
Bachelor’s thesis

 Information and Communication Technology

2022 | 43

Krishna KC

DEVELOPING AND
IMPLEMENTING WEB
COMPONENTS

BACHELOR’S THESIS | ABSTRACT

TURKU UNIVERSITY OF APPLIED SCIENCES

Information and Communication Technology

2022| 43

Krishna KC

DEVELOPING AND IMPLEMENTING WEB
COMPONENTS

Component-based frameworks and libraries have gained popularity over the years. Most of the
web development projects are carried out using different tools and libraries. Integrating different
frameworks and libraries in a single project has numerous advantages and benefits. All the
component-based frameworks are developed from the concept of Web Components. The concept
of Web Components makes it possible to break down and develop different parts of the web
application to separate modules making each part reusable which in turn can be used within the
same project or different projects seamlessly.

The main objectives of this thesis were to research different specifications of Web Components,
implement them to create a dynamic reusable component without the help of libraries or
frameworks, and, then reuse the created component in React JS which is the most popular
framework of 2021.

 This thesis summarizes the concepts and implementations of different technologies behind Web
Component specifications, including Custom Elements, Shadow DOM, and HTML template.
Similarly, the opportunities and challenges of Web Components are presented in general.
Similarly, different easy-to-use and open-source tools needed are briefly presented. The
component developed within the thesis provides an easy approach to defining a web component,
its deployment, and reuse in applications based on React JS.

KEYWORDS:

HTML, CSS, JavaScript, Web Components, Custom Elements, DOM, Shadow DOM, HTML
Template, Vanilla JavaScript, React JS, GitHub, GitHub Pages, MicroFrontend

CONTENTS

LIST OF ABBREVIATIONS 5

1 INTRODUCTION 6

2 WEB COMPONENTS 9

2.1 Custom Elements 9

2.2 Shadow DOM 11

2.3 HTML Template 18

2.4 Advantages and Disadvantages of Web Components 22

2.4.1 Advantages 23

2.4.2 Disadvantages 24

3 TOOLS, FRAMEWORK, AND LIBRARY 25

3.1 Visual Studio Code 25

3.2 Vanilla JS 25

3.3 GitHub and GitHub pages 26

3.4 React JS 27

4 DEFINING, DEPLOYING, AND IMPLEMENTING WEB COMPONENTS 29

4.1 Defining Web Component With vanilla JS 29

4.2 Deploying Web Components in Cloud 34

4.3 Implementing Web Components within React JS application 35

5 CONCLUSION 38

 REFERENCES 39

FIGURES

Figure 1. Source code for creating Custom Element. 10
Figure 2. Simple HTML source code including a comment. 12
Figure 3. HTML DOM tree. 12
Figure 4. Shadow DOM in a DOM. 13
Figure 5. Shadow DOM in custom element. 15
Figure 6. HTML including styles and custom element. 16
Figure 7. Shadow DOM in browser. 17
Figure 8. Template element in HTML. 19
Figure 9. Template before referenced in JavaScript. 20
Figure 10. Appending the template to a custom element. 21
Figure 11. Template after referenced in the custom element. 22
Figure 12. Folder structure of React app. 28
Figure 13. Folder structure of user card. 29
Figure 14. HTML markup with a source to usercard JavaScript file. 30
Figure 15. Defining and registering the custom element. 31
Figure 16. Template element with markup and styles for user card. 32
Figure 17. Defining attributes using query selectors. 33
Figure 18. Implementation of web component inside the body in HTML. 33
Figure 19. Identity card rendered by browser. 34
Figure 20. Script tag containing source link for identity card component. 35
Figure 21. Consuming identity card component within React application. 36
Figure 22. Browser rendering the user card within the React application. 37

LIST OF ABBREVIATIONS

API Application Programming Interface

CSS Cascading Style Sheets

DOM Document Object Model

ECMA European Computer Manufacturers Association

HTML Hypertext Markup Language

IDE Integrated Development Environment

JS JavaScript

MVC Model-View-Controller

SEO Search Engine Optimization

UI User Interface

URL Uniform Resource Locator

W3C World Wide Web Consortium

XML Extensible Markup Language

6

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | KC Krishna

1 INTRODUCTION

The growth of web development has increased the demand of web developers in 2020s.

According to the Stackoverflow 2021 survey, JavaScript remains the most practiced

language under the category Programming, scripting, and markup languages followed

by HTML and CSS. [1] JavaScript and HTML along with CSS are based on the standards

and specifications provided by Ecma International and W3C respectively.

Web Development is divided into two parts named frontend and backend Development.

Frontend refers to the client-side programming that happens in the browser to which a

user or client sees and interacts somehow. Whereas backend, known as server-side

programming, occurs in the server and database that works behind to power the frontend

features.[2]

Frontend developers use different primary web languages, libraries, extensions, and

frameworks. All the languages have certain features and benefits in solving specific

problems.[3] The primary language used and understood by browsers are:

• HTML

• CSS

• JavaScript

• jQuery

Libraries and frameworks provide powerful capacity and a straightforward approach to

problem-solving compared to primary languages. Different libraries and frameworks

have advantages, which can be easily implemented and used for utmost performance

and user experience. Some of the popular libraries and frameworks used in web

development are as follows:

• React library

• Vue.js

• Angular

• Svelte

• Ember

7

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | KC Krishna

All frameworks and libraries are primarily component-based. These frameworks provide

an easy learning curve, are scalable, and integrate better with backend services.

Component-based frameworks are popular due to their straightforward approach over

monolith or micro web services. Component-based development is aimed at designing

and developing reusable components with encapsulated styles. Developers can deliver

faster and better products with new features and experiences with open web technology

and standards.[4]

Complications might arise when many people visit web pages, and the server has to

continuously act upon requests from the clients or a large number of clients

simultaneously. Due to large numbers of users and microservices, building software or

products with component-based architecture has risen exponentially.[5] Some of the

advantages of using component-based frameworks or systems are:

• Robustness: Components are isolated and help to minimize crashes of the

whole system in different cases

• Easy Maintenance: Problems faced can be easily isolated and fixed without

disturbing the rest of the codes

• Flexibility: Wide range of applications can be covered by reusing a single

component.

• Extensible: New components can be created quickly, adding extra capabilities.

All the component-based frameworks or libraries are based upon the theory of web

components. The thesis lays out detailed research about the concepts of web

components, the creation of a web component without using frameworks or additional

libraries and the integration of web components within an application based on a popular

framework named React JS. Hence, a user card based on the concept of web

components was developed that has a custom tag <identity-card></identity-card>,

styles encapsulated in Shadow DOM, and template tag used for the markup of identity

card. The thesis also illustrates the deployment of the created component and shows an

easy approach to reusing the user card component in React JS.

8

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | KC Krishna

The chapters in this thesis are divided into four main chapters.Chapter 1 provides an

introduction to current frontend web development approach and provides an overview

and advantages of component based frameworks.

 Chapter 2 explains different specifications of Web Components including Custom

Elements, Shadow DOM, and HTML Template as well as advantages and drawbacks of

web components in current context when writing this thesis.

In Chapter 3, different tools and technologies that have been used as a part of

implementing web components during this thesis are discussed. The selected tools are

based on research of different technologies. The selected tools are open source and

are easy to implement and light-weight in nature.

 Similarly, Chapter 4 describes in detail how the tools described in Chapter 3, were used

to define a web component, deploy and implement web component As a part of the

implementation, a simple approach to define, deploy, and, implement a web component

was laid out in Chapter 4.

9

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | KC Krishna

2 WEB COMPONENTS

Web Components is a set of technologies that allows developers to create reusable

custom elements with their functions encapsulated away from the rest of the code used

in web apps.

Web Components help to maintain the reusability of fragments of codes. They help

developers to manage source codes such as HTML, style sheets, and scripts easily

without affecting the whole page. Web Components solve the problems related to slow

application speed and code reuse, resulting in faster development and debugging for a

product or service.

 Web Components require three major base technologies, including Custom Elements,

Shadow DOM, and HTML template. Each of these technologies is integrated to form a

single web component that has a custom tag, scoped styles, and scripts limited to itself

only. [6]

2.1 Custom Elements

A custom element is one of the basic specifications for developing Web Components.

With the help of a custom element, developers can create new HTML tags, modify or

add properties to existing titles, and extend the components made by other developers.

A custom element is created using the base web technologies Vanilla JS, HTML, and

CSS without external 3rd party libraries or frameworks.[7]

A JavaScript class defines a new element. A custom element can be extended to a basic

HTMLElement or existing HTML tags such as buttons, paragraphs, etc. The binding of

the class containing constructors and reactions with the tag name is achieved by

using the window.customElements.define method. This method invokes and notifies the

browser about a new tag. The method window.customElements.define has two

10

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | KC Krishna

parameters that contain the name of the HTML tag and the class extending the

HTMLElement.[7]

There are specific rules about naming and exceptions that arise when creating a custom

element. These rules are [8]:

• Tag names should not be common names but single words with a compulsion

of the dash(-) so that the HTML parser can distinguish a custom element and

regular elements. <x-bar>, <my-element> etc can be good tag names.

• The same tags cannot be registered more than once to prevent DOMException.

• Since there are only a few self-closing tags in HTML, a custom element cannot

be a self-closing tag. For example: <my-element></my-element>.

The class contains constructors and lifecycle methods which are the logical parts of

adding functionality to the element. There are specific rules to be followed inside

constructors and reactions for a custom element which are as follows [9]:

• super() without any parameters must be called at the beginning to establish a

strict prototype chain and this value.

• Only simple, early return or return this is allowed inside constructor body.

• DOM methods like document.write() or document.open() should be avoided

inside constructor.

Figure 1. Source code for creating a custom element.

 Figure 1 shows the class 'Myelement' inheriting the basic HTML Element, which holds

all the methods and behavior of a custom element, including constructors, lifecycle, and

different attributes associated with a custom element. In the second line of the figure, a

method for defining a custom element is used where, my-element is the name of the

custom element, and Myelement is the reference to the class having methods and

attributes to the custom element. The custom element can then be used as <my-

element><my-element> just like a regular HTML tags.

11

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | KC Krishna

A custom element is fully supported in various browsers, including a new version of

Chrome, Firefox, and Edge; however, Safari and other browsers have partial support for

a custom element.

2.2 Shadow DOM

DOM

The DOM refers to an API that defines the logical structure of HTML or XML documents

and methods to access and manipulate HTML elements. The DOM connects web pages

and HTML documents to JavasScript or other programming languages. It is the

representation of a webpage in a hierarchical way that benefits the programmers to go

through the document for easy access and manipulation of tags, ids, classes, attributes,

or elements using methods provided by the document object.[10]

The HTML source (Figure 2) can differ from the DOM structure since DOM represents

the whole document in a browser containing all the document’s contents. All the HTML

documents are represented as a DOM tree in the browser (Figure 3). Everything in HTML

source code has a place in DOM representation, including the comments. Nodes are

then used for accessing, modifying, or manipulating certain parts of the documents. The

structure of DOM is represented as a ”node tree” starting from the parent node. In the

case of HTML documents, all the HTML tags, texts, and comments are denoted as

element nodes, text nodes, and comment nodes respectively.[11]

12

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | KC Krishna

Figure 2. Simple HTML source code including a comment.

Figure 3. HTML DOM tree .

13

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | KC Krishna

Figure 3 shows the DOM tree structure of the HTML source code of Figure 2. HTML is

the root node, HEAD and BODY is the child node of HTML, TITLE, DIV, P are element

nodes and, text nodes are shown with a symbol ‘#’ in the DOM tree.

Shadow DOM

Shadow DOM is a feature of DOM that allows a browser to include a subtree of DOM

elements while rendering an HTML document (Figure 4). Shadow DOM is a document

fragment attached to a host element but not in the main DOM. The host element can be

any HTML element from where the shadow DOM starts and has its own scope.[12] The

primary standards of shadow DOM are:

• Shadow host: It is the element or node that a shadow DOM is attached to.

• Shadow tree: It is a DOM tree of the shadow DOM where the shadow host is the

root node.

• Shadow boundary: It is the end of the shadow tree from where the scope of

shadow DOM ends and regular DOM continues.

• Shadow root: It is the root node of the shadow tree where shadow DOM is

attached.

Figure 4. Shadow DOM in a DOM. [12]

14

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | KC Krishna

In Fgure 4, the Shadow tree is attached to a shadow host from the main document tree,

which has its own scope. The shadow host in document tree is shadow root. The

flattened tree on the right side is used for rendering the whole DOM tree.

There are two main limitations of which elements can be used to create shadow root.

[13]These include:

• Only one shadow root can be created for an element.

• The host of shadow tree can only be either custom element or elements such as

header, main, body, h1-h6 (heading tags), nav, p, section, div, span, footer,

article, aside or blockquote. In contrast, a shadow tree can not be attached to

other elements such as img.

The growth of features in web application makes the applications to be more complex.

The shadow DOM solves conflicts that arise between class names and IDs used by CSS

hence providing easy solutions to developers to maintain and upgrade specific parts of

the applications.

The shadow DOM helps developers create a child DOM inside the main DOM tree

allowing them to build elements that are isolated from the rest of the codes. Some

features of the elements developed using shadow DOM are as follows [14]:

• Self Contained: That cannot be accessed or manipulated from standard DOM

methods and selectors like document.querySelector().

• Scoped and simplified CSS: CSS rules stated inside shadow DOM have

limitations only inside shadow DOM, and the rules do not leak out, affecting other

elements outside shadow DOM. In this way, simple selectors, ID, and classes

can be used seamlessly.

• Productivity: Shadow DOM increases productivity by allowing developers the

ability to debug and maintain each element scoped inside the shadow DOM.

The method attachShadow is used for creating a shadow DOM to a custom element

(Figure 5). The statement this.attachShadow({mode:’open’}) helps bind the custom

elements to include an isolated DOM tree (Figure 7). The mode open or closed is used,

indicating if the shadow root can be modified outside the custom element or not

15

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | KC Krishna

respectively. The markup and styles that are attached to the shadow root are limited

inside the custom element. The markup and styles can be added using regular DOM

methods and they need to be attached to the shadowRoot (Figure 5).

Figure 5. Shadow DOM in custom element.

16

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | KC Krishna

Figure 6. HTML including styles and Custom element.

In Figure 5, the shadow DOM is attached to a custom element named shadow-head

using the method attachShadow. The DOM method innerHTML is used to add a markup

and styles. <shadow-head></shadow-head> is defined as a custom element in a HTML

source file as shown in Figure 6.

17

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | KC Krishna

After the browser has rendered the codes as illustrated in Figures 5 and 6, the styles

defined in HTML for <h2> do not override with the shadow root element <h2> having

different styles. In Figure 7, a browser renders the HTML page with a custom element

and developers tool shows the scope of shadow root.

The Shadow DOM is supported by all new browsers, including Firefox, Chrome, Opera,

Safari, and the latest Edge browsers.

 Figure 7. Shadow DOM in browser.

18

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | KC Krishna

2.3 HTML Template

The HTML template is one of the powerful features of Web Components. It plays a

crucial role in holding the markup structures for custom elements. The built-in HTML

<template> element acts as a a storage for HTML markup.

The contents inside the template are ignored by the browser and are hidden when the

page loads(Figure 9). The contents of the template are rendered using JavaScript

(Figure 11). The HTML template makes it possible to define content or structure and

save it for easy use across the webpage, instead of writing all HTML in theJavaScript

source file (Figure 8).[15]

JavaScript is utilized for the HTML template. Web components work better when the

template is used as the content of the shadow DOM. All the markup inside the template

elements is wrapped inside a document-fragment node in a DOM tree (Figures 9 and

11). This prevents any other scripting or styles from overriding within the template

content in a web page.

The main advantages of using the template are as follows[15]:

• The HTML template can hold any tags within it.

• The clone of the HTML template is used instead of the template itself when

referenced and appended.

• Styles and Scripts can be inserted inside templates hence providing their own

properties for the markup without overriding the other elements.

• The HTML template is supported in all modern web browsers except the Internet

Explorer, which, however, can be solved by giving template style with display:

none attribute.

19

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | KC Krishna

Figure 8. Template element in HTML.

20

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | KC Krishna

Figure 8 shows an example of using template elements. In the developers tool of the

browser, the template’s contents are wrapped inside a node called #document-fragment

as shown in Figure 9.

Figure 9. Template before referenced in JavaScript.

21

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | KC Krishna

Figure 10. Appending the template to a custom element.

The template (Figure 10) is referenced by using the DOM method of

document.getElementById(’my-template’);. The contents of the template are referenced

using the method template.content. Finally, the template content is cloned and appended

to the custom element with shadow DOM.

The contents of the template cloned as document-fragment are visible on the browser

(Figure 11).

22

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | KC Krishna

2.4 Advantages and Disadvantages of Web Components

The web applications are built using different technology stacks. The use of many stacks

together to built a application could be challenging for a development teams. Web

components make it possible for a developer to add extra functionalities within an

application without the need to focus on different stacks [26].

Web components is used to create dynamic reusable components that can be used

across different web applications and platforms with an easy approach. Web

components is compatible to use with any JavaScript frameworks or no framework at all

enabling developers having knowledge of different stacks to collaborate on the same

project. Web Components is entirely based on Web Standard making them more

futureproof than most of the frameworks[16].

Figure 11. Template after referenced in the custom element.

23

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | KC Krishna

Today, large companies have included Web components to build their features, including

Firefox user interface and Apple Music Service [26].

2.4.1 Advantages

There are numerous benefits of using web components. The main advantage is its ability

to bring different technology stacks like Angular, React, Vanilla JavaScript, Ember, and

other frameworks and libraries together. Due to the varying benefits of one framework

over another, better productivity can be gained using different stacks together.

Some of the benefits of Web Components are as follows [17]:

• Micro Frontends Friendly: Web Components works well with micro-frontend

architecture which aims to provide possibility for multiple development teams

associated with multiple frontend technologies and micro applications or

services to work together.

• Easy learning of Frameworks: Since Web Components are based on

JavaScript, learning Web Components makes a developer learn other

JavaScript component-based frameworks easily.

• Modular: Web Components focuses on creating separate components resulting

in a more accessible reusable design and reducing complexity.

• Web Standard: Web Components are based on Web Standards and W3C

specifications, making them more standard and evolution in nature than other

frameworks.

• Framework support: Web components can be used with almost all JavaScript

frameworks and can be created with no framework, making the design more

accessible and efficient among design teams.

• Encapsulation: Shadow DOM provides components with their DOM tree that

cannot be accessed from the main document, making the styles and logic only

apply to the specific element only.

24

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | KC Krishna

2.4.2 Disadvantages

Web Components also have their opposing sides since they are based on evolving

standards and have yet to overcome specific problems. Web components, in most cases,

work very well; however, there are certain HTML elements that cannot be used with web

components and are still to be developed for developers to rely on web components

entirely.

Some of the challenges of Web Components faced by developers are as follows [18]:

• Browser Compatibility: The top browsers like Chrome, Safari, and Firefox fully

support a web component built on the specifications. However, browsers like

Safari or Edge still lack support for web components, including custom elements

and shadow DOM. Due to this reason, Web components are not fully accessible

from unsupported browsers.

• Styling: Since the styles of web components are encapsulated using Shadow

DOM. When there is multiple web components, styles needed for each

component should be added separately to ensure overall visual looks with other

components.

• Working with Forms: Since web components is not a part of the regular DOM

tree, Shadow DOM does not allow interaction with form elements like input.

• Rendering to Server: Rendering web components to a server-side requires

extensible knowledge; however, other frameworks have simple solution to this

problem.

25

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | KC Krishna

3 TOOLS, FRAMEWORK, AND LIBRARY

3.1 Visual Studio Code

Visual Studio Code commonly known as VS Code is a free, lightweight, and open source

IDE developed by Microsoft. According to Stack Overflow Developer Survey 2021 [27],

more than 70 percentage of professional developers prefers VS code among different

IDEs.

VS Code has built-in support for HTML, CSS, and JavaScript. Moreover, it has support

for a wide range of programming languages. Despite being lightweight, VS code offers

numerous benefits through its features like extensions, code linters, debugging tools as

well as support for cloud and web development [28].

VS Code was used during the development of the user card component. Similarly, a live

server was installed as an extension of Visual Studio Code that helps to create a local

server for running HTML files.

3.2 Vanilla JS

Vanilla JS is a name that is used to refer a regular JavaScript. The use of inbuilt

JavaScript methods and objects without the need of an external library or frameworks

makes it one of the lightest programming languages. JavaScript is based on standards

of ECMAScript language specifications. JavaScript is used to design and program the

behavior of web pages during certain user interactions on the client-side [29].

Web Components that is created using vanilla JS are also known as native web

components since they are built upon browser API without the need for additional

frameworks or libraries. The main feature of using web components created using vanilla

JS is that it does not require another library, compiler, runtime, or build tools[30].

Vanilla JS was used during the development of the user card component for every part

including, custom elements, template, shadow DOM, and attributes related to the custom

element.

26

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | KC Krishna

3.3 GitHub and GitHub pages

GitHub is an online platform that provides services like tracking, storing and collaboration

of source codes for developers on software development projects. GitHub is based on

technology named Git that helps to track changes within files. GitHub is also used as

social network within programmers that encourages developers to explore and contribute

to different open source projects [31].

Developers and companies use GitHub for different purposes. They can store the code

modifications and adapt and improve software from the repositories by managing

possible conflicts from multiple developers. The version control in git helps track the

complete history of the changes that occurred in the codes over time, assisting

developers in identifying the problems and switching to the working version of source

codes.[19]

GitHub pages provide hosting services for HTML, CSS, and JavaScript files. Web

Components built from Vanilla JavaScript can easily be deployed through GitHub with

the help of GitHub pages. GitHub pages can publish a website through an internal build

process straight from the GitHub repository. Through GitHub pages, it is possible to

deploy different sites named project, user, and organization. To publish a site, the

repository that contains the source files of the project must be owned [20].

The deployment of a web component created in the thesis is achieved through different

steps in order as follows [21]:

• A new or existing account to https://github.com/ is created.

• A new repository for the source files of the Web Component is made.

• Basic git commands are used to publish source files to the repository.

• Custom or private domain is selected for GitHub pages.

The page is published under the default domain provided by GitHub, i.e.

http(s)://<username>.github.io/<repository>

27

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | KC Krishna

3.4 React JS

React is a JavaScript library developed by a software engineer named Jordan Walke

working at Facebook. React is an open-source component-based frontend library built

upon Model View Controller (MVC) responsible for visual and interaction within the

application. React works by dividing multiple UI into separate components. Each

component has its property and function making it easy for developers to debug and

write code efficiently [22].

According to StackOverflow’s 2021 surveys, React JS is the number 1 choice among the

most popular web frameworks [23]. The following features of React have made its

demand to be high among businesses and developers around the world [24]:

• Simple and Easy implementation: React is simple and easy to read and

implement. This helps in learning and building the desired products required

within less time, decreasing production costs.

• Easy Maintenance: React is based upon reusable components. React

components can be easily used multiple times in a single app or various projects.

Components ranging from small to significant wrapper components are beneficial

during development, making it easier to maintain and reducing costs in the short

and long term.

• Dynamic and Robust: React helps developers build interactive and dynamic

applications for different platforms like web, Android, IOS, and IoT without

affecting the quality of the application.

• SEO friendly: React focuses mainly on rendering speed by reducing page load

times which is very beneficial for businesses to be in top ranks by various search

engines like Google, Yahoo, Bing.

• Easy Testing: React allows developers to efficiently manage the output of

different functions and events through localhost and helps to pinpoint the error

making it easier to debug the code errors.

The application can be easily created in React JS. To be able to create a react app, Node

JS must be installed on a local machine. Node js can be downloaded from the official

website https://nodejs.org/en/. After the installation of Node js. React app can be simply

28

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | KC Krishna

created through the command line by moving to a directory where react application is

created.

To create a react app (Figure 12), the commands used in the command line are as

follows [25]:

• npx create-react-app my-app: npx is a package runner tool that is included in

npm. Create-react-app is a pipeline to create a frontend react application.

Whereas my-app is the folder and app name of the react app created.

• cd my-app: This command changes the directory to the react app created, which

is needed to run the visual in localhost.

• npm start: It helps to begin the process for the development server and verifies

packages, and starts the server at localhost.

Figure 12 shows the folder structure of a React application after creating it from the

terminal. The public directory contains index.html and some image icons provided by

default when the application is started. Similarly, the src folder contains source files for

different JavaScript and CSS files, a crucial component of a react application.

Figure 12. Folder structure of
React app.

29

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | KC Krishna

4 DEFINING, DEPLOYING, AND IMPLEMENTING WEB

COMPONENTS

This chapter explains the implementation of Web components by creating a simple user

card component. The created component contains a template tag that holds the markup

of the user card and the styles are encapsulated in shadow DOM. Similarly, JavaScript

was used to dynamically render different values for different user cards.

In addition, the implementation describes how the created component can be deployed

and implemented in a simple react project with the help of a simple tag that can be

accessed through the internet.

4.1 Defining Web Component With Vanilla JS

User card component consists of usercard.js and index.html (Figure 14) within the folder

USERCARD (Figure 13). The file usercard.js contains links and references of all the

source codes for creation of the user card whereas index.html is used to view the created

component and show the usage of a component in a simple HTML file.

Figure 13. Folder structure of user card.

30

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | KC Krishna

The contents of the index.html file includes Script tag with a reference to the JavaScript

file (Figure 14).

A line console.log(”I am connected”) was added on a created usercard.js file to check if

the script file is attached to the JavaScript file. The message inside console.log was

viewed by opening the HTML file in the browser and checking the console tab in the

chrome’s developer tool.

Figure 14. HTML markup with a source to usercard JavaScript file.

31

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | KC Krishna

The custom element was defined and created using JavaScript class userCard that

inherits a basic HTML element to hold the attributes for user card. Similarly custom

element was registered and linked with the class with a tag name of identity-card (Figure

15).

The template element (Figure 16) was created outside the UserCard class within the

index.js file with the help of the DOM method named

document.createElement(’template’). The required CSS styles and HTML makup for

user card was created within the template file (Figure 16)

Figure 15. Defining and registering the custom element.

32

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | KC Krishna

Figure 16. Template element with markup and styles for user card.

33

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | KC Krishna

The statements constshadow=this.shadowRoot and

shadow.appendChild(template.content.cloneNode(true)) (Figure 17) are used inside the

constructor of the component’s class in order to use the component inside the shadow

root of identity-card .

After the template and its contents were cloned into the shadow root of the component,

query selectors were used for referencing different fields like image, name, email, and

phone. Similarly, attributes were used to dynamically allocate other parts of the contents

of the user card (Figure 17).

The component created is finally tested using the tag (Figure 18) for custom element and

attribute values within the index.html file.The custom element named <identity-card></

identity-card> is loaded into the HTML file (Figure 18) just above the closing body tag.

Figure 17. Defining attributes using query selectors.

Figure 18. Implementation of web component inside body in HTML.

34

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | KC Krishna

Similarly, inside the body, the <identity-card></ identity-card> is used with all the

attributes defined in the script file.

 Live server extension from VS Code was used to run index.html file in a localhost in a

chrome browser (Figure 19). The final result of user card component along with its

attributes was working smoothly on a browser (Figure 19).

The complete web component for a user card was sucessfully defined by using VS Code

and Vanilla JS. The resulted <identity-card></ identity-card> is a custom element that

has CSS styles and markup within the HTML template tag that is attached into custom

element’s shadow DOM encapsulating styles within itself.

4.2 Deploying Web Components in Cloud

The repository for the source files was created after login into the GitHub account.

Command-line was used to push the source files from the local machine to the Github

repository. The directory in command line is changed to

D:\Thesis_web_components\usercard, that contained the source files to the user card

component. Then the following commands were used to establish a connection to the

GitHub repository:

• git init: This basic git command was used to initialize the folder for tracking of

changes.

• Git remote add origin https://github.com/KKEEC/UserCardComponent: It

was used to establish a remote connection between the local machine and

GitHub repository.

Figure 19. Identity card rendered by browser.

35

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | KC Krishna

• Git branch -M main: The command was used to switch to the default branch

named master.

• Git push -u origin main: This command was used to push the files from the

local drive to the GitHub Repository.

After the last command, the source files appear on the Github repository when opened

from the web browser.

The repository was then deployed on a GitHub page after directing to the settings of the

repository. The site for a custom element was easily deployed through the pages section

under settings. After, the component was deployed, and the site was published with a

default address of https://kkeec.github.io/UserCardComponent/.

4.3 Implementing Web Components within React JS application

When using a user card component on a react app, index.html located on public folder

within react application as well as App.js located on src folder had to be used.

After the sources are deployed within GitHub, the main source file for identity-card

named as usercard.js is sourced by providing simple url path (Figure 20). The source

file usercard.js is accessed through a link

https://kkeec.github.io/UserCardComponent/usercard.js. The latter part,usercard.js

within the link, explicitly provides the path to usercard.js file.

The script tag with a source referencing to the url of GitHub page was added to index.html

file within the react application (Figure 20).

Figure 20. Script tag containing source link for identity card component.

36

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | KC Krishna

After the source has been provided to index.html in a react application, The web

component was used in App.js file within the react application (Figure 21).

The two instances of identity-card were used with different attribute values for other

persons within the react app (Figure 21) to check the user card to work with multiple

values for attributes (Figure 22). Figure 22 displays two different user cards having

different attribute values rendered by browser.

 Figure 21. Consuming idenity card component within React application.

37

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | KC Krishna

Figure 22. Browser rendering the user card within react application.

38

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | KC Krishna

5 CONCLUSION

The critical goals of the thesis were to study Web Components as well as the advantages

and disadvantages of using Web Components. Similarly, tools and libraries were

researched so that it was possibile to create web components with minimal

configurations and common tools. The implementation part of the thesis provided a

deeper insight to defining a web component using Vanilla JS without additional

frameworks or libraries. The implementation part also helped better understanding of the

deployment process of defined components within GitHub and how the deployed

components were used within react application without additional dependencies.

The created user card component did not include advanced features but was dynamic

considering the nature of component. Using different attributes and values made the

component so that it be used in various projects and other frameworks as a part of the

web page. The approach of the web development making modular pieces of components

helped in better understanding and usage of web components. In summary, the

implementation of Web Components helped to achieve the goals of the thesis.

Web Components is a modern approach to web development that is simple, fast, and

reusable. This provides developers to easily maintain the codes of specific parts of

applications with a more easy approach. Due to the nature of Web Components, different

giant tech companies have started to use Web Components or component-based

libraries in some way.

Web Components is slowly being standardized and supported across different platforms

and browsers. Similarly, the powerful features of Web Components to work with other

JavaScript-based frameworks and libraries enables people with different skills to

collaborate on a project easily. Hence, It can be concluded that Web Components might

evolve to be an integral part of web development in the future.

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | KC Krishna

REFERENCES

[1] Stack Overflow. 2021. Stack Overflow Developer Survey 2021. [online] Available at:
https://insights.stackoverflow.com/survey/2021#section-most-popular-technologies-
programming-scripting-and-markup-languages [Accessed 10 May 2021].

[2] LAB, S.T.I. -12-31T04:41:28.822Z, 2019-last update, The Fundamentals of Front End
and Back End Development. Available: https://sagaratechnology.medium.com/the-
fundamentals-of-front-end-and-back-end-development-5973ac0910cf [May 25, 2021].

[3] TERRA, J. -08-07T09:28:03+05:30, 2019-last update, How to Become a Front End
Developer - Skills, Roles, Salary Explained. Available: https://www.simplilearn.com/how-to-
become-a-front-end-developer-article [May 25, 2021].

[4] HART, B., , What Is Component Based Development?.
Available: https://www.perforce.com/blog/vcs/component-based-development [May 26,
2021].

[5] LAROCCA, K., -10-29T21:51:25.670Z, 2020-last update, 5 Benefits Of Component-
Based Development. Available: https://medium.com/newyorkpublicradiodigital/5-benefits-
of-component-based-development-90af513bb7d2 [June 1, 2021].

[6] SINGH, S.- Traditional vs modern web development ⚔️.

Available: https://dev.to/sunnysingh/traditional-vs-modern-web-development-1em8 [June
13, 2021].

[7] ADERINOKUN, I., 2018. What, exactly, is the DOM? bitsofcode, .BIDELMAN, E., ,
Custom Elements v1: Reusable Web Components | Web Fundamentals.
Available: https://developers.google.com/web/fundamentals/web-
components/customelements [May 17, 2021].

[8] Whatwg.org. (2019b). HTML Standard. [online] Available at:
https://html.spec.whatwg.org/multipage/custom-elements.html#valid-custom-elementname
[June 25. 2021].

[9] Html.spec.whatwg.org. 2021. HTML Standard. [online] Available at:
https://html.spec.whatwg.org/multipage/custom-elements.html#custom-element-
conformance [July 10, 2021].

https://insights.stackoverflow.com/survey/2021#section-most-popular-technologies-programming-scripting-and-markup-languages
https://insights.stackoverflow.com/survey/2021#section-most-popular-technologies-programming-scripting-and-markup-languages
https://sagaratechnology.medium.com/the-fundamentals-of-front-end-and-back-end-development-5973ac0910cf
https://sagaratechnology.medium.com/the-fundamentals-of-front-end-and-back-end-development-5973ac0910cf
https://www.simplilearn.com/how-to-become-a-front-end-developer-article
https://www.simplilearn.com/how-to-become-a-front-end-developer-article
https://www.perforce.com/blog/vcs/component-based-development
https://medium.com/newyorkpublicradiodigital/5-benefits-of-component-based-development-90af513bb7d2
https://medium.com/newyorkpublicradiodigital/5-benefits-of-component-based-development-90af513bb7d2
https://dev.to/sunnysingh/traditional-vs-modern-web-development-1em8
https://developers.google.com/web/fundamentals/web-components/customelements
https://developers.google.com/web/fundamentals/web-components/customelements
https://html.spec.whatwg.org/multipage/custom-elements.html#valid-custom-elementname
https://html.spec.whatwg.org/multipage/custom-elements.html#custom-element-conformance
https://html.spec.whatwg.org/multipage/custom-elements.html#custom-element-conformance

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | KC Krishna

[10] Developer.mozilla.org. 2021. Document Object Model (DOM) - Web APIs | MDN.
[online] Available at: https://developer.mozilla.org/en-
US/docs/Web/API/Document_Object_Model [July 25, 2021].

[11] MUCHIRI, A. Understanding the DOM Tree and Nodes.
Available: https://www.alibabacloud.com/blog/understanding-the-dom-tree-and-
nodes_596231 [July 28, 2021].

[12] Using Shadow DOM. Available: https://developer.mozilla.org/en-
US/docs/Web/Web_Components/Using_shadow_DOM [September 5, 2021].

[13] Shadow tree. Shadow DOM. Available: https://javascript.info/shadow-dom [September
6, 2021].

[14] BIDELMAN, E., 2021. Shadow DOM v1: Self-Contained Web Components | Web
Fundamentals. [online] Google Developers. Available at:
https://developers.google.com/web/fundamentals/web-components/shadowdom
[September 15, 2021].

[15] BIDELMAN, E., HTML's New Template Tag: standardizing client-side templating.
Available: https://www.html5rocks.com/en/tutorials/webcomponents/template/ September
18, 2021].

[16] KAMBOJ, S. -02-07T09:15:54.169Z, 2020-last update, Web Components Basics and
Performance Benefits. Available: https://medium.com/@spkamboj/web-components-basics-
and-performance-benefits-f7537c908075 [October 5, 2021].

[17] PATEL, S. 2015. Learning web component development. Birmingham, UK: Packt
Publishing, p.26.

[18] REVILL, L. -05-03T17:34:57.068Z, 2017-last update, Web Component Challenges.
Available: https://blog.revillweb.com/web-component-challenges-a09ebc598d65 [Nov 1,
2021].

[19] BRADFORD, L.. What Is GitHub?.
Available: https://www.thebalancecareers.com/what-is-github-and-why-should-i-use-it-
2071946 [Nov 3, 2021].

[20] GitHub Docs. 2021. About GitHub Pages - GitHub Docs. [online] Available at:
<https://docs.github.com/en/pages/getting-started-with-github-pages/about-github-pages>
[Accessed 5 November 2021].

https://developer.mozilla.org/en-US/docs/Web/API/Document_Object_Model
https://developer.mozilla.org/en-US/docs/Web/API/Document_Object_Model
https://www.alibabacloud.com/blog/understanding-the-dom-tree-and-nodes_596231
https://www.alibabacloud.com/blog/understanding-the-dom-tree-and-nodes_596231
https://developer.mozilla.org/en-US/docs/Web/Web_Components/Using_shadow_DOM
https://developer.mozilla.org/en-US/docs/Web/Web_Components/Using_shadow_DOM
https://javascript.info/shadow-dom
https://developers.google.com/web/fundamentals/web-components/shadowdom
https://www.html5rocks.com/en/tutorials/webcomponents/template/
https://medium.com/@spkamboj/web-components-basics-and-performance-benefits-f7537c908075
https://medium.com/@spkamboj/web-components-basics-and-performance-benefits-f7537c908075
https://blog.revillweb.com/web-component-challenges-a09ebc598d65
https://www.thebalancecareers.com/what-is-github-and-why-should-i-use-it-2071946
https://www.thebalancecareers.com/what-is-github-and-why-should-i-use-it-2071946
https://docs.github.com/en/pages/getting-started-with-github-pages/about-github-pages

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | KC Krishna

[21] CAMACHO, E. -05-05T23:54:33.426Z, 2018-last update, Creating and deploying a
static website using Github Pages. Available: https://medium.com/@erickcodes/creating-
and-deploying-a-static-website-using-github-pages-a634a588ed7d [Nov 10, 2021].

[22] PANDIT, N. What And Why React.js. Available: https://www.c-
sharpcorner.com/article/what-and-why-reactjs/ [Nov 12, 2021].

[23] Stack Overflow. 2021. Stack Overflow Developer Survey 2021. [online] Available at:
<https://insights.stackoverflow.com/survey/2021#section-most-popular-technologies-web-
frameworks> [Accessed 12 November 2021].

[24] Deshpande C.What is React: Definition, Why ReactJS, its Features & Installation.
Available: https://www.simplilearn.com/tutorials/reactjs-tutorial/what-is-reactjs [Nov 14,
2021].

[25] React. Create a New React App . Available: https://reactjs.org/docs/create-a-new-
react-app.html [Nov 25, 2021].

[26] Viljami S. Design 2021. [online] Viljamis.com. Available at:
https://viljamis.com/2019/why-we-use-web-components/ [Accessed 7 December 2021].

[27] Stack Overflow. 2021. Stack Overflow Developer Survey 2021. [online] Available at:
<https://insights.stackoverflow.com/survey/2021#section-most-popular-technologies-
integrated-development-environment> [Accessed 15 December 2021].

[28] MUSTAFEEZ Z. A. , What is Visual Studio Code?. Available:

https://www.educative.io/edpresso/what-is-visual-studio-code [Dec 15, 2021].

[29] Developer.mozilla.org. 2021. JavaScript | MDN. [online] Available at:

<https://developer.mozilla.org/en-US/docs/Web/JavaScript> [Accessed 17 December 2021].

[30] BOGAN, M. 2021. Web Component Solutions: A Comparison - DZone Web Dev. [online]

dzone.com. Available at: https://dzone.com/articles/web-component-solutions-a-comparison

[Accessed 18 December 2021].

https://medium.com/@erickcodes/creating-and-deploying-a-static-website-using-github-pages-a634a588ed7d
https://medium.com/@erickcodes/creating-and-deploying-a-static-website-using-github-pages-a634a588ed7d
https://www.c-sharpcorner.com/article/what-and-why-reactjs/
https://www.c-sharpcorner.com/article/what-and-why-reactjs/
https://insights.stackoverflow.com/survey/2021#section-most-popular-technologies-web-frameworks
https://insights.stackoverflow.com/survey/2021#section-most-popular-technologies-web-frameworks
https://www.simplilearn.com/tutorials/reactjs-tutorial/what-is-reactjs
https://reactjs.org/docs/create-a-new-react-app.html
https://reactjs.org/docs/create-a-new-react-app.html
https://viljamis.com/2019/why-we-use-web-components
https://insights.stackoverflow.com/survey/2021#section-most-popular-technologies-integrated-development-environment
https://insights.stackoverflow.com/survey/2021#section-most-popular-technologies-integrated-development-environment
https://www.educative.io/edpresso/what-is-visual-studio-code
https://developer.mozilla.org/en-US/docs/Web/JavaScript
https://dzone.com/articles/web-component-solutions-a-comparison

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | KC Krishna

[31] JUVILER, J. 2021. What Is GitHub? (And What Is It Used For?). [online]

Blog.hubspot.com. Available at: <https://blog.hubspot.com/website/what-is-github-used-for>

[Accessed 19 December 2021].

https://blog.hubspot.com/website/what-is-github-used-for

