let label: String = {

6 switch data.2 {

7 case .week:

8 return "\(data.1) 1W tracking ($)"

9 case .day:

10 return "\(data.1) 24H-tracking ($)"
11 case .month:
12 return "\(data.1) 1M-tracking ($)"
13 }
14 }()
15 let set1 = LineChartDataSet(
16 entries: data.0, label: label
17)
18 let data = LineChartData(dataSet: set1)
19 set1.mode = .cubicBezier
20 set1.lineWidth = 2
21 set1.setColor(UIColor.Cluster.instance.action)
22 set1.drawCirclesEnabled = false
23 data.setDrawValues(false)
24 owner.detailsView.chartView.data = data
25 }
26 }

Listing 23. Binder within the DetailsViewController class.

The binding of the market chart data is presented in Listing 23. The custom

Binder, which exists within the DetailsViewController class, acts as a

bindable sink for observable sequences and sets all necessary data in to the

chart view and performs a layout update. By default, binders perform on the

main scheduler and cannot receive errors.

Furthermore, binders will always include two parameters in the builder function,

the retainer, and the value of the observable sequence. The retainer is captured

during the initialization and can be treated safely afterwards. On Listing 23, line

4, the DetailsViewController is retained with the self parameter, which

refers to an implicit property found from every object in Swift. This reduces the

risk of creating strong reference cycles, since self should be treated weakly

within subscriptions.

33

Figure 10. Detailed view of a cryptocurrency asset with both appearance
variants.

The detailed view of a cryptocurrency asset is presented in Figure 10. All the

currency data is shown in U.S. Dollars. In addition to the chart view, the view

displays basic information of the cryptocurrency asset such as the current price,

market cap and the highest and lowest price within the last 24 hours. Tapping

any of the selectors found from the graph view regenerates the graph with

different data.

5 Conclusion

Becoming proficient in Rx library enables developers to build applications for

various platforms with little effort. For mobile developers, the ability to develop

applications for both iOS and Android are considered as an asset. Reactive

applications are robust and agile regarding their user experience. Data binding

allows for the user interface to always represent its latest state. By utilizing

34

operators, creating complicated application logic, and transforming reactive

sequences becomes straightforward.

Building user interface with UIKit solves numerous issues regarding iOS

storyboards. Handling navigation and lifecycle methods programmatically,

enable clean and maintainable code. Providing AutoLayout capabilities with

SnapKit allows for supporting multiple sized device idioms.

Since no programming paradigm is perfect, even RxSwift includes issues. They

might regard certain behavior within operators and the generated sequences.

Debugging unwanted side effects or misbehaving data streams can be a

tedious process. Creating system wide models, such as caches or WebSocket

repositories with shared observables can cause repeating data sequences.

Strong reference cycles and memory leaks might cause cumulatively increasing

subscriptions if the sequences are not disposed properly.

All the problems combined with the high learning curve of RxSwift can be

challenging for unskilled iOS developers. Since UIKit lacks the ability to inspect

view components, building layout with UIKit requires sufficient knowledge of

user interface components and navigation hierarchy.

MVVM combined with RxSwift and RxCocoa offers a future proof way of

building iOS applications. Since Apple’s own reactive framework, Combine, and

RxSwift share similar ideology, building applications with RxSwift enable

migration to Combine in the future. Numerous RxSwift contributors are creating

a bi-directional framework, RxCombine, to bridge Combine and RxSwift

together to provide more stable migration tools, or even codevelop using both

frameworks.

35

References

1 Pillet, Florent; Todorov, Marin; Mishali, Shai; Gardner, Scott & Bontognali,
Junior. 2017. RxSwift: Reactive Programming with Swift. 4th ed.
Razeware.

2 Apple Developer. Combine. Online.
<https://developer.apple.com/documentation/combine>. Accessed
22.11.2021.

3 GitHub. RxSwift. Online. <https://github.com/ReactiveX/RxSwift>.
Accessed 22.11.2021.

4 Raywenderlich Tutorial Team & Sullivan, Alex. 2019. Reactive
Programming with Kotlin: Learn Rx with RxJava, RxKotlin, and RxAndroid.
1st ed. Razerware.

5 ReactiveX. Online. <https://reactivex.io>. Accessed 23.11.2021.

6 Mishali, Shai. 2018. RxSwift: debunking the myth of hard. Online. <https://
www.youtube.com/watch?v=-N2qtTnP1sg>. Accessed 27.11.2021.

7 Signh, Vaibhav. 2021. RxSwift: Finite and Infinte Observables. Online.
<https://vaibhavsingh-54243.medium.com/rxswift-finite-and-infinite-
observables-69e4e4469be7>. Accessed 28.11.2021.

8 The Swift Programming Language. 2021. Automatic Reference Counting.
Online. <https://docs.swift.org/swift-
book/LanguageGuide/AutomaticReferenceCounting.html>. Accessed
28.11.2021.

9 Raywenderlich.com. RxSwift in Practice - RWDevCon 2016 Live Tutorial
Session. 2017. Online. <https://youtu.be/W3zGx4TUaCE>. Accessed
28.11.2021.

10 ReactiveX. Subject. Online.
<https://reactivex.io/documentation/subject.html>. Accessed 28.11.2021.

11 Gümüs, Göktug. 2020. Getting started with RxSwift and RxCocoa. Online.
<https://medium.com/flawless-app-stories/getting-started-with-rxswift-and-
rxcocoa-5534cf2902b7>. Accessed 4.12.2021

12 Pandey, Yuvraj. 2018. RxSwift: Observing Operators. Online.
<https://yuvrajpy.medium.com/rxswift-observing-operators-
c54b46a9a778>. Accessed 4.12.2021

13 ReactiveX. Operators. Online
<https://reactivex.io/documentation/operators.html>. Accessed 6.12.2021

36

14 Mróz, Lukasz. 2016. RxSwift by Examples #4 – Multithreading. Online.
<https://www.thedroidsonroids.com/blog/rxswift-examples-4-
multithreading>. Accessed 6.12.2021

15 Campbell, Lee. 2015. Introduction to Rx: Scheduling and Threading.
Online.
<https://introtorx.com/Content/v1.0.10621.0/15_SchedulingAndThreading.
html>. Accessed 12.12.2021.

16 Campbell, Lee. 2015. Introduction to Rx: Hot and Cold Observables.
Online.
<http://introtorx.com/Content/v1.0.10621.0/14_HotAndColdObservables.ht
ml>. Accessed 12.12.2021.

17 Kliffer, Ron. 2019. Getting Started with RxSwift and RxCocoa. Online.
<https://www.raywenderlich.com/1228891-getting-started-with-rxswift-and-
rxcocoa>. Accessed 17.12.2021.

18 Suojanen, Jussi. 2018. How to use RxSwift with MVVM pattern – part 1.
Online. <https://www.vincit.fi/en/rxswift-with-mvvm-part1/>. Accessed
17.12.2021.

19 Apple Developer. 2018. Model-View-Controller. Online.
<https://developer.apple.com/library/archive/documentation/General/Conc
eptual/DevPedia-CocoaCore/MVC.html>. Accessed 18.12.2021.

20 Law, Raymond. MVC doesn’t lend itself well to unit testing. Online.
<https://clean-swift.com/mvc-doesnt-lend-well-unit-testing/>. Accessed
18.12.2021.

21 Douglas, Aaron. 2016. WebSockets on iOS with Starscream. Online.
<https://www.raywenderlich.com/861-websockets-on-ios-with-
starscream>. Accessed 18.12.2021.

22 Pusher. Online. <https://pusher.com/channels>. Accessed 18.12.2021.

23 Apple Developer. UIKit. Online.
<https://developer.apple.com/documentation/uikit>. Accessed 19.12.2021.

24 Cherednichenko, Sveta. Pros and Cons of Working with Storyboards.
Online. <https://www.mobindustry.net/blog/pros-and-cons-of-working-with-
storyboards/>. Accessed 19.12.2021.

25 Mishali, Shai. 2019. SnapKit for iOS: Constraints in a Snap. Online.
<https://www.raywenderlich.com/3225401-snapkit-for-ios-constraints-in-a-
snap>. Accessed 19.12.2021.

26 CocoaPods. Online <https://cocoapods.org/about>. Accessed 23.12.2021.

27 Gindi, Daniel. 2020. Charts. Online.
<https://github.com/danielgindi/Charts>. Accessed 6.1.2022.

37

28 CoinGecko. 2021. CoinGecko API documentation. Online.
<https://www.coingecko.com/en/api/documentation>. Accessed 6.1.2022.

	1 Introduction
	2 RxSwift
	2.1 Asynchronous code
	2.2 Observable
	2.2.1 Subscribing
	2.2.2 Disposing

	2.3 Subjects
	2.4 Operators
	2.5 Schedulers
	2.6 RxCocoa

	3 Architecture and protocols
	3.1 MVC and MVVM
	3.2 Libraries and frameworks
	3.2.1 Pusher
	3.2.2 UIKit and SnapKit

	4 Practical implementation
	4.1 Generic API service
	4.2 Features
	4.2.1 Chatting
	4.2.2 Assets
	4.2.3 Details

	5 Conclusion
	References

