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Today about 90 per cent of the world’s trade is concluded by using ships. This entails 

that the seafaring is one of the main attempters for the poisonous greenhouse gases. 

Through the globalization and the tendency to produce and sell goods all around the 

world, leads to wider use of ship transportation and hence increasing emissions. 

According to this fact it is important to find ways to abate ship emissions. This is 

supported with stricter emission limits in the Baltic Sea. To meet these regulations, 

vessels need to have installed an emission abatement system. In the range of this 

thesis the two water-based NOx abatement measures DWI and HAM are observed, 

especially regarding their cost-effectiveness. 

To find a figure how many € per abated ton of NOx these technologies cost, a case 

study with two ships was made. One ship was retrofitted with a HAM system and the 

other ship was new build with DWI technology. The calculations were based on 

figures found in literature and the ship owners.  

In conclusion, the costs per abated ton of NOx vary greatly with the specific ship. For 

DWI they are in the range from 243,25 €/t to 928,08 €/t. The HAM system is not so 

cost-intensive it varies from 282,58 €/t to 378,46 €/t.  
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SYMBOLS AND ABBREVIATIONS 

a Year 

e.g. Exempli gratia 

g Gram 

GRT Gross registered tonnage 

GT Gross tonnage 

Js Joule second 

K Kelvin 

kg Kilogram 

kW Kilowatt 

kWh Kilowatt hour 

RPM Revolutions Per Minute 

m Metre  

m³ Cubic metre 

mil Million  

nm Nanometre 

NOK Norwegian krone  

ppm Parts per million 

s Second 

SEK Swedish krona 

t Tons 

μg Microgram 

μm Micrometre 

°C Degree celsius 

% Per cent 

λ Lambda, excess air ratio 

Ω Ohm  

€ Euro 
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ABDC After Bottom Dead Centre 

BBDC Before Bottom Dead Centre 

BDC Bottom Dead Centre 

BSR Baltic Sea Region 

BTDC Before Top Dead Centre 

CAC Charge Air Cooler 

CapEx Capitel Expenditure  

CASS Combustion Air Saturation System 

CFC Chlorofluorocarbon  

CH4 Methane 

CIMAC International Council on Combustion Engines 

CLD Chemiluminescence Detector 

CO Carbon monoxide 

CO2 Carbon dioxide 

DWI Direct Water Injection 

ECA Emission Control Area 

EGR Exhaust Gas Recirculation 

EPA U.S. Environmental Protection Agency 

EU European Union 

FINAS Finnish Accreditation Service 

H2O Water 

H2SO4 Sulphuric acid 

HAM Humid Air Motor 

HCFC Hydrochlorofluorocarbon 

HCN Hydrogen Cyanide 

HELCOM Helsinki Commission 

HFO Heavy Fuel Oil 

i.e. that is 

IMO International Maritime Organization 

MARPOL Marine Pollution 

ME Main Engine 

MFO Marine Fuel Oil 

N Nitrogen 

N2 Dinitrogen  

NECA Nitrogen Emission Control Area 

NH3 Ammonia 

NO Nitrogen monoxide 

NO2 Nitrogen dioxide 

NOx Nitrogen oxides  

NTG Net registered tonnage 

O Oxygen 

O3 Ozone 

PM Particulate Matters 

Ro-Ro Roll on – Roll off 

SAM Scavenge Air Moistening 
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SCR Selective Catalytic Reduction 

SECA Sulphur Emission Control Area 

SEIS Ship Environment Index System 

SMA Swedish Maritime Administration 

SO2 Sulphur dioxide 

SOx Sulphur oxides 

STID Steam Injected Diesel Engine 

TBO Time Between Overhaul 

TDC Top Dead Centre 

UN United Nations 

VOC Volatile Organic Compounds 

WHO World Health Organization 
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1 INTRODUCTION 

Today about 90 per cent of the world’s trade is concluded by using ships. This entails 

that the seafaring is one of the main sources for the poisonous NOx and SOx 

emissions. The amount of SOx from the 15 biggest ships for example is presumed to 

be with 78.000 tons even higher than the global car traffic. Through the globalization 

and the tendency to produce and sell goods all around the world, leads to wider use of 

ship transportation and hence increasing emissions. 

There are many different approaches to reduce the production of these environmental 

and health damaging emissions. Engine manufactures are developing low-emission-

engines and the worldwide research in abatement technologies is going forward. Also 

the governments of nations with coastal areas are anxious to find a way to an emission 

free seafaring in the future. Measures that are already implemented are the creation of 

ECAs, like the North, Baltic and North American Sea in case of SOx. Further areas 

and new regulations that treat also other emissions, like NOx, are made by the 

different countries themselvs or cross-border by the EU or IMO, the maritime agency 

of the UN.  

The basis for such new regulations establishes results from projects like the BSR 

Innoship project. This project shall yield findings how the upcoming IMO limitations 

III 2016 for the Baltic countries can be fulfilled.  

In the context of this project the available thesis was written to figure out the costs and 

the cost-efficiency of the two water-based NOx abatement technologies DWI and 

HAM. The main aim was to find the costs per abated ton of NOx. For this purpose a 

case study with two ships was made. One ship was retrofitted with a HAM system and 

the other ship was new build with DWI technology. The calculations were based on 

figures found in literature and from the shipowners. 
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2 THE BSR INNOSHIP PROJECT 

The Innoship project for the Baltic Sea Region was initiated by the EU and HELCOM 

in 2007 to develop national and international plans to keep the IMO limitations III 

2016 for the Baltic countries.   

  

Figure 1: The Innoship project to find solution approaches for the Baltic Sea Region 

has duration from 2007 to 2013. 

Through increasing shipping in the Baltic Sea and the associated rising emissions the 

need for a project that coordinates and encourages the cooperation between 

international, national and regional governments, was noticed. The aim of the project 

is to develop and establish a model area for clean and sustainable shipping in Europe. 

For this reason the Baltic Sea is already since 2006 declared as SECA and will be 

prospectively designated as NECA. These progresses create the need for technical 

approaches for an efficient abatement of NOx and SOx emissions, which should be 

figured out during the project. Therefore institutes, universities, governments and 

companies of the littoral states of the Baltic Sea are working as partners. All together 

about 45 partners from Finland, Germany, Sweden, Norway, Denmark, Lithuania, 

Latvia, Estonia, Poland and Russia are involved.[1] Firstly is the Baltic Institute of 

Finland the lead partner, but a further one is for example the Kymenlaakso University 

of Applied Sciences in Finland which is entrusted with the task of marine emission 

measurements. The Kymenlaakson University of Applied Sciences distinguishes itself 

in the ability to perform measurements in its emission laboratory that is accredited by 

FINAS according to the SFS-EN ISO/IEC 17025:2500 standard. The further 

equipment for measurements on ships is proved by the standard ISO 8178-2 and 

Annex VI to MARPOL 73/78.[2]  
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3 MARINE DIESEL ENGINES 

Ships can be classified into different types. In a broad overview there are passenger or 

cargo ships, whereas not only the freight is the main difference. Compared to their 

tonnage passenger ships have larger engines than cargo carrying vessels.[3] These two 

types are further divided as there are cargo ships which carry also passengers and the 

other way around. M/S Mariella is a passenger ferry, its main purpose is to carry 

passengers but there is also space for cargo. 

As it can be seen in the appendix 1 there are quite a lot of subcategories for cargo 

ships depending on how or what kind of freight they are transporting. As the M/S 

MISIDA is a Ro-Ro ship this kind should be explained further.  

The term Ro-Ro refers to Roll on/Roll off ship what means it loads and transports 

wheeled goods that are driven by its own over the ships’ ramp. Generally this may be 

cars, railway waggons, lorries or their trailers. The M/S MISIDA mainly carries forest 

products, like paper and pulp. For this reason the ship is also loaded with containers 

and other cargo units.  

Marine diesel engines are often divided in three different groups. This classification 

was done by the EPA and rates the engine power. The engines of the category 1 have 

more the 1.000 kW and their displacement per cylinder is less than 5 litres. With a 

displacement between 5 and 30 litres and a rated power between 1.000 and 3.000 kW 

an engine belongs to the category 2. Diesel engines of this size are often used as 

auxiliary engines on ships. There they have the purpose to produce the electricity to 

run all equipment and provide energy for pumps or hydraulic machines as well as for 

cooling or heating aims. The ones belonging to the last category are mainly used as 

main engines, which are in charge of producing the power for the propulsion. 

Likewise all main engines of the M/S Mariella and M/S MISIDA are category 3 diesel 

engines. In figures this group contains engines with a size of more than 3.000 kW and 

a gas displacement of at least 30 litres per cylinder.[4]  

Another categorization of vessels is their speed – Slow-, Medium- or High-Speed 

engines – defined by the rotation speed. With a rotation speed less than 130 RPM an 

engine is called slow-speed. Furthermore, because of the lower RPM it is determined 
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that it is a two-stroke type. Engines with low rotation speed have the biggest 

construction. Starting with 130 RPM up to 1.400 RPM the medium-speed engines are 

operating with four-stroke technique. Beyond 1.400 RPM engines are called high-

speed. This type is used for instance in smaller vessels like fishing boats or yachts. 

Either medium- or slow-speed engines can be used as main engines, whereas an 

auxiliary engine is always a medium-speed type.[4] 

3.1 Working principle 

The diesel engine is originally based on the diesel process, but it is technically not 

possible to bring heat into a process at constant pressure. Therefore the Seiliger cycle, 

also called dual or mixed cycle, is a more suitable pattern to represent the operation of 

a diesel engine. The theoretical sequence is shown in figure 2 with the volume on the 

abscissa and the pressure on the ordinate. From point one to two the compression 

takes place, and theoretically there is no heat exchange but in a real engine there are 

losses over the walls. Starting at point two the fuel injection initiate the combustion 

and brings the heat in the process, first isochoric (until point 3), then with a constant 

pressure (point three to point four). Realised in an engine the events between points 

two and four are curved lines and not a complete isochoric and isobaric heat supply. 

From point four starts the expansion until point five. Closing the cycle from point five 

to one there is the scavenging. This change of the gases also cannot be realised 

completely isochoric. 

 

Figure 2: Seiliger Cycle  

Distinguishing how much time the scavenging takes, engines are divided into two 

stroke or four stroke types. The four stroke engine needs two revolutions of the piston 

to fulfil one power cycle of the engine where one revolution is for the scavenging. A 

two stroke engine on the other hand needs only one revolution for a power cycle 
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because the air change has a duration of 1/3 of a revolution.[5] The M/S Mariella and 

M/S MISIDA have four stroke marine engines. The four strokes are called 

introduction, compression, expansion and exhaust stroke. 

1. Induction stroke: 

The first part of figure 3 refers to the introduction stroke, when the piston goes down 

from the TDC. After the TDC, for a short time, the inlet and outlet valve are both open 

so that the suction of the fresh air starts. The exhaust valve is open in order to let the 

exhaust gases, which have a slight overpressure, escape more thoroughly. The inlet air 

needs a higher pressure than the exhaust gases to prevent the contamination of the 

fresh air while both valves are open. When the inlet valve is open to let in the 

combustion air and the exhaust valve is already closed, the income of the fresh air is 

facilitated because the pressure in the cylinder decreases due to the descending of the 

piston. As a consequence of the pressure difference, the air is forced to flow in.  

A change in the valve opening and closing time is part of the engine manufacturers’ 

developments for low NOx engines. By closing the inlet valve before the piston 

reaches the BDC, the fresh air is forced to enlarge due to the down going piston. 

Therefore the pressure and the temperature in the cylinder is lower, which leads to less 

NOx emissions in the exhaust gases. This procedure is called Miller cycle or Miller 

timing.  
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Figure 3: Four strokes (1.Stroke: Introduction, 2.Stroke: Compression, 3.Stroke: 

Expansion, 4.Stroke: Exhaustion) 

2. Compression stroke: 

The piston has now reached the BDC and the cylinder is filled with fresh air. At this 

point the inlet stroke is over, although the inlet valve may be still open. It will close at 

about 25-35° after the BDC (shortly called ABDC).[6] Because of the slight under 

pressure some more air comes into the cylinder even when the piston reached the 

BDC. 

During the actual compression stroke work is carried out in the air, while both valves 

are closed. In this phase the piston compresses the charge of air up to about 40 bar, 

hence it is possible to reach a temperature of about 550 °C [6] in the cylinder. 

Near the TDC the injection of the fuel starts. Regardless that there are different fuel 

injection systems, all have in common that the fuel is injected with high pressure 

through a nozzle with small holes to reach droplets with a size of about 10 μm.[7] It is 

significant for the combustion that the fuel is atomized, because compared to a petrol 

engine (Otto engine) there is only a short period for the fuel to mix with the 

combustion air. That is the reason why it is injected with up to 1.200 - 1.800 bar [6]. 

Due to the high pressure there is a fuel spray which mixes well with the hot air to 

ensure the ignition. 
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3. Expansion stroke: 

Generally the actual ignition starts very close to the TDC (at about 2-7°BTDC [6]), 

based on the further compression of the air, mixed with the atomized fuel, the self-

ignition takes place. Starting with the premixed combustion, which proceeds fast, 

follows the slower main combustion. During the main combustion more heat is 

released and the peak temperature will be reached. The energy from the fuel is 

releases through heat, so there are temperatures in the range of 1.500 – 2.500 °C. The 

pressure in the cylinder performs work because it pushed the piston down and the 

gases are expanding.  

4. Exhaust stroke: 

Before the end of the expansion stroke, before the piston reaches the BDC, the exhaust 

valve opens already. The reason for the opening at 60 – 30° BBDC [6] is that the 

pressure in the cylinder forces the exhaust gases to issue. In this way less pumping 

work is necessary. Another reason is that the energy in the exhaust gas can be used in 

the turbocharger. After the BDC the exhaust valve is completely open and the 

ascending piston pushes the remaining flue gases out of the cylinder. To use the 

pressure difference the inlet valve starts to open at about 70 - 80° BTDC [6] and sucks 

fresh air into the combustion chamber. In the meantime the exhaust valve starts to 

close and when the piston is at the TDC both valves are at the same level and the 

power cycle is completed.  

3.2 Further components 

To increase the efficiency of a diesel engine a turbocharger is installed. Like 

mentioned before, it uses the heat in the exhaust gases. For the two relevant ships 

considered in this report the average exhaust gas temperature after the turbocharger is 

between 320 and 330 °C.[8,9] Using the exhaust gases to power the turbocharger is 

particularly effective because about 35 per cent [6] of the energy provided by the fuel 

is still in these gases. With this energy a turbine is driven, which is mounted on the 

same shaft as a compressor. The hot exhaust gases are led into the turbine (left part of  

figure 4), where they are expanding and the heat energy is converted to kinetic energy. 

After that the exhaust gases are leaving through the exhaust pipes. The purpose of the 
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compressor is to increase the density of the charge air so that it is possible to introduce 

more air in the cylinder. With more air it is possible to burn more fuel, which leads to 

a greater power output of the engine. According to this the compressor has a supply of 

fresh air which hits the compressor wheel and gets a high velocity (right part of figure 

4). After this the air is led through a diffuser to convert a part of the kinetic energy 

into higher pressure, leading to higher density of the charge air. 

 

Figure 4: Turbocharger 

Besides the advantages of a higher power output from the engine and an improved 

specific fuel consumption at all loads, the drawback of compressed air is a higher 

temperature. Due to the adiabatic compression the temperature rises and so the air 

density decreases. Therefor it is necessary to cool the charge air before entering the 

cylinder. Otherwise would the mass of the air be less than without the turbocharger, 

hence less fuel could be combusted.  

With a so-called intercooler or aftercooler the temperature of the combustion air is 

lowered by adding a heat exchanger. The air transfers energy to either cold water, 

which after that works in the engine cooling system, or to the cooler atmospheric air. 

For example the Wärtsilä engine 6L46F from the M/S MISIDA has a maximum 

temperature of the intake air of the cylinder of 50 °C.[9] When the charge air is cooled 

the density increased again, leading to a greater amount of air flowing into the 

cylinder. To ensure that the temperature of the inlet air does not raise again, the pipe, 

connecting the charge air cooler and the cylinder, has to be insulated and this part 
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should be as short as possible. Further benefits of an intercooler can be seen in a lower 

maximum temperature in the cylinder due to the lower temperature of the intake air 

and equally less emissions in the exhaust gases.  

Another very important part of the engine, which has also a great influence on the 

emissions, is the fuel injection system. There are many different ways to bring the fuel 

into the combustion chamber. Anyway it is important that the certain amount of 

combustion air mixes well with the fuel to achieve complete combustion. In case of 

direct injection of the fuel, this mixing takes place in the combustion chamber due to 

the force of the atomized fuel. On the other hand, with indirect injection there is a 

coarse spray at low pressure into a pre-chamber where it mixes with the air.  

Glow plugs are sometimes necessary to support the ignition when the engine should 

be started. For example there might be failed ignition during low ambient pressures 

because there are greater heat losses over the cylinder walls which may cause 

problems in starting an engine with indirect injection. 

State-of-the-art for low emission marine diesel engines is the fuel injection with a 

common rail system. The main engines of the M/S MISIDA are also equipped with 

common rail technology and therefore the vessel emits even without the DWI 

technology below 10 g/kWh of NOx emissions.  

The difference and likewise advantage compared to a mechanical fuel injection 

system is that the injection pressure is provided regardless the engine rotation speed. 

In this way the fuel is supplied with a constant and high pressure for each cylinder. In 

conventional fuel systems the pressure varies with the load. This leads to a rather low 

pressure and bigger droplets at lower loads. To provide a constant high pressure a 

common rail system has a separate fuel pumping and injection system, hence more 

atomized fuel forms a greater homogeneous mixture of combustion air and fuel. 

Simultaneously it is possible to change the parameters for each cylinder easily due to 

the engine control system or also called electronic diesel control of each injector. For 

instance parameters like the rail pressure, timing and duration of injection are 

regulated very accurate with the computer-controlled system. In figure 5 the 

components of a modern common rail fuel injection system are shown.  
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Figure 5: Wärtsilä Common Rail System 

The high pressure pumps are installed on the camshaft which is also driving the 

valves. One accumulator and one high pressure pump serve two cylinders. The 

accumulator is used to store fuel under high pressure, which is coming from the 

pressurising pump. Each one is connected to two injectors. A safety function is that 

there is only during the actual injection the high pressure of up to 2.000 bar. [6] The 

solenoid valve in the injector cuts the pressure, hence there is no pressure on the 

nozzle while there is no injection.  

A further convenient fact of the common rail system is the flexible switch between 

different fuels like HFO or MFO, which is very common because of current emission 

regulations. 
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4 AIR POLLUTION  

The pollution of air and the contemporary increasing amount of emissions are a 

growing international problem. Normally the air consists of three main components, 

78 % nitrogen, 21 % oxygen and 1 % argon. Additionally air contains about 0,038 – 

0,039 % carbon dioxide and depending on the area 0,1 – 4 % water vapour.[10] 

Substances that occur harmful for organisms and the environment naturally in very 

small amounts. If the harmful substances, so-called emissions, are formed by natural 

sources, then they are referred to as natural pollution. Possible sources of natural 

pollution are volcanos, forest fires and swamps. The second category for sources of air 

pollution is the anthropogenic or man-made pollution. To these belong the agriculture, 

industries, coal, oil and gas burning power plants, waste incineration plants, landfills 

and decisively traffic, including shipping. According to Davis and Cornwell [11] 

comprise combustion processes 96 per cent of the man-made nitrogen oxide pollution. 

Emissions that arise global and counted among the greenhouse gases are CO2, CFC 

and HCFC, CH4 and N2O. Further emissions that are more concentrated on regional 

areas and cities are NOx, SO2, CO, VOC and PM. 

As a consequence of intensified shipping in the Baltic Sea the pollution with CO2 and 

especially NOx, SO2 and PM in the coastal regions and harbour locations is soaring. In 

contrast to land-based NOx emissions that are reduced during the 28 years (1980-

2008) about 40 %, sea-based emissions are increasing continuously. In general it is 

estimated that 30 % of the global man-made NOx emissions are caused by 

shipping.[12] The transport in the Baltic Sea in the year 2000 was for instance 400 mil 

tons. During six years a growth of 150 % to 600 mil tons in 2006 can be noticed. This 

is a percentage share of 8,1 % of the world sea transport.[13] For this reason the sea-

based emissions with their ecological consequences become to a more serious and 

political problem. In 2006 NOx emissions in the Baltic Sea, caused by ships of any 

kind, exceed a value about 380.000 tons.[14] Even higher were the NOx emissions in 

2007 with a reached amount of 400.000 tons.[15] This trend shows the imperative 

necessity for technological approaches to reduce and avoid NOx emissions 
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4.1 Effects on health  

NOx and especially NO2 belong to the most harmful emissions. Like described in 

chapter ‘Development of NOx’, NO is formed in combustion processes and gets 

outside through exhaust gases where it reacts with oxygen of the air and forms into the 

more hazardous gas NO2. In the air, NOx forms small particles with the help of 

ammonia, moisture and other substances. These small particles have a size about 

< 2,5 μm [16] and penetrate through breathing the mucous membranes of the airways 

and eyes. In the airways they cause several diseases like airway inflammation, 

pneumonia, (chronic) bronchitis, asthma and emphysema. Furthermore it can get to 

chronic cough, increase heart diseases and enhance the susceptibility to respiratory 

infections right up to premature death. Particularly children and youth, elderly and 

people with lung diseases and asthma are compromised. The average annual natural 

pollution of nitrogen dioxide amounts to 0,4 – 9,4 
  

  , referred to the air quality 

guidelines from the WHO in 2000. Even higher, with an annual range of 20 – 90 
  

  , is 

the ordinary concentration in cities. According to studies, published by the 

government of North Rhine-Westphalia exists a huge potential for providing 

respiratory diseases by decrease the concentration of NO2 in the breathing air. In the 

study the population is differed in two groups, children and youth and also adults. As 

a vivid example the results refer to a population of one million. If the NO2 pollution 

would be    
  

   instead of    
  

  , 3.000 bronchitis infections by children and youth 

could be prevented. In case of adults the amount would be even higher, about 

3.200.[17]  

Another negative aspect of NOx emissions is their ability to react with VOC into 

ground-level ozone and also to PM. These effects are known as synergy effects. 

Necessary for this chemical reaction is the impact of heat and sunlight.[18] Ground-

level ozone is also well-known under the common term ‘smog’. Through the 

benefiting conditions in summer, the phenomenon ‘smog’ can be seen in this season, 

especially in cities with a high traffic density, quite often.  
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4.2 Effects on the environment 

The environmental effects caused by NOx emissions are quite serious. NO2 harms the 

vegetation and induce necrosis (the yellowing of leaves), prematurely ageing and 

dwarfism.[19] Dwarfism describes the condition of short stature that is based on 

atypical slow growth. Furthermore is NO2 an intermediate product for nitric acid 

which effects through acid rain the worldwide forest decline and soil acidification. 

Moreover leads NO2 to eutrophication that upsets the ecological balance. The 

consequences of eutrophication could be the growth of several plant species, like 

stinging nettle and blackberry that prefer high nitrogen containing soil and the 

contemporary disappearance of more fastidious species and their biocoenosis. Further 

consequences are the disturbance of the nutrient balance and a changing composition 

of species.[20] In coastal water eutrophication can contribute to the growth of algae 

and a deficiency of oxygen. Especially the Baltic Sea is endangered, because it 

conforms more an inland lake due to its minor fresh water exchange to the North Sea. 

Hence the nutrients can accumulate in the sea water and a high concentration with the 

further described consequences follow. How far the Baltic Sea is affected by 

eutrophication can be seen in figure 6.  

 



 

 

14 

 

Figure 6: The Baltic Sea affected by eutrophication. The status is based on average 

data from 2003-2007 and the big circles describe open sea areas and the small ones 

coast regions. 

4.3 Combustion process 

During the process of combustion the carbon share of the particular substance will 

react to CO2 and the hydrogen share to H2O. Due to this basic chemical law the 

chemical equation for a complete combustion is: 

     (  
 

 
 )         

 

 
    [22] 

Equation 1: Chemical law for a theoretic complete combustion 

For a complete combustion the right amount of supply air is important. This right 

amount is shown with λ. It describes the ratio of the effectively needed and the 

theoretical needed air. The theoretical amount of air is the exact amount where no 

oxygen is left after the combustion. If λ = 1, the theoretical amount of air is equivalent 

to the effectively needed amount. If λ < 1, the amount of air is too small and the fuel 

will be combusted incompletely. Is, on the other hand λ > 1, it refers to excess air. 

Typical values for a Diesel engine are λ    ,3, if the engine is in full load and    , if 

the engine is in idle.[21] In case of 1,3 there is 30% more air available for the 

combustion.  

The reasons why additionally emissions originate are the impurities in the fuels. These 

impurities were not combusted completely and react to some harmful substances. In 

the figure 7 the occurring emissions of a medium-speed Diesel engine, operating with 

HFO that has a sulphur content of 4 per cent, is shown.  
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Figure 7: The typical exhaust gas emissions of a medium-speed Diesel engine (HFO 

with 4 per cent sulphur content)  

The incomplete combustion can be caused by an insufficient mixture of fuels and 

combustion air, sudden cooling of flame gases, a too short period in the specific range 

of temperature or burning by lifted flames.[22]  

4.4 Formation of NOx 

NOx are produced during the combustion process. The variety of NOx can be seen in 

the table below. 

Table 1: Overview of the different forms of NOx 

 

Most important in combustion technologies and in the present work are the nitrogen 

monoxide NO and the nitrogen dioxide NO2. These two substances occur at high 

combustion temperatures. During the combustion NO is produced mainly. The 

conversion to NO2 happens after the combustion through mixing with oxygen of the 

exhaust gases or the atmosphere. Generals are NOx’s produced through oxidation of 

nitrogen by the combustion air or of nitrogen of the fuel.  

  

NO N2O N2O4

NO2 N2O2 N2O5

NO3 N2O3 N2O6
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Furthermore the production is differed in three mechanisms, depending on the origin 

of nitrogen: 

 

Figure 8: The three types of NO formation 

In case of the thermal NO mechanism, also called Zelodovic-mechanism, the nitrogen 

of the combustion air is used. Due to the high prevailing temperatures an endothermic 

oxidation of this nitrogen takes place. An endothermic reaction describes the 

increasing reactivity depended on increasing temperatures. The production of NO 

starts to increase highly from a temperature on 1570 K.[22] From this temperature on, 

the dissociation (separation) of oxygen atoms increases rapidly. Consequently are 

more free oxygen atoms available and a higher amount of NO can be originated. The 

maximum formation of thermal NO is reached at a temperature from 2.200 to 

2.400 K.[23] Due to this fact, peak temperatures that exceed 2.000 K should be 

prevented to avoid the excessive formation of NO. Chemical reactions in oxygen-rich 

parts, referred to G. Baumbach, can be seen in the chemical equations below. 

          

Equation 2: Chemical reaction of O and N2 

          

Equation 3: Chemical reaction of N and O2 

In fuel-rich parts however, the following chemical equation is quite typical.  

          [22] 

Equation 4: Chemical reaction of N and OH 

Nitrogen 
origin 

Thermal 
NO 

Prompt 
 NO 

Fuel 
NO 
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Thermal NO can be affected by a few parameters like temperature, oxygen 

concentration, fuel-air ratio, residence time and pressure.[23] How the three sorts of 

NO are affected by the incineration temperature can be seen in the figure 9.  

 

Figure 9: Dependence of the three NO sorts on the incineration temperature  

The second mechanism is called prompt NO mechanism, as well known as Fenimore-

mechanism. About 5-10 % of NO is produced in this way.[24] The process takes place 

in the low-oxygen part of the flame. NO is produced through radicals like the 

intermediate substance CH that reacts with the nitrogen of the air to cyanides like 

HCN. In the end the chemical equation will be like it is shown below with R is an 

organic rest. 

               [22] 

Equation 5: Chemical equation for the formation of prompt NO 

Prompt NO plays compared with thermal and fuel NO a minor part in the production 

of NO.  

The last mechanism for producing NO is the oxidation of nitrogen of the fuel. So the 

amount of NO is depended on the nitrogen content of the fuel. Normally it is 

negligible, but in case of HFO or coal it is not. HFO contains about 0,2 - 0,6 % 
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nitrogen [25] and that is the reason why such a high amount of NOx emissions are 

occurring. In contrast to thermal or prompt NO, fuel NO originates already at lower 

temperatures from approximately 1300 K on.[22] An additional accelerant is the 

amount of excess air. With a higher concentration of excess air the formation of fuel 

NO increases. The reason for this principle can be seen on at the chemical equation 

below, using the example of the ammonium radical NH2. 

     
 

 
           [22] 

Equation 6: Formation of NO due excess air 

4.5 Measuring technique 

The most common measuring method for determining the sum of NO and NO2, so-

called NOx, is chemiluminescence. The word ‘chemiluminescence’ describes rather 

the luminescence caused by a chemical reaction, but is also used for naming the 

measuring method that uses the same-named principle. It is used to measure 

continuously the NOx concentration near the ground up to a height of 20 kilometres. 

Further emissions that can be measured with the principle of chemiluminescence are 

ozone and sulphur oxides. Also the latest available data from M/S Mariella is detected 

with this method. Basically, the NOx content is detected through the emitted light of a 

chemical reaction with ozone. The necessarily needed device is named 

‘chemiluminescence detector’, further abbreviated with CLD. In general the CLD 

consists of two components, a reaction vessel and a photomultiplier tube. As its name 

implies, the chemical reaction between ozone and nitrogen monoxide takes place in 

the reaction vessel. Ozone is produced in a previous step by an electric generator and 

leads to a reaction with NO like the following chemical equations. 

          
     

Equation 7: Reaction of nitrogen monoxide and ozone to oxygen and nitrogen dioxide 

with an oxygen molecule in an excited state 
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Equation 8: Reaction from nitrogen dioxide with an oxygen molecule in an excited 

state to nitrogen dioxide and released energy 

Possible existing NO2 in the gas sample is reduced to NO as a first step. Then O3 and 

NO are brought under a continuous flow into the reaction vessel. Through the 

chemical reaction enough energy is released to bring the NO2 molecule in an excited 

state. This is marked in the chemical equation above with a little star. If a molecule is 

in an excited state, it means that the energy state is higher than in its basic state. The 

excited state is in general quite unstable and its durability is usually in the range of 

nanoseconds. Hence the molecule can be return into its basic state it has to emit the 

additional energy. This original chemical energy is emitted as electromagnetic energy 

in the form of light, mostly, in a visible range. If energy is emitted in the form of light 

it is referred to the emission of a photon, which is in everyday language a light 

particle. For light that can be perceived from human beings, a wavelength range from 

circa 380 nm, that conforms violet, to 780 nm, that conforms red, takes effect.[26] 

Below 380 nm the ultraviolet radiation and above 780 nm the infrared radiation can be 

found. For measuring the occurring radiation a wavelength range from 500 nm up to 

3000 nm is used. Also common is the range 600 – 2800 nm, referred to Skoog’s and 

Leary’s ‘Instrumentelle Analytik’.[27] From traffic exhaust emission measuring 

experiences a maximum of chemiluminescence was determined at 1200 nm. Also the 

constant percentage share of NO2 in an excited state was determined and amounts to 

20 per cent.[28] It is further proven that the detected amount of light is proportional to 

the NO content in the available gas sample, if the measurement is done under defined 

conditions. One factor in these defined conditions is the abundantly available O3. 

Another way to indicate the type of light is to use the frequency instead of the 

wavelength. For this reason is in the chemical equation above the letter ‘ν’ used. It 

symbolizes the frequency of the radiation. The ‘h’ in turn represents the Planck’s 

constant that is 6,6261*10
-34

 Js and mirrors the ratio between the frequency and 

energy of a photon, light particle. For measuring and determining the mass of photons 

a photomultiplier is used. Such a device is shown in the schematic structure below 

with the number six. Simplified absorbs the photomultiplier the emitted light signals 

from the chemical reaction and transforms them into an electric impulse. At the same 

time intensifies the photomultiplier the electrical impulses to get an easy measurable 
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signal to the electronic counter. According to the Karlsruhe institute of technology the 

intensification factor is about one million.[29] In figure 10 it can also be seen that 

between the photomultiplier (6) and the reaction vessel (1) a filter (5) is situated. 

 

Figure 10: The illustration of the set-up of the measuring principle. 1: reaction vessel 

2: inlet ozone 3: inlet gas sample 4: gas outlet 5: filter 6: detector, for example a 

photomultiplier 

This filter prevents the environment of harmful O3 radiation. The numbers two and 

three represent the inlets of O3 and the gas sample, whereas number four stands for the 

outlet of the gas mixture. Important while using a photomultiplier is the high 

sensitivity regarding to light. It must be consequently protected from other light 

sources and daylight.  

4.6 Measurements on M/S Mariella 

The latest emission measurements on-board were taken from 7th to 9th of March in 

2013 by the scientific assistants from Kymenlaakson ammattikorkeakoulu University 

of Applied Sciences. During those two days NOx, CO and CO2 emissions of the four 

main engines, further called ME 1 to 4, were registered. For getting most precisely 

results the interval of taking values was 60 seconds. The used measurement principle 

was chemiluminescence which is described in chapter 4.5 in detail and the mess range 

was 0 – 2500 ppm. At the time of the measurements the main engines were operated 

at a load of 70 to 80 per cent that mirrors in the engine speed of 315 to 360 RPM. Due 

to possible occurring inaccuracies during the different working steps, like the taking 
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and preparation of samples, analysis and collection of data a tolerance range of 10 per 

cent is considered. The results of those measurements are compared to the upcoming 

NOx limits of IMO Tier III in figure 11. 

 

Figure 11: The results of the latest on-board measurement compared to the upcoming 

NOx limits of IMO Tier III 

There it can be seen that the determined NOx emissions still exceed the maximum 

accepted values, but those values are becoming effective not until 2016. During the 

measurements the ambient conditions can be considered as normal, like the table in 

appendix 2 shows.  
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5 EMISSION REGULATIONS 

To force the development of new technologies reducing NOx emissions, there are 

regulations that reduce regularly the permitted ship emissions. Some of these 

regulations are initiated by the governments of nations, which are residents of the 

Baltic Sea. On the other hand there are also attempts to limit the maritime emissions 

form cross-border organisations like the EU or IMO. The following parts shall give an 

overview on the different existing emission regulations that affect the Baltic Sea area.  

5.1 MARPOL 

The NOx emissions from ships were a long time neglected compared to the laws and 

limits for greenhouse gases on land. Although the MARPOL 73/78 was established in 

1973 as the first regulations about marine exhaust emissions, it took many years 

before these NOx limits were implemented. MARPOL is the International Convention 

for the Prevention of Pollution from ships. The name expresses the short form for 

Marine Pollution. It was established from the IMO as part of the United Nations that is 

responsible for guidelines regarding global shipping activities. The MARPOL 

contains 6 annexes with limits for different pollutions with maritime origin:  

Annex I – Oil 

Annex II – Noxious Liquid Substances carried in Bulk 

Annex III – Harmful Substances carried in Packaged Form 

Annex IV – Sewage 

Annex V – Garbage 

Annex VI – Air Pollution [30] 

The last one is the important one for the NOx reduction and this part came into force 

in the year 2005 as IMO Tier I. One point of criticism is the rather weak limits to 

reduce NOx emissions. Typical NOx levels of maritime engines vary from 9 to 18 g 
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per kWh. Consequently most ships are not required to reduce their emissions as it can 

be compared with the Tier I limits in figure 12.  

The values for NOx emissions refer to diesel engines that are built after the 1
st
 January 

2000 and have an engine power over 130 kW.[30] The next step of NOx limits came 

into force in the year 2011, the IMO Tier II regulations requested a further reduction 

of 16 - 22 per cent [31] compared to the Tier I limits. IMO Tier III is planned to come 

into force in the year 2016 and has very strict limits. This can be seen in the figure 12 

where the three different NOx levels depending on the engine speed are shown. In 

appendix 3, the exact values for the different engine speeds and IMO Tiers can be 

found. 

 

Figure 12: Limits IMO Tier I-III  

In comparison to the limits of the Tier I the Tier III NOx limits are about 80 per cent 

lower and represent a challenge for the engine manufacturers to meet these 

regulations. This future regulation is not a global limit, it has its validity for ships 

operating in the ECAs. The ECAs are divided into areas where the sulphur is 

controlled respectively the nitrogen oxides. A result of this regional limitation is that 

the Tier II limits are still obligatory in the rest of the world’s seas.  

NOx emissions are mainly influenced by the sulphur content of the used fuel. Hence 

the IMO restricted also the sulphur content of the fuel oil for maritime diesel engines 

with the MARPOL Annex VI. For this purpose they created the SECA, which 

includes the Baltic Sea, the North Sea and the English Channels. Furthermore, since 

2011 also the coastal sea area of North America (shown in figure 13).[30] 
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Figure 13: SECAs in the world 

Within this region the sulphur content must be currently less than 1 per cent by 

weight. Globally the allowed sulphur share is 3,5 per cent by weight. The outlook is a 

further reduction in the year 2015 to 0,1 per cent in SECA, and worldwide 0,5 per cent 

by weight from 1
st
 January 2020 on.[30] As an alternative to the expensive low 

sulphur fuel SOx treatment technology has to be installed to lower the emission 

factors.  

Ships are a main vehicle to transport goods over a long distance and their share of the 

freight traffic rose in the last years, which is a still lasting trend. So further steps 

should involve more countries and sea areas participate in the SECA and NECA to 

assure a broad maritime emission reduction. Yet the area in which the NOx emissions 

are controlled comprises only the coast of North America. The countries of the Baltic 

Sea and the North Sea are discussing the effects of a denotation as NECA member. 

Therefor a number of studies are carried out regarding the costs and benefits.  

For example in a Dutch and a Danish study they build three different models to 

compare the costs and monetised health benefits in the year 2030, if the North Sea 

belongs to the NECA. The result of this study was a factor between 1,6 and 6,8 for the 

benefits over the costs for the North Sea participating in the NECA.[32] It is 

questionable how reliable estimations of this kind are, especially the monetarisation of 

prevented health risks are very difficult. Nevertheless the harms for humans and the 

environment need to be balanced against the costs of extending the NECA.  
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5.2 Country specific systems 

The amount and the way how fairway dues are charged differ within the resident 

countries at the Baltic Sea. The port dues vary still more, they even vary within a 

country from port to port. Up to the present day there are some attempts to implement 

an environmental differentiated system for fairway and/or port dues such as the 

schemes in the port of Gotheburg or Mariehamn and the organization of the taxation 

in Norway. The following chapters provide an outline of systems in different 

countries. 

5.2.1 Norwegian System 

In Norway, there are traditionally a lot of regulations regarding the environment. In 

this country, there exist so-called green taxes which have the purpose to protect the 

environment against harmful substances and emissions. A great number of them 

revere to land based emissions. However there are also laws for the sulphur content of 

vessels’ fuels and CO2 emissions. Since 2007 there is also a tax on NOx emissions in 

force.[33] It is about 17,01 NOK/kg (in the year 2013 [34]) approximately 2,2 €/kg 

NOx. The NOx tax is applicable for ships with an installed power of more than 

750 kW.[35]  

Furthermore there is a different system in the Norwegian taxation. With the tonnage 

tax the NTG for a vessel under Norwegian flag is taxed, starting with vessels over 

1.000 NTG.[36] The net registered tonnage indicates the amount of cargo a ship can 

carry, it shows the volume of space for cargo. The differentiation part applies to ships 

with low NOx emissions and low sulphur content. Environmentally friendly vessels 

can earn points, which will reduce their tax. They can get a maximum of six points out 

of ten points in the SEIS by reducing NOx emissions and using low sulphur fuel. How 

the points for the sulphur content is staggered can be seen in figure 14. To gain the 

whole ten points there are five further environmentally related factors. This 

Norwegian approach of a differentiation model separates the vessels into different 

types. Tankers, general cargo and passenger ships belong to the above explained 

system with seven parameters. All other vessels can reach the maximum of ten points 

by reducing the NOx emissions and use low sulphur fuel. This leads to different points 

by reducing the emissions to the same amount.[37]  
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Figure 14: Points earned in the Norwegian system 

5.2.2 Swedish system 

To introduce the Swedish system of fairway dues and port fees there is a diagram 

below which simplifies the structure (figure 15). This system of duties was firstly 

introduced in 1996 from the SMA, the Swedish Ship Owners Association and the 

Swedish Ports’ and Stevedores’ Association.[38,39] It is called a differentiation 

system because the path of the fairway dues is further divided and one path of these 

distinguishes if there are high amounts of NOx emissions and high sulphur content in 

the fuel. 
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Figure 15: Diagram of the Swedish System 

In the year 1998 this scheme came into force with the purpose to reduce the emissions 

of NOx and SOx by 75 per cent in the first years of the new century.[38,39] The above 

mentioned involved parties decided to create the system with fairway dues and port 

fees due to a report that showed the requirement of limits for the emissions on the sea. 

The first part of the differentiation system, the fairway dues, is based on two 

calculation bases. First of all it is based on the GT of the vessel. This number 

represents the size of the ship. More precisely the GRT is considered, and this is the 

total internal volume of a vessel. Secondly the fairway dues depend on the cargo 

which is carried, meaning the amount of goods which are loaded. For the amount of 

the cargo fee there is no reduction possibility, it is not the different part of the system. 

There is just a lower charge of 0,8 SEK/t for low value cargoes, which carry for 

example sand, stone or gravel. The normal due is 2,90 SEK/t (for 2012), 

approximately 0,34 €/t.[40]  

For the fee per GT there is a reduction possibility. If the NOx emissions of a ship are 

below 10 g/kWh at 75 per cent load the fee is reduced by each gram NOx less.[39,41] 

Emissions under 0,4 g/kWh exempt from the fee (see appendix 4).[41] The amount of 

the due differs with the ship type. It is divided into passenger vessels (including 

railway ferries), cruise ships and other vessels, which may be for instance oil tankers. 

Swedish 
System 

Fairway dues 

... based on GT 
(reduction 

when low NOx) 

... based on 
sulphur 
content 

... for carried 
cargo 

Port fee 
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Diagrams explaining the different types of ships can be found in appendix 1. To be 

charged with a lower due it is necessary to prove the emissions from the vessel with a 

certificate that has to be given to the SMA.  

Additionally there is a fee if a ship has a fuel in its bunkers which contains sulphur 

above 0,2 mass per cent. Between 0,2 and 0,5 mass per cent they have to pay 0,2 SEK 

per GT and above this level 0,7 SEK per GT (as of 2012).[40] If a shipowner wants to 

have the lower sulphur fee he is obliged to verify that the ship is running with fuel 

with a low sulphur level. This has to be done also with a certificate given to the SMA.  

The fairway dues are validated for ships regardless the flag on which they are operated 

on, when they are entering a Swedish harbour. In Sweden the Maritime 

Administration is partially financed by the fairway dues because it is not funded by 

the government.[39] It is also funded by other revenues but the fairway payments are 

a very important part of the economic basis of the SMA. However it is intended to be 

revenue-neutral. The idea is to compensate the costs for vessels with NOx reduction 

technology which is defrayed by higher rates for ships with higher emissions and high 

sulphur fuel.[37]  

On the other side, the port fees are fixed by each Swedish port independently. The 

SMA is neither involved by levying the port fee nor by the decision if there is a 

difference or not. As a consequence the 52 commercial ports of Sweden are 

competitors. In the year 2008 almost 30 ports [39] based their port dues on a 

differentiation of NOx emissions from a ships’ machinery and the sulphur level of its 

fuel. Actually there is not a huge difference in the port dues which is visualised in 

figure 16 with the reduction possibilities in different Swedish harbours. 
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Figure 16: Comparison Swedish port fees  

The highest reduction, which can be gained in Gothenburg and the lowest ones for 

Helsingborg, differ only between 0,1 SEK/GT which is about 0,012 €/GT. For 

example for the M/S MISIDA with a GT of 15.586 this would mean a price difference 

of 187 €, which is rather a small difference in the saving. This slight distinction is due 

to the fact that the ports need to cover their costs and cannot risk losing customers. 

Although they want to offer some attraction beyond the differentiated fairway 

dues.[39]  

As an example for one of the 52 ports of Sweden it is possible to reduce the port dues 

in the port of Gothenburg when the NOx emissions are below 10 g/kWh. Below this 

level there is a reduction rate of 0,05 SEK/GT. If the emissions are between 6 and 

2 g/kWh the reduction rate rises to 0,1 SEK/GT and under 2 g/kWh of NOx emissions 

0,2 SEK/GT.[42]  

In the port of Stockholm ships which are reducing their NOx emissions more than 

50 per cent can receive a discount of 450.000 SEK per month (approximately 

52.636 €)[43].  

As for Finland there are only in the port of Mariehamn on the Åland Islands 

differentiated dues. Since the beginning of the year 2000 there is a linear reduction 

system of 1 per cent for NOx emissions under 10 g/kWh. Emissions less than 1 g/kWh 

receive a reduction of 8 per cent. In addition the port gives discounts if the sulphur 

content in the fuel is below 0,5 per cent. A further incentive is an extra deduction of 
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8 per cent for passenger ships and cargo ships when they emit less than 1 g NOx/kWh 

and operate with a fuel containing a maximum of 0,5 per cent sulphur.[44] 

In fact in a lot of ports it is necessary to have a proportion of sulphur in the fuel which 

is below the current limit of 1 per cent from the MARPOL regulations. However these 

levels are still higher than the limits from the directive 2005/33/EC. 

Since January 2010 this directive of the EU has been in force and limits the sulphur 

content of the ships’ fuel to 0,1 per cent by weight while the vessel is at berth in an 

EU Member State. But this regulation is very complex and due to the many occurring 

exceptions its realization is rather difficult. [45]  

6 NOX REDUCTION TECHNOLOGY 

There are different approaches to reduce the emissions and especially the NOx 

emissions from marine diesel engines. First of all with internal engine modifications 

which include for example a different fuel injection valve, called slide valve. With this 

device it is possible to lower emissions like NOx and simultaneously VOC and PM. 

The effect is based on a lower heat release during the combustion because the valve 

enables an optimized spray distribution in the cylinder. A further fuel related 

modification is the use of common rail injection systems or the retarded injection as 

well as the two stage fuel injection. Other ways of reducing emissions from changes 

on the engine operation are a higher compression ratio or design changes at the 

combustion chamber. By using a two-stage turbocharger, to get a higher charge 

pressure and a following charge air cooler, are also good results achieved. The earlier 

mentioned Miller cycle involves the change of inlet and outlet valve timing.  

Bigger changes belong to the strategy of using different fuels like gas or biofuels as 

well as the strategy to change to propulsion via fuel cells.  

These internal engine modifications are sometimes also categorized as dry methods in 

comparison to wet methods like DWI, HAM or Emulsified fuel. All these methods 

include the use of water to lower the combustion temperature. A last category of 

emission reduction measures is the aftertreatment. This is literally rather emission 

reduction than abatement because here the exhaust gases are treated to fulfil emission 
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regulations. For instance EGR or SCR are instruments to decrease NOx emissions, 

where on the contrary the Sea Water Scrubbing is used to clear the exhaust gases from 

SO2 emissions. In brief words EGR leads a part of the exhaust gases back to the 

combustion chamber to lower the O2 content, which in turn lowers the combustion 

temperature and hence the emissions. SCR in contrast uses ammonia (NH3) to 

neutralise NOx in the exhaust gas with the help of a catalyst.  

6.1 Direct Water Injection (DWI) 

One of the wet methods to abate NOx emissions is DWI, as it uses water to lower the 

temperature during the combustion. Water can be introduced into the intake air but 

this technology implies the injection of water directly into the cylinders of the engine.  

6.1.1 Construction of various types 

Mainly there are three different varieties for the injection. The injection through 

separate injectors, one for the fuel and one for the water; through separate nozzles in 

one injector or the so-called, stratified injection.  

This type has a common nozzle for fuel and water, but both fluids keep separated until 

the moment they are injected into the cylinder. Compared to a regular fuel injector, the 

body of the stratified water injector contains additionally the water supply system. The 

construction seems similar but this dual injector has a complex and expensive 

technology. For instance a special nozzle is necessary with high-quality materials that 

can resist the great risk of corrosion. Furthermore comprehensive adjustments at the 

cylinder head are necessary for retrofitting this system.  

A general order for the injections is first fuel, than water and after that again fuel. In 

figure 17 is shown with a simplified drawing how a stratified water injection nozzle 

works. The left picture describes the water loading.  
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Figure 17: Construction of a stratified injector 

The blue line distinguishes the water supply through the needle. In the water supply 

pipe is a check valve, which provides the water with a low pressure into the hollow 

part of the injector. The needle has the aim to seal the nozzle. Accordingly the 

injection takes place when the needle is lifted (visible in the right drawing of figure 

17) and apart from this time no droplets are allowed to escape.  

The incoming water pushes the fuel back through the pipes. When the fuel injection 

starts, the pressure rises to dimensions of 1.200 – 1.800 bar or even 2.300 bars when 

HFO is in use. [6] As a consequence of the pressure the one-way valve closes. This 

prevents the infiltration of fuel oil into the water supply system. Finally, this high 

pressure forces the actual injection of the fuel-water-fuel mixture.  

With the diesel fuel oil entering at first the cylinder, the ignition can be assured for the 

stratified water injection. The amount of water which will be injected for one cycle 

depends on the pre-injected fuel. Typically the share of water to fuel varies from 40 to 

70 per cent.  

A major benefit of this type, over the injection through separate nozzles, is that the 

water is sprayed really close to the flame and rather far away from the cylinder wall. 

Hence it is possible to reach better reduction results. On the other hand, the stratified 
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injection requires expensive retrofitting as a consequence of the complex technology. 

Therefor more ship owners tend to install the other main type, a twin nozzle.  

The second type of DWI injector is also called tandem or combined nozzle.[46] This 

kind is installed in the case study ship M/S MISIDA. The manufacturer Wärtsilä 

named this injection system tandem nozzle and a descriptive picture of the 

construction is shown by figure 18.  

 

Figure 18: Construction of a tandem nozzle 

The name implies the method, because the supply of water and fuel occur separate 

with two needles and through separate nozzles, but within a single injector body. 

Consequently it is possible to inject both liquids close to each other which ensures a 

homogenous mixture in the cylinder. Beyond that, this construction requires less space 

to be installed and each injector has an own computer control unit to optimize the 

injection parameters. Likewise it is possible to change the amount of the added water 

according to the conditions of the engine. For example during the startup or while 

operating at low loads the water injection can be turned low or completely off.  

Not only the nozzle makes the difference between this injection types, it is also the 

water pressure. The stratified water injection does not need a high pressure for the 

water spraying. On the contrary, the injection via a twin nozzle needs a pressure of 

200 to 400 bars, varying with the engine type. [47] This requirement is assembled 

with a high pressure water pump module. Additionally a low pressure pump has to be 

installed before the high pressure pump, which provides constantly 3,5 bars [38], to 

guarantee a stable water flow in between. 
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One advantage of the combined nozzle is that higher rates of NOx reduction 

(compared to completely separate nozzles) can be achieved with simultaneously no 

influence on the engine operation. The engine can operate with the water injection on 

or off due to the separate feed pipes. For marine engines a reliable and failsafe 

operation is very important, owing to the fact that the whole ship is not maneuverable 

if the fuel supply collapses and the engine stops. In case of an error in the DWI 

application, for example a leakage or clogging of the nozzles or pipes, the combined 

nozzle has a flow fuse as a safety device that stops the water flow. [48] 

To achieve a NOx reduction of 50 - 60 per cent there is a water to fuel ratio, short as 

w/f-ratio, of 40 - 70 per cent necessary. If more water is fed into the combustion 

chamber it is possible to reduce the NOx emissions further, but this involves also a 

reduction of the engine efficiency.[49] 

The last of the three types is the injection of water and fuel through completely 

separate injectors installed in the cylinder head. An example of the construction can be 

seen in figure 19. With this application the direction of the water spray can be adjusted 

quite freely, but still the water is coming into the cylinder rather far away from the 

flame zone and the fuel spray. There is not a good opportunity for both liquids to build 

a homogeneous mixture. 

 

Figure 19: Separate water injection  

6.1.2 Process in the cylinder 

With the DWI technology it is possible to add a high amount of water to the 

combustion process, therefore the NOx reduction can be higher than for other 

technologies, like water-fuel-emulsions.[3] When emulsified fuel is used to reduce 
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NOx emissions the amount of water that can be used is limited to 50 per cent. As for 

DWI even w/f-ratios exceeding 1:1 can be realized.[50] That means a higher amount 

of water than of fuel is added to the combustion. Not in any case it is recommended 

adding such an amount of water, because the w/f-ratio entails some good, but also 

some undesirable consequences. These will be explained in the further text but firstly 

it is necessary to understand the effects of the water on the processes proceeding in the 

cylinder.  

How much NOx emissions are formed during the combustion is depending on 

different factors. It varies especially with the type of fuel and its premix, the intake air, 

the duration of the fuel in the cylinder and, of course the temperature during 

combustion.[3] The phenomenon behind the abatement of NOx emissions based on 

water injection is, the immediate vaporisation of the water, when it comes into the hot 

combustion chamber.  

The temperature of the water rises very fast in the cylinder and due to this high 

temperature the water contains already a high amount of heat. For the phase change an 

additional amount of heat is required, the so-called heat of vaporization. Accordingly 

the water vapour has a high heat content. All this heat is taken away from the 

surroundings, thus the temperature in the combustion chamber and the temperature of 

the flame is lowered. Further, the water vapour gives the whole gas mixture in the 

cylinder a higher heating value as usual. Due to the temperature decrease, the very 

sensitive thermal reaction of NO proceeds slower, so less NO emissions will generate 

during a combustion that includes water. But from the chemical point of view the 

water has no impact. All chemical reactions take place, although maybe in a smaller 

extend or they may proceed slower. A further effect of the added water is the best 

dilution which causes the flame to enlarge. For the volume of the water vapour is 

higher and the oxygen is more diluted in the gas mixture the flame has to enlarge. 

The size of the water droplet should not be too big, because with smaller droplets it is 

possible to reach lower temperatures in the cylinder. If they are about 10 µm, the 

similar size of the fuel droplets, they can vaporize earlier and therefor absorb more 

heat.[51] A further advantage is the avoidance of wet cylinder walls. If the water 

vaporizes fast it cannot damp the cylinder walls and damage the lubrication oil film. 

This is an important matter of the engine maintenance.  
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The introduction of water into the combustion has a positive influence on the 

distribution of the pressure and the heat release. Therefor the left part of figure 20 

shows the pressure on the ordinate over the crank angle on the abscissa. This diagram 

compares the normal combustion (without water Ω = 0), signed with a red line, with 

the combustion with a w/f-ratio of one (drawn with a dashed line). It can be 

recognised that the pressure difference in the beginning of the combustion process is 

almost zero. Later, during the main heat release and the actual ignition, there is less 

pressure when water is injected into the cylinder. More obvious is the decrease of the 

temperature in the right part of figure 20, where the temperature is shown on the 

ordinate. The reduction was constantly about 100 K between 100° BTDC and the 

main injection.[51] 

 

Figure 20: Pressure and temperature distribution  

With the water injection into the cylinder there is a lower rate of the pressure rise. 

This means that the maximum pressure and also the maximum temperature will be 

reached later. Thus the fuel-air-mixture has a shorter duration in the hottest 

temperature and fewer emissions will form. Likewise, based on the lower pressure 

during the combustion, less boundary work needs to be achieved and in this way it is 

even possible to increase the engine efficiency slightly. Similarly other advantages can 

be realized when the combustion pressure will be reached in a gently growth. 

Summarized the slower increase of the pressure leads to less combustion noise, a 

shorter combustion time, a lower combustion temperature and hence less 

emissions.[51]  
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6.1.3 Conditions and requirements  

There are many factors which influence the fuel consumption, the power of the engine 

and the amount and composition of emissions in the exhaust gas. To come to a 

compromise with these different attributes, key parameters need to be considered 

carefully. These are for instance the injection timing, including the duration of the 

water injection and the direction of the water spray.  

6.1.3.1 Injection timing, direction and duration 

First of all the injection time is an important part of DWI. If the water is introduced 

too early it could happen that the whole cylinder will cool down instead of a particular 

area around the flame. This leads to an ignition delay and may cause engine noise. 

Consequences may be extremely high peak pressures, thus more strain in the material 

of the cylinder, rod, piston and other components. Another problem is the incomplete 

combustion process, based on the cooled cylinder. That causes more unburned 

components, like hydrocarbons or particulate matter, in the exhaust gas, including 

more soot coming from the chimney.  

Secondly, the place where the water is directed at has major influences. Is the water 

sprayed near the flame, it is possible to reach higher NOx reduction rates. Due to the 

precise spraying a more effective cooling of the combustion chamber can be realised. 

When the water reaches rather the cylinder walls there is less NOx reduction, as well 

as higher fuel consumption. In addition more emissions like CO, HC and PM will 

form.  

While it is desirable to reach a high reduction rate, it is necessary to keep in mind, the 

higher the NOx reduction, the higher is also the fuel consumption. As more water 

needs to be injected to achieve a high decrease of emissions. 

Adding too much water into the combustion chamber has the adverse effect of an 

ignition delay, due to the increase of the water volume. In combination with water 

injection, the main combustion should take place shortly after the TDC. When the 

main heat is released at that point it is possible to realise the best efficiency. A 
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deviation from this point, results in a not optimal power transmission from the 

combustion pressure to the piston.[51]  

6.1.3.2 Water quality 

As a further requirement the installed DWI system needs fresh water. This means 

drinking water or even distilled water, to prevent any damages of the engine. 

Otherwise the water in the cylinder may cause clogging of the engine due to the 

insertion of impurities. An advantage for cruise ships is the possibility to use the 

drainage water from showers, which can be used after preparation.[3] The water 

which is injected into the cylinder has to be free of solids, so it needs to be filtered. 

Furthermore if a water treatment system is installed, seawater can be used. After 

filtration this water needs to be desalinated to prevent hot corrosion. A greater amount 

of salts, for instance sodium, may get into contact with the sulphur in the fuel, or other 

substances like vanadium, form a layer on the surface of the cylinder and pit the 

cylinder layer during high temperatures.[52]  

Regardless the efforts to filtrate and desalinate the water, it is a good benefit that 

wastewater or seawater can be used. Otherwise huge tanks are necessary for the 

storage of fresh water on the vessel. These additional tanks mean extra weight and a 

space loss. In the case of the M/S MISIDA there is a water treatment system installed, 

which is capable to produce fresh water with a high quality from seawater.  

6.1.3.3 Fuel condition 

Like for other wet methods to abate NOx emission a low sulphur content in the fuel is 

essential. The share in the marine diesel fuels should not exceed 3 per cent. Wärtsilä 

states for its DWI systems even a level of 1,5 per cent sulphur that should not be 

overdone.[48] The sulphur can react with the water and oxygen to sulphuric acid 

(H2SO4), which can damage the engine with premature wear due to its highly 

corrosive nature. During a normal combustion there arises also a small amount of 

sulphuric acid, but it is important to avoid water in the cylinder liner. If the sulphuric 

acid and the water get into contact [46], this strong acid will dilute and this can lead to 

severe problems, for example damage of the lubrication film or contamination of the 

lubrication oil.  
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Another restriction is that the reduction of NOx emissions is greater at higher engine 

loads. To have an efficient NOx reduction the DWI system should be used starting by 

40 per cent load.[3,53] In lower loads the engine tends to an unsteady operation which 

may be observed in knocking.  

6.1.4 Summary 

Summarized there is a need to find a compromise between the rate of emissions (NOx, 

PM, soot, C) and an increased fuel consumption, which refers all to the injection 

timing. The decrease of the NOx formation happens anyway, at different loads, 

injection and ignition times, so the injection timing should be optimized. If this is 

possible low emission levels can be gained as well as no significant increase in the 

fuel consumption occurs.[54]  

The observed ship M/S MISIDA has a DWI technology installed from Wärtsilä that 

operates with the water injection preceding the fuel injection through a combined 

nozzle with two needles. With the help of the control unit the injection timing and 

duration is constantly controlled to find the optimal injection parameters. A further 

advantage which can be recognized is, for example the reduced heat loss through the 

cylinder walls. This can be achieved due to the overall lower temperature in the 

cylinder, as well as the decrease in the duration of the gas mixture in the combustion 

chamber.[51]  

6.2 Humid Air Motor (HAM) 

The Humid Air Motor is a further wet method to decrease the NOx formation during 

the combustion process. In contrast to DWI the water is injected with the combustion 

air simultaneously. This is realized by the saturation of the combustion air before it 

enters the combustion chamber. The following sections should explain the technology 

HAM with all its particulars. From the definition and used product names via the 

structure and process through to the reduction potential and advantages and 

disadvantages.  
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6.2.1 Terms and definitions 

Originally it was invented by the Swedish company Munters Euroform GmbH. In the 

technical literature it can be found also under the term ‘charge, inlet or intake air 

humidification’. Furthermore, companies like the Finnish Wärtsilä have their own 

specific product names. For Wärtsilä it is ‘WetPac’ and ‘STID’ (Steam Injected Diesel 

Engines) and from cooperation with Marioff Oy it is the ‘Combustion Air Saturation 

System’, abbreviated with CASS. The German company MAN in turn uses the 

common term ‘HAM’ for systems that are suitable for 4-stroke engines and SAM 

(Scavenge Air Moistening) for the systems that work on 2-stroke engines.  

The technique is already installed on two ships and they are in daily use. One is the 

Norwegian fishing vessel ‘Kvannoy’ and the other one is the car ferry ‘M/S Mariella’. 

The latter one serves as a data base for the work in hand.  

In the past this technology was already honoured three times. The Euromot 1999, the 

Seatrade award 2000 and the CIMAC award (International Council on Combustion 

Engines) 2001.  

6.2.2 The structure of the HAM system 

First of all is the main principle to humidify the charge air of the engine to avoid high 

peak temperatures. Due to the explanation of NOx formation in chapter 4.4, it can be 

determined that smaller burning temperatures lead to a smaller amount of NOx 

emissions.  

To humidify the compressed inlet air that comes from the exhaust turbocharger, a 

humidifier is needed. Further components are a catch tank, a bleed-off system and a 

heat exchanger. The basic structure can be seen in the schematic figure 21.  
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Figure 21: The basic working principle of the HAM system by MAN  

The turbocharger of the HAM system works like an ordinary turbocharger. So the 

principle is that with the help of the exhaust gases from the engine a turbine is 

operated. This turbine is situated with a compressor on the same shaft. Due to the 

generated rotation of the turbine, the compressor can compress fresh air for the 

engine. The known advantages of a turbocharger like the availability of more oxygen 

for the combustion apply to the HAM system also. A further component is the 

humidifier, also called HAM unit. This constitutes the core part of the system. As a 

consequence of the harmful environmental effects the material of the humidifier must 

meet some requirements. Therefore materials like acid proof steel and reinforced 

plastics are used to prevent corrosion. Further will the HAM system turn off around 

15 minutes before the main engines are stopped to dry the system and prevent 

corrosion in the engine. Constructed is the humidifier as a cylindrical vessel with three 

stages of surface enlarging elements. The dimensions based on the engine size and on 

the considered ship M/S Mariella it has a diameter of 1,3 meter and a length of 

4 meter. Important for the planning of the length is the time of the evaporation, for the 

width it is the avoiding of high flow velocities. Minor flow velocities are required to 

guarantee the separation of water droplets inside the humidifier. Whereas high flow 

velocities make it possible for water droplets to enter into the cylinders. The whole 

humidifier on the M/S Mariella weights around three tons. To prevent condensation of 

the water droplets between the humidifier and the engine, the pipes are isolated. The 

next component is the bleed-off system for controlling the salt and mineral 

concentration in the circular flow. Thus the bleed-off system consists of valves for 
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drain the water back to the sea and conductivity sensors to detect the salt content of 

the water. The amount of drained water varies between 1 up to 25 per cent of the 

whole circulating water.       

6.2.3 Process in the HAM system 

Firstly, water which can be seawater or grey water is pumped into the catch tank. Grey 

water is minor contaminated waste water from, for example showers and the laundry.  

 

Figure 22: The flow chart diagram of a HAM system, like it can be found on M/S 

Mariella  

Also the drain water that comes from the humidifier as an excess residue is collected 

in the catch tank. In case of the considered ship M/S Mariella the needed amount of 

water is about 60 tons [55] on one way from Helsinki via Mariehamn to Stockholm. 

The distance amounts to circa 250 nautical miles which are about 463 kilometres. 

Before the sea water reaches the catch tank it has to pass filters for separating algaes 

and other raw contaminants. Beyond an additive can be fed into the water to prevent 

the build-up of scale and other deposits. Through a heat exchanger, which is marked 

in figure 22 in red, the water is then pumped into the humidifier. This heat exchanger 

operates with the heat of the exhaust gases or with the engines cooling water. The 
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reason for using a heat exchanger is to preheat the sea water to achieve a higher NOx 

reduction level. Without the preheating, NOx emissions of 4,5 
 

   
 can be expected, 

with the preheating even less than 3,5 
 

   
 are possible by information from 

MAN.[56] Therefore the water is preheated to a temperature about 80 °C.[57] In the 

humidifier the water is sprayed into the hot airflow. According to Pounder’s marine 

diesel engines and gas turbines (2009) a temperature of 200 °C in the humidifier and 

an airflow velocity of 75 
 

 
 can be assumed. Small water particles, in the size of a few 

micrometres precipitate the immediate evaporation and best possible mixing with the 

air. The result of the process is saturated air with a moisture content of 60 
 

         
 [6] 

in case of CASS. By quoting the contained amount of water the unit grams or 

kilogram water per kilogram dry air is the standard. This figure is indicated in the 

literature with the letter X and can be found under the term ‘water load’. [58] The 

state of maximum saturated air is reached if the air contains its maximum amount of 

water on the specific temperature and pressure. Expressed with the relative humidity it 

is 100 per cent. If the saturation will exceeds the 100 per cent, the excess water will 

condense into water droplets. So the relative humidity of the charge air by leaving the 

humidifier is about 98 per cent. As a general rule the air can contain more moisture 

the higher the air temperature is. Therefore the air which is heated through 

compression is quite applicable. This reaction is represented in figure 23, where it is 

shown that the addition of heat is more profitable than the air in an adiabatic state. It 

can be also seen that a charge air temperature about 70 °C is required to attain this 

high saturated state. Normally the charge air is tempered about 40 °C to 50 °C. 

Possible sources of heat for the charge air preheating are the engine coolant and 

exhaust gases that are lead into the charge air. 
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Figure 23: NOx emissions with and without additional heating of the charge air  

During the humidification two main reactions can be determined. On the one hand an 

increase of the specific heat capacity of the air-water-mixture. This enables the charge 

air to contain a higher amount of heat. On the other hand, water will replace the 

oxygen in the air what leads to lower peak temperatures in the combustion chamber. 

Mainly is the feasible amount of injected water dependent on the pressure and 

temperature of the charge air. So a higher air temperature has a favourable effect on 

the humidification, an increasing pressure in turn not. Through a rising pressure, the 

intake air can contain smaller amounts of water what is adverse to the process. 

The cooling of the hot compressed charge air by water has the side benefit of almost 

obviating the need for a charge air cooler (CAC). Without a humidification system the 

CAC would regulate i.e. lower the temperature of the compressed charge air. So the 

humidification system replaces the CAC. In the interest of safety a CAC can be 

bypassed for the case of a failure in the HAM system. To cool the charge air is 

essential, because through a higher temperature the density of the air will decrease. 

Consequently the air will contain less oxygen. As a result the engine has a minor 

power and a greater thermal load. However, the water will evaporate in the humidifier 

with the help of so-called surface enlarging elements. The humidifier on board of the 

M/S Mariella is made up of three surface enlarging elements, so it has three injection 

stages where the preheated water is sprayed into the air flow. Through the evaporation 

process the sea water will be distilled. Consequently no harmful substances like salt or 

other pollutants of the sea water can get into the cylinders of the engine. Another 
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protection device for the engine is the, from MAN named, high-performance mist 

catcher. This mist catcher is situated at the end of the humidifier and, like its name 

hints at, separates the water droplets out of the saturated charge air. For the reason that 

the humidification system operates with higher excess water, the water that does not 

evaporate is led back into the catch tank. Generally it is considered that the amount of 

injected water is three times the fuel consumption. So the water to fuel ratio is 3. This 

generalization can be particularized by the field experience on-board, where a water to 

fuel ratio of 2,5 [3] was determined. Accorded is this to the amount of water that is 

effectively injected into the cylinders. It does not mirror the whole used amount of 

water. To guarantee a continuous low salt and mineral content in the circle a ‘bleed-

off’ system is used. Furthermore a safety drain to the sea is available, so the water can 

be bled off anytime. According to Lövblad and Fridell [55] 95 per cent of the water is 

used in the cycle again and 5 per cent are bled off. Another important adjustment that 

must be considered by installing a HAM system is the adaption of the turbocharger. 

Through the usage of such a humidification system the temperature of the exhaust 

gases will decrease. This in contrast leads to an increase of the density, what enables 

the air to absorb more water vapour. Consequently the turbocharger has a higher 

intake and must be adjusted to handle the additional mass. For this reason an adaption 

in the form of raising the speed is necessary.   

6.2.4 Reduction potential 

Generally differs the potential of saved NOx emissions on the manufacturer’s 

declarations. Normally a reduction rate of up to 70 – 80 per cent is assumed. 

According to Wärtsilä, an abatement of 50 % to approximately 7 
 

   
 is achievable 

with its humidification system ‘WetPac’.[48] MAN indicates a reduction rate of 

65 per cent if the charge air is preheated and 40 per cent if it is not. As detected on 

M/S Mariella the NOx emissions before the installation were 16,70 
 

   
. The latest 

measurements however revealed NOx emissions of 3,76 
 

   
 at a load of 73 per cent, 

9,55 
 

   
 at a load of 70 per cent and 4,36 

 

   
 respectively 5,93 

 

   
 at a load of 

80 per cent. The measurements were done from 07. to 09.03.2013 by an engineer and 

technician from Kymenlaakson ammattikorkeakoulu University of Applied Sciences. 

Consequently a reduction rate of 42,80 up to 77,50 per cent was realized. On the 

Norwegian fishing vessel Kvannoy that uses the HAM system as well, 61,3 per cent 
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NOx emissions could be saved . So they had emissions of 9,3 
 

   
 before the 

installation and 3,6 
 

   
 after.[59] For two stroke engines the SAM system from MAN 

was invented. By general information of MAN may a reduction rate of 30 – 40 % be 

realistic.[55]  

6.2.5 Pros and cons  

Due to the previous chapter it can be seen that the HAM system is a quite convenient 

and efficient method to reduce NOx emissions. In the following lines the advantages 

and disadvantages of this technology should be summarized.  

The HAM system distinguishes itself positively through the fact that it can be 

operated with simple sea water. Consequently are the operational costs far smaller 

compared to other NOx reduction methods that need fresh, distilled or water with 

specific additives or substances like urea. Further is the HAM system a relatively light 

and compact system and 15 to 30 tons lighter than SCR for instance. No huge storage 

tanks for fresh water or additives are needed. The only requirement is the physical 

closeness of the system to the engine, to avoid heat losses on the one hand and to 

prevent condensation of the saturated air on the other hand. Moreover the HAM 

system can be installed vertically or horizontally and due to the fact that it replaces the 

CAC, it can be integrated as a part of the engine. A further benefit is the far less lube 

oil consumption. This is caused by the much cleaner piston crowns. In general is the 

engine cleaner and a turbocharger cleaning is redundant. Also the TBO has increased 

to 12 to 15 per cent what affect the maintenance costs in a positive way. Another 

advantage of the engine is the minor thermal load that can affect the lifetime of engine 

components positively. Furthermore, no significant increase in the fuel oil 

consumption could be noticed either on the M/S Kvannoy or on the M/S Mariella. In 

fact decreased the fuel consumption on the M/S Mariella about five per cent [39]. 

Also there are no requirements for low-sulphur fuels.     
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7 COST-EFFICIENCY CALCULATIONS 

To find reliable values for the calculation of the cost-effectiveness of DWI and HAM 

systems, several publications were consulted, like for instance from the Service 

Contract on Ship Emissions: Assignment, Abatement and Market-based Instruments, 

Task 2b – NOx Abatement. Furthermore brochures and product data sheets of the 

manufacturers Wärtsilä and MAN served as a basis. Also attempts to get into contact 

with the ship owners and suppliers of the engines and technologies were made, but 

ended without any great achievements. But some information from manufacturers and 

other experts could be gained with the help of Jouni-Juhani Häkkinen. He is one 

partner of the BSR Innoship project and acts as an adviser and customer of this thesis. 

One of those given information is the trend history of a vessel’s operation, like it is 

shown in figure 24. It is an example of the ship M/S MISIDA. The higher amplitudes 

indicate the operation on the open sea at about 80 – 85 per cent load. In the following 

calculations the assumption is a load of 80 per cent at open sea operation for the half 

of the ship running hours. The other half of the time is assumed with operation at 

11 percent load for maneuvering in harbours. This corresponds with the given speed 

of 2 knots for M/S Mariella in the harbour.  

  

Figure 24: Trend history M/S MISIDA  

All cost-efficiency calculations were made for three options – new build, retrofitted 

and a specific ship. In case of HAM it is the M/S Mariella and for DWI M/S MISIDA. 
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The procedure started with the detailed consideration of the costs for the systems. First 

of all there is the CapEx that contains the costs for the technology itself with all the 

equipment, and also the costs for the installation. For both abatement measures the 

whole installation can be done during operation. As a consequence there are no 

downtime costs, because there is no additionally time for the ship at berth needed. As 

a second part there are running expenses. They include costs for maintenance and 

operation of the systems. Towards the cost calculations are the emission calculations. 

As a result on the one hand the reduced NOx emissions and on the other hand the cost 

for one abated ton of NOx were received. At last the net present value and the dynamic 

payback period were determined with an assumed interest rate of five per cent. The 

main purpose of the thesis is the occurring costs per saved ton NOx. The financial 

mathematical calculations only support the effectiveness.  

All of the estimations were made with the best efforts, but to compensate possible 

upcoming defaults a tolerance of 10 per cent was chosen.  

7.1 DWI 

For DWI calculations the observed ship is the M/S MISIDA a Ro-Ro Ship, which is 

shown in figure 25.  

 

Figure 25: M/S MISIDA 

It has two main engines of the type Wärtsilä 6L46F which are 4-stroke diesel engines, 

each with a power output of 7.500 kW and 600 RPM. For the fuel injection these 

medium speed engines are equipped with a common rail injection system. 

Additionally all main engines are equipped with DWI since the ship was built in the 
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year 2007. When the emission measurements for this report were taken the ship was 

running with heavy fuel oil and a sulphur content of 0,89 per cent. 

The amount of water used onboard was also measured. For 57 per cent load it was 

1.000 l/h and at 78 per cent load it was 1.300 l/h. These values are for both engines. 

With the fuel consumption [9] it is possible to calculate the used w/f-ratio. In 

appendix 5 the complete calculations can be seen. The result is 1.021 litres fuel per 

hour for the higher load, which is close to the typical operation load. Compared to the 

water consumption, it gives a w/f-ratio of 0,64. This value is well within the scope. 

The typical range of water to fuel is 0,4 – 0,7, so the used ratio gives hope for great 

reductions. On the contrary are first of all the costs for the DWI system. 

7.1.1 CapEx 

According to different sources for the capital costs a value of 20,00 €/kW was used for 

the calculation of this case study. It can be found greatly varying values, even from 

the manufacturer of the DWI system Wärtsilä. Starting from 10 – 15 €/kW,[47, 38] 

until a range of 40 – 60 €/kW are usual statements.  

Considering the equipment price for the installation of DWI components like a low-

pressure pump (3,5 bar) and a high pressure pump (200 - 400 bar) need to be installed. 

Like mentioned earlier further parts are injection valves and a flow fuse. Both have to 

be built into each cylinder, as well as cables, pipelines and the control unit for each 

cylinder. All this parts cost 234.00 € and have a lifespan of 25 years. The required 

injector on the contrary, has a relatively short lifespan of four years.[3] This is based 

on the exposed position of the injector in the cylinder where it has to endure high 

pressures and temperatures. At the same time a major part of the whole installation 

price belongs to this device. About 22 per cent of the capital costs need to be spent for 

the injectors in each cylinder. In fact that were 66.000 € for the considered vessel. It 

follows a sum of 300.000 € for the investment (shown in appendix 7). In this case 

study the CapEx include also the costs for the water treatment system. 
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7.1.2 Operational expenditure 

The operation costs of this system include the costs for fresh water. In case of M/S 

MISIDA there is a freshwater production on board. The water treatment system is 

powered by energy generated by the ship. Due to this the ship has increased fuel 

consumption. Owing to the fact that the size of the water treatment system installed on 

the ship is unknown, the amount of additionally required fuel was calculated for both 

available sizes. The values are based on the Wärtsilä product information [61] and 

result in 3.443 tons respectively 6.057 tons extra fuel per year. In appendix 8 are the 

detailed figures to this calculation. The DWI technology has low operation costs of 

about 2.634 €/a (appendix 9). A further factor which needs to be considered is the 

maintenance. Even if it is possible to reduce the expenses for maintenance due to less 

thermal stress, there is some effort necessary for trouble-free operation. In this case 

study the maintenance costs include the expenses for replacing the water injectors 

every fourth year. This leads to annual maintenance costs of about 48.022 €. In sum 

there are costs of 50.665,80 € for maintenance and operation of the system. This fits 

well with the statement of 2 $/MWh from the Project Clean North Sea Shipping.[49] 

7.1.3 Emission reduction calculation 

To calculate the costs per abated ton NOx of the technology all the above mentioned 

costs need to be considered and converted to annual costs. In the case of the ship M/S 

MISIDA the emissions without water injection are also low. Therefor there are only 

82,46 tons of abated NOx per year, as it can be seen in table 2. The main engines are 

new and they emit 9,27 g/kWh in normal operation. According to the low reduction 

the costs per abated ton NOx are 928,08 €. In comparison, usual stated emissions 

range between 14-16 g/kWh.[62] Typical values for ships with DWI injection are 4 -

 6 g/kWh for MDO or 5 – 7 g/kWh for operation on HFO.[53] With these values a 

reduction of 314,59 tons NOx per year are feasible. As a consequence for a ship with 

DWI installed from the beginning the costs per abated ton NOx are 243,25 € (shown in 

table 3 Emission calculation case 2).  
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Table 2: Emission calculation case 1 

 

Retrofitting is more complicated for DWI. If the injector is integrated in the injection 

system this system needs to be modified. Though it is more expensive if the nozzle is 

separate from the injection system, then the cylinder head needs to be changed. In any 

case retrofitting is assumed to be 25 per cent more expensive than installing DWI on 

new ships. This was taken into account with costs of 292.500 € for the equipment and 

installation (details appendix 10 Cost calculation DWI – Case 2). Like it can be seen 

in table 3 the final figure is with 250,69 €/t slightly higher than for a new build ship, 

although below the value for M/S MISIDA.  

without DWI 9,27               g/kWh

with DWI  6,31 - 7,69 g/kWh

Ø with DWI 6,78               g/kWh

abated Nox 2,49               g/kWh

annual 

performed work 33.114,90    MWh/a

abated NOx 82,46             t/a

costs 76.525,80    €/a

abated NOx 82,46             t/a

costs per abated 

ton NOx 

928,08          €/t

tolerance

+10% 1.020,89       €/t

-10% 835,27          €/t

Emission calculation Case 1

case study M/S MISIDA

new build
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Table 3: Emission calculation case 2 

 

7.1.4 Financial mathematic calculations 

As mentioned before the expenses for maintenance can be reduced about 25 per cent 

due to the DWI installation. The reason for this is the lower combustion temperature 

which implies less stress for the cylinder walls, piston and other parts. This leads to a 

saving of 16.007€/a. The table with the exact values is shown in appendix 13.  

The ship M/S MISIDA and the rest of the fleet of the Godby Shipping company 

mainly carry forest products, like paper and pulp, from Finland to European countries. 

In fact the ship berths regularly in countries like Spain, Poland and Russia. It is not 

often calling ports with differentiated fee and due systems. For this reason there are no 

possibilities to save money by reduced fees.  

Finally, with the lower expenses for maintenance as earnings, the net present value for 

the DWI system on the M/S MISIDA could be calculated as it is shown in table 4. For 

this particular case study it is not economical to install this abatement technology. The 

annual revenues are negative due to the small earnings.  

without DWI             14-16 g/kWh

Ø without DWI 15,00                   g/kWh

with DWI 5,50                     g/kWh

abated NOx 9,50                     g/kWh

annual 

performed work 33.114,90          MWh/a

abated NOx 314,59                t/a

costs 76.525,80              €/a costs 78.865,80  €/a

Abated NOX 314,59                    t/a Abated NOX 314,59        t/a

costs per abated 

ton NOx 243,25              €/t

costs per abated 

ton NOx 250,69     €/t

tolerance tolerance

+10% 267,58                    €/t +10% 275,76        €/t

-10% 218,93                    €/t -10% 225,62        €/t

Emission calculation Case 2

new build retrofit
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Table 4: Net present value DWI 

 

7.2 HAM 

For determining the cost-efficiency of a HAM system the data of the passenger ferry 

M/S Mariella that is operating for the Finnish company Viking Line, is served as a 

basis. A passenger ferry is defined as a ship that can carry more than 120 passengers 

and has additionally one or more decks for cargo. Further calculations are for 

installing during the new build and the retrofit in general. 

  

Figure 26: The passenger ferry M/S Mariella from Viking Line  

The M/S Mariella has space for around 2200 passengers and 540 vehicles and can be 

seen above in figure 26. It covers the distance from Helsinki to Stockholm every day 

in turn with the M/S Gabriella. For the propulsion the ferry is equipped with four main 

engines (ME) and two auxiliary engines (AM). The used MEs are of the type Wärtsilä 

S.E.M.T Pielstick 12 PC2-6.2 with a power of 5.750 kW each at 500 RPM. These 

engines were all retrofitted by a HAM system. Primarily in the year 1999, where for a 

start only one engine was retrofitted. After two years, in 2001, also the three other 

Interest 5% 1,05

Capex 300.000,00 -     €

Expenses 50.665,80        €/a

Earnings 16.007,25        €/a

Revenue 34.658,55 -       €/a

Years 25                       

Present value factor 14,09                 

Net present value 1.166.463,75 - €

Net present value DWI
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MEs were equipped with the HAM system. Until March 2013 the system had, 

depending on the ME, from 113.092 up to 132.887 working hours.  

7.2.1 Capex 

The assumed CaPex include the costs for the needed equipment and for the 

installation. To the needed equipment belong mainly the humidifier, the catch tank 

and the heat exchanger for preheating the water. Further components are the pumps, 

filters, pipes and valves, as well as the control and monitoring system. The advantage 

of the system is that the most expensive components like the humidifier, the heat 

exchanger, the catch tank and the circulation pump are only needed once. It is not 

necessary to install these devices for each engine, only once for all. To enable the 

comparability the lifespan for the three options is assumed with 15 years. 

For new build ships the CaPex can be assumed with 2.530.000 €. If the CaPex are 

stated per kW, the average would be 110 
 

  
, referred to C. Hugi.[47] Will the system 

be installed afterwards, the CaPex will increase. Fortunately it is possible to install the 

system while the engines are in daily operation, but for such an action an immense 

planning effort is necessary. This is mirrored in the higher capital costs compared to 

the costs of a system on a new build ship. So the capital costs for a retrofitted system 

are 2.760.000 €, which results an average of  20 
 

  
.[47] In case of the retrofitted 

system on the M/S Mariella the capital costs amounted to 500.000 € for one engine. 

Consequently 2.000.000 € were necessary to install the system for all four main 

engines. Per installed kW the CaPex is about 87 
 

  
. The first installation was done 

while the ship was in its daily operation and the three following during its usual dry 

dock time.  

7.2.2 Operational expenditure 

For the calculations the expenditure for the operation and maintenance were 

summarized. According to the given values from M/S Mariella an expenditure of 

4000 € per engine was assumed. As a result it was calculated that  6.000 € per ship 

were necessary every year. The operational expenditure is in comparison to DWI for 
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instance significantly low. This is due to the ability of the HAM system to use sea 

water and grey water, which would be otherwise just drained off.  

7.2.3 Emission reduction calculation  

Due to the latest measurements on the M/S Mariella it is possible to calculate the 

actual costs for the emissions. At a load of 80 per cent emission values of 4,36 
 

   
 up 

to 5,93 
 

   
 were determined. The revealed average is then 5,15 

 

   
. Compared is this 

value with the emission value for an identically constructed engine that is operated 

without a HAM system. This is the reference value 16,70 
 

   
. With the help of the 

difference and the annual performed work of the engines it was possible to calculate 

the abated NOx amount in tons per year, which are 528,46 
 

 
. The value is valid for the 

whole ship M/S Mariella with its four MEs.  

Table 5: Emission calculation of the HAM system 

 

Further could the value for the amount of abated NOx per year be adapted to 

determine the annual costs per abated ton NOx for the three cases ‘new’, ‘retrofit’ and 

‘M/S Mariella’.  

without HAM g/kWh

with HAM g/kWh

Ø with HAM g/kWh

abated NOx g/kWh

MWh/a

abated NOx t/a

costs 184.666,67  €/a costs 200.000,00  €/a costs 149.333,33  €/a

abated NOx 528,46           t/a abated NOx 528,46           t/a abated NOx 528,46           t/a

costs per 

abated ton 

NOx 

349,44 €/t

costs per 

abated ton 

NOx 

378,46 €/t

costs per 

abated ton 

NOx 

282,58 €/t

tolerance tolerance tolerance

+10% 384,39 €/t +10% 416,31 €/t +10% 310,84 €/t

-10% 314,50 €/t -10% 340,61 €/t -10% 254,32 €/t

Emission calculation 
16,70                                                                                                                  

                                                                                                   5,93 - 4,36

5,15                                                                                                                    

11,56                                                                                                                  

528,46                                                                                                               

45.734,20                                                                                    annual performed work

case study M/S Mariellaretrofitnew
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7.2.4 Financial mathematic calculations 

The financial mathematical calculations like the net present value and the payback 

period are shown exemplarily on the basis of the M/S Mariella. 

To get earnings, the saved money from the port fees and the decreased fuel 

consumption were considered. The concerned ports are Mariehamn and Stockholm, 

because they have on emission based port fees. For Mariehamn a discount of 4,8 per 

cent of the basic fee is determined. This was figured out with the help of a linear scale 

and the two limits: One per cent discount with 10 
 

   
 emissions and eight per cent 

discount with 1 
 

   
.[44]  For the port fees in Stockholm the table in appendix 4 must 

be consulted.[43] Secondly, the decreased fuel consumption about five per cent can be 

noticed as a the main saving. Details can be looked up in appendix 19. The expenses 

are the annual expenditures for operation and maintenance and the lifespan is, like it is 

mentioned previously, 15 years.  

As it can be seen in table 6 and table 7 the HAM system with a net present value of 

653.139 € and a payback period of  0 years is worth its purchase. 

Table 6: Calculation of the net present value 

 

 

Interest 5% 1,05

Capex 2.000.000,00 -               €

Expenses 16.000,00                      €/a

Earnings 271.613,79                   €/a

Revenue 255.613,79                   €/a

Years 15                                    

Present value factor 10,38                              

Net present value 653.183,71                   €

Net present value HAM
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Table 7: Calculation of the payback period 

 

 

  

Capex 2.000.000,00  

Revenues 255.613,79      

Interest 5% 1,05            

Life span 15                       

t 10,17                 

Payback period HAM
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8 CONCLUSION 

After having a look at facts about air pollution and the rising demand of freight traffic 

by sea it is clear why there are many attempts to abate marine emissions.  

The measures to abate NOx emissions, observed in this report are capable to reduce 

these pollutants of about 50 to 70 per cent. This value is quite high but not enough to 

meet the IMO Tier III limits. As it is shown in figure 27 these wet methods achieve 

better reduction rates than in-engine modifications like optimized fuel equipment or 

the Miller cycle. They were options in the past to meet IMO Tier I limits (blue part). 

At the present they are still an important part as they are a foundation for the recent 

methods. Therefor the wet methods are able to meet IMO Tier II restrictions (orange 

part). Technologies belonging to the aftertreatment measures are more likely to meet 

the challenging restrictions starting from 2016. SCR is capable to reduce NOx 

emissions below 80 per cent compared to Tier I limits.[60]  

 

Figure 27: Different NOX reduction technologies meeting IMO TIERs 

A strategy to reduce the emissions in the range of the new limits with the wet methods 

is to combine it with the aftertreatment measures. This provides for example the 

possibility to use cheaper fuel (with high sulphur content) by installing the HAM 

technology combined with an additional aftertreatment system. So low emission levels 

can be reached. In this way it can be realised to combine advantages of different 

abatement technologies.  
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The water based measures DWI and HAM have some crucial advantages, but also 

drawbacks. Both techniques involve low operation costs compared to other abatement 

methods, as for instance there are no additives necessary. Furthermore they have a 

positive effect on the whole engine, like a cleaner piston in case of HAM and less 

thermal stress caused by DWI. That leads to lower maintenance efforts. On the other 

hand there are technical drawbacks like the risk of corrosion, technical feasibility or 

the need of changes – for DWI for the installation and for HAM the adjustment of the 

turbocharger speed. Just as it is for all the abatement technologies, they have to face 

also financially drawbacks. For instance the HAM system has high investment costs 

and the DWI system may cause increased fuel consumption. In the part regarding the 

financial calculations the cost-efficiency of the HAM system could be proven. 

Opposed is the situation of the DWI installation. In these precise case studies the 

cruise ferry could benefit from good earnings based on the daily calls in the port of 

Stockholm. With the emission reduction of 15 g/kWh to 5,9 g/kWh there is a 

noticeable difference in the fee system for M/S Mariella. Together with the decreased 

fuel consumption great revenue was estimated. The distinct less frequent calls of M/S 

MISIDA in Swedish ports give no possibility for equivalent revenues for the 

investment. The ship owner still has to spend the money for the installation because 

the vessel is operating in the Baltic Sea. This leads to a further drawback, the lack of 

appropriate incentives. The ship owners have to invest a lot for installing abatement 

measures to meet the new regulations but except for some countries and ports there 

are now financial compensations. Similarly the existing discounts for fees and port 

dues are scarcely perceptible as it can be seen in the calculations for M/S Mariella.  

Aside from these calculations the cost estimations per abated ton of NOx are assertive. 

In table 8 the different results from the two water-based measures are shown.  
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Table 8: Costs per abated ton NOx 

 

In summary, it can be stated that there is still a huge potential in abating emissions 

from the maritime traffic, but with these technologies a step in the right direction was 

made.  

 

costs per abated ton NOx 

928,08 €/t

case study M/S MISIDA new retrofit

new retrofitcase study M/S Mariella

282,58 €/t

243,25 €/t 250,69 €/t

349,44 €/t 378,46 €/t
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Cargo ship 

Cargo ferry -> < 120 
passenger 

Bulk carriers -> 
Loose material (e.g. 

coal) 

Container ship -> 
Cargo in container 

Tankers -> Liquid 
cargo 

Ro-Ro ->  Wheeled 
cargo (e.g. cars) 

Reefers -> goods 
need to be cooled 

(e.g. perishable 
food) 

smaller vessels -> 
e.g. fishing  or work 
vessels and boats 

Appendix 1. Different ship types 
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Appendix 2. The ambient conditions during the measurements on the M/S Mariella 

 

Appendix 3. NOx limits for IMO Tier I - III 

 

Appendix 4. Swedish fairway dues – Dues per gross tonnage 

 

ME 1 ME 2 ME 3 ME 4

Temperature  [°C] 31,0            31,0            31,0            31,0            

Pressure        [kPa] 101,7         101,7         101,7         101,7         

Humidity           [%] 31,0            31,0            31,0            31,0            

Validity for engines 

installed on or after…

Speed (n) 

[rpm]

Maximum allowed 

NOX emissions 

[g/kWh]

< 130 17

130 ≤ n < 2.000

n ≥ 2.000 9,8

< 130 14,4

130 ≤ n < 2.000

n ≥ 2.000 7,7

< 130 3,4

130 ≤ n < 2.000

n ≥ 2.000 2

NOx limits for IMO Tier I-III

Tier I
1st January 2000 to 1st 

January 2011

 1st January 2011

1st January 2016 when 

operating in ECAs

Tier II

Tier III

          

           

         

NOX emissions 

[g/kWh]

Due in SEK/GT

Passenger vessels

Due in SEK/GT

Cruising vessels

Due in SEK/GT

other vessels 

(e.g. oil tanker)

 0 - 0,5 -                             -                           -                          

 0,51 - 1,00 0,15                          0,03                        0,25                       

 1,01 - 2,00 0,40                          0,08                        0,61                       

 2,01 - 3,00 0,63                          0,16                        0,77                       

 3,01 - 4,00 0,77                          0,24                        0,93                       

 4,01 - 5,00 0,91                          0,32                        1,09                       

 5,01 - 6,00 1,05                          0,40                        1,25                       

 6,01 - 7,00 1,19                          0,48                        1,41                       

 7,01 - 8,00 1,33                          0,56                        1,57                       

 8,01 - 9,00 1,47                          0,64                        1,73                       

 9,01 - 10,00 1,61                          0,72                        1,89                       

 >10,01 1,80                          0,80                        2,05                       

Swedish dues per gross tonnage

Fairway dues with NOX reduction
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Appendix 5. Water/fuel ratio calculation DWI 

 

  

per engine: per engine:

installed power 7.500,00  kW installed power 7.500,00     kW

load 0,57           load 0,78             

operation power 4.275,00  kW operation power 5.850,00     kW

fuel consumption 171,00      g/kWh fuel consumption 171,00         g/kWh

731,03      kg/h 1.000,35     kg/h

density of fuel 980,00      kg/m³ density of fuel 980,00         kg/m³

fuel amount 0,75           m³/h fuel amount 1,02             m³/h

745,94      l/h 1.020,77     l/h

fuel volume 3.619,32  m³/a fuel volume 4.952,75     m³/a

Per ship: Per ship:

fuel volume 7.238,64  m³/a fuel volume 9.905,51     m³/a

water amount 500,00      l/h water amount 650,00         l/h

fuel amount 745,94      l/h fuel amount 1.020,77     l/h

w/f-ratio 0,67       w/f-ratio 0,64         

Ø running hours MEs 24.259      h

Years of operation 5                 a

running hours per a 4.852        h/a

w/f-ratio M/S MISIDA
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Appendix 6. Cost calculation DWI – Case 1 

 

Appendix 7. CaPex DWI – Case 1 

 

  

CapEx:

injector 66.000,00     €

lifespan 4                     a

16.500,00     €/a

equipment & 

installation 234.000,00  €

lifespan 25                   a

9.360,00       €/a

∑ CapEx 300.000,00  €

∑ annual costs 25.860,00     €/a

Operation & 

Maintenance costs 50.665,80     €/a

∑ annual costs 76.525,80     €/a

tolerance

+10% 84.178,38     €/a

-10% 68.873,22     €/a

new build - M/S MISIDA

Cost calculation

chosen 20,00             €/kW

installed power 15.000,00     kW

CapEx 300.000,00  €

injector 66.000,00     €

equipment 234.000,00  €

CapEx
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Appendix 8. Additional fuel for water treatment 

 

 

Appendix 9. OpEx DWI – Case 1 

 

installed power 4,15           kW installed power 7,30             kW

fuel consumption 171,00      g/kWh fuel consumption 171,00        g/kWh

0,71           kg/h 1,25             kg/h

density of fuel 980,00      kg/m³ density of HFO 980,00        kg/m³

fuel amount 0,001        m³/h fuel amount 0,001           m³/h

0,72           l/h 1,27             l/h

Ø running hours MEs 4.852,00  h/a Ø running hours MEs 4.852,00     h/a

Fuel volume 3,51           m³/a Fuel volume 6,18             m³/a

Fuel mass 3.443,22  t/a Fuel mass 6.056,75     t/a

fuel price 543,45      €/t fuel price 543,45        €/t

costs 1.909,40  €/a costs 3.358,71     €/a

2.634,05              €/acosts for water treatment

Additional fuel for water treatment

Costs for water treatment

small installation big installation

annual performed work:

Ø running hours 24.259,00     h

years of operation 5                     a

running hours 4.852,00       h/a

with 80% load: 12,00             MW

hours sea operation 2.426,00       h/a

29.112,00     MWh/a

with 11% load: 1,65               MW

hours harbour operation 2.426,00       h/a

4.002,90       MWh/a

∑ performed work 33.114,90     MWh/a

1,53               €/MWh

O&M costs 50.665,80     €/a

new build - M/S MISIDA

Operation & maintenance
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Appendix 10. Cost calculation DWI – Case 2 

 

 

Appendix 11. CaPex DWI – Case 2 

 

  

CapEx: CapEx:

injector 66.000,00     € injector 66.000,00     €

lifespan 4                     a lifespan 4                     a

16.500,00     €/a 16.500,00     €/a

equipment & 

installation 234.000,00  €

equipment & 

installation 292.500,00  €

lifespan 25                   a lifespan 25                   a

9.360,00       €/a 11.700,00     €/a

∑ CapEx 300.000,00  € ∑ CapEx 358.500,00  €

∑ annual costs 25.860,00     €/a ∑ annual costs 28.200,00     €/a

Operation & 

Maintenance costs 50.665,80     €/a

Operation & 

Maintenance costs 50.665,80     €/a

∑ annual costs 76.525,80     €/a ∑ annual costs 78.865,80     €/a

tolerance tolerance

+10% 84.178,38     €/a +10% 86.752,38     €/a

-10% 68.873,22     €/a -10% 70.979,22     €/a

Cost calculation
retrofitnew build

20,00             €/kW 20,00             €/kW

installed power 15.000,00     kW installed power 15.000,00     kW

CapEx 300.000,00  € CapEx 358.500,00  €

injector 66.000,00     € injector 66.000,00     €

equipment 234.000,00  € equipment 292.500,00  €

CapEx - new build CapEx - retrofit

new build retrofit
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Appendix 12. OpEx DWI – Case 2 

 

Appendix 13. Savings maintenance 

 

 

Appendix 14. Earnings DWI 

 

 

annual performed work:

Ø running hours 24.259,00  h

years of operation 5                   a

running hours 4.852,00     h/a

with 80% load: 12,00           MW

hours sea operation 2.426,00     h/a

29.112,00  MWh/a

with 11% load: 1,65             MW

hours harbour operation 2.426,00     h/a

4.002,90     MWh/a

∑ performed work 33.114,90  MWh/a

1,53 €/MWh

O&M costs 50.665,80  €/a

Operation & maintenance

O&M 50.655,80             €/a

operation costs 2.634,05               €/a

maintenance with DWI 48.021,75             €/a

maintenance before 64.029,00             €/a

saving 16.007,25             €/a

Savings maintenance

Savings from maintenance 16.007,25                        €/a

16.007,25                        €/a

Earnings DWI
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Appendix 15. Cost calculation HAM 

 

CapEx 2.530.000,00       € CapEx 2.760.000,00  € CapEx 2.000.000,00  €

lifespan 15                           a lifespan 15                       a lifespan 15                       a

168.666,67           €/a 184.000,00      €/a 133.333,33      €/a

CapEx per KW 

installed 110,00                   €/kW

CapEx per KW 

installed 120,00              €/kW

CapEx per KW 

installed 86,96                 €/kW

Operation & 

Maintenance costs 16.000,00             €/a

Operation & 

Maintenance costs 16.000,00        €/a

Operation & 

Maintenance costs 16.000,00        €/a

∑ annual costs 184.666,67           €/a ∑ annual costs 200.000,00      €/a ∑ annual costs 149.333,33      €/a

tolerance tolerance tolerance

+10% 203.133,33           €/a +10% 220.000,00      €/a +10% 164.266,67      €/a

-10% 166.200,00           €/a -10% 180.000,00      €/a -10% 134.400,00      €/a

new retrofit case study M/S Mariella

Cost calculation
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Appendix 16. CaPex HAM 

 

Appendix 17. Annual performed work of all four engines on M/S Mariella 

 

  

new retrofit

   range 90 - 130 €/kW  110 - 130 €/kW

   average 110                         €/kW 120                                €/kW

   installed power 23.000                   kW 23.000                          kW

2.530.000             € 2.760.000                    €

CapEx

Ø running hours 122.365,75           h

time of operation 28 a

Ø running hours 

per year
                 4.370,21   h/a

80 % load 18,40                     MW

hours sea operation 2.185,10               h/a

40.205,89             MWh/a

11 % load 2,53                        MW

hours harbour operation 2.185,10               h/a

5.528,31               MWh/a

Σ performed work 45.734,20             MWh/a

Annual performed work
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Appendix 18. Savings from dues 

 

  

basic fee = 5,79*(Length over all)+0,011*NT

basic fee 1.277,39 €     

discount 4,80%

with HAM: 1.216,07      € 425.625,35  €/a

without HAM: 1.277,39      € 447.085,45  €/a

Savings 61,31            € 21.460,10     €/a

with HAM: per call per year

Passenger 5,15g/kWh 1,05               SEK/GT max. 18 times

39.690,00    SEK

37.800          GT

0,1163€ = 1SEK (31.05.13) 4.615,95      € 83.087,05     €/a

without HAM: 1,08               SEK/GT

40.824,00    SEK

4.747,83      € 85.460,96     €/a

Savings 131,88          €/a 2.373,92       €/a

Savings from dues

per call per year

max. 350 times

Port fee Mariehamn

Port fee Stockholm



 

 

XI 

 

Appendix 19. Savings from the decreased fuel consumption HAM 

 

 

Per engine:

Installed power 5.750,00              kW 5.750,00      kW

Load 0,80                      0,11              

Operation power 4.600,00              kW 632,50          kW

Fuel consumption 200,00                  g/kWh 195,00          g/kWh

920,00                  kg/h 123,34          kg/h

Density of fuel                    980,00   kg/m³            980,00   kg/m³

Fuel amount                         0,94   m³/h                 0,13   m³/h

938,78                  l/h 125,85          l/h

Running hours per a 2.185                    h/a 2.185            h/a

Per engine:

Fuel volume 2.051,22              m³/a 274,99          m³/a

Fuel mass 2.010,20              t/a 269,49          t/a

Per ship:

Fuel volume 8.204,90              m³/a 1.099,97      m³/a

Fuel mass 8.040,80              t/a 1.077,97      t/a

Ø running hours MEs 122.366               h

Years of operation 28                          a

Running hours per a 4.370                    h/a

 M/S Mariella

Savings from fuel

Fuel mass 2.279,69              t/a

Consumption reduction 5%

113,98                  t/a

Fuel price 543,45                  €/t

Savings 61.944,94            €/a

Fuel mass 9.118,77              t/a

Consumption reduction 5%

455,94                  t/a

Fuel price 543,45 €/t

Savings 247.779,77         €/a

Saved fuel per ship

Saved fuel per engine
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Appendix 20. Earnings HAM 

 

Appendix 21. Fuel price 

 

Savings Mariehamn 21.460,10    €/a

Savings Stockholm 2.373,92      €/a

Savings from fuel 247.779,77  €/a

271.613,79  €/a

Earnings HAM


