

3D-SOUND PROGRAMMING WITH MICROSOFT

DIRECTX
Surround sound in practice

Thesis of the University of Applied Sciences

Degree programme in Business Information Technology

Visamäki Fall 2013

Ville Niskanen

Mr. Ville Niskanen

 ABSTRACT

Unit Visamäki

Name of degree programme Business Information Technology

Option System development

Author Ville Niskanen Year 2013-11-28

Subject of Bachelor’s thesis 3D-sound programming with Microsoft Di-

rectX - Surround sound in practice.

ABSTRACT

The thesis work done consists of computer application that plays various

3D-sound effects. The application has been realized with the main applica-

tion and the actual sound effects have been implemented in the form of ex-

traneous plug-in files. Rough implementation of the produced program

structure has been described in this thesis document essay part. As the

subject of the thesis has been an individual research project there have

been no work life relations.

The objectives of the thesis have been quite simple targeting, as can be

presumed based on foregoing, in programming application that plays vari-

ous 3D-sound effects, and furthermore creating mathematical algorithms

to implement 3D-sound effects.

The knowledge basis, based on the fact that Microsoft DirectX-program-

ming environment, as well as likely all Microsoft-programming compo-

nents, is well-documented, and on the actual Microsoft DirectX-program-

ming documentation found from the www, and furthermore on the materi-

al found from the web covering the subject of digital signal processing.

The actual programming skills basis has been attained by studying several

programming courses including UOAS-course DirectX-programming and

by individual studying of programming.

Actual programming work of the Thesis done have been done in Win-

dows-platform using Microsoft Visual Studio-programming environment,

DirectX SDK programming components and programming with Visual

Basic.NET-programming language.

As a conclusion, completed research and programming project has shown

that Microsoft DirectX and DirectX DirectSound programming suits ex-

cellently fine for 3D-sound and 3D-sound effects programming.

Keywords 3D-Sound, Sound Effects, Microsoft DirectX DirectSound, Digital Sound

Processing, Mathematical algorithms

Pages 28 p.

T
h

is
 C

re
at

iv
e

C
o
m

m
o
n

s
C

C
0
 (

n
o

 r
ig

h
ts

 r
es

er
v

ed
)

li
ce

n
se

 a
g

re
em

en
t

ap
p

li
es

 t
o
 t

h
is

 T
h

es
is

 r
ep

o
rt

.

It
 d

o
es

 N
O

T
 a

p
p

ly
 t

o
 t

h
e

p
ro

g
ra

m
 a

n
d
 p

ro
g

ra
m

m
in

g
 c

o
d
e

m
ad

e
as

 a
 m

ai
n
 p

ar
t

o
f

th
e

T
h

es
is

.

S
ti

ll
 a

ll
 c

o
d

e
in

 t
h

is
 T

h
es

is
 r

ep
o

rt
 i

s
u
n

d
er

 t
h

e
C

re
at

iv
e

C
o
m

m
o
n

s
C

C
O

 l
ic

en
se

 a
g

re
em

en
t.

 TIIVISTELMÄ

TOIMIPISTE Visamäki

Koulutusohjelman nimi Tietojenkäsittely

Suuntautumisvaihtoehto Systeemityö

Tekijä Ville Niskanen Vuosi 2013

Työn nimi 3D-sound programming with Microsoft Di-

rectX - Surround sound in practice

TIIVISTELMÄ

Tehty opinnäytetyö käsittää tietokoneohjelman, joka soittaa 3D-ääniefek-

tejä. Ohjelma on toteutettu pääohjelman ja erillisten 3D-ääniefekti plug-in

-tiedostojen muodossa. Kuvaus ohjelmasta löytyy tästä opinnäytetyön tut-

kielmaosuudesta. Opinnäytetyö on itsenäinen tutkimus- ja ohjelmointi-

projekti, eikä sillä ole yhteyttä työelämään.

Kuten edellä olevasta voi käydä ilmi, opinnäytetyön tavoitteena on ollut

ohjelmoida 3D-ääniefektejä soittava ohjelma sekä luoda 3D-ääniefektejä

tuottavia matemaattisia alkoritmejä.

Tietoperustan opinnäytetyötyölle on luonut tosiasia, että Microsoft Di-

rectX–ohjelmointiympäristö, kuten yleensäkin kaikki Microsoftin ohjel-

mointikomponentit, on hyvin dokumentoitu sekä www-ympäristöstä löy-

tyvä digitaalista signaalin käsittelyä käsittelevä materiaali. Varsinainen oh-

jelmointiosaaminen perustuu ammattikouluopintoihin kuuluviin ohjel-

mointikursseihin, mukaan lukien DirectX-ohjelmointi kurssi, sekä itsenäi-

seen ohjelmointiopiskeluun.

Varsinainen opinnäytetyöhön lukeutuva ohjelmointityö on hoidettu Win-

dows-alustalla käyttäen Microsoft Visual Studio -ohjelmointiympäristöä,

DirectX SDK -ohjelmointikomponentteja ja Visual Basic.NET -ohjel-

mointikieltä.

Tehdyn tutkimus- ja ohjelmointityön perusteella voi todeta, että Microsoft

DirectX sekä DiredX DirectSound -ohjelmointi sopii erinomaisesti 3D-

äänen ja 3D-ääniefektien ohjelmointiin.

Avainsanat 3D-ääni, ääniefektit, Microsoft DirectX DirectSound, DSP, matemaattiset

algoritmit

Sivut 28 s.

T
äm

ä
C

re
at

iv
e

C
o

m
m

o
n

s
C

C
0

 (
k

ai
k
k
i

o
ik

eu
d
et

 m
y
ö
n

n
et

ää
n

)
li

se
n

ss
is

o
p

im
u

s
k

o
sk

ee
 t

ät
ä

o
p

in
n
äy

te
ty

ö
ra

p
o

rt
ti

a.

S
o

p
im

u
s

E
I

k
o

sk
e

o
p
in

n
äy

te
ty

ö
n

 v
ar

si
n
ai

st
a

o
h

je
lm

aa
 j

a
o
h

je
lm

ak
o
o

d
ia

.

T
äs

sä
 o

p
in

n
äy

te
ty

ö
ra

p
o

rt
is

sa
 o

le
v

a
k
o
o

d
i

o
n
 k

u
it

en
k

in
 C

re
at

iv
e

C
o

m
m

o
n

s
C

C
0

 l
is

en
ss

is
o
p
im

u
k

se
n
 a

la
is

ta
.

ACRONYMS AND VITAL CONCEPTS

3D Tree Dimensional, surrounding

A/D Analog to Digital (conversion)

API Application Programming Interface

D/A Digital to Analog (conversion)

DSP Digital Signal Processing, refers to process where

electrical signal is first converted into digital signal

(A/D conversion), then digital (signal) data is modi-

fied programmatically (by computer) and then digi-

tal (signal) data is converted back into analog signal

(D/A conversion)

LFO Low Frequency Oscillator

SDK Software Development Kit

WPF Windows Presentation Framework, set of APIs and

presentation methodologies for user interfaces

.NET large set of Microsoft Application Programming In-

terfaces with automatic / managed memory man-

agement for users of programming languages like

Visual Basic and C#

.NET-programming computer programming using .NET-APIs

3D-sound three-dimensional sound, surround sound

Analog sound effect sound effect created by electrical sound signal modi-

fication

Digital sound effect sound effect created by digital sound data modifica-

tion

DirectSound programming API for high-performance audio

Managed code program execution environment where (RAM-)

memory management is automated

Microsoft DirectX programming APIs for high-performance graphics

and audio

Plug-in programming application structure where application functionality

can be extended with additional file-components

Sampling rate how many digital values representing amplitude of

sound at certain moment are taken of the sound per

second

Sound card computer interface for electrical in / out sound signal

where analog signal is converted into digital (A / D)

and vice versa (D / A)

Surround sound usually vertical 3D-sound (or two-dimensional

sound)

Visual Basic programming language

CONTENTS

1 INTRODUCTION ... 1

2 MICROSOFT DIRECTX, DIRECTSOUND AND 3D-SOUND 2

2.1 Microsoft DirectX .. 2
2.2 Microsoft DirectX DirectSound and 3D-sound ... 2

3 DIGITAL SIGNAL PROSESSING, SOUND EFFECTS AND MATHEMATICS ... 3

3.1 Digital Signal Processing (DSP) .. 3
3.2 Sound effects .. 3
3.3 Sound data modification with mathematics ... 3
3.4 Mathematical time-variant algorithms equality in computer programming

code ... 4

4 DIRECTSOUND BASIC AND 3D-SOUND EFFECTS PROGRAMMING 5

4.1 Programming environment used in this work .. 5

4.2 Programming basic sound effects with DirectSound ... 5
4.2.1 Programming base flanger effect with DirectSound pre-build

flanger-effect ... 5

4.2.2 Programming base flanger effect with DirectSound and DSP

flanger-effect algorithm ... 7

4.3 Programming 3D-sound effects with DirectSound .. 8
4.3.1 Programming 3D-flanger effect with DirectSound and DSP flanger-

effect algorithms .. 9

4.3.2 Programming various 3D-sound effects with DirectSound and

mathematical algorithms.. 9

4.4 Domains of the sound characteristics and programming 3D-sound 10
4.4.1 Frequency domain .. 12

4.4.2 Sound color domain .. 15
4.4.3 Amplitude domain .. 16
4.4.4 Time domain ... 18
4.4.5 Space domain .. 20

5 RESULTS .. 22

5.1 Produced plug-in application structure .. 22
5.2 Produced 3D-sound effects .. 22
5.3 Fulfillments of the Thesis work objectives. ... 23
5.4 Possible future directions of the research and development of the subject 23

6 INFERENCES ... 25

6.1 Methods of 3D-sound effect positioning .. 25

6.2 Inferences of the 3D-sound in the consideration of art 25

7 LIST OF SOURCES .. 26

3D-sound programming with Microsoft DirectX

 1

1 INTRODUCTION

While the actual thesis work consists of programming (3D-) sound and

(3D-) sound effects, this Thesis report tries to answer the questions:

What are DirectX-sound programming objects and how to use those?

What are digital sound processing-mathematical algorithms and how to

implement those in computer programming? What kind of digital sound

processing characteristics are there in DirectSound-programming compo-

nents? How to implement 3D-sound-mathematical algorithms and what

kind of algorithms are those? 3D-sound, could that be art?

These questions are considered in the chapters starting with basic repre-

sentation of DirectX, DirectSound and DirectSound-programming, contin-

uing in relations of sound effects, digital signal processing and mathemat-

ics, which sets a good basis for understanding how to implement digital

(sound) data processing in DirectSound-programming at the digital sound

data sample-level. Furthermore this is a good premise for implementing

sound processing and sound effects in 3D-environment that is gone

through in chapter 4.3 - Programming 3D-sound effects with DirectSound.

Chapter 5 - Results - is rough representation of the produced plug-in pro-

gram structure and overview of produced 3D-sound effects and few

thoughts about them.

Finally, there is speculation concerning the value of 3D-sound as an art,

entertainment, etc.

3D-sound programming with Microsoft DirectX

 2

2 MICROSOFT DIRECTX, DIRECTSOUND AND 3D-SOUND

2.1 Microsoft DirectX

Microsoft DirectX was introduced in 1995 (Wikipedia 2013a). It is a col-

lection of application programming interfaces (API) targeting for high-

performance graphics and sound programming in windows platforms.

High-performance is attained by as close as possible programming code

communication with hardware. Main components of DirectX consist of

components for handling graphics, sound, input devices and network traf-

fic. Graphics and sound components contain APIs for 3D features. (Mi-

crosoft 2013a)

DirectX can be programmed with Microsoft C++- and .NET-Framework

so called managed-programming languages like Visual Basic.NET and

C#. I have no such a specific knowledge that I could say differences in

programming features between C++ and managed languages DirectX-

programming; at least DirectX for managed languages is fully featured Di-

rectX programming environment.

Microsoft .NET-Framework managed languages (managed referencing au-

tomated memory management) were introduced in 2002 (Wikipedia

2013b). At the same time Microsoft released DirectX-programming com-

ponents for .NET-managed languages (Wikipedia 2013a). Around of the

zeroes to tennies decade turn there were some kind of pause in DirectX

programming environment development, but as now in Windows 8 plat-

form DirectX has made nice comeback (Microsoft 2013b). Unfortunately,

there has been no possibility to find out if .dll-files used with managed Di-

rectX-programming on Windows 7 platform run on Windows 8 platform,

or if managed DirectX-programming can be done on Windows 8 platform.

Anyhow, if you want to develop Windows Store Apps, that most likely

run both on windows 8 and windows RT-platform, using DirectX, you

have to use C++-programming language (Microsoft 2013c; Microsoft

2013d).

2.2 Microsoft DirectX DirectSound and 3D-sound

Microsoft DirectX DirectSound has been the most efficient and usable en-

vironment for sound programming in Windows platform since it was re-

leased. It consists of components for sound device, sound data and wave-

formats, 3D-positioning of sound with multichannel sound cards, some

common pre-build sound modification effects (even pre-build 3D-reverb

effect) with adjustable parameters, and sound capturing. DirectSound

sound-buffers are implemented that way that it is very easy to modify

sound data at byte-, or let´s say, sample-level.

3D-sound programming with Microsoft DirectX

 3

3 DIGITAL SIGNAL PROSESSING, SOUND EFFECTS AND MAT-

HEMATICS

3.1 Digital Signal Processing (DSP)

Signal processing is about modifying a signal (data) into another form of

original signal. Analog signal is electrical signal, and analog signal pro-

cessing (ASP) consist of modifying this signal some kind mechanical-

static way e.g. with electronic component like resistors and transistors.

Whereas digital signal processing (DSP) consist of modifying (signal) data

programmatically by (computer) CPU (central processing unit). Digital

signal data in DSP can originate from analog to digital (A / D) signal con-

version process or it can be created programmatically.

3.2 Sound effects

Usually quoting term sound effect refers to sound that is modified with

somewhat of signal processing. In that way the sound effect can be created

by analog or digital signal processing. Anyhow, sound effect can be also

created by programmatically using some kind of mathematical algorithms.

An example of sound effect might be flanger-effect which originates to ef-

fect created with two tape machines playing same sound at same time with

little varying speeds, where the varying playing speed is carried out by

lightly touching and releasing the flanger of the other reel. So the sound

output of both reels is in out of synch by varying time spans. (Smith

2010a.)

3.3 Sound data modification with mathematics

A simple digital signal processing mathematical algorithm representing so

called feedforward comb filter is shown in picture 1.

𝒴(𝑛) = 𝒳(𝑛) + 𝒳(𝑛 ― 𝑀)

Picture 1. Feedforward Comb Filter mathematical representation. (Smith

2010b.)

This algorithm combines unmodified input signal (x(n)) and delayed input

(x(n - M)) signal into the output signal (y(n)). We can think that variable x

represents sound data and algorithm modifies that sound data.

DSP feedforward comb filter is base in creating common electronic music

flanger-effect with few additional parameters. At foregoing algorithm

symbol n represents time that is, as this algorithm applies to digital sound

data, index (or position) of the data sample in the sound data array. Sym-

bol M represents time the delayed signal is delayed, and in digital sound

3D-sound programming with Microsoft DirectX

 4

data, the length of delay in samples. If we write the algorithm with few

more parameters, we get an algorithm

𝒴(𝑛) = 𝒳(𝑛) + 𝐴𝒳[𝑛 ― (𝑀 + 𝑆)]

Picture 2. Mathematic algorithm to create flanger-effect.

where S represents time-varying (sample) shift of the delay and A repre-

sents amplitude (or volume) of the delayed signal (sample). To get time-

variance factor S we have to use another DSP algorithm (which, by the

way, are often called filters), the Low-Frequency Oscillator (LFO) algo-

rithm that can generate time-variant (or sample-variant) output with

known bounds e.g. -50 to 50. (Smith 2010a). So in this way we can modi-

fy digital sampled sound data with mathematics.

Furthermore, common digital signal processing and its algorithms are not

the only way to create sound effects with mathematics. All mathematical

methods and functions that can produce and modify arrays of numbers

(real number sets in mathematics) can be used to create digital sound and

sound effects. Quite a simple sample of this kind of digital sound produc-

ing is an algorithm that creates simple sine wave like in picture 3.

𝒳(𝑛) = sin(2𝜋ƒ˳𝑛)

Picture 3. Mathematic algorithm to create simple sine wave. (Lyons

2010).

3.4 Mathematical time-variant algorithms equality in computer programming code

A scientific mathematic notation can be quite exotic for a computer pro-

grammer who has no knowing of this subject. Time-variant algorithms are

expressed in computer languages with so called loops. For a long it has

been common notation for looping-code in programming to use for-next

loop. If we get algorithm in picture 3 and write equivalent code in Visual

Basic.NET-programming language we get code like in picture 4,

SamplesPerWave = SamplesPerSecond \ Frequency
For n = 1 To SamplesPerWave
x(n) = System.Math.Sin(2 * System.Math.PI * (n / SamplesPer-
Wave))
Next

Picture 4. Visual Basic.NET-program code for creating simple sine wave

sound data.

where SamplesPerSecond is same as sound sampling rate, while Sam-

plesPerWave is samples (x(n)) needed to get full wave of sine curve and is

calculated by dividing sampling rate with desired frequency.

3D-sound programming with Microsoft DirectX

 5

4 DIRECTSOUND BASIC AND 3D-SOUND EFFECTS PROGRAM-

MING

4.1 Programming environment used in this work

DirectSound testing and programming environment used in this work con-

sisted of

Microsoft Windows 7 Enterprise and Professional 64bit operating systems

Microsoft Visual Studio 2010 Ultimate programming environment

DirectX SDK (June 2010)

WPF- and Visual Basic.NET –programming tools

Computers with:

4 to 8 GB of RAM-memory

Dual core 2.8 GHz processors

5.1-channel DirectSound compatible sound card set on 4-channel mode

2-channel sound cards

Stereo headphones and 4.0 speaker configuration

4.2 Programming basic sound effects with DirectSound

Creating simple sound in DirectSound programming consist of creating

objects for

Microsoft.DirectX.DirectSound.Device
DirectSound.WaveFormat
DirectSound.BufferDescription
DirectSound.SecondaryBuffer
SoundDataBytes

where Device refers to actual computer sound card. Waveformat consist

characteristics for sound data playback like BitsPerSample and Samples-

PerSecond. BufferDescription defines characteristics of sound data buffer

like can buffer´s volume be controlled, is buffer played while program

window is minimized and can buffer´s position be adjusted in 3D-space.

SecondaryBuffer represents actual sound data that can be played via sound

card and speakers. (Microsoft 2013e) Still for better performance it is rea-

sonable to use SoundDataBytes data-array for sound data modifications

and then write that data at once into SecondaryBuffer.

4.2.1 Programming base flanger effect with DirectSound pre-build flanger-effect

Programming DirectSound flanger-effect consist of

1. Creating object

3D-sound programming with Microsoft DirectX

 6

Microsoft.DirectX.DirectSound.EffectDescription

2. Assigning effect-guid for EffectDescription

EffectDescription.GuidEffectClass =
Microsoft.DirectX.DirectSound.DSoundHelper.StandardFlangerGuid

3. Setting EffectDescription for SecondaryBuffer

SecondaryBuffer.SetEffects({EffectDescription})

4. Getting FlangerEffect object

DirectSound_FlangerEffect = SecondaryBuffer.GetEffects(0)

5. Getting EffectsFlanger object

DirectSound_EffectsFlanger =
DirectSound_FlangerEffect.AllParameters

6. Setting parameters / properties for EffectsFlanger object

With MDD_EffectsFlanger
 .Waveform = [value]
 .Frequency = [value]
 .Phase = [value]
 .Delay = [value]
 .Depth = [value]
 .WetDryMix = [value]
 .FeedBack = [value]
End With

7. Setting EffectsFlanger objects parameters to FlangerEffect object

DirectSound_FlangerEffect.AllParameters =
DirectSound_EffectsFlanger

at this point, as we play SecondaryBuffer that to EffectDescription was set

above at stage 3, we hear original SecondaryBuffer sound data modified

with flanger-effect.

3D-sound programming with Microsoft DirectX

 7

4.2.2 Programming base flanger effect with DirectSound and DSP flanger-effect algo-

rithm

In chapter 3.3 is mathematical algorithm for flanger-effect creation

𝒴(𝑛) = 𝒳(𝑛) + 𝐴𝒳[𝑛 ― (𝑀 + 𝑆)]

where, x is input value at time n, y is output value at time n, M is delay

time, S is low frequency oscillator (LFO) that here represents varying time

value, A is amplitude of flanger effect.

For creating programming code that represents this mathematical algo-

rithm we use

1. For-next loop that creates simple sine wave like in chapter 3.4., but this

time looping the whole sound buffer rather than just one wave of sine

curve.

Pi = System.Math.PI
' We can also use Zulu-constant in place of Pi-constant.
' Zulu-constant represents Pi-value with the accuracy of
' six decimals of modern calculated Pi (Wikipedia 2013c).
Zulu = 355 / 113
SamplesPerWave = SamplesPerSecond / SoundFrequency
For n = 1 To SoundDataBufferSampleCount
x(n) = System.Math.Sin(2 * Zulu * (n / SamplesPerWave))

2. Yes, there is no Next in the above code because we put the code equiva-

lent to the flanger-effect mathematical algorithm inside this loop. First we

check if sample (x(n)) is far enough, measured as sound data samples,

from the start of the sound data buffer so that we can get former sample

behind at the delay length in samples. We also have to add width or depth

of the low frequency oscillator varying time value to the delay length

needed to get former sample in data buffer (that here is same as array of

numeric values).

If n > DelayInSamples + DepthInSamples Then

3. If this is true we calculate the varying delay offset value (that was rep-

resented as S in the mathematical representation of the flanger-effect algo-

rithm) at the relation to current sample index (n) using low frequency os-

cillator which frequency is defined with FlangerSpeed parameter, that is,

how many cycles our flanger effect takes in a second.

3D-sound programming with Microsoft DirectX

 8

SamplesPerFlangerWave = SamplesPerSecond / FlangerSpeed
LFO_ValueInSamples = DepthInSamples *
System.Math.Sin(2 * Pi * (n / SamplesPerFlangerWave))

4. After that we can get the flangered sound data sample by adding the

LFO delay offset value (LFO_ValueInSamples) to the static; the static here

in for-next loop, flanger delay depth value (DelayInSamples) that gives us

the sample index of the former sample in the sound data buffer in relation

to the current sample index (n) and then multiply this former sample value

with the desired amplitude and add the result to the current sample at in-

dex n.

x(n) = x(n) + Amplitude *
 x(n - (DelayInSamples + LFO_ValueInSamples))

This is nearly the same as the mathematical representation of the flanger-

effect in picture 2.

5. Then we can close our loop and write the flangered sound data into

SecondaryBuffer-object and then play it.

End If
Next
SecondaryBuffer.Write(0, x, 0)

4.3 Programming 3D-sound effects with DirectSound

By using four-speaker configuration we can, in fact, adjust the sound only

in two-dimensional space without the up and down scope. However e.g.

four-speaker configuration can be considered as an environment for 3D-

sound with left to right and front to back factors just without up and down

dimension.

 By using eight-speaker configuration, where there would be one high-

speaker above each of the four-speakers, that now would become the low-

speakers, we would get a speaker configuration that would offer property

for adjusting the sound position in up-down dimension in addition to left-

right and front-back dimensions. In this eight speaker configuration the

speakers / channels would become FLL (front-left-low), FRL (front-right-

low), RLL (rear-left-low), RRL (rear-right-low), FLH (front-left-high),

FRH (front-right-high), RLH (rear-left-high) and RRH (rear-right-high).

In DirectSound programming, however, if the speaker configuration used

is four speakers, the sound position adjusting is still done by Verctor3, that

would be used also for other multi-speaker configurations, like if there

would be eight speakers in use.

3D-sound programming with Microsoft DirectX

 9

In continuation for chapter 4.2., managing 3D-sound with DirectSound is

quite straightforward in addition to creating base DirectSound sound. We

create objects for

Microsoft.DirectX.DirectSound.Buffer3D
Microsoft.DirectX.Vector3

then we wrap existing SecondaryBuffer into Buffer3D, and adjust Buff-

er3D´s position with Vector3 and its XYZ-properties. (Microsoft 2013f.)

4.3.1 Programming 3D-flanger effect with DirectSound and DSP flanger-effect algo-

rithms

The flanger-effect as a 3D-implementation can be programmed in Di-

rectSound by

1. Creating few SecondaryBuffer-objects

2. Writing flangered sound data to these buffers like in chapter 4.2.2. so

that the depth, width and speed of flanger-effect are different, in other

words, so that different flanger-effects are non-synchronized, but the

base frequency of sound is the same so that ears comprehend the sounds

as one certain sound.

3. Applying Buffer3D-objects to SecondaryBuffers

4. Adjusting position of 3D-buffers by Vector3

5. And then playing each SecondaryBuffer at the same time

4.3.2 Programming various 3D-sound effects with DirectSound and mathematical al-

gorithms

Random 3D notes.

This effect can be produced as follows

1. Creating four SecondaryBuffers

2. Creating System.Random-object (Microsoft 2011)

3. Creating loop and inside of loop

4. Getting random numbers for speaker and note pitch in the range of the

speaker count and desired note pitch

5. Creating sine wave equivalent to desired pitch and duration of the note

6. Playing created sine wave with the speaker returned by the random

number in the stage 4

7. Looping stages three to six desired times

Moving beat figures.

We can produce this effect like

1. Constructing four SecondaryBuffers with simple single one channel

(mono) drum beat sample wav-file (Microsoft 2013g)

2. Creating loop and inside of loop

3D-sound programming with Microsoft DirectX

 10

3. Setting the position of each of four SecondaryBuffers in a kind of ge-

ometry / symmetry in relation to each other and the former positions

(using Buffer3D-object and Vector3-structure)

4. Playing each SecondaryBuffer nearly at the same time in sequence with

a time span like 5 to 10 milliseconds between the playing start times (so

that the different sounds are to be distinguished)

5. Pausing Thread execution for a while e.g. for 100 milliseconds with

System.Threading.Thread.Sleep-method (Microsoft 2009a)

7. Looping stages three to five so many times that the moving beat figure

has been achieved

4.4 Domains of the sound characteristics and programming 3D-sound

We can find different characteristics domains on the sound. The most like-

ly found domains would be frequency, sound color, amplitude, time and

space domains.

Here I made a base testing application for testing these sound characteris-

tics with different variables. The user interface of this application can be

seen on picture 5.

Picture 5. User Interface of Sound characteristics domains testing appli-

cation.

Different sound domain properties are adjusted on a chain. Most likely or-

der for these sound domain modifications would be in order of appear-

ance:

 Frequency

 Sound color

 Amplitude

 Time

 Space

In this base testing application (that is likely to appear in a form of plugin

part for the main application of this thesis work) the base sound for testing

sound characteristics domains is defined with base sound frequency and

3D-sound programming with Microsoft DirectX

 11

amplitude. The base settings for sound characteristics domain testing are

seen on a picture 6.

Picture 6. Base settings for the sound characteristics testing application.

The application is made for four speaker configuration, that are marked

here as FL (Front Left), FR (Front right), RL (Real Left) and RR (Rear

Right). The sound is varied generally so that each sound characteristic

domain have also the positional dimension (so the sound generated by the

application is 3D / surround sound itself).

The sound waves of each speaker of the ten seconds sound sample at the

half way of the sound with the length of 40 milliseconds, after the sound is

modified through the domains chain, sample by sample in each domain, is

seen on the picture 7.

3D-sound programming with Microsoft DirectX

 12

Picture 7. 40 milliseconds part of the sound waves modified through a

chain of sound characteristics domain modifications.

With ten seconds sound sample, put through five modification domain,

sample by sample, sample here meaning one sound data Int16 (Microsoft

2013h) value, makes the number of single sound data modification to ap-

pear with some ten million in count (44.100 samples per second x 10 sec-

onds x 4 speakers x 5 chain modifications). When a single data sample

modification contains multiple calculations, the number on operations ma-

de by computer comes up with some ten times more calculations in count.

This is not any performance threshold for a computer with frequency of

gigahertzes and even multiple processors performing this amount of sound

data modifications in tenths of seconds.

4.4.1 Frequency domain

Frequency is the most effective sound characteristic domain. Varying and

modifying frequency affects the most on the sound.

3D-sound programming with Microsoft DirectX

 13

In my testing application I used base sinusoidal wave with base frequency

for the base sound with adjustable length and amplitude. This is the base

step before the frequency domain modification.

Here in frequency domain modification I changed the frequency by sliding

it up and down. There were two adjustable separate slides, base slide slid-

ing frequency up and down in linear form and the smaller slide with si-

nusoidal or linear form that is added to the base frequency slide. The result

is sliding sound with smaller shivering.

The other modification for frequency is exponential wave frequency modi-

fication in a period of single wave or the whole sound. The Exponent can

be below or above value of one. In a whole sound period value below one

makes frequency dive on a low frequencies, and value above one makes

frequency fly from low to high. On a wave period, exponentiation does not

have influence for the frequency.

The user interface part of the settings for the frequency domain modifica-

tion of the testing application is seen in the picture 8.

Picture 8. Frequency modification domain settings for the testing applica-

tion.

3D-sound programming with Microsoft DirectX

 14

The frequency modified sound data waves for each of the four speakers in

a length of 40 milliseconds is see on the picture 9, where the base frequen-

cy is modified with the settings as on the picture 8.

Picture 9. Frequency domain modified sound data in length of 40 milli-

seconds.

3D-sound programming with Microsoft DirectX

 15

Picture 10. Researching frequency domain slide behavior.

4.4.2 Sound color domain

Sound color is the domain of the sound that makes sound to sound person-

al. Different musical instruments, like violin or accordion, have their own

personal sound colors. Musical chords also make up sound colors.

In my testing I modified sound color with simple tone added for base fre-

quency. I also used some wave form shaping with trigonometric functions.

And also modified sound by adding time shifted values of the base sound

into sound itself. Varying time shifting with the sound itself is the same

sound modification method like found in a flanger effect in the former

chapters. In my testing application the varying time shifting is done in a

linear manner in comparison to sinusoidal varying.

Sound color domain modification settings of the testing application are

seen on a picture 11. The turn ratio of the time shift addition is the ratio of

receding and reverting period of the time shift swinging. Smaller value

makes receding period faster and vice versa. With value zero there would

be no swinging, and with positive values time shift swinging would be in

the sound data samples ahead, as now the samples with negative values re-

side before the base sound samples. Base sound modified with sound color

domain modifications by settings as on picture 11 are seen on a picture 12.

3D-sound programming with Microsoft DirectX

 16

Picture 11. Settings for sound color domain modification of the testing ap-

plication.

Picture 12. Sound data in length of 40 milliseconds modified with sound

color domain modification.

4.4.3 Amplitude domain

Amplitude domain modification is quite straightforward, and is quite a

same like adjusting the volume of the sound in a music player.

In my testing application I adjusted amplitude of each speaker separately.

Amplitude varying of each speaker is done with floor amplitude and linear

amplitude varying between this floor amplitude and full amplitude with

specified number of the amplitude cycles in the period of the base sound.

There is also time variance between each speaker that makes amplitude

vary interlocked making the space property of the sound also to be pre-

sent.

3D-sound programming with Microsoft DirectX

 17

In the picture 13 there is a user interface part of the amplitude domain

modification of the testing application. In the picture 14 is seen the sound

wave of the base sound data modified by amplitude modification in a

length of 0.4 seconds.

Picture 13. Amplitude modification domain settings for the testing appli-

cation.

Picture 14. 0.4 seconds of the sound data modified by amplitude modifica-

tion.

3D-sound programming with Microsoft DirectX

 18

4.4.4 Time domain

Time domain of sound characteristic domains is where sound features like

echo and distance appear. In my testing application I tested echoing, and

base time shifting that makes up distance feel.

In the test application user interface, Echoing is explained with the term

Cross Time Shifting, and this is how echoing is made up on separate

speakers that is, playing the sound of the one speaker and replaying it on

other speaker after specific time period. The Multiplying echoing makes

echo to be added back on the source speaker and then again on the echoing

speaker and so on gradually fading. This multiplying echo method does

not seem to be quite valid, as it causes some amplifying effect on the be-

ginning of the echoing. But as my thesis is in general about learning the

digital sound processing, I am not a professional in the field of Digital Sig-

nal Processing.

The base time shifting of the testing application simply shifts (delays) the

whole single speakers sound data specified amount of time making up

some feel of space on a four speaker configuration. Term Delay is not

used here because sound data could also be advanced by shifting the ahead

sound data to be played at the current playing time.

In the picture 15 there is a user interface part of the time variance domain

modification of the testing application. Picture 16 shows the time variance

modified sound data with the length of 40 milliseconds (0.04 seconds). As

the base sound for each speaker is the same, the cross time shifting (ec-

hoing) with the specific time period causes the modified sound data to be

same at the period of this specified time period on the each speaker in rela-

tion to each other. That can be seen on a picture 16 where FL and RL, and

FR and RR speakers have the same sound wave data at the same position,

as the settings for the cross time shifting (echoing) have been 100 millise-

conds and base time shifting differences for these speakers have also been

100 milliseconds.

3D-sound programming with Microsoft DirectX

 19

Picture 15. Time variance domain settings for the testing application.

3D-sound programming with Microsoft DirectX

 20

Picture 16. 0.04 seconds of the sound data modified by time variance mod-

ification.

4.4.5 Space domain

Space domain of the sound characteristics domains represents the position

of the sound. In surround sound it is the position of the sound in front-

back (y-axel on Cartesian coordinates) and left-right (x-axel on Cartesian

coordinates) dimensions. Single mono sound can have exact position in

Cartesian xy-space (Wikipedia 2013d). The testing application explained

above produces one surround sound in four speakers. This four speaker

sound cannot exactly be moved on xy-space. To move it exactly on xy-

space the speakers would have to be moved physically. This four speaker

sound can still be moved with stereo-sound-like adjusting of the sound in

xy-dimensions in comparison to stereo sound x-dimension.

In xy-dimensional space the sound can practically be moved with algo-

rithms when using polar coordinates (Wikipedia 2013e). For example, to

move sound in flower-like path, we can use polar rose function like seen

on picture 17.

3D-sound programming with Microsoft DirectX

 21

𝑟 = cos(4θ)

Picture 17. Function for creating eight petals rose path (Wikipedia 2013f).

This rose function produces path like on picture 18.

Picture 18. Rose path on polar coordinates.

Unfortunately, as I worked for the subject of this chapter 4.4. for an extra

10 credits, the implementation of the last part of this chapter anyhow left

on its half way.

3D-sound programming with Microsoft DirectX

 22

5 RESULTS

5.1 Produced plug-in application structure

The program, produced in this thesis-work consists of main-application

written with Visual Basic.NET on Visual Studio 2010 Ultimate WPF-app-

lication template with .NET-framework version 3.5 (you cannot use newer

version of .NET-framework because those are not supported by managed

DirectX) and Plug-in effect .dll-files that are first programmed with same

prerequisites as main program in the form of WPF-application, that is then

adapted into Class Library-project type, where the WPF-User Control

item is added to project representing the UI and Visual Basic.NET code of

the .dll-effect plug-in file (Microsoft 2009b; Microsoft 2013i).

.dll-plug-in files are loaded into the main application with System.

Reflection.Assembly-class and the System.Appdomain.CreateInstanceFrom

AndUnwrap-method and then exposed in WPF-window item with System.

Windows.Controls.ContentControl.Content-property (Microsoft 2013j;

Microsoft 2013k; Microsoft 2013l).

In general, it is a good practice to set a separate Thread for the sound data

processing, for example to use System.ComponentModel.Background

Worker-class (Microsoft 2010), so that User Interface-thread does not get

blocked while sound data is processed.

5.2 Produced 3D-sound effects

Unfortunately, 15 credits, the volume earmarked for the UOAS Thesis,

have not been anywhere near enough to fulfill the qualifications set for the

Thesis work. Therefore, the results following the actual objective of the

Thesis work, to produce 3D-sound effects, have been quite low. Anyhow,

a few 3D-effects have been done and good basis for to continue the work

has been made.

Fortunately, I had an opportunity for working some extra 10 credits for my

Thesis. First 15 credits I worked on spring 2013 and the extra 10 points on

autumn 2013. The extra credits work is reported on chapter 4.4. "Domains

of the sound characteristics and programming 3D-sound". The extra 10

credits work contained studying and programming of different sound

characteristics - that were here frequency, sound color, amplitude, time,

and space - and making up User Interface for controlling different parame-

ters of those.

Random 3D notes

This effect plays quite short notes (approx. 40 milliseconds) with random-

ly set pitch sequentially on randomly set speaker (with a four-speaker con-

figuration). Effect sounds quite a techy.

3D-sound programming with Microsoft DirectX

 23

Moving beat figures

This effect rests on the question that single sound has direction and dis-

tance and as a human hears that sound, it is mapped on a (kind of) visual

space (Wikipedia 2013g; Smith et al. 2010). Therefore, when there are

multiple sounds at the same time they show up some kind of visual figures

at the human consciousness of the surroundings. In practice this effect

plays moving drum samples in somewhat of geometry and symmetry. This

sound effect-method can produce very techy beat patterns.

5.3 Fulfillments of the Thesis work objectives.

Objectives of the Thesis

The objectives set for the Thesis work - main application and sound effect

plug-in files, and studying and creating mathematical methods dealing

with 3D -sound and -effects - got reached in a fundamental level.

Programmed application is of good quality in a structure and useful for the

programming work further of the subject and in a general way a good

basic structure for any programming work.

Sound data producing and modifying methods and algorithms program-

med are useful in a fundamental way, and in a present form already pro-

duce some good quality sound and surround sound.

The questions of the work got answered on actual Thesis work and on this

Thesis report.

Own studying motives

In general, this Thesis was about studying programming in general and

studying programming of sound.

As in general, programming is learnt by reading the documentation of the

specific programming language and by actually doing programming. And

as so, some learning of programming with WPF / XAML / .NET, quite a

much of programming DirectX DirectSound, and fundamentals of pro-

gramming sound, got reached.

Working around a sound data at sample level gives a good learning point

for sound processing and producing, so has also been in the case of this

Thesis work.

5.4 Possible future directions of the research and development of the subject

Based on the sound characteristics domains research done here and devel-

oped further, different kind of base and 3D-sound effects could be devel-

oped.

Using eight speaker configuration, containing four lower and four upper

speakers, the y-dimension of the space could be used for sound effects.

3D-sound programming with Microsoft DirectX

 24

If the sound data buffer based positioning of the 3D-sound is in use, in

comparison to Vector3 based positioning, the sound data can be saved on

a disk in a form of sound file like e.g. .wav-file.

3D-sound programming with Microsoft DirectX

 25

6 INFERENCES

6.1 Methods of 3D-sound effect positioning

As in DirectSound programming, the position of sound can be controlled

with SecondaryBuffer´s Buffer3D-object and its Vector3-properties, or the

position can be controlled directly by programmatically adjusting the

sound data of each sound data buffer representing each separate speaker of

the surround sound speaker configuration. Controlling each sound data

buffer’s sound data programmatically in conjunction with each other gives

unlimited possibilities in producing 3D-sound and 3D-sound effects. This

is where mathematical algorithms stand in the front line. While controlling

3D-sound with simple three-dimensional vector is more a practical and

straightforward way of controlling a single sound position in 3D-space.

6.2 Inferences of the 3D-sound in the consideration of art

Sound as an art is most likely to be present as music. Although there are

differences in the definition of the music, we could say that music com-

prises of the rhythm, sound color (or timbre), pitch and harmony (Wikipe-

dia 2013h; Wikipedia 2013i; Wikipedia 2013j; Wikipedia 2013k; Wikipe-

dia 2013l). If we think of 3D-sound, this is where we work in new element

for music, that could be like a new dimension on the art of sound and mu-

sic.

3D-sound programming with Microsoft DirectX

 26

7 LIST OF SOURCES

Lyons, R. 2010. 3rd Edition. Understanding Digital Signal Processing.

Discrete sequences and systems. Referenced 24.1.2013.

http://www.amazon.com/

Understanding-Digital-Signal-Processing-Edition/dp/0137027419

Microsoft. 2009a. Thread.Sleep Method (Int32). Referenced 7.2.2013.

http://msdn.microsoft.com/en-us/library/d00bd51t(VS.90).aspx

Microsoft. 2009b. UserControl Class. Referenced 4.2.2013.

http://msdn.microsoft.com/en-us/library/

system.windows.controls.usercontrol(VS.90).aspx

Microsoft. 2010. BackgroundWorker Class. Referenced 7.2.2013.

http://msdn.microsoft.com/en-us/library/

system.componentmodel.backgroundworker(VS.90).aspx

Microsoft. 2011. Random Class. Referenced 7.2.2013.

http://msdn.microsoft.com/en-us/library/system.random(VS.90).aspx

Microsoft. 2013a. DirectX 9.0 for Managed Code. Referenced 24.1.2013.

http://msdn.microsoft.com/en-us/library/bb318658(VS.85).aspx

Microsoft. 2013b. MSDN Blogs. Where is the DirectX SDK? Referenced

3.2.2013.

http://blogs.msdn.com/b/chuckw/archive/2012/03/22/where-is-the-directx-

sdk.aspx

Microsoft. 2013c. Technologies for developing Windows Store games for

Windows (Windows Store apps). Referenced 3.2.2013.

http://msdn.microsoft.com/en-US/library/windows/apps/hh452780.asp

Microsoft. 2013d. Windows RT: Frequently asked questions. Referenced

3.2.2013.

http://windows.microsoft.com/en-US/windows/windows-rt-faq

Microsoft. 2013e. DirectX. DirectSound. Playing sounds (Managed Code).

Referenced 24.1.2013.

http://msdn.microsoft.com/en-us/library/ms804971.aspx

Microsoft. 2013f. DirectX. DirectSound. 3-D Sound (Managed Code). Re-

ferenced 24.1.2013.

http://msdn.microsoft.com/en-us/library/ms804990.aspx

Microsoft. 2013g. SecondaryBuffer.SecondaryBuffer(Stream,Device)

Constructor (Microsoft.DirectX.DirectSound). Referenced 7.2.2013.

http://msdn.microsoft.com/en-us/library/ms812402.aspx

3D-sound programming with Microsoft DirectX

 27

Microsoft. 2013h. Int16 Structure. Referenced 13.11.2013.

http://msdn.microsoft.com/en-us/library/system.int16(v=vs.100).aspx

Microsoft. 2013i. Class Library Template. Referenced 4.2.2013.

http://msdn.microsoft.com/en-us/library/3e6w3tyx(VS.100).aspx

Microsoft. 2013j. Assembly Class. Referenced 4.2.2013.

http://msdn.microsoft.com/en-us/library/

system.reflection.assembly(VS.90).aspx

Microsoft. 2013k. AppDomain.CreateInstanceFromAndUnwrap Method.

Referenced 4.2.2013.

http://msdn.microsoft.com/en-us/library/

system.appdomain.createinstancefromandunwrap(VS.90).aspx

Microsoft. 2013l. ContentControl.Content Property. Referenced 4.2.2013.

http://msdn.microsoft.com/en-us/library/

system.windows.controls.contentcontrol.content(VS.90).aspx

Smith, D. Davis, B. Niu, K. Healy, E. Bonilha, L. Fridriksson, J. Morgan,

P. Rorden, C. 2010. Spatial Attention Evokes Similar Activation Patterns

for Visual and Auditory Stimuli. U.S. National Institutes of Health's. Na-

tional Library of Medicine. National Center for Biotechnology Infor-

mation. Pub-Med Central. Referenced 9.2.2013.

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2846529/

Smith, J. 2010a. Physical Audio Signal Processing. Flanging. Referenced

24.1.2013.

https://ccrma.stanford.edu/~jos/pasp/Flanging.html

Smith, J. 2010b. Physical Audio Signal Processing. Feedforward Comb

Filters. Referenced 24.1.2013.

https://ccrma.stanford.edu/~jos/pasp/Feedforward_Comb_Filters.html

Wikipedia. 2013a. DirectX. Referenced 24.1.2013.

http://en.wikipedia.org/wiki/DirectX

Wikipedia. 2013b. .NET Framework. Referenced 3.2.2013.

http://en.wikipedia.org/wiki/.NET_Framework

Wikipedia. 2013c. Milü. Referenced 25.1.2013.

http://en.wikipedia.org/wiki/Milü

Wikipedia. 2013d. Cartesian coordinate system. Referenced 13.11.2013.

http://en.wikipedia.org/wiki/Cartesian_coordinate_system

Wikipedia. 2013e. Polar coordinate system. Referenced 13.11.2013.

http://en.wikipedia.org/wiki/Polar_coordinate_system

Wikipedia. 2013f. Rose (mathematics). Referenced 13.11.2013.

http://en.wikipedia.org/wiki/Rose_(mathematics)

3D-sound programming with Microsoft DirectX

 28

Wikipedia. 2013g. Auditory spatial attention. Referenced 9.2.2013.

http://en.wikipedia.org/wiki/Auditory_spatial_attention

Wikipedia. 2013h. Music. Referenced 9.2.2013.

http://en.wikipedia.org/wiki/Music

Wikipedia. 2013i. Rhythm. Referenced 9.2.2013.

http://en.wikipedia.org/wiki/Rhythm

Wikipedia. 2013j. Timbre. Referenced 9.2.2013.

http://en.wikipedia.org/wiki/Timbre

Wikipedia. 2013k. Pitch (music). Referenced 9.2.2013.

http://en.wikipedia.org/wiki/Pitch_(music)

Wikipedia. 2013l. Harmony. Referenced 9.2.2013.

http://en.wikipedia.org/wiki/Harmony

	3D-SOUND PROGRAMMING WITH MICROSOFT DIRECTX
	Thesis of the University of Applied Sciences
	Degree programme in Business Information Technology
	Visamäki Fall 2013
	Ville Niskanen
	Mr. Ville Niskanen

