
GSM on embedded Linux

Antti Ruotsalainen

Bachelor's Thesis

December 2013

Degree Program in Software Engineering

School of Technology and Transport

 DESCRIPTION

Author(s)
Ruotsalainen, Antti

Type of publication
Bachelor´s Thesis

Date
4.12.2013

Pages
31

Language
English

Confidential

() Until

Permission for web
publication
(X)

Title
GSM on embedded Linux

Degree Programme
Software Engineering

Tutor(s)
Peltomäki, Juha

Assigned by

Abstract

This study is about using Raspberry Pi single-board computer and a GSM module to create a mobile
phone. Hardware components were a GSM modul, LCS screen, lithiumion battery and a keypad.
Several example programs were created to use different GSM functionalities.

The study describes different phases of the project and problems encountered in them. Study
presents all of the different prototypes created during the project. Main focus is however in using
Raspberry Pi with the GSM module.

This study approached an area that did not have many previous work done in it, therefore models
and examples provided by this project are of great value to developers and enthusiasts that want to
create their own mobile phone.

Keywords
GSM, Raspberry Pi, embedded, Linux

Miscellaneous

 OPINNÄYTETYÖN
 KUVAILULEHTI

Tekijä(t)
Ruotsalainen, Antti

Julkaisun laji
Opinnäytetyö

Päivämäärä
04.12.2013

Sivumäärä
31

Julkaisun kieli
Englanti

Luottamuksellisuus

() saakka

Verkkojulkaisulupa
myönnetty
(X)

Työn nimi
GSM sulautetulle Linuxille

Koulutusohjelma
Ohjelmistotekniikan koulutusohjelma

Työn ohjaaja(t)
Peltomäki, Juha

Toimeksiantaja(t)

Tiivistelmä

Opinnäytetyössä tarkasteltiin uuden Raspberry Pi tietokoneen käyttämistä alustana
matkapuhelimen luomisessa. Matkapuhelimen fyysiset osat koostuvat LCD näytöstä, GSM
moduulista, akusta ja näppäimistöstä. Työtä varten luotiin useita eri GSM toiminnallisuuksia
käyttäviä esimerkki sovelluksia.

 Työssä käydään läpi tutkimuksen eri vaiheita ja niissä vastaan tulleitta ongelmia. Työssä esitellään
luotuja prototyyppejä, käytettyjä osia ja teknologioita. Pääpaino on kuitenkin Raspberry Pi:n ja GSM
moduulin käytössä.

Työn tuloksena saatiin tutkimus sellaiselle alueelle jolle ei aikaisemmin oltu tehty kovin montaa
tutkimusta. Työn tuloksina oli ohjeet ja ohjelmointi esimerkit jonka avulla kehittäjät ja harrastelijat
voivat lähestyä oman matkapuhelimen luomista.

Avainsanat (asiasanat)
GSM, Raspberry Pi, sulautetut järjestelmät, Linux

Muut tiedot

Contents

Terminology 3

1 Introduction 5

2 Aim of Thesis 5

2.1 Objective . 5

2.2 Hypothesis . 7

3 Theory 8

3.1 Mobile Technologies . 8

3.1.1 GSM . 8

3.1.2 AT Commands . 9

3.2 Embedded Linux . 10

3.3 Raspberry Pi . 11

3.4 Evaluation . 13

4 Hardware 13

4.1 Prototypes . 13

4.1.1 PC and GSM . 13

4.1.2 Raspberry Pi and GSM Terminal 14

4.2 Parts . 15

4.2.1 Raspberry Pi . 15

4.2.2 GSM Chip . 15

4.2.3 Battery . 17

4.2.4 Input and Ouput . 18

4.3 Putting Everything Together . 18

2

5 Software 20

5.1 Operating System . 20

5.2 Programming . 21

5.3 GSM Programming . 22

5.3.1 GSM with Libraries . 22

5.3.2 GSM with Serial Port . 23

6 Retrospect 25

6.1 Results . 25

6.2 Future Improvements . 26

7 Summary 27

References 28

8 Appendix 29

8.1 Send SMS Script . 29

List of Figures

1 Raspberry Pi soup box diagram (originally from raspberrypi.org) . . . 7

2 GSM network diagram (originally from denmasbroto.com) 9

3 Typical embedded development setup (from Hallinnan, 2011) 11

4 Raspberry Pi component diagram. (original from elinux.org) 12

5 Raspberry Pi 2 GPIO (originally from eLinux.org). 19

6 Hardware connection UML. 19

7 Packaging concept image (created by Markku Ruotsalainen). 20

3

Terminology

Debian

Operating system that uses Linux kernel. Developed by collaboration of

volunteers called The Debian Project. One of the most popular Linux distributions.

Ubuntu

Debian based operating system that is a popular Linux distribution. Development

is led by Canonical ltd.

Arduino

Single-board microcontroller that is made of open-source hardware.

dd

Command used in UNIX operating system for copying or converting a �le.

SSH

Secure shell is a network protocol for secure data communication that enables

command-line login.

x86 Hardware Platform

x86 is a family of backward compatible hardware architechture used in modern

personal computers.

R232 Serial Port

Physical interface for serial communication which is compatible with R232

standard. R232 standard is intended for communication with a modem or similar

communication device.

UART

Universal Asynchronous Receiver/Transmitter, translates data between serial and

parallel forms. Is commonly used with serial communication standards, such as

R232.

4

SPI

Serial Peripheral Interface is used for synchronous serial data communication.

Can operate in full duplex mode. Generally uses four wires to communicate with

devices in master/slave mode.

GPIO

General Purpose Input/Output is a pin on a integrated circuit, which can be

controlled programatically.

GPRS

General Packet Radio Service is used as packet oriented mobile data service in 2G

and 3G cellular communication networks.

5

1 Introduction

The aim of the project is to enable people to experience mobile tehnology as creators

rather than consumers. It is an academic paper, and it is written for the good of the

open source community, opening new ways of approaching mobile technology.

The work done here will demonstrate a do-it-yourself mobile phone. Aiming to use

possible components existing today that put together will enable GSM capabilities.

This in conjunction with software to support it will make an plug and play mobile

phone that anyone can build.

Design principle is to have a small, cheap, simple, proof of concept mobile phone.

Releasing of Raspberry Pi development board has presented an unique situation. For

the �rst time, there is a small and powerful computer which is at the same time

cheap, powerful, energy-e�cient and has caught the attention of the community.

Therefore it is a good situation to pursue creation of a homemade mobile phone

with it.

Successful outcome of the project will be of great interest to the international open

source community. Working as a proof of concept project this might pave way for

some future innovations. The study will also provide insight into the requirements of

using embedded Linux as a mobile phone platform. The thesis demonstrates

whether it is possible to create a simple homemade mobile phone.

2 Aim of Thesis

2.1 Objective

The objective of the project is to open up the small closed device which has become

so important in our lives, mobile phone, wondering whether it is possible to create

one yourself or is it just a priviledge reserved for the large multi million dollar

companies.

Creating a full-�edged mobile phone equal with the latest smart phones and to

replace Android phone in your pocket is not a task for one man. It will require more

work that is reserved for this project. Therefore it is better to narrow it down to a

6

proof of concept level, where while being a mobile phone and usable, it will not yet

overthrow the commercial phones.

Being able to insert mobile technology into the hands of hobbyists and enthusiasts

requires very simple implementation, achieving similiar simplicity as modern day

desktop computers have in their construction, where a technically savvy person can

construct a computer from standard parts with minimal knowledge of their

attributes. Therefore constructing one's own mobile phone should be done with

existing modules and connecting them together with cables, which could also be

described as plug and play fashion.

For this to work the whole process should be reduced into four simple steps.

1. Choose your parts

2. Plug and Construct your parts

3. Install Operating System

4. Install Software

To reach this aim Raspberry Pi development board is used to create a mobile phone.

The board will run Linux Debian based operating system and it has some

rudimentary functionality to make and receive calls. It has a simple interface with

couple of buttons and a character-based LCD screen. This should provide it the

basic functionalities. In the choosing of the components it is preferable to choose

small, cheap and easily usable components. A more speci�c list is presented below

as footnotes.

Hardware consists of:

• Raspberry Pi

• Battery

• GSM modem

• Sim holder

• Human interface device (keypad)

7

• Screen (LCD)

• Microphone

• Speaker

The software consists of:

• Linux (Operating System)

• Telephone backend

• Hardware libraries

Figure 1: Raspberry Pi soup box diagram (originally from raspberrypi.org)

2.2 Hypothesis

A likely outcome of this project is a mobile phone approximately the size of a thick

book. It has rudimentary functionality consisting of using SIM, sending SMS, and

making and receiving phone calls. It has an LCD screen and couple of buttons,

making it possible to use it as an independent machine.

The theory part of this work go into learning the Linux way of handling hardware,

e.g. how to use telephony and how to apply it with embedded systems? How to

8

communicate with network and how does GSM standard work need to be solved

also?

The literal output of this work is a new way to implement a mobile device, i.e. work

as a proof of concept and model to the international open source community,

demonstrating what can be achieved with the new Raspberry Pi development board.

This will also help in expanding the view of one the most used devices and great

technological inventions of our time, called mobile phone.

3 Theory

3.1 Mobile Technologies

On this day, when mobile technologies dominate the everyday life, suprisingly little is

known about what happens behind the curtain. How do mobile phone access the

network? How do they communicate with cellular towers and where does all data

go?

3.1.1 GSM

Global System for Mobile Communication or as it originally was called Groupe

Speclal Mobile, is set of standards to describe protocols for digital cellular networks.

It is de facto global standard for mobile communications at present. Having GSM as

global standard enables common users to access other operator's networks all

around the world with their mobile phone.

With GSM standard only three features are needed to be able to make phone calls.

• Active contract with mobile phone operator.

• GSM compliant mobile phone that uses the same frequency as operator.

• Active SIM card from the operator.

9

Figure 2: GSM network diagram (originally from denmasbroto.com)

Originally GSM was developed as a global standard for voice communication only;

however it has been later on expanded to meet modern requirements with GPRS to

move data packets. This was then subsequently replaced with 3G UMTS and 4G

LTE Advanced standards, however those do not belong to the GSM standard set

(Redl, Weber, Oliphant, 1995).

3.1.2 AT Commands

Hayes command set, also known as AT command set, is a speci�c command

language for telecommunication, developed originally for Hayes baudmodem (The

Hayes Command Set). The command set consists of multiple short strings which

can be combined together to produce operations such as dialing, hanging up or

changing connection settings (Hardware: AT Commands).

AT commands start with a word at meaning attention. This is also where it is more

commonly known name comes from. After at pre�x is the command and then some

parameters if such are required. The commands always end in Carriage Return (CR)

character, which is in ASCII character set de�ned as character number thirteen (Teli

AT Command Reference Guide).

Below are examples of AT commands.

at-cpin=1234<CR> Enter PIN code

10

at+cmgs="+358XXXXXXXXX" Send SMS to number

atd+358XXXXXXXXX Calls to number

3.2 Embedded Linux

When developing on Linux and embedded system there are some cases that are

speci�c to those systems. Linux has it is own way of doing and embedded

development is generally quite di�erent from it is PC counter part.

It could be said that there is no such thing as an embedded computer. This is

because computers that are considered embedded have same features and

technology as an ordinary PC. There is e.g. a CPU, memory and hard drive.

However, there are few points that are often mentioned when di�erentiating

embedded computers.

• Does not feature industry standard x86 PC hardware platform.

• Are built around a microprocessor.

• Typically are designed for a speci�c purpose.

• Are limited in resources, e.g. less processing power and memory.

• Are not usually used as general purpose computing platform.

• Use single chip hardware.

When developing on embedded Linux computers it is generally work that is done

over multiple platforms and computers. Embedded systems under development have

many times a limited amount of resources, libraries and applications in it, and in

quite a few cases the code is loaded directly into it rather than having any feasible

operating system to use.

When using embedded Linux matters are somewhat easier as there is a Linux

operating system in it making it more familiar environment for developers. This

does not overcome the fact that it probably does not have any display or keyboard

capabilities in it. This in itself requires actual development to be done on an

ordinary PC featuring x86 hardware platform.

11

Figure 3: Typical embedded development setup (from Hallinnan, 2011)

Embedded systems usually do not use x86 platform but rather some more speci�c

hardware setup. For instance, almost every mobile phone, uses ARM processor's

architechture and components that are optimized rather in size and energy

e�ciency, rather than being usable in several di�erent systems. Because of this

every developer has to compile their software into format that does not run in the

PC they are developing it in but rather into format for embedded system that is

used. This makes embedded development almost always cross-platform development

(Hallinnan, 2011).

3.3 Raspberry Pi

Raspberry Pi is a single-board computer developed in the United Kingdom by

Raspberry Pi Foundation, and it is intended to run Linux based operating systems

(Tomar, 2012), enabling user to have capabilities of Linux operating system and an

open-source prototyping platform.

Raspberry Pi is designed to be a small, cheap computer created to teach

programming to children and beginners, taking a healthy dose of inspirations from

the do-it-yourself world and from Arduino development platform(O'Brien, 2012).

Having a ARM11 core processor with 700MHz speed does not make Raspberry Pi

very process-e�cient. In fact, the creators themselves have described its

12

performance equal to a 300Mhz Pentium II. Having 128mb or 512mb RAM does not

raise that much con�dence either.

Althought having some lacks in processing and memory department, it compensates

then with Videocore 4 GPU, which can decode 1080p video and rival Xbox in its 3D

performance. It also has a good variety of connections with two USB ports,

Ethernet, HDMI, RCA video, audio jack, 26 GPIO pins, micro-USB for power and

SD-card slot for bootable media (O'Brien, 2012).

Figure 4: Raspberry Pi component diagram. (original from elinux.org)

There is a varied amount of operating systems supported o�cially at any time. In

the time of creating this project one image has fallen from o�cial support and two

others have replaced it. In addition, a number of uno�cial images is being

13

maintained by various developers. The recommended image to use is Rasbian, a

Debian Wheezy based image (raspberrypi.org).

3.4 Evaluation

While evaluating sources in a project that utilizes primarily open-source hard- and

software, such as Raspberry Pi and Rasbian, it is hard to �nd reliable sources.

Places of information used by these community driven projects are often wiki pages

and forum discussions and other information sources that are ambigious in the eyes

of academic evaluation.

Raspberry Pi especially is a hard piece of work to gather reliable information about.

It does not have a datasheet to read about and its o�cial site does not provide a

description about the hardware. All speci�cation is found in a community driven

wiki page, and for descriptions only viable information sources are technical reviews

written by newspapers.

4 Hardware

4.1 Prototypes

Hardware is built around Raspberry Pi and a GSM module. During progress of the

study in fall of 2012, there were no supported hardware, guides or reference material

for this kind of work, making it a pioneering project. The work of settling into new

territory with its problems and implementation phases are opened up in this section.

Being exploratory of nature it was necessary to work down from a safe and known

environment with a proven prototype to the unknown world of embedded Linux and

Raspberry Pi. This led to three phases of construction with two di�erent prototypes

before the �nal version.

4.1.1 PC and GSM

The initial prototype was constructed using ordinary PC laptop, in this case Compaq

Presario CQ60 and Linux Ubuntu 11.10 operating system, in other words an

ordinary computer. Partnered with this there was Telit M2M GSM/GPS terminal.

14

Choosing computer based GSM solutions as �rst phase implementation was to

minimize all hardware related risks when doing initial studies of software processes

necessary for implementation. This created a baseline to work on, meaning that if

there would be a need for debugging problems or comparing performance, a working

system would always be available for use. Thus, the key word in this implementation

is reliability.

Ubuntu is reliable and fast. Also, being a de facto open source operating system it

has plenty of support and guides around the internet to help start along. Telit

terminal itself is a complete module for accessing and using GSM and GPS

technologies. It uses R232 serial port to communicate with other devices. This is

good as it is a standard way of communicating between devices. These days a serial

to USB adapter is needed to get it working with modern computers, as modern

computers do not have serial ports installed.

The terminal has everything needed for proper GSM communication. It has an

attachable antenna, a way of communication with the computer and an external

audio plug. The Telit terminal is too big for constuction with approximate size of

17cm/10cm/3cm and having the need of its own external power source. So if the

idea of mobile GSM isn't jogging around with a backpack �lled with lithiumion

batteries and 20cm antenna sticking out from your neck, this cannot be called

mobile.

4.1.2 Raspberry Pi and GSM Terminal

When moving to the world of embedded Linux one cannot be sure all libraries or

even the operating system work quite as they did in the ordinary PC version. To

ease out the process of testing and �nding out di�erences between embedded Linux

and PC laptop, the same terminal is used as in the previous implementation step

together with Raspberry Pi.

Combining Raspberry Pi and Telit GSM terminal is also quite an easy step as

Raspberry Pi provides ordinary USB ports. This way the whole implementation is

quite like in the �rst phase implementation. Also, libraries do not di�er that much,

as the image used in Raspberry Pi is based on Debian operating system, on which

also Ubuntu is based.

15

4.2 Parts

The basic philosophy in choosing parts was to get as close to a real mobile phone as

possible. This means that they have to provide similar functionality, be mobile,

relatively the same size and cost as much or less. Also, parts should be more or less

plug and play ready, which means that no special programming or soldering is

needed when reproducing this work. Additionally, all chips would preferrably be

popular among hobbyists to provide a familiar platform for the more technically

minded people.

When choosing all di�erent parts there were some problems and criterion that

limited options from where to choose. With this in mind there were quite a few

options that were evaluated before �nding the �nal few.

4.2.1 Raspberry Pi

From the beginning the whole work was built upon the fact that Raspberry Pi had

come out as a cheap solution for a small and powerful embedded Linux computer.

In 2012 it was all hype and it seemed deemed to rival Arduino in its popularity. This

combined with a price tag of 30 euros made it a good platform for creating this

work.

Choosing Raspberry Pi was obvious, however with it came its limitations. Albeit

being small, it is not exactly built as a mobile phone platform. This means that user

has to calculate the power it can forward, together with pins and ports that are

available for developer, combined with the fact that for a new platform like this

there are no instructions or examples available, and it involves great deal of

experimentation.

4.2.2 GSM Chip

Criteria

Choosing a compatible GSM module for Raspberry Pi was a di�cult task because

of the speci�c criteria that it needed to ful�ll. Also, the type and construction of

the module largely decided how all other parts were going to be chosen.

16

Finding a compatible GSM chip that would not cost much was hard. This was

because chips used by large manufacturers are used in large quantities and thus that

makes the price of a single chip relatively small. Chips used in hobbyist electronics

are a niche �eld at best, making them quite expensive. Having to pay over hundred

euros for a GSM module would raise the price of this project to far above the price

of basic mobile phone, granted that a prototype is made and there is always

pleasure to be found in using something made by oneself. However, paying double

for something that has one tenth of the features, does not sound as reasonable use

of money.

The chip should also be relatively self-contained, meaning that most of hardware

requirements necessary for it to work would be found directly on the chip. This

limits the amount of pins used in communication with Raspberry Pi and also

requires less from the controlling software.

To be self-contained the chip had to have its own antenna connection, SIM card

holder and also preferably its own audio input and output. Having own audio does

not aid in e�ort of making it look more like a professional mobile phone, as then

there would be separate audio jacks for Raspberry Pi and phone calls. However,

Raspberry Pi does not have audio input and routing audio data within Raspberry Pi

is beyond the scope of this work.

Connection to Raspberry Pi should preferably be done with single serial connection.

Raspberry Pi supports UART serial connection through its pins, making it the

preferable choice of communication.

The power intake on GSM chip should be limited to what Raspberry Pi is able to

o�er, this being either 3.3V or 5V power, with current levels taken directly from

attached source.

The size of this chip should be as large or smaller than Raspberry Pi. The desired

size of whole package is approximately the same as a travelling bible. This means

that not only do the physical dimensions of board have to be small but also pin and

port locations should be such that when packaged with Raspberry Pi all wires go

neatly together and ports that need accessing are arranged on the edge of package

for easy access.

17

Chosen GSM Chip

Itead SIM900 GPRS/GSM card met the requirements to closest degree. Being

priced under thirty euros made it one of the cheapest modules available. Created

and sold by Itead Studios from Switzerland, it was created as a GSM module for

Arduino development board.

Itead GSM module had SIM900 GSM/GPRS chip that is one of the most common

chips in hobbyist GSM modules, being widely used in Arduino community. That

suggested it had been well tested and battle-hardened for this kind of usage.

The module had all necessary equipment available on it, having the input and

output audio jacks available on top side of the card, antenna connector on the side

and SIM card holder below module.

Data is handled through UART serial connection that is connected with traditional

IO-pins. Power is taken with single 5V input pin, and all pins are aligned in line at

the side of the module.

4.2.3 Battery

Powering this experimental mobile device needed to be carried out in Raspberry Pi

compatible way. This was the only option as doing power convertions and it requires

some rather heavy electronics to get it done, which was against design principle of

this project. Therefore a power source was needed that would be mobile and could

be connected to Raspberry Pis native micro-USB power connector.

Thankfully, since modern smart phones have emerged to markets and batteries

cannot any longer be changed, an industry for external power cells has emerged.

Micro USB is standard power connector of modern smartphones, it makes it possible

to use the same external batteries for Raspberry Pi.

The battery used for this mobile phone is an external battery that was ordered from

China named My Mobile Power. This costs approximately ten euros, provides 5V

voltage and 2A current. Its size is 8800mA/h which is enough to provide Raspberry

Pi and GSM module for over 4 hours of battery life.

18

4.2.4 Input and Ouput

It is necessary for a true mobile to add some kind of input and output capabilities.

This however can and has to be chosen so that they can be used with the remaining

IO-pins from Raspberry Pi.

On most minimalistic and basic level input can mean connecting only three buttons

to Raspberry Pis GPIO pins. With three buttons and some creative button

con�guration it is possible to create all necessary functionality with software. For

output a basic hobbyist character LSD screen can be used. Similar ones are used a

great deal in Arduino world.

For this project, also from Itead Studios, a Nokia 5110 screen was found that used

SPI connection through IO-pins. That is the same screen that was used in Nokia

3110 model that was one of most popular models of its time.

Adding to this combination a 12 -button keypad, provides with similar input and

output capabilities as mobile phones before the age of smart phones. This keypad

also takes up seven GPIO-pins, making possible to connect it into Raspberry Pi and

e�ectively using last of the free GPIO-pins.

4.3 Putting Everything Together

With the plug and play design philosophy, joining all pieces together is rather simple

job. There are 26 -pins available in Raspberry Pi, and most of them are used.

19

Figure 5: Raspberry Pi 2 GPIO (originally from eLinux.org).

As depicted in image above, there is 26 GPIO pins available in Raspberry Pi which

is enough to connect three required connection, UART, SPI and 7 GPIO pins for

keypad. All components can be this way attached into Raspberry Pi and thus make

it possible to construct an actual mobile phone from it.

Figure 6: Hardware connection UML.

Packaging of hardware should be done in layers and it is necessary to have GSM

module and Raspberry Pi againts each other thus minimazing the amount of wire

needed. This way of packaging of this project is illustrated in the �gure 7.

20

Figure 7: Packaging concept image (created by Markku Ruotsalainen).

5 Software

What operating system should be used with Raspberry Pi for when working with

GSM? How can it be installed? How can GPIO pins be accessed and used? How

can GSM network be accessed and how can programs be made to control all that?

These questions are answered in the following section, together with a introduction

to AT commands.

5.1 Operating System

Raspberry Pi does not have its own �xed hard drive. It relies on SD card slot to

provide a hard drive for it. This means that Raspberry Pi will boot to what ever

operating system that is installed on inserted SD card, as long as it is compatible

with Raspberry Pi.

In fall of 2012 there were two feasible candidates as operating system for this

project. Debian Wheezy based Rasbian operating system and QtonPi which has Qt

library added on top of embedded Linux.

QtonPi was a good candidate because Qt libraries include Qt Mobility library

providing an easy interface for mobile technology if properly supported on that

platform. QtonPi was not as popular though and when tested it lacked stability in

21

usage. Rasbian being more popular and also more stabile was a better choice for the

operating system.

Setting up Rasbian has been made quite easy, Rasbian image is to be downloaded

from their website and then using data copy application dd in Linux to copy

everything into SD card. After this is done it can be plugged into Raspberry Pi and

started using it either though local area network with SSH or with display, mouse

and keyboard combination.

5.2 Programming

Programming in Raspberry Pi is not di�erent from programming in any other

environment. Most di�erences are handled with libraries that enable access to

Raspberry speci�c functionality. In this project Python programming language was

used. Python is well suited for proof of concept type of work with its fast and

elegant syntax.

Using GPIO pins is handled through RPi GPIO -library in Raspberry Pi. This has to

be manually installed on device before can be accessed those pins from Python.

After meeting this prequisite, GPIO pin table can be used from hardware section to

�nd which pins are to be used.

A basic example of usage is controlling from a Python program blinking of a single

led. This is an adaptation of a common Arduino example. For this to work you need

jumper wire, led and a 220ohm resistor or similar are needed. If following code is

executed with superuser rights, a blinking led should be seen.

import the RPi GPIO library

import RPi.GPIO as GPIO

import time library

import time

to use Raspberry Pi board pin numbers

GPIO.setmode(GPIO.BOARD)

set pin 7 to output data

22

GPIO.setup(7, GPIO.OUT)

create an eternal loop

while True:

set pin 7 up (eg. to 5V)

GPIO.output(7, GPIO.HIGH)

sleep for 100ms

time.sleep(0.1)

set pin 7 down (eg. 0V)

GPIO.output(7, GPIO.LOW)

time.sleep(0.1)

5.3 GSM Programming

When making software for GSM in embedded Linux there were two di�erent

approaches that required investigation, using GSM through direct serial

communication and using GSM through libraries and third party applications.

Using libraries goes hand in hand with the design philosophy of this project, getting

much with little and enabling thus a more feature rich mobile phone.

It cannot be limited to libraries altogether either, because the topic is still GSM on

embedded Linux and thus even if there was a feature rich GSM library available

working on Raspberry Pi, there might very well be other devices that does not have

that luxury. Therefore it would be amiss not to go through using GSM through

serial port communication diretly.

5.3.1 GSM with Libraries

There had been quite a few mobile Linux-based open source projects through history

creating few libraries in their tide. Examples of such projects are Moblin, Maemo and

MeeGo. Regardless of this, there is not a great quantity of GSM libraries available.

With research two major candidates were found, Asterisk and Ofono, taken that

Ofono was used in Maemo/MeeGo world and Asterisk concentrated more on

automated call networks, Ofono was the more natural choice.

23

Setting up Ofono on Raspberry Pi simple. There was a ready made ARM based

implementation about it already, which is not suprising as it was used in MeeGo

after all.

Getting Ofono to work with SIM900 GSM/GPRS chip was slightly trickier and

required some con�guration in device recognition of Linux, so that Ofono would

register when it is connected to Raspberry Pi.

However, regardless of that trick, it was not possible to get Ofono to communicate

properly with dbus. In the end this was the cause for stopping pursuing this

direction of usage in GSM through libraries.

5.3.2 GSM with Serial Port

When using GSM through serial, it is better to prepare for device speci�c syntax.

This is because almost every chip and chip manufacturer has or at least can have a

slightly di�erent type of way in interpreting the given commands. Though mostly all

are following AT command syntax, implementation requires reading manufacturer's

command sheet for that chip. In this case two were needed, one for Telnet GSM

chip used in prototype and one for SIM900 chip used in �nal product.

When using serial communication the settings should be con�gured correctly. In this

case the needed settings followed baudrate 115200, bits 8, stop 1, parity NONE,

hardware �ow control.

Serial through Terminal

Serial communication being such a standard way of transmitting data through

wire for decades already has given it quite a few tools to use for direct

communication through serial. This means that by right con�guration a ready made

tool to send and receive AT commands between Raspberry Pi and GSM module can

be used.

Programs such as in Linux which were used were minicom and cutecom. Minicom is

purely commandlines based and therefore works in Raspberry Pi quite well, as all

development was done through SSH and commandline anyway. However, if

developer have access to proper GUI environment such as a PC laptop used in �rst

prototype,they might want to consider cutecom as it is slightly more user friendly.

24

Serial through Python

For using Python serial a speci�c library called pyserial is needed for that. If not

installed or available in repo it is always possible to download it through browser.

Using serial through Python is quite straight forward as after initialization it is only

about reading and writing into serial port. Below is an example of Python serial

being used in its simplest form.

import serial

ser = serial.Serial('/dev/ttyUSB0',115200, rtscts=True, timeout=1) # open serial port

ser.write('at'+chr(13)) # write AT with the CR ending

print ser.read(100) # if everything went as expected it should return OK

ser.close() # close the serial port

Working with AT commands

At commands used:

at Basic command to test connection to chip.

at+cpin="1234" Insert PIN.

at+csq Check GSM connection health (31.99 is maximum)

at+creg? Test whether connected?

at+cmgf=1 Set sms text mode on.

at+csca="+358508771010" Set SMS center number.

at+cmgs="+358XXXXXXXXX" Send SMS to number.

at+cnmi=1,2,0,0,0 Sets how modem will respond if sms is received.

at+fclass=1 This sets channel mode into voice or data mode.

at+cbst=71,0,1 This is the default setting to mobile to mobile call.

atd+000000000 This calls to some number.

ath Disconnect call.

ats0=000 Disable auto answer.

ata Answers phone call

Basically AT commands are used to send and receive information through serial

communication. They are used to initialize new actions that are desired for the

receiving end to undertake (Telit AT Command Reference Guide).

True to their name most of these commands tend to start with AT in from of the

command. By sending command 'at' to serial it can be tested whether it works or

25

not. This is a basic dummy command that should always answer 'OK' if everything

went �ne, of course if it did not at least the users know that whole serial

communication is down.

Basic send a SMS command structure goes like this.

at

at+cpin="1234"

at+csq , check connection health

at+creg? , wait until connects.

at+cmgf=1 set sms text mode on.

at+csca="+358YYYYYYYYY" , set sms center number.

at+cmgs="+358XXXXXXXXX" , sends sms to number, also starts typing mode.

Type your message.

6 Retrospect

6.1 Results

Generally working with hardware went relatively well, though it was much more time

consuming than anticipated. In fact most of the time was used with choosing

hardware components. When components had been received, it was mostly just

plug and play.

In hardware most requirements were met. Pieces of �nal assembly were small in

themselves and �nal packaging could be constructed into relatively small package.

The total price of components remained around hundred euros which is cheaper

than most commercial mobile phones at the date, though if compared with price of

feature then this is the more expensive one.

The main problem in hardware was that Itead GSM module used in the �nal phase

of construction did not ever work properly. SMS messages were succesfully sent and

received, however phone calls never connected, also with SMS the behaviour was

erratic at best. With using Telnet USB module Raspberry Pi telephony capabilities

could be tested and usedto its fullest.

26

The reason for failure is the compatibility issue with Raspberry Pi. Itead GSM

module is originally designed for Arduino, not for Raspberry Pi. Whilst in theory and

by studying of datasheet Raspberry Pi meets all power and connection requirements

of that chip, it does not quite work. This is because Arduino uses 5V logic in its

GPIO pins whereas Raspberry Pi uses 3.3V logic in its pins. Thus, even though both

use GPIO based UART connection, they are not quite the same.

Using Python together with its serial library worked nicely with Raspberry Pi and

gave instant control to GSM modules. Using Python also provided an instant

cross-platform development capability which made transition from prototype one to

two an easy one.

One of the main challenges for the project was time. When started in summer 2012

Raspberry Pi had just been launched and was the newest toy on the market. This

made one of the aims in this project to be a model for future development in using

GSM with Raspberry Pi. When this project was �nalized in late 2013, there are

already quite a few models and demonstrations made about GSM usage with

Raspberry Pi. Therefore it is not quite as usable for open source community as it

could have been.

Regardless of its usablility to the community, it still succeeded in its aim to become

an easily buildable model for GSM usage. The work done provides tutorials to both

gathering required components and installing a proper operating system. This in

conjuction with programming tutorials and example scripts provided makes it a plug

and play mobile phone.

6.2 Future Improvements

Possibilities to where this project could go are great, and there are some ideas for

future improvement ideas popped into the author's mind.

• Create a default casing.

• GSM chip improvement to smaller, cheaper or easier solution.

• Add input output capabilities with keypad and LCD screen.

• Hack the Raspberry Pi to a "slim" variant (remove the Ethernet plug and

other "fat" components)

27

If all of the above were be done, we could really talk about similar phone as mobile

phones were before the smartphone age.

7 Summary

The aim of the thesis was to create a cheap and small mobile phone that has plug

and play capabilities that works as model and proof of concept for open source

community using Raspberry Pi. This work succeeded for most parts but did not

manage to dodge all pit falls.

The work did manage to create software for sending and receiving SMS and phone

calls, also it was able to �nd components that when constructed, would provide a

proper mobile phone usage in the size of a travel bible.

However, the main GSM module did work only partly, making it possible to send

and receive SMS messages but not much else. This left us to rely on another GSM

module that did not quite meet the design requirements with its price, size and need

for external power.

Tutorials, examples, guides and examples made during this work describe in detail

what needs to be done when starting the journey into the world of GSM on

embedded Linux.

28

References

Hallinan, C., 2011. Embedded Linux Primer, 2nd edition, Pearson Education, Inc

Redl, S., Weber, M., Oliphant, M., 1995. An Introduction to GSM. Artech House

2013, Telit AT Command Reference Guide, Rev 18, Telit Communications

O'Brien, T. 2012, Raspberry pi impressions: the 35$ Linux computer and tinker toy,

referenced 10.11.2012 www.engadget.com/2012/06/01/raspberry-pi-impressions-

the-35-Linux-computer-and-tinker-toy/

Tomar, A, 2012, Raspberry Pi single-board computer, referenced 10.11.2012

www.element14.com/community/docs/DOC-42993/l/raspberry-pi-single-board-

computer

2012,Raspberry Pi Downloads, referenced 10.11.2012

www.raspberrypi.org/Downloads

2008, Basic GSM Con�guration, referenced 1.12.2013

www.denmasbroto.com/article-1-basic-gsm-con�guration.html

2013, RPi Hardware Basic Setup, referenced 2.12.2013

www.elinux.org/RPi_Hardware_Basic_Setup

2012, Raspberry Pi Quickstart Guide, referenced 4.11.2012

www.raspberrypi.org/quick-start-guide

The Hayes Command Set, referenced 20.11.2013

www.docs.kde.org/stable/en/kdenetwork/kppp/appendix-hayes-commands.html

Hardware: AT Commands, referenced 1.12.2013

www.wiki.openmoko.org/wiki/Hardware:AT_Commands

29

8 Appendix

8.1 Send SMS Script

This script uses gsm modem to send text messages. Modem should be in the end of

a serial cable and this accessible with serial port. This program will use basic AT

commands to control the modem.

Some of the settings used by the program needs to be hand con�gured. These can

be inserted from the commandline but because they are always same for every SIM

it's possible to insert them by hand straight into the python script.

Con�gurable settings are:

• SMS center number

• PIN code for sim

#!/usr/bin/env python

smscenter = '+358508771010' # SMS center number.

pin = '1234' # PIN code

##

The real program starts, do not modify

##

from optparse import OptionParser

import serial

import time

import sys

exit program

def close():

ser.close() # close serial port

30

sys.exit() # exit program

"""

function that writes and reads from serial until timeout occurs.

msg == AT command to execute

timeout == is the time until end execution

ok == is the desired AT print

end == ending ascii character

length == num of bytes to read

"""

def command(msg, timeout=2, ok='OK', end=13, length=100):

t0 = time.time()

while True:

ser.write(msg+chr(end))

ret = ser.read(length)

if ok in ret:

return ret

if time.time()-t0 >= timeout:

print "Error while executing command "+msg

close()

if __name__ == '__main__':

usage = "usage: %prog -n <number> -m \"<message>\""

parser = OptionParser(usage=usage) # creates command line parser instance

Add command line options

parser.add_option("-n", "--number", help="Number to send to.")

parser.add_option("-m", "--message", help="Message to send.")

parser.add_option("-c", "--center", help="SMS center number.",

default=smscenter)

parser.add_option("-p", "--pin", help="Pin code for sim card", default=pin)

31

parse command line arguments

(options, args) = parser.parse_args()

if options.number is None:

print "Error: no number specified"

print usage

sys.exit(-1)

if options.message is None:

print "Error: no message specified"

print usage

sys.exit(-1)

Init and opent serial port

ser = serial.Serial('/dev/ttyUSB0', 115200, rtscts=True, timeout=1)

ser.open()

send serial commands

command('at') # test serial connection

if not 'READY' in command('at+cpin?', ok=''): # test if requires a pin

command('at+cpin="'+options.pin+'"') # insert pin

command('at+creg?', ok='0,1') # check gsm network connection

command('at+cmgf=1') # set sms to text mode

command('at+csca="'+options.center+'"') # set sms message center

command('at+cmgs="'+options.number+'"', ok='>') # start sending message

command(options.message, end=26, timeout=10) # end sending message

print "Message sent succesfully"

close the serial port

ser.close()

	Terminology
	Introduction
	Aim of Thesis
	Objective
	Hypothesis

	Theory
	Mobile Technologies
	GSM
	AT Commands

	Embedded Linux
	Raspberry Pi
	Evaluation

	Hardware
	Prototypes
	PC and GSM
	Raspberry Pi and GSM Terminal

	Parts
	Raspberry Pi
	GSM Chip
	Battery
	Input and Ouput

	Putting Everything Together

	Software
	Operating System
	Programming
	GSM Programming
	GSM with Libraries
	GSM with Serial Port

	Retrospect
	Results
	Future Improvements

	Summary
	References
	Appendix
	Send SMS Script

