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The purpose of this thesis was to calibrate a combined glass electrode to obtain accurate 
pH measurements in high ionic strength brines. pH measurements in high ionic strength 
brines are susceptible to significant errors when measured with standard calibrated elec-
trodes. The work done in this thesis was part of a larger project carried out at the Israel 
Institute of Technology, where a new single pass boron removal process is being devel-
oped and modeled. The goal for the calibration was to obtain consistent and accurate pH 
measurements to the Pitzer-model. pH measurements with the new calibration can be 
used as input in a coupled single pass boron removal model and are expected to in-
crease the accuracy of the boron removal model. 
 
Three sets of experiments were carried out to achieve the goals and test the Pitzer mod-
el’s ability to predict pH of high ionic strength solutions. The pH of borax and carbonate 
samples with varying amounts of synthetic seawater were measured with a Metrohm 
combined glass electrode. The measured pH values were compared to modelled values 
in PHREEQC-software. Several calibrations with varying amounts of NaCl added to 
standard buffers were also tested and compared to modelled values. The results showed 
that the difference between Pitzer modelled pH values and pH values measured with a 
standard calibrated electrode can be up to 0.1 pH unit, when measuring high ionic 
strength brines. The differences between other models and measured pH values were 
even larger. Adding NaCl to standard calibration buffers improved the pH measurement 
accuracy to the Pitzer model. A calibration with 0.75M NaCl added to standard phthalate, 
phosphate and carbonate buffers yielded accurate pH measurements of high ionic 
strength samples (up to 2.5 times the concentration of seawater). The accuracy reached 
was 0.03 pH unit to the Pitzer model. 
 
Accurate and consistent pH measurements to the Pitzer model can be obtained by a sim-
ple and practical calibration procedure. Nevertheless, further work would be needed be-
fore wide scale use of the procedure. Also limiting wide scale application are the experi-
mental parameters used in the Pitzer model. These experimental parameters do not have 
completely defined uncertainties; hence, a complete uncertainty statement for calibration 
standards and pH measurements cannot be given for the calibration tested in this thesis 
work. 

Keywords pH measurement, calibration, Pitzer model, seawater, brine, 
boron, boron removal, pH standard buffer, NIST, SIT, Minteq4 
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Tämän opinnäytetyön tarkoituksen oli kalibroida yhdistelmä elektrodi, jotta korkean koko-
naiskonsentraation omaavien suolaliuosten pH voitaisiin mitata tarkasti. pH mittaukset kor-
keissa kokonaiskonsentraation omaavissa suolaliuoksissa ovat alttiita virheille kun kalib-
roinissa käytetään standardi puskuriliuoksia. Tämän opinnäytetyön käytännön osuus oli 
osa suurempaa, Israel Institute of Technology:ssa tehtävää projektia. Projektissa kehite-
tään ja mallinetaan uutta käänteisosmoosiin perustuvaa boorin poisto menetelmää. Kehi-
tettävän kalibroinnin tavoitteena oli saavuttaa pH mittauksia, jotka ovat yhdenmukaisia Pit-
zer-mallin kanssa. Uuttaa kalibrointia voidaan käyttää boorin poisto prosessin syöttöveden 
tarkempaan pH määritykseen. Tarkemman pH mittauksen arvoidaan parantavan prosessin 
mallinnusta. 
 
Osana  tätä opinnäytetyötä, laboratoriossa testattiin NaCl:n lisäystä puskuriliuoksiin ja Pit-
zer mallin yleistä kykyä mallintaa korkean kokonaiskonsentraation omaavia liuoksia. Borax 
ja karbonaatti näytteiden pH mitattiin standardi kalibroidulla elektrodilla ja uudella kalibroin-
nilla. Näytteisiin oli lisätty eri määriä synteettistä merivettä. Tuloksia verrattiin PHREEQC-
ohjelmassa mallinnettuihin tuloksiin. Tulokset osoittivat, että standardi kalibroidun elektro-
din ja Pitzer mallin ero voi olla jopa 0.1 pH yksikköä kun pH mittauksia tehdään korkean 
kokonaiskonsentraation omaavissa suolaliuoksisa. Muiden testattujen mallien ero oli vielä 
suurempi. pH mittausten tarkkuutta pystyttiin parantamaan lisaäämällä NaCl:a kalibrointi 
liuoksiin. 0.75M NaCl konsentraatio kalibrointi liuoksissa parnasi pH mittausten tarkkuutta 
0.03 pH yksiköön kun mitattavien näytteiden suolapitoisuus vastasi 2.5 kertaa merivettä. 
 
Tässä opinnäytetyössä todennettiin, että Pitzer mallin kanssa yhdenmukaisia pH mittauksia 
voidaan saavuttaa yksinkertaisella ja käytännöllisellä kalibroinnilla. Kuitenkin lisää mittauk-
sia ja tutkimusta tarvitaan ennekuin menetelmää voidaan alkaa käyttää laajemmin. Estee-
nä menetelmän  laajemmalle käytölle on myös tällähetkellä Pitzer mallissa käytettävien 
parametrien epävarmuus. Pitzer mallin epävarmuustekijät vaikuttavat tässä työssä esitetyn 
kalibointri menetelmän ja pH mittausten epävarmuuteen, eikä täten kokonaista epävar-
muus laskelmaa voida suorittaa.  

Avainsanat pH, pH-mittaus, kalibrointi, Pitzer-malli, merivesi, suolaliuos, boo-
ri, boorin poisto, pH standardi, puskuriliuos, NIST, SIT, Minteq 4 
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1 Introduction 

The purpose of this research and thesis was to develop a new pH calibration for a po-

tentiometric pH measurement. The calibration should provide an accurate input for 

modelling of boron permeation in a single pass SWRO (seawater reverse osmosis) 

process. 

 

The guideline for boron concentration in drinking water, given by the World Health Or-

ganization (WHO) is 2.4 mg/l [1] and 1 mg/l given by the European Union (EU) [2]. With 

current SWRO technologies typical boron values of 0.9-1.3 mg/l in permeate can be 

reached [3]. Although the EU and WHO guidelines can be reached with current tech-

nologies, many times large desalination plants are given even more stringent require-

ments for boron removal. Boron is naturally occurring in seawater and an essential 

micronutrient for plants [4]. But typical values for boron (0.9-1.3 mg/l) in SWRO perme-

ate can be toxic to agricultural plants and render desalinated seawater useless for irri-

gation purposes [3]. For these reasons, there is likely to remain a future need for low 

boron concentration water to meet irrigation needs and legislative requirements [3].  

 
Several methods for achieving low boron concentration water from SWRO exist. A 

new, more competitive single pass removal of boron utilizing low-energy SWRO mem-

branes has been proposed by Nir et al. in their article: “A novel approach for SWRO 

desalination plants operation, comprising single pass boron removal and reuse of CO2 

in the post treatment step” [3]. The method involves acid dosage to the feed water, 

eliminating carbonate species and potential for fouling. Once the feed water pH is low-

ered, it can be cost efficiently raised back up to basic (pH >9). In this pH range the pri-

mary species of boron is the borate ion (B(OH)4 
-). The borate ion is well rejected by 

conventional membranes. In the work of Nir et al., boron concentration of 0.17 mg/l in 

permeates was reached using the described method.  

 

pH is a common parameter measured in many fields of science and engineering includ-

ing the medical, environmental and industrial fields. The use of pH as a measurement 

can be problematic due to the varying conventions and definitions of pH. An incomplete 

understanding and use of the definition and scales of pH can lead to significant inaccu-

racies in measurement applications where high precision and accuracy is needed. 
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In the work of Nir and Lahav, “Coupling mass transport and chemical equilibrium mod-

els for improving the prediction of SWRO permeate boron concentrations, Desalination 

(2012)” [5], it has been suggested that pH measurements calibrated according to the 

seawater scale could yield pH values of >0.1 pH units lower than those compared to 

values obtained with calibrated dilute standard buffers. In this case, errors from pH 

measurement caused by incorrect use of the pH scale could lead to significant errors in 

the modelling of boron removal. The removal of boron strongly depends on the pH of 

feed water. For accurate modeling of boron removal, a reliable and accurate pH meas-

urement in high ionic strength brines is needed. 

 

The main inconsistencies in pH measurements rise from the convention of assigning 

pH values to buffers. The assigned pH values for buffers are obtained using the Bates-

Guggenheim convention and are only valid for dilute (<0.1 M) solutions [6, 11]. Also the 

assumption of liquid junction potentials to be constant when making measurements 

with electrodes containing a liquid junction can be a cause of significant error [6, 13]. 

However, a method based on the Pitzer virial equations, has been identified as having 

potential to be a more suitable model for high ionic strength solutions allowing assign-

ment of pH to high ionic strength buffers. The Pitzer approach takes into account ion 

interactions in a solution and thus overcomes the limitations of the Bates-Guggenheim 

convention [7, 2177]. 

 

Thus, the goal of this thesis project was to achieve a pH calibration method for SW and 

higher ionic strength solutions yielding pH measurements consistent with the Pitzer 

based chemical equilibrium model that is used in modeling of brine processes.  

 

Several methods for calibrating electrodes for use in SW exist but are relatively compli-

cated and based on a different pH scale, the hydrogen ion concentration scale. The 

benefit of the calibration procedure presented in this thesis project is that it is more 

consistent with the conventional understanding and scale of pH. It also provides the 

possibility to calibrate for measurements in solutions exceeding the ionic strength of 

SW, which to the writers’ knowledge has not been proposed or tested before.  
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2 pH Definition 

One way of understanding pH is as an indirect measure of the strength of an acid or 

base. The Bronsted concept of acids and bases defines an acid as a substance that 

has the ability to donate a proton to a species. Bases are defined as the opposite of 

acids. A base is a substance that has the ability to accept protons from other species. 

With this concept of acids and bases, the strength of acids and bases are measured by 

the tendency for proton donation or acceptance. In aqueous solutions the strength of 

acids and bases are measured relative to the conjugate acid-base system of H20. The 

autoprotolysis or self-ionization of pure water is Kw 1.00x10-14 dm2 mol-6 at 25 C giving 

an exact pH of 7 for neutrality. An acid dissolved in H20 will increase the concentration 

of H+ yielding pH<7. A base dissolved in H20 will increase the OH- concentration yield-

ing pH>7.  

 

pH is related to the concentration of the hydrogen ion and the acid dissociation con-

stant. The original definition of Sorensen 1909, see equation (1), relates pH to the neg-

ative logarithm of hydrogen ion concentration. This definition is only valid for infinitely 

dilute solutions [8, 98]. 

 

= [H ]     (1) 

 

 In higher ionic strength solutions and other non-ideal solutions, ions can participate in 

short and long distance interactions reducing the reactivity of the ions compared to 

actual concentrations. This is called the effective concentration or the activity on an ion. 

In ideal and infinitely dilute solutions the activity coefficient of the ion tends towards 1. 

This results in no difference between concentration and activity. Any deviations from 

ideal behavior will decrease the effective concentration or reduce the activity. A more 

generic and recommended operational definition for pH is given by the International 

Union of Pure and Applied Chemistry (IUPAC) [7] and the National Institute of Stand-

ards and Technology (NIST) [6]. The IUPAC definition relates pH to the negative loga-

rithm of the activity of the hydrogen ion see equation (2):  

 

= log( )     (2) 

 

Even though pH defined by the activity of the hydrogen ion is more generic and a more 

accurate model for non ideal solutions, the definition still remains problematic. Activity 
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of a single ion is not a directly thermodynamically measurable quantity [6, 3]. This rais-

es the need for a convention and scale for the measurement of pH. 

 

2.1 Operational pH Scale 

A convention for pH measurement is needed due to the notational definition of pH and 

inability to measure the activity of a single ion. The convention agrees upon a series of 

standard solutions and the method for assigning pH values to them. Calibrating the pH 

electrode with the standards allows for comparable pH measurements with a well de-

fined uncertainty. Two organizations maintaining and defining these standards are 

NIST (United States) and the German Institute for Standardization (DIN). 

2.2 pH measurement 

The most common method for pH measurement is the potentiometric method. Various 

other methods exist, but since the development of the hydrogen glass electrode, the 

potentiometric method has become the most common method due to practicality. The 

method gives good accuracy and is simple to use compared to other techniques. [6, 2] 

Standards with a known pH are needed when measuring the pH of an unknown solu-

tion using electrodes with liquid junctions. This is because the liquid junction of the 

electrode cannot be measured. The calculation of pH from the EMF of a cell with liquid 

junction potential is given below by equation (3):  

 

= log = ( )
/

    (3) [6] 

 

where E is the electromotive force (EMF) of the unknown solution, RT ln 10 /F the ideal 

Nernstian response, EpH a constant for the electrode used depending on temperature 

and pressure and Ej the liquid junction potential of the electrode. The term (EpH+Ej) is 

not measurable for an electrode but can be assumed to be constant for a given system 

[6, 2]. Assuming the term constant for a given electrode and similar measurement con-

ditions, the pH of an unknown solution can be calculated by making the measurement 

first in a solution with known pH. The equation for calculating pH of an unknown using 

a standard is given in equation (4), where (x) denotes the unknown solution and (s) the 

standard solution: 

 

( ) = ( ) +
/

    (4) [6] 
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If the standard differs significantly from the unknown solution, or if the Nernstian re-

sponse is not ideal, two standards that bracket the unknown sample should be used [6, 

2-3]. Equation (5) can then be used to calculate the pH of the unknown solution. In this 

equation, linearity is assumed between the two known standards: 

 

( ) = ( 1) + [ ( 2) ( 1)]  (5) [6] 

 

2.3 Assignment of pH to standard solutions 

Several methods for assigning pH values to standard solutions are available and de-

scribed by IUPAC and NIST. The methods are divided to primary and secondary meth-

ods based on the uncertainty of each method. Primary methods are completely under-

stood and described yielding a low uncertainty [7, 2189]. Typically the primary method 

measures the pH of a standard without reference to any other standard as is done with 

the Harned Cell. Secondary methods have larger uncertainties related to them resulting 

from the use of cells with liquid junction potentials that cannot be fully described. 

Standard solutions are also divided to primary and secondary. Primary standard solu-

tions are of the highest quality, and their pH value is assigned without reference to any 

other standard [7, 2190]. Secondary standards are of lower quality and values assigned 

to them are comparable to those of primary standards [7, 2190]. 

 

The assignment of pH to primary and secondary standards relies on the Debye-Hückel 

theory for obtaining the activity coefficient needed for calculating pH. The Debye- 

Hückel equation for activity coefficients, equation (6), has been experimentally proven 

to be a suitable estimate for electrolyte solutions up to 1M in ionic strength. [6, 5] In this 

equation,  is the activity coefficient, A and B are constants, z is the ionic charge, I is 

the ionic strength, å is the ionic size parameter, and b is an adjustable parameter: 

 

log /(1 + å ) +   (6) [6, 5] 

 

By applying the Debye-Hückel equation for the activity coefficient the pH of a primary 

standard can be fully defined with a Harned cell. The Harned cell does not have a liquid 

junction thus, it does not require the use of any other standard when determining the 

pH. The ionic strength of NIST standards do not exceed 0.1M. At ionic strengths as low 
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as this, the last term in the Debye-Hückel equation and the ionic size parameter be-

come insignificant. The Bates-Guggenheim convention utilizes this and recommends 

using 1.5 for terms B and å for solutions around 0.1M ionic strength. The Debye-Hückel 

equation is then reduced to equation (7): [6, 5]  

 

log /(1 + 1.5 )   (7) [6, 5] 

 

The uncertainty in pH when using the Bates-Guggenheim convention is less than 0.005 

pH unit. With this uncertainty the simplified Bates-Guggenheim convention can be used 

for the assignment of primary standards. [6, 5] 

 

In addition to using a Harned cell, pH can also be assigned to a standard when the acid 

dissociation constant is known. The equation still involves the activity coefficients but in 

ratios, which reduces uncertainties related to knowing the exact value of them. [6, 3-4] 

An extension of the Henderson-Hasselbach equation is represented below in equation 

(8):  

= + +    (8) [6, 4] 

 

Where  are the activity coefficient and m are the molarities of the undissociated acid 

and its conjugate base. 

 

2.4 Limitations of the pH scale 

Even with the pH scale and conventions, pH measurements are not completely without 

problems. Electrodes with liquid junctions require standards and the assumption of a 

constant liquid junction potential (LJP) between the standard and test solution to be 

able to make accurate measurements. In reality the assumption is not true for many 

applications causing significant errors in pH measurements. Measurements made in 

samples of acid rain or biological fluids with a combined glass electrode have been 

reported to have significant errors up to 0.5 pH unit [6, 7]. Due to these large errors, the 

liquid junction should not be considered constant when measuring unknown samples. 

 

The liquid junction is a junction between electrolytes of different composition [7, 2191]. 

In electrodes, it is a potential difference between the standard or sample and the filling 

solution. When sample and standard solutions differ significantly in composition, there 
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are errors in measurement caused by this difference [7, 2191]. This error is called the 

residual liquid junction potential (RLJP). The liquid junction is not a thermodynamically 

measurable variable. It cannot be fully defined, hence measurements made with an 

electrode with a LJP are considered secondary measurements by IUPAC and NIST. 

Secondary measurements have a larger uncertainty associated to them. Although the 

LJP is not measurable, it is known that it depends on variables such as temperature, 

concentration of salt bridge and filling solution, electrolytes used and the geometrical 

structure of the liquid junction [6, 7]. The LJP varies in time and periodical calibrations 

are needed to adjust the measurements. 

 

The other problem with the pH scale rises from the use of the Bates-Guggenheim con-

vention in assigning pH values to standards. The Bates-Guggenheim convention is 

valid only up to 0.1M ionic strength. Thus, there is currently no conventional way to 

assign pH to special calibration standards with higher ionic strength. The Debye-Hückel 

equation can be used up to 1M ionic strength, but the uncertainty of pH of the standard 

is increased to 0.02 pH unit. [6, 5-6] The more recent IUPAC paper form 2002, on pH 

measurement, identifies the Pitzer virial equation approach as a possible improvement 

over the Bates-Guggenheim convention for calculating activity coefficients. It is also 

suggested that some problems caused by LJP could also be overcome using the Pitzer 

approach. [7, 2177] 

 

The Pitzer ion interaction model is an extension of the Debye-Hückel equation. It utiliz-

es a virial equation approach where specific interactions for ions and solvents are tak-

en into account in a linear combination of parameters. The Pitzer approach is a more 

realistic model allowing calculations of activity coefficients for ions in any ionic strength 

[9]. The Pitzer approach is generally accepted in the scientific community as it agrees 

well with experimental data and overcomes problems with high ionic strength solutions. 

Nevertheless, it should be noted that some discrepancies have been pointed out with 

non existing uncertainties for Pitzer parameters in literature. The available data of 

Pitzer parameters in literature are also still insufficient, restricting the use of it in certain 

applications [10].   
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3 Single-pass SWRO boron removal process 

The new single pass boron removal process utilizes low energy SWRO membranes 

and CO2 stripping to achieve a cost effective way to attain low boron concentration wa-

ter. A process flow diagram of the process is presented below in Figure 1 [3]. 

 

 
Figure  1. Process flow diagram of the single pass Boron removal process [3] 

 

The process starts by lowering the feed water pH close to 4 with an addition of a strong 

acid.  At this pH the main carbonate species is CO2 (aq) Figure 2 [11]. The supersaturat-

ed CO2 is then removed in two degasifying stages. The first stage removes 20-30% of 

CO2 with a vacuum pump. The CO2 removed in the first degasifying step is used later 

in the process to lower the pH and dissolve CaCO3. The second degasifying step re-

moves the rest of the CO2, which is stripped to the atmosphere. The overall goal for 

CO2 removal for the two degasifying steps is 96%. With most of the buffer capacity of 

the feed water eliminated, the feed water pH can be cost efficiently raised to 9 or slight-

ly above. The aim of the pH raise is to drive the boric acid species to the borate ion 

which is well rejected by low energy SWRO membranes. While CaCO3 scaling is 

avoided by removing inorganic carbon from the feed water by acid dosage, other scal-

ing agents are avoided by keeping the raised pH within a narrow optimized range. The 

CO2 removed in the first degasifying stage is finally introduced back in to the permeate 

of the SWRO membrane. The CO2 lowers the permeate pH allowing CaCO3(s) to be 

dissolved at a reasonable rate in the final step of the process. [3, 276] 
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Figure  2. Carbonate system. H2CO3* = H2CO3 + CO2(aq), only a small fraction (0.3%) appears 

as the acid H2CO3 [11] 

4 Coupled Single Pass Boron Removal Model 

Modelling is an important tool for process optimization and decision making. Having an 

accurate model for a designed process allows for testing the process in varying condi-

tions and configurations. The results can be a valuable aid when making decisions for 

selecting the most-cost effective process and for operating the selected process. 

 

The purpose of this chapter is to give a brief overview of a new modelling approach 

proposed by Nir and Lahav. The new approach describes a coupled model for improv-

ing prediction of boron permeate concentrations in a single pass boron removal SWRO 

membrane processes. Enough detail is given on the new approach to enable under-

standing of the process and to justify the experimental work done in this thesis project. 

Detailed descriptions of the models and numerical procedures used in the new ap-

proach are out of the scope of this work.  

 

The new modelling approach combines traditional mass transfer models, the solution 

diffusion model and the polarization film layer model, with the Pitzer-based chemical 

equilibrium model in PHREEQC-software. The goal for the model was to be able to 

predict boron permeate concentrations with an uncertainty of 0.1 mg B /l. The 0.1 mg B 

/l in product water is a typical safety margin used in process design. [5] 

 

To be able to accurately model boron concentrations in the product water, the model 

needs to consider all chemical processes affecting boron speciation. These include 
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changes in pH, temperature, salinity and recovery ratios [5, 2]. As mentioned earlier, 

pH is an important factor effecting boron speciation and hence boron removal in the 

SWRO process. Previous modelling approaches of membrane processes as described 

by Nir and Lahav, [5] have not been able to take into account the changing pH through 

the membrane. Typically, the earlier approaches have assumed constant pH through 

the membrane, although in reality, as it is well known, it changes through the mem-

brane. 

 

With the new coupled approach it is possible to model feed water changes and espe-

cially the pH changes through the membrane. This yields a more comprehensive model 

for boron removal in the membrane process. In practise, the membrane is divided into 

n sections. For each section, the mass transfer is calculated with the RO model. Output 

from the RO model is inserted to PHREEQC-software, which calculates new chemical 

equilibrium data for the input of the next section. In this way the complex changes and 

reactions in SW through the membrane are better considered. [5] 

 

The results of experiments carried out in a pilot scale single pass SWRO process com-

pared to modelled values for boron permeation with the new approach and earlier ap-

proaches show a clear improvement of modelling accuracy with the new approach [5 , 

4-5]. In the conclusions of Nir and Lahav, it is noted that further improvements of simu-

lation predictions may be achieved by more accurate and consistent initial pH meas-

urements [5, 6]. The initial pH measurements for comparing the two modelling ap-

proaches were obtained with a NIST standard calibrated electrode [5, 4]. This leads to 

the experimental work covered in this thesis, where a new calibration for a combined 

glass electrode was developed to better suit the needs of making pH measurements in 

high ionic strength solutions. 

5 Experimental 

In this thesis project, three sets of experiments were conducted. The goal of the exper-

iments was to find a suitable pH calibration method for high ionic strength brines con-

sistent with the Pitzer-based chemical equilibrium model. The first set of experiments 

aimed to quantify the difference between pH measurements made with a NIST stand-

ard calibrated electrode and pH values modeled with PHREEQC-software. In the sec-

ond experimental set NaCl was added to NIST standard buffers to test if it would yield 

more precise pH measurements in high ionic strength brines. The objective was to find 

the ionic strength at which added NaCl would yield an accuracy of 0.03 pH unit to the 
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Pitzer model for measurements made in seawater and seawater brines. The final set of 

experiments was used to test the best NaCl calibration selected and the ability of the 

Pitzer model to predict acid-base reactions in seawater over the pH range from 4-10. 

5.1 Materials 

pH measurements were made using the Metrohm Aquatrode Plus (6.0257.600) com-

bined glass electrode with an integrated Pt 1000 temperature sensor. The sensor was 

connected to the Metrohm 780 pH meter with pH, temperature and potential measuring 

modes. The resolutions for measurements with the 780 pH meter were 0.001 pH units, 

0.1 C and 0.1 mV. 

 

Measurement conditions were kept constant at 25 C with a MRC BL-30 circulating 

bath. In addition, laboratory temperature was kept as constant as possible with a ther-

mostat set to 25 C. Samples were stirred with a Metrohm 728 magnetic stirrer at con-

stant speed. 

 

The Metrohm 775 Dosimat automatic titration device was used to transfer HCl to sam-

ples in the final set of experiments. The automatic titrator had a better accuracy than 

standard volumetric burettes. Increased accuracy was needed when working at low 

buffer capacity of test solutions. A slight difference in HCl volume caused a significant 

difference in the pH of the solution. 

 

Salts were weighed using an Ohaus Adventurer (AR2140) analytical balance with a 

resolution and standard deviation of 0.1 mg. Other equipment used in preparation of 

samples and standards included typical laboratory glassware and pipettes. 

 

Synthetic seawater was prepared according to the recipe in Table 1. The recipe is a 

typical composition of SW with salinity 35. Other SW strengths were calculated by mul-

tiplying the molar ratios. CaCl2 was not added to samples above 1xSW to avoid calci-

um precipitation. Synthetic SW was prepared on a volume basis as were all other solu-

tions. 

 

Deionized carbon free water was used in the preparation of SW stock solutions and all 

other calibration solutions, excluding phthalate, which is not sensitive to dissolved CO2. 

Carbon free water was prepared by boiling deionized water for a minimum of 10 

minutes. 
Table 1. Preparation of 1kg synthetic seawater (1xSW = Salinity 35) 
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Salt M 
g/mol 

Ratio 
mol/Kg 

0.1x 
SW [g] 

0.5x 
SW [g] 

1x  
SW [g] 

1.5x 
SW [g] 

2x  
SW [g] 

2.5x 
SW [g] 

3x  
SW [g] 

4x  
SW [g] 

5x  
SW [g] 

NaCl  
58.44 

 
0.42764 2.499 12.496 24.991 37.487 49.983 62.478 74.974 99.965 124.96 

Na2SO4  
142.04 

 
0.02927 0.416 2.079 4.158 6.236 8.315 10.394 12.473 16.630 20.788 

KCl  
74.55 

 
0.01058 0.079 0.394 0.789 1.183 1.578 1.972 2.366 3.155 3.944 

MgCl2+
6H20 

 
203.3 

 
0.05474 1.113 5.564 11.129 16.693 22.257 27.822 33.386 44.515 55.642 

CaCl2 
+2H20 

 
147.02 

 
0.01075 0.158 0.790 1.581 2.371 3.161 3.951 4.741 6.322 7.902 

 

Certified Merck secondary standard buffers phthalate, phosphate, borax and carbonate 

were used for calibration of the Metrohm electrode in the first set of experiments. In 

later experiments phthalate and phosphate were prepared from Loba Chemie and 

Sigma-Aldrich analytical grade chemicals. Analytical grade (not certified) Merck sodium 

carbonate and Biolab-Chemicals sodium bicarbonate were used in the preparation of 

samples and calibration standards in the last set of experiments. 

5.2 Experimental set 1 

The pH of two buffers in seawater solutions ranging from 0.1xSW to 5xSW strength 

were measured and compared to three models in PHREEQC-software. The buffers 

used were NIST secondary buffers carbonate and borax. The models used in 

PHREEQC-software were SIT, Minteq 4 and Pitzer. Three replicates were conducted 

for each buffer at 8 different seawater strengths. The seawater strengths selected were 

0, 0.1, 0.5, 1, 1.5, 2, 3, 4, and 5xSW. The Metrohm combined glass electrode was cali-

brated with NIST secondary standard buffers phthalate, phosphate and carbonate was 

used to make measurements. The calibration standards in this set of experiments were 

purchased from Merck. 

 

0.01M borax and 0.025M carbonate solutions were prepared according to NIST and 

Merck instructions on a volume basis. Merck certificates for calibration buffers and 

NIST recipe used for preparation of borax can be found in Appendices 1 and 2. Salts 

needed to prepare 500 ml of synthetic seawater of different SW strengths were 

weighed. All salts were dried in 60-100 C oven for a minimum of one hour and stored 

in a desiccator before weighing. Carbonate was dried in 250 C for a minimum of two 

hours and stored in a desiccator over CaCl2 according to Merck instructions. 
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Table 2. Calculated cumulative addition of salts to 500 ml of sample solution 

Salt 0.1xSW 
[g] 

0.5xSW 
[g] 

1xSW 
[g] 

1.5xSW 
[g] 

2xSW 
[g] 

3xSW 
 [g] 

4xSW  
[g] 

5xSW  
[g] 

NaCl 1.2496 4.9983 6.2478 6.2478 6.2478 12.4956 12.4956 12.4956 
Na2SO4 0.2079 0.8315 1.0394 1.0394 1.0394 2.0788 2.0788 2.0788 
KCl 0.0394 0.1577 0.1972 0.1972 0.1972 0.3944 0.3944 0.3944 
MgCl2 
+6H20 

0.5564 2.2257 2.7822 2.7822 2.7822 5.5643 5.5643 5.5643 

CaCl2 
+2H20 

0.0790 0.3161 0.3951 0.3951 0.3951 0.7902 0.7902 0.7902 

 

The weighed salts were added cumulatively to 500 ml of buffer and mixed with a mag-

netic stirrer for approximately 10 minutes or until all salts were dissolved. Calculated 

cumulative additions of salts are presented in Table 2. After each stepwise addition of 

salt and stabilization of solution to new SW strength, temperature, pH, and mV of the 

sample was recorded. Stirring speed was kept constant during recording of pH. First 2 

runs of borax measurements were carried out in 25 C room temperature. All Carbonate 

measurements and one set of borax measurements were conducted in a water bath 

kept at constant 25 C. The circulating water bath system was assembled to keep solu-

tion temperature more stable during measurements. 

5.3 Experimental set 2 

The pH of 0.025M carbonate and 0.1M borax samples with varying amounts of synthet-

ic seawater were measured with a Metrohm combined glass electrode. The electrode 

was calibrated with NIST secondary buffers: phthalate, phosphate and carbonate pre-

pared with varying amounts of NaCl. Each sample was measured with 5 different cali-

brations. The molar amounts of NaCl used for the calibrations were 0M, 0.25M, 0.5M, 

0.75M and 1M. pH values assigned to new calibrations were obtained by modelling the 

solutions in PHREEQC with the Pitzer model. Four replicate measurements were made 

with carbonate samples and three replicates with borax samples. Seawater strengths 

used for the samples were: 0, 0.5, 1, 1.5, 2 and 2.5 X SW. The last carbonate samples 

were prepared from a lower analytical grade carbonate to see if it could be used in fu-

ture experiments. 

 

Sample and calibration solutions were prepared from higher concentration stock solu-

tions to reduce weighing errors. Correct amounts of stock solutions were pipetted to 

100 ml volumetric flasks and filled to mark with decarbonized-deionized H2O. Table 3 

presents the stock solutions used and the amount pipetted to each calibration solution. 

Table 4 presents the preparation of samples from stock solutions. Calcium carbonate 

was not added to carbonate samples to avoid calcium carbonate precipitation. 
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Table 3. Preparation of calibration standards from stock solutions 

Calibration buffer 100 ml 0.2M Phtalate 
[ml] 

0.1M Phos-
phate [ml] 

0.1M Car-
bonate [ml] 

4M NaCl [ml] 

Phtalate/Phosphate/Carbonate 25 25 25 0 
0.25M NaCl 25 25 25 6.25 
0.5M NaCl 25 25 25 12.5 
0.75M NaCl 25 25 25 18.75 
1M NaCl 25 25 25 25 
 
Table 4. Preparation of samples from stock solutions 

Sample 100 ml Seawater x4 
[ml] 

0.1M Car-
bonate [ml] 

0.04M Bo-
rax [ml] 

1.075M CaCl2 
[ml] 

0.01MBorax+0xSW 0 - 25 0 
0.01MBorax+0.5xSW 12.5 - 25 0.5 
0.01M Borax+ 1xSW 25 - 25 1 
0.01MBorax+1.5xSW 37.5 - 25 1.5 
0.01M Borax+2xSW 50 - 25 2 
0.01MBorax+2.5xSW 62.5 - 25 2.5 
0.025MCarbonate+0xSW 0 25 - - 
0.025MCarbonate+0.5xSW 12.5 25 - - 
0.025MCarbonate+1xSW 25 25 - - 
0.025MCarbonate+1.5xSW 37.5 25 - - 
0.025MCarbonate+2xSW 50 25 - - 
0.025MCarbonate+2.5xSW 62.5 25 - - 
 

All pH measurements and calibrations were made in 25 ml beakers with a magnetic 

stirrer at constant mixing speed. Solution temperature was kept constant by conducting 

measurements in a 25 C water bath. pH, temperature and mV readings were recorded 

for all samples. Calibration data for each different NaCl calibration was also recorded. 

5.4 Experimental set 3 

The ability of the Pitzer model to predict acid-base reactions in seawater was tested 

with sample solutions consisting of 0.0025M carbonate, 0.001M borax, synthetic sea-

water ranging from 0 to 2.5xSW and HCl ranging from 0M to 0.01M. pH measurements 

were made with a Metrohm combined glass electrode. The electrode was calibrated 

with NIST secondary buffers phthalate, phosphate and carbonate prepared in a 0.75M 

NaCl solution. One replicate was made at 2xSW strength. In total 4 different SW 

strengths with 6 different HCl concentrations were used. 

 

The 100 ml samples were prepared from 4xSW, 0.04M borax, 0.1M carbonate, 1.075M 

CaCl2 and 0.1M HCl stock solutions. A quantity of 2.5 ml of borax and carbonate stock 

solution was pipetted to each sample. Correct amounts of SW and CaCl2 stock were 

pipetted to obtain samples with 1, 1.5, 2 and 2.5 x SW strength. 0, 3, 5, 7, 9 and 10 ml 

of 0.1M HCl were added to appropriate samples with a Metrohm automatic pipette. 
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Table 5 clarifies the preparation of the samples. The 0.75M NaCl calibration buffers 

were prepared as in the second set of experiments (see Table 3). 

 

pH measurements and calibrations were made in 25 ml beakers over a magnetic stirrer 

at constant mixing speed. Sample temperatures were allowed to stabilize to 25 C in a 

water bath before recording pH, mV and temperature readings. Carbonate was pipet-

ted to each sample immediately before measurement to reduce errors in pH readings 

caused by atmospheric CO2 interaction. 

 
Table 5. Preparation of acid-base samples from stock solutions 

Sample Seawater x4 
[ml] 

0.1M Carbonate 
[ml] 

0.04M Borax 
[ml] 

1.075M CaCl2 
[ml] 

0.1M HCl [ml] 

SWx1+0HCl 25 2.5 2.5 1 0 
SWx1+3HCl 25 2.5 2.5 1 3 
SWx1+5HCl 25 2.5 2.5 1 5 
SWx1+7HCl 25 2.5 2.5 1 7 
SWx1+9HCl 25 2.5 2.5 1 9 
SWx1+10HCl 25 2.5 2.5 1 10 
SWx1.5+0HCl 37.5 2.5 2.5 0 0 
SWx1.5+3HCl 37.5 2.5 2.5 0 3 
SWx1.5+5HCl 37.5 2.5 2.5 1.5 5 
SWx1.5+7HCl 37.5 2.5 2.5 1.5 7 
SWx1.5+9HCl 37.5 2.5 2.5 1.5 9 
SWx1.5+10HCl 37.5 2.5 2.5 1.5 10 
SWx2+0HCl 50 2.5 2.5 0 0 
SWx2+3HCl 50 2.5 2.5 0 3 
SWx2+5HCl 50 2.5 2.5 2 5 
SWx2+7HCl 50 2.5 2.5 2 7 
SWx2+9HCl 50 2.5 2.5 2 9 
SWx2+10HCl 50 2.5 2.5 2 10 
SWx2.5+0HCl 62.5 2.5 2.5 0 0 
SWx2.5+3HCl 62.5 2.5 2.5 0 3 
SWx2.5+5HCl 62.5 2.5 2.5 2.5 5 
SWx2.5+7HCl 62.5 2.5 2.5 2.5 7 
SWx2.5+9HCl 62.5 2.5 2.5 2.5 9 
SWx2.5+10HCl 62.5 2.5 2.5 2.5 10 

 

CaCl2 was not added to higher pH or low acid addition samples with SW strength >1 to 

avoid CaCO3 precipitation. See table 5 above. 
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6 Results 

6.1 Experiment set 1 

The Pitzer approach has been experimentally shown to be consistent and in good 

agreement with pH values obtained with the conventional Bates-Guggenheim method 

[12, 13, 14]. The additional benefit of using the Pitzer approach is overcoming obstacles 

when measuring solutions with ionic strength exceeding the limits of B-G convention. 

This experiment was carried out to verify the Pitzer model as a more accurate model 

for high ionic strength solutions and to quantify the difference between the Pitzer model 

and measurements made in high ionic strength solutions with a standard calibrated 

electrode. NIST standard buffers borax and carbonate with varying compositions of 

synthetic SW were measured with a NIST calibrated electrode and compared to pH 

values modeled with PHREEQC-software. Modelled values were obtained with the 

Pitzer (Macinnes scaled), SIT and Minteq4 models.  

 

Figures 3 and 4 show graphed values for three replicates of 0.1M borax and 0.025M 

carbonate buffer with cumulative additions of synthetic SW salts. 

 

 
Figure  3. Modelled and measured average pH for borax with SW additions 
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Figure  4. Modelled and average measured pH for carbonate with SW additions 

 

From the graphs it is visible that the Pitzer model is the best model for the measured 
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0.021 for carbonate measurements. For both carbonate and borax, the standard devia-
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bath was used. For carbonate measurements temperature readings were more stable. 

Sample temperature typically stabilized at about 25.3 C as the result of taking into use 

the circulating water bath. For both carbonate and borax the pH decreases with in-
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[15] 

 

Regression was also carried out on measured and modeled data. See Figure 5 for bo-

rax and Figure 6 for carbonate.  
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Figure  5. Linear regression for borax samples 
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Figure  6. Linear regression for carbonate samples 
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The slope and intercept of the regression of each model was compared to the refer-

ence ( pH = 0). This shows how close the measured values are to the modeled. Large 

deviations from the reference slope 1 and intercept 0 indicate a larger difference be-

tween modeled and measured values. For both carbonate and borax the slope and 

intercept were closest to the reference indicating a good fit of measured values to the 

Pitzer model. Although the fit is good the 95%-confidence interval for the slopes and 

intercept indicate that there is a true systematic difference between measured and 

modeled values. The regression analysis output is presented in Appendix 4. 

6.2 Experiment set 2 

The Metrohm combined glass electrode was calibrated with NIST secondary standard 

buffers phthalate, phosphate and borax or carbonate prepared in varying concentra-

tions of NaCl solution. The method was based on reducing the liquid junction potential 

by making calibrations in similar solutions to measurements. NaCl was selected and 

tested for calibration as it is the main component in SW and expected to have the larg-

est effect on the effective concentration. The 0.025M carbonate and 0.1M borax sam-

ples in 0, 0.5, 1, 1.5, 2 and 2.5 XSW were measured with the different NaCl calibra-

tions. Concentrations of 0, 0.5, 0.75 and 1M NaCl were selected. The Pitzer model in 

PHREEQC was used to model pH values assigned to calibration and sample solutions. 

The Modelled pH values for carbonate and borax in varying SW strength are presented 

in table 6. 
 
Table 6. Modeled Pitzer pH values for borax and carbonate in synthetic SW  

Borax + SW Strength Ionic Strength pH borax  
0 0.08 9.180 

0.5 0.38 8.910 
1 0.76 8.757 

1.5 1.16 8.659 
2 1.57 8.561 

2.5 2.00 8.471 
Carbonate + SW Strength Ionic strength pH carbonate 

0 0.10 10.008 
0.5 0.42 9.541 
1 0.78 9.309 

1.5 1.04 9.143 
2 1.55 9.003 

2.5 1.95 8.878 

 

The desired accuracy for pH measurements was 0.03 pH unit, which is graphed as 

dotted lines. In Figures 7 and 8 the pH of borax and carbonate is plotted against ionic 
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strength. From the data it can be seen that with the NIST standard calibration, Cal1 (no 

added NaCl), the differences between modeled and measured pH values are above 

the desired 0.03 pH unit accuracy for samples with SW (ionic strength >0.08). An Im-

provement in measurement accuracy can be seen for samples with high ionic strength 

when NaCl is used for calibration.  

 

 
Figure  7. pH of borax with different NaCl calibrations 

 

 
Figure  8. pH of carbonate with different NaCl calibrations 
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bration yielded pHs very close or exactly 0.03 pH unit. Carbonate with 0.5M and 1M 

NaCl calibrations yielded similarly less accurate results at higher ionic strengths (1.55 

and 1.95). The accuracy was slightly lower than desired but still within one standard 

deviation away. 

 

The calibrations were also compared to each other by calculating the area between the 

reference line and the calibration data. See Figure 9. The calibration with the smallest 

area or integral is the best calibration between the selected range. 

 

 
Figure  9. Modeled values plotted against measured values for carbonate and borax with vary-

ing NaCl calibrations 
 

  

8,40

8,45

8,50

8,55

8,60

8,40 8,45 8,50 8,55 8,60

pH
-m

es
 b

or
ax

pH-model borax

Cal3

Cal4

Cal5

Reference

Cal1

Cal2

8,8

8,9

9,0

9,1

9,2

9,3

9,4

8,8 9,0 9,2 9,4

pH
-m

es
 ca

rb
on

at
e

pH-model carbonate

Cal1

Cal2

Cal3

Cal4

Cal5

Reference



  23 (33) 

 

For borax the integral was calculated for the pH range between 8.4 and 8.6 and for 

carbonate between 8.8 and 9.4. The results are presented in Table 7. 

 
Table 7. Integral of NaCl calibrations 

 
Calibration (Sample borax) 
[M (NaCl)] 

( ( + ))
.

.

 

0 1.000 10-3 
0.25 3.485 10-4 
0.5 7.642 10-5 
0.75 6.808 10-5 

1 6.093 10-5 
 
Calibration (Sample carbonate) 
[M (NaCl)] 

( ( + ))
.

.

 

0 5.000 10-3 
0.25 2.000 10-3 
0.5 7.206 10-4 
0.75 3.475 10-4 

1 5. 001 10-4 
 

The smallest value is obtained for 0.75M NaCl calibration for carbonate and 1M NaCl 

for borax samples. But it should be noted, that the difference between the 0.75M NaCl 

and 1M NaCl calibration is relatively small with borax samples. Also at lower ionic 

strengths (0.38 and 0.76) around 0.5 and 1xSW the 0.75M NaCl calibration yields more 

accurate pH measurements to the Pitzer-model as can be seen in Figure 7. Based on 

these results the 0.75M NaCl calibration was selected as most appropriate for both 

carbonate and borax. 

 

The data in Figures 7 and 8 can also be found in Tables 11 and 12 in Appendix 3. 
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6.3 Experiment set 3 

Samples with 0.0025M carbonate, 0.001M borax, synthetic SW at 1, 1.5, 2 and 2.5xSW 

and 0.1M HCl additions of 0, 3, 5, 7, 9 and 10 ml were measured with the Metrohm 

combined glass electrode. The electrode was calibrated with NIST secondary buffers 

phthalate, phosphate and carbonate prepared in 0.75M NaCl solution. Calibration with 

0.75M NaCl was selected from the previous experiment as it gave good accuracy for 

pH measurements for the whole range of SW strengths. Sample pH was modelled with 

the Pitzer model and compared to measured values.  

 

Results for measured and modelled samples are plotted in Figure 10 for samples 

1xSW and 1.5xSW and in Figure 7 for samples 2xSW and 2.5XSW. pH measurement 

for sample 2.5xSW with 10mM is not presented due to an error made in the preparation 

of the sample. The 0.75M NaCl calibration yielded measurements within the desired 

0.03 pH unit from the model for all different SW strengths with 0 ml HCl added. Com-

pared to results from the first set of experiments, where standard calibration was used, 

a clear improvement for measurements made at higher ionic strengths can be seen 

with the new calibration. The accuracy of measurements generally decreased with 

added HCl but no linearity between added HCl and accuracy is visible. For example, 

for all SW strengths excluding 1xSW, the measurements at lower pH were sometimes 

more accurate with more HCl added than the previous sample with less HCl added. 

See Table 13 in Appendix 3 for SWx2 samples with 5 and 7 ml HCl added. 

 

The results show that the Pitzer model has the ability to predict acid base interactions 

well. The measured values fit the Pitzer model with a reasonable accuracy. The accu-

racy of measured values is better for samples with less HCl added 

 

Precipitation was observed on the surface of some samples when carbonate was add-

ed. When the samples were thoroughly mixed, the solids dissolved. All samples were 

mixed thoroughly before measurement. The precipitation observed in some samples 

was most likely cause by localized conditions in the flask. Perhaps incomplete mixing 

of the acid caused the surface of the sample to have a higher pH that caused precipita-

tion. 
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Figure  10. HCl added to acid-base samples with SWx1 and SWx1.5 
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Figure  11. HCl added to acid-base samples with SWx2 and SWx2.5 
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7 Estimation of errors 

Possible sources of error in the experiments rise from methods used in preparation of 

samples and standards. Also environmental conditions affect the preparation of sam-

ples, standards and the actual pH measurements. 

 

The preparation of samples and standards include weighing errors and volume errors. 

Weighing and volume errors effect the concentration and ionic strength of the solutions 

which directly affect the pH of the solutions. Weighing errors can, for example, be 

caused by salts absorbing moisture, air currents in the laboratory, calibration of analyti-

cal balance and carless handling of weighed salts. With proper working methods these 

errors can be reduced. In the experiments done in this thesis, CaCl2 and MgCl2 were 

for example extremely hydroscopic and thus difficult to weigh. This was taken into ac-

count by weighing the salts directly after drying.  

 

All solutions were prepared on a volume basis for practical reasons. This is slightly less 

accurate than working with mass, as volume is temperature dependent, but care was 

taken to allow water to stabilize to room temperature before preparing solutions.  

 

The pH (modelled – measured pH values) includes volume and weighing errors. Neg-

ligible errors may be caused by the difference in actual molarity and modelled molarity. 

The models were run with the target molarity and not with the actual measured values 

from weighing. Nevertheless, the weighing and volume errors in this thesis work are 

estimated to be fairly small. This was observed by modelling the actual measured val-

ues, which did not have a significant difference to pH values modelled with target val-

ues. Prepared calibration buffers were also tested a few times against corresponding 

Merck certified calibration buffers. The difference between prepared buffers and certi-

fied Merck buffers was negligible (only 0.1 mv), which shows that the preparation of 

accurate solutions was possible in this work. 

 

Part of the uncertainty in pH measurement is caused by the electrode itself, calibration 

and environmental conditions. The main environmental condition effecting pH meas-

urement is temperature, but mixing can also affect the electrode response and should 

be kept constant. The overall uncertainties in pH values for this thesis work are given 

by average standard deviations. The average standard deviations for each experiment 

are listed in Table 8. It is important to note that the average standard deviations repre-
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sent an upper limit for the total uncertainty, which includes measurement uncertainty 

and uncertainties from preparation of samples. 

 
Table 8. Estimation of overall experimental and measurement uncertainty 

Experiment Average standard deviation Upper limit for uncertainty 
at 95%-confidence level 

Experiment 1 (Borax) 0.010 ±0.021 
Experiment 1 (Carbonate) 0.013 ±0.025 
Experiment 2 (Borax) 0.007 ±0.013 
Experiment 2 (Carbonate) 0.005 ±0.010 
Experiment 3 (Acid additions) 0.072 ±0.144 
 

The uncertainty for the first set of experiments is slightly larger than for the second set 

of experiments. This is most likely caused by the cumulative weighing errors as 

weighed salts were added cumulatively to the sample solutions. This is observed in the 

standard deviations of experiment set 1, which increase as salts are added. The stand-

ard deviations for experiment set 2, with no NaCl added (basically same experiment as 

experiment set 1) are more constant and do not increase linearly with increase of salt 

concentration. The only difference between these measurements is that stock solutions 

were used for the second set of experiments eliminating the weighing errors observed 

in the first set of experiments.  The considerably larger uncertainties for experiments 

set 3 are also reflective of experimental challenges. The low buffer capacity of the 

measured solutions increases the uncertainty of the measurements. 

8 Discussion and Conclusions 

The purpose of this thesis project was to test a new calibration method for a combined 

glass electrode to be used for measurements of high ionic strength brines. More accu-

rate pH readings were needed for input into a single pass boron removal model, be-

cause errors caused by difference in liquid junction potential, in a standard NIST cali-

brated electrode and high ionic strength brines, were suspected to have a significant 

effect on the overall accuracy of the model. The goal for the new calibration was to 

improve accuracy of pH measurements in high ionic strength brines and for the meas-

urements to be consistent with the Pitzer-based chemical equilibrium model with an 

accuracy of ±0.03 pH unit.  

 

Three sets of experiments were carried out to achieve the goals. The first set of exper-

iments was used to quantify difference of pH values, of varying ionic strength brines, 

obtained with the Pitzer model and pH values obtained with a standard NIST calibrated 

electrode. In other words, the aim was to verify and quantify the error in measuring high 
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ionic strength brines with a standard NIST calibrated electrode. The other two experi-

ments were used to test if added NaCl to NIST calibration standards would yield more 

accurate pH measurements and how well the Pitzer model can predict acid-base reac-

tions. 

 

The results for borax and carbonate pH measurements made with NIST standard cali-

brated electrode in the first set of experiments show that the Pitzer model is in good 

agreement with measured pH values even at high ionic strengths. The Pitzer model is 

the best for the whole range of SW strengths tested. The differences between meas-

ured and modeled values for borax were lower than initially expected for SW and high-

er ionic strength solutions. The pH for borax was 0.06 pH unit at most, compared to 

0.1 pH unit that was initially estimated for ionic strengths comparable to SW. The dif-

ferences between measured and modeled values for carbonate were closer to 0.1 pH 

unit all ready at SW ionic strengths.  

 

The differences of measured results to the Pitzer model appear to become more con-

stant with increasing ionic strength. With the SIT and Minteq4 the pH keeps increas-

ing with ionic strength. Borax measurements were slightly more accurate and replicate 

measurements had a smaller standard deviation than carbonate samples. This could 

be caused by experimental difficulties with measuring carbonate that is susceptible to 

CO2 diffusion from the atmosphere. The absorbed CO2 decreases the pH. It is also 

possible that experimental data for the Pitzer parameters for carbonate is not as exten-

sive and could have larger uncertainties. This would lead to a larger difference between 

modeled and measured pH values. 

 

The results from the first experiment verify a need for a more accurate pH measure-

ment. It can also be concluded that RLJP-errors in pH measurements of high ionic 

strength brines made with an electrode calibrated with NIST standard calibration buff-

ers can be up to 0.1 pH unit. 

 

The second set of experiments show that adding NaCl to calibration standards has the 

ability to improve pH measurements made in synthetic SW and higher ionic strength 

brines. Measurements of borax and carbonate samples in synthetic SW and higher 

ionic strength solutions were improved with 0.5M, 0.75M or 1M NaCl additions to cali-

bration standards. By adding NaCl to calibration standards the RLJP was reduced and 

measurements within 0.03 pH unit from the Pitzer model could be achieved for borax 

and carbonate samples in synthetic SW solutions up to 2.5xSW strength. 
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From the experiments carried out in this work it is difficult to conclude or define in more 

detail how the addition of NaCl affects the pH measurements. It seems that added 

NaCl has an effect only up to a certain concentration after which it is not possible to tell 

if there is a significant difference between the amounts added. The measured sample 

is also likely to have an effect on how much and how the added NaCl improves the 

measurement result. For example, 0.25M NaCl added to calibration standards already 

gives reasonably good results when measuring borax in SW solutions. More experi-

ments and research would be needed to make more conclusions.  

 

The final set of experiments was used to test the 0.75M NaCl calibration and see how 

well the Pitzer model can predict acid-base interactions. In this experiment borax and 

carbonate were both added to samples at concentrations that better represents con-

centrations in SW. The 0.75M NaCl calibration yielded good results for all samples with 

0 ml HCl added. All of these measurements were under the desired 0.03 pH unit accu-

racy to the Pitzer model. This shows again that the NaCl calibrations are a clear im-

provement over the NIST standard calibration where the difference was up to 0.1 pH 

unit. At best, the improvement was up to one order in magnitude with the new calibra-

tion. The acid additions decreased the measurement accuracy but again the Pitzer 

model was a good representation of the experimental measurements. 

 

The decrease in pH measurement accuracy with increase of added HCl could be 

caused by volume errors and low buffer capacity or general difficulty of the experi-

mental setup. A calculation done in PHREEQC software showed that a 3% volume 

error in added H+ could account for even the largest differences between measured pH 

and the Pitzer model. This is not to say that the volume errors are expected to be so 

large in this experiment, but depending on the pipette and temperature of the solution, 

it could easily be between 1-2%. Atmospheric CO2 interaction with the sample solution 

can also be a source of measurement errors in this experiment. These errors are mag-

nified in solution with low buffer capacity and cause unstable readings. The effect of 

CO2 interaction was tried to avoid by adding carbonate to the sample immediately be-

fore taking the measurement. This method did not completely remove problems either, 

as sometimes it could take up to a few minutes for the sample temperature to reach 

equilibrium with the water bath. A closed measurement vessel with minimal head space 

was tested, but this did not seem to improve results, possibly indicating that the CO2 

effect may not be very large and that the source for error lies elsewhere. 
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As final conclusion, the experiments done in this thesis project are a good basis and 

show that more accurate and consistent pH measurements, with the Pitzer model, of 

high ionic strength brines can be obtained by simply reducing the RLJP. This is done 

by adding the main salt component of the test solution to the calibration standards. 

Using the Pitzer model for assigning pH values to modified calibration standards pro-

vides a simple means to improve pH measurement accuracy in high ionic strength 

brines that could be easily adopted in many industrial measurement applications. Fur-

ther research and experimentation would be needed for wide scale adaptation of this 

type of calibration. The wide scale use of this type of calibration is also limited at the 

moment by the uncertainties in the Pitzer model itself, and thus a full uncertainty 

statement for the measurements cannot be given.  
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Merck calibration standard certificates 
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NIST recipe for borax 
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Tables of experimental results 
 
Table 9. Modeled and average pH for borax at varying SW strengths 

Salts 
[xSW] 

pH_Pitzer pH_SIT pH_minteqV4 pH_measured_av. STDEV pH 

0 9.176 9.203 9.169 9.194 0.002 -0.018 
0.1 9.085 9.112 9.059 9.065 0.003 0.020 
0.5 8.911 8.958 8.838 8.863 0.004 0.048 
1 8.777 8.852 8.642 8.717 0.004 0.060 
1.5 8.673 8.775 8.461 8.613 0.006 0.059 
2 8.584 8.714 8.281 8.524 0.012 0.060 
3 8.431 8.616 7.902 8.376 0.010 0.055 
4 8.297 8.539 7.498 8.240 0.019 0.056 
5 8.172 8.476 7.076 8.124 0.017 0.048 

 
 
Table 10. Modeled and average pH for carbonate at varying SW strengths 

Salts 
[xSW] 

pH_Pitzer pH_SIT pH_minteqV4 pH_measured_av. STDEV pH 

0 10.006 9.851 9.856 10.012 0.003 -0.006 
0.1 9.874 9.689 9.705 9.847 0.005 0.026 
0.5 9.544 9.382 9.408 9.476 0.007 0.068 
1 9.318 9.221 9.229 9.230 0.009 0.088 
1.5 9.161 9.126 9.104 9.062 0.011 0.098 
2 9.033 9.060 9.005 8.929 0.013 0.105 
3 8.822 8.968 8.857 8.712 0.015 0.110 
4 8.639 8.905 8.759 8.531 0.018 0.108 
5 8.470 8.858 8.692 8.372 0.021 0.098 
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Table 11. Borax pH measured with different NaCl calibrations 

X SW Strength Cal1_0NaCl Cal2_0.25NaCl Cal3_0.5NaCl Cal4_0.75NaCl Cal5_1NaCl 
Borax0 9.199 9.244 9.263 9.267 9.270 

Borax0.5 8.871 8.913 8.933 8.934 8.940 
Borax1 8.719 8.759 8.780 8.780 8.786 

Borax1.5 8.598 8.638 8.659 8.658 8.663 
Borax2 8.495 8.533 8.554 8.551 8.555 

Borax2.5 8.401 8.437 8.459 8.455 8.462 
X SW Strength STDEV1 STDEV2 STDEV3 STDEV4 STDEV5 

Borax0 0.008 0.004 0.004 0.001 0.005 
Borax0.5 0.010 0.003 0.001 0.004 0.004 
Borax1 0.013 0.005 0.003 0.007 0.002 

Borax1.5 0.013 0.005 0.002 0.007 0.004 
Borax2 0.014 0.006 0.004 0.007 0.002 

Borax2.5 0.012 0.004 0.003 0.007 0.005 
X SW Strength pH1 pH2 pH3 pH4 pH5 

Borax0 -0.019 -0.065 -0.084 -0.087 -0.090 
Borax0.5 0.039 -0.003 -0.023 -0.024 -0.030 
Borax1 0.038 -0.002 -0.023 -0.023 -0.029 

Borax1.5 0.061 0.021 0.000 0.001 -0.004 
Borax2 0.066 0.028 0.007 0.010 0.006 

Borax2.5 0.070 0.034 0.012 0.016 0.009 
 
 
Table 12. Carbonate pH measured with different NaCl calibrations 

X SW Strength Cal1_0NaCl Cal2_0.25NaCl Cal3_0.5NaCl Cal4_0.75NaCl Cal5_1NaCl 
Carbonate0 10.005 10.054 10.080 10.088 10.087 

Carbonate0.5 9.473 9.520 9.544 9.550 9.548 
Carbonate1 9.228 9.271 9.294 9.298 9.296 

Carbonate1.5 9.053 9.095 9.115 9.121 9.114 
Carbonate2 8.913 8.953 8.968 8.979 8.968 

Carbonate2.5 8.791 8.830 8.844 8.850 8.843 
X SW Strength STDEV1 STDEV2 STDEV3 STDEV4 STDEV5 

Carbonate0 0.002 0.006 0.002 0.006 0.009 
Carbonate0.5 0.006 0.007 0.005 0.004 0.008 
Carbonate1 0.005 0.003 0.004 0.002 0.005 

Carbonate1.5 0.002 0.003 0.002 0.008 0.006 
Carbonate2 0.004 0.003 0.006 0.005 0.006 

Carbonate2.5 0.006 0.002 0.006 0.004 0.007 
X SW Strength pH1 pH2 pH3 pH4 pH5 

Carbonate0 0.003 -0.045 -0.071 -0.080 -0.078 
Carbonate0.5 0.068 0.022 -0.003 -0.009 -0.007 
Carbonate1 0.081 0.037 0.014 0.010 0.013 

Carbonate1.5 0.089 0.048 0.028 0.022 0.029 
Carbonate2 0.090 0.051 0.036 0.025 0.035 

Carbonate2.5 0.087 0.048 0.034 0.028 0.035 
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Table 13. HCl additions to samples solutions 

synt seawaterx1 + buffers     
H+ added 
(mM) 

pH_measured1 pH pitzer pH 

0 8.972 8.978 0.006 
3 8.243 8.256 0.013 
5 6.905 6.902 -0.003 
7 6.048 6.019 -0.029 
9 5.153 5.080 -0.073 

10 3.354 3.475 0.121 
synt seawaterx1.5 + buffers     
H+ added 
(mM) 

pH_measured1 pH pitzer pH 

0 8.894 8.909 0.015 
3 8.16 8.189 0.029 
5 6.802 6.831 0.029 
7 5.905 5.958 0.053 
9 4.832 5.019 0.187 

10 3.284 3.450 0.166 
synt seawaterx2 + buffers     
H+ added 
(mM) 

pH_measured1 pH pitzer pH 

0 8.778 8.796 0.018 
3 8.056 8.083 0.027 
5 6.695 6.768 0.073 
7 5.854 5.903 0.049 
9 4.846 4.965 0.119 

10 3.262 3.413 0.151 
synt seawaterx2.5 + buffers     
H+ added 
(mM) 

pH_measured1 pH pitzer pH 

0 8.682 8.692 0.010 
3 7.959 7.985 0.026 
5 6.613 6.707 0.094 
7 5.773 5.851 0.078 
9 4.774 4.914 0.140 
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Regression analysis for experiment set 1 
Borax 

      Pitzer             
SUMMARYOUTPUT 

     
  

  
     

  
Regression Statistics 

    
  

Multiple R 0.998625495 
    

  
R Square 0.997252879 

    
  

Adjusted R Square 0.996860433 
    

  
Standard Error 0.020332031 

    
  

Observations 9 
    

  
  

     
  

ANOVA 
     

  

  df SS MS F 
Significance 

F   
Regression 1 1.050478284 1.050478 2541.122267 3.16569E-10   
Residual 7 0.00289374 0.000413 

  
  

Total 8 1.053372025         
  

     
  

  Coefficients 
Standard 

Error t Stat P-value Lower 95% 
Upper 
95% 

Intercept 
-

0.491110868 0.181169825 -2.71078 0.030165132 
-

0.91950943 -0.06271 
X Variable 1 1.05160344 0.020861197 50.40955 3.16569E-10 1.002 1.100932 

 

SIT             
SUMMARY OUTPUT 

     
  

  
     

  
Regression Statistics 

    
  

Multiple R 0.998504 
    

  
R Square 0.99701 

    
  

Adjusted R Square 0.996583 
    

  
Standard Error 0.021211 

    
  

Observations 9 
    

  
  

     
  

ANOVA 
     

  

  df SS MS F 
Significance 

F   
Regression 1 1.050223 1.050223 2334.359 4.26E-10   
Residual 7 0.003149 0.00045 

  
  

Total 8 1.053372         
  

     
  

  Coefficients 
Standard 

Error t Stat P-value Lower 95% 
Upper 
95% 

Intercept -4.09625 0.263603 -15.5395 1.1E-06 -4.71957 -3.47293 
X Variable 1 1.445926 0.029927 48.3152 4.26E-10 1.37516 1.516692 
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Minteq4                 
SUMMARY OUTPUT 

      
  

  
       

  
Regression Statistics 

      
  

Multiple R 0.970803 
      

  
R Square 0.942458 

      
  

Adjusted R 
Square 0.934237 

      
  

Standard 
Error 0.093054 

      
  

Observations 9 
      

  
  

       
  

ANOVA 
       

  

  df SS MS F 
Significance 

F 
  

  
Regression 1 0.992759 0.992759 114.6495 1.36E-05 

  
  

Residual 7 0.060614 0.008659 
    

  
Total 8 1.053372       

  
  

  
       

  

  Coefficient 
Standad 

Error t Stat P-value 
Lower  
95% 

Upper 
95% 

  Intercept 4.517948 0.38577 11.7111 7.49E-06 3.605748 5.4309 
  X Variable 1 0.494556 0.04618 10.7075 1.36E-05 0.385338 0.6033 
  Carbonate 

Pitzer             
SUMMARY OUT-
PUT 

     
  

      
  

Regression Statistics 
    

  
Multiple R 0.999427982 

    
  

R Square 0.998856291 
    

  
Adjusted R Square 0.998692904 

    
  

Standard Error 0.020513055 
    

  
Observations 9 

    
  

  
     

  
ANOVA 

     
  

  df SS MS F Significance F   
Regression 1 2.572446156 2.572446 6113.439091 1.47309E-11   
Residual 7 0.002945498 0.000421 

  
  

Total 8 2.575391654         
  

     
  

  Coefficients 
Standard 

Error t Stat P-value Lower 95% 
Upper 
95% 

Intercept 
-

0.702431684 0.12593917 -5.57755 0.000835375 -1.0002305 -0.40463 
X Variable 1 1.067900018 0.013658022 78.18848 1.47309E-11 1.036 1.100196 
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SIT             
SUMMARY OUTPUT 

     
  

  
     

  
Regression Statistics 

    
  

Multiple R 0.983652 
    

  
R Square 0.967572 

    
  

Adjusted R Square 0.962939 
    

  
Standard Error 0.109228 

    
  

Observations 9 
    

  
  

     
  

ANOVA 
     

  

  df SS MS F 
Significance 

F   
Regression 1 2.491876 2.491876 208.86 1.81E-06   
Residual 7 0.083516 0.011931 

  
  

Total 8 2.575392         
  

     
  

  Coefficients 
Standard 

Error t Stat P-value Lower 95% 
Upper 
95% 

Intercept -5.64681 1.023126 -5.51917 0.000888 -8.06612 -3.2275 
X Variable 1 1.601142 0.11079 14.45199 1.81E-06 1.339165 1.86312 

 

Minteq4             
SUMMARY OUTPUT 

       
      Regression Statistics 

     Multiple R 0.99695 
     R Square 0.99391 
     Adjusted R Square 0.99304 
     Standard Error 0.047334 
     Observations 9 
       

      ANOVA 
        df SS MS F Significance F 

 Regression 1 2.559708 2.559708 1142.48 5.14E-09 
 Residual 7 0.015683 0.00224 

   Total 8 2.575392       
   

      
  Coefficients Standard Error t Stat P-value Lower 95% 

Upper 
95% 

Intercept -3.54392 0.375294 -9.44305 3.12E-05 -4.43135 -2.65649 

X Variable 1 1.380695 0.040848 33.80059 5.14E-09 1.284104 1.477286 
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