

Use of a NoSQL database to improve accountability

A case study for the Dutch tax authorities

LAB University of Applied Sciences

Bachelor of Information Technologies

2021

Emmi Moilanen

 Abstract

Author(s)

Moilanen, Emmi

Publication type

Thesis, UAS

Published

2021

Number of pages

33

Title of Publication

Use of a NoSQL database to improve accountability

A case study for the Dutch tax authorities

Degree and field of study

Bachelor of Information Technologies

Name, title and organisation of the client (if the thesis work is commissioned by another party)

Kyra van Onselen, PhD Sc., Dutch Tax Office

Abstract

The Dutch tax office faces two major problems. Firstly they have to be able to store

large amounts of information while having to comply with various laws which impose

requirements on the management of the information. Secondly, over the years it has

proven difficult to provide specific in-depth information when the Dutch Parliament

wanted to be better informed on a specific subject. As a solution, the use of a NoSQL

type of database is considered.

This thesis gives insight into the advantages and disadvantages of the four most

commonly used NoSQL databases (MongoDB, Redis, Cassandra and Neo4j). In

addition results of practical tests with two Document store databases technologies are

presented (RavenDB and MongoDB). Based on these results only general

conclusions could be made:

• Using a NoSQL database is a feasible option for the Dutch tax office

• Of the four types of NoSQL solutions investigated, a document style database
seems to fit the requirements of the Dutch Tax office best.

 Keywords

NoSQL, DMS, databases

Contents

1 Introduction .. 1

1.1 Objective and delimitations ... 1

1.2 Research questions .. 1

1.3 Research Method ... 2

1.3.1 Data acquisition and analysis .. 2

1.3.2 Methodological literature .. 3

1.4 Outline .. 3

2 Key performance indicators of the Dutch tax office .. 5

2.1 Functional demands ... 5

2.2 Key performance indicators .. 6

3 Theoretical framework on databases ... 8

3.1 Introduction to databases.. 8

3.2 Relational databases .. 8

3.3 NoSQL databases .. 9

3.3.1 Quality parameters for evaluating NoSQL databases11

3.3.2 Evaluation of MongoDB ..12

3.3.3 Evaluation of Redis ...13

3.3.4 Evaluation of Cassandra ...14

3.3.5 Evaluation of Neo4j...14

3.3.6 Comparison between MongoDB and RavenDB ..15

4 Practical comparison between different types of NoSQL databases16

4.1 RavenDB ...16

4.1.1 Setting up the database ..17

4.1.2 Running simple queries ..22

4.1.3 Conclusion ..22

4.2 MongoDB ..22

4.2.1 Setting up the database ..22

4.2.2 Queries ...25

4.2.3 Conclusion ..26

4.3 MongoDB vs RavenDB ..26

4.3.1 Usability ..26

4.3.2 Performance ...27

4.3.3 Flexibility ...28

5 Conclusions and recommendations for further research ...29

5.1 Conclusions ...29

5.1.1 Conclusions on the usability of the examined databases29

5.1.2 Conclusions on the performance of the examined databases30

5.1.3 Conclusions on the flexibility of the examined databases30

5.1.4 Overall conclusions on which type of database fits the needs of the Tax

office best ...31

5.2 Recommendations for further research ..32

5.2.1 Recommendation for actions to be taken ..32

5.2.2 Recommendation for further research ..33

References ..34

Appendices

Appendix 1. Glossary

1

1 Introduction

To prevent fraudulent use of childcare allowances, the government of the Netherlands has

applied very strict rules regarding the benefits system during the last decade. These policies

have, however, led to highly undesirable situations for the individuals and families who are

dependent on the said allowances. In some cases, people receiving benefits have been

wrongly flagged as fraudsters and have consequently had to pay back enormous amounts

of childcare allowances. As a result, people have been driven to significant financial prob-

lems (Inspectie Overheidsinformatie en Erfgoed 2021). The Dutch government had to re-

sign due to this chain of events (Roobeek, Frater, & Kennedy,2021).

A parliamentary committee of inquiry has investigated how this situation with the childcare

allowances could have arisen and why the government has not intervened earlier (Tweede

Kamer der Staten-Generaal, 2020). One of their conclusions was that the information man-

agement system currently used by the tax office, which is in charge of handling the benefits

and possible benefit withdrawals, is not up to modern standards (Rutte, 2021). The House

of Representatives has agreed that not only the information management system has to be

improved, but significantly more information has to be recorded and archived (Snels & Van

Weyenberg, 2021).

1.1 Objective and delimitations

On the one hand, the Dutch tax office has to be able to store huge amounts of data without

adding too much additional workload for its employees, while still being able to quickly come

up with information on specific topics when asked for. As a solution for this paradox, the

use of a NoSQL type of database is considered.

The objective of this study is to advise the Dutch Tax office on which type of NoSQL data-

base best suits their needs.

This study will only look at the usability aspect of this matter, such as the balance between

the effort needed to store information and perform queries on all kinds of topics. For the tax

authorities to make an informed choice, other aspects have to be considered as well. For

example, the purchase and maintenance costs of these types of databases. This study aims

to provide the ‘technical part’ for the business model the tax office will have to make.

1.2 Research questions

To be able to give sound advice, the following research questions have to be answered:

2

1. What type of NoSQL databases are available and what are their main characteris-

tics?

2. What are key performance indicators for the Dutch tax office?

3. How well do the different types of databases perform on these key performance

indicators?

1.3 Research Method

The main objective of this study is to advise the Dutch Tax office on which type of NoSQL

database would best fit their key performance indicators on information management. To

fulfil this objective, a literature study has been performed and subsequently, the knowledge

gained is applied to the use case of the Dutch tax authorities. Finding the answers to the

above research questions results in qualitative empirical data. Therefore, a qualitative re-

search method has been used.

1.3.1 Data acquisition and analysis

The following information is needed to answer the research questions as outlined for this

study:

• What kind of information should be archived?

• How much information should be archived?

• How long does information need to be stored?

• What kind of inquiries are expected?

• How much effort should go into archiving (eg. adding metadata) versus how much

effort can be spent in retrieving the information?

• Is data retrieval sufficient or should it be possible to perform some basic manage-

ment related functions as well (eg. combining monthly reports into a yearly one,

averaging weekly data)

The necessary empirical data is acquired from already available information such as re-

ports, websites, etc. In addition to these sources, an interview has been conducted with

some employees of the Dutch tax office.

3

1.3.2 Methodological literature

The theoretical framework is mostly based on methodological literature. Since all libraries

were closed at the moment the theoretical part of this study was performed, only digitally

available literature could be used.

1.4 Outline

The structure of this study is composed of five main chapters. The second main chapter

contains the theoretical framework of the study. This theoretical chapter includes explana-

tions of document management systems and database solutions, giving further insight into

the advantages and disadvantages of using either a relational database or NoSQL database

solutions for the DMS.

Chapter four will provide a better understanding of the need to improve the information

management system and the problems involved. This chapter provides more detailed in-

sight into the Dutch government information policy and how these policies might have

changed. An overview of the applicable laws and regulations, and how information is cur-

rently managed by the Dutch government will also be given in this chapter.

In the following sections, the three research questions will be addressed. In chapter 3 a

theoretical framework on databases will be given. In addition, the four most commonly used

NoSQL databases (MongoDB, Redis, Cassandra and Neo4j) will be compared. This section

aims to provide insight into the advantages and disadvantages of these four types of NoSQL

database solutions.

To get a sense of what it's like to work with a NoSQL database some practical tests have

been performed as well. For these tests two Document store databases technologies have

been chosen RavenDB and MongoDB). This choice was motivated by the fact that these

two databases offered the most user-friendly non-subscription trial clients. The results of

these tests are given in chapter 4.

To be able to evaluate the different types of databases on how well they might work for the

Dutch Tax office key performance indicators are needed. However, at this moment the Tax

office has not yet mapped out the functional demands for their new DMS. Therefore, these

functional demands, and subsequently the key performance indicators, needed to be de-

rived from (a.o) an overview of the problems the Tax office are facing. The results are pre-

sented in chapter 2.

4

Conclusions concerning the objective of this study and the three research questions are

given in chapter 5. In this chapter also some recommendations are made for further re-

search.

5

2 Key performance indicators of the Dutch tax office

There is a wide range of possibilities in studying databases. However, this study does not

aim at giving a complete overview of (and comparison between) all kind of database types

and their underlying infrastructure. Instead, the aim is to focus on providing well-founded

advice on the merits of the different types of NoSQL databases for the Dutch tax office.

Therefore, this theoretical framework is limited to the specific functional demands of the

case company.

2.1 Functional demands

Within the Tax office, there are several different systems including local and collective com-

puter directories, various dedicated databases and physical archives. All these systems

have to be combined into one document management system (DMS). At this moment, no

decision has been made on the functional demands for this DMS and therefore, functional

demand for the underlying database is not yet available. As the first step to elaborate func-

tional demands for this study, some facts and figures about the Tax office have been col-

lected; see Figure 1 (K. van Onselen, personal communication, February 22, 2021).

Figure 1 Some facts and figures about the Dutch Tax office (K. van Onselen, personal communication, February

22, 2021)

The Dutch Tax office tax authorities need a significant amount of information to carry out

their day-to-day activities. This information must be correct, reliable and easily accessible

(Belastingdienst, personal communication, June 7, 2021). As a second step to generate

functional demands the issues related to information management have been identified.

They are presented in Figure 2.

6

Figure 2 Issues faced by the Dutch Tax office related to information management (K. van Onselen, personal

communication, February 22, 2021).

2.2 Key performance indicators

Before the tax authorities can implement a new DMS, the technical, financial, organiza-

tional, legal and administrative feasibility must first be investigated. This thesis focuses on

the technical feasibility of using a NoSQL database. In particular different types of NoSQL

databases have been looked at to gain insight into which database solution fits the func-

7

tional requirements of the Tax office best. To compare the different databases key perfor-

mance indicators are needed. In Table 1 the indicators are shown that have been derived

based on the information presented in paragraph 3.1.

Table 1. Key performance indicators for comparing the NoSQL databases.

Key performance indi-
cator

Issues

Usability Is it possible to store all information types needed?

Can it handle the type of queries that are needed for accountability?

Can the data be protected?

How much effort is storing data and making queries?

Performance Is information continuously available?

Can information be updated regularly?

Can multiple data centres work with the same database?

Is the data protected against corruption?

Flexibility Can the database easily be expanded (size, type of information)

Is it easy to incorporate new types of queries?

to what extent is it possible to make use of newly developed 'underly-
ing' technology

8

3 Theoretical framework on databases

3.1 Introduction to databases

The database is at its simplest meaning a collection or assortment of data that is structured

in a way that it’s conveniently stored and retrieved in an electrical form - an integrated col-

lection of records. Databases are structured in a way that the stored data is connected via

some kind of relationship or by using additional information – metadata – most commonly

defined as data about data. (Duval, 2001, p. 1)

Around the 1960s modernization of private companies led to the need for more effective

data management systems. During this period, two widely used database systems were

developed; i.e. IMS (Information Management System) and CODASYL (Conference On

Data System Language). IMS is a hierarchical model that was developed by IBM as a re-

sponse to the rapidly increasing need to store large amounts of detailed and integral data

by parties like NASA (IBM, n.d. a).

Even though IBM would later develop a more modern relational database known as IBM

DB2, IMS still remains a popular option for companies running legacy database systems.

CODASYL is an organization of volunteer representatives of computer manufacturers and

users. They developed a network database Management System (DBMS) whose set of

specifications are still partly used in all DMBS designed afterwards (Burleson Consulting,

1996).

3.2 Relational databases

A major disadvantage of the early database models developed in the 1960s was that re-

trieving data was often tedious and difficult. In 1970 Edgar Codd developed the first rela-

tional database model which made them more accessible for people without specific com-

puter knowledge (IBM, n.d. b).

Codd (1970) used the term relational to indicate that there was a relation between groups

of datasets. By defining these relations users could retrieve information from the database

without needing specific knowledge of the physical structure of the database.

Nowadays the market offers a wide range of relational database technologies. The website

DB-engines (2021 a) lists a total of 152 relational database technologies. According to them,

the most popular are Oracle, MySQL, Microsoft SQL Server, PostgreSQL and IBM Db2.

These databases are all based on (a part of) Codd’s 12 rules (Codd 1970). Therefore, Gra-

ham (2009, s12) summarizes that data is organized as relations, attributes and domains.

9

A relation refers to a table with rows and columns (tuples and attributes). Furthermore, each

row is unique and can only contain a single value for all of its set attributes. Finally, the

domain specifies which values attributes are allowed to use. This is illustrated by Figure 3

Figure 3. The general structure of relational databases. Based on Wikipedia (n.d.)

3.3 NoSQL databases

Relational databases were for the last thirty years considered to be the standard database

for managing data. However, the development of modern applications (web 2.0/3.0, big

data, etc) has given rise to the use of NoSQL databases (Kunda and Phiri, 2017).

The term NoSQL was first introduced by Carlo Strozzi in 1998 He used this term to indicate

that this new technology was not an SQL database but rather a shell-level tool (Strozzi,

2007). Nowadays NoSQL refers to ‘Not Only SQL’.

During the last decades, different types of NoSQL databases have been developed. They

can be divided into four categories (Zollman, 2012):

• Key-Value stores.

They are associative arrays consisting of values and keys. Each key has to be

unique to provide non-ambiguous identification of values.

• Wide column stores.

An extended version of a Key-Value store that uses a two-dimensional key. Conse-

quently, a stored value needs both a row key and a column key. Adding of even

more keys is supported; e.g. using a timestamp

• Graph databases

Data is represented by graphs. A major advantage is that these graphs allow for

working with a flexible and very high number of interconnections.

• Document stores

 Term Description

Tuple A data set representing a single item

attribute A labeled element of a tuple, e.g. "Address"
or "Date of birth"

Relation A set of tuples sharing the same attributes; a
set of columns and rows

10

Data is stored in a structured format. The structure is flexible but a specific data

format has to be chosen.

Figure 4. Four categories of NoSQL databases. Copied from Foote (2018)

To illustrate the different categories of NoSQL databases Figure 4 shows how data is re-

ferred to in these different types of models. An example of how data is represented in

these four types of databases is shown in Figure 5.

Figure 5 Example data represented in the four categories of NoSQL databases. a) Key-Value store, b) Wide
column store, c) graph database, d) document store. Based on Zollman (2012).

Using NoSQL databases has several advantages. NoSQL databases allow for (Radoev,

2017):

• The storage and processing of large volumes of data

• Storing both structured and unstructured data

• Flexibility (e.g. adapting the structure of the data)

11

• Scalability (e.g., extend the scale of stored data and applications).

Nowadays, a wide range of relational databases is available. DB-engines lists a total of 64

Key-Value stores (DB-engines, 2021 b), 13 Wide Column stores (DB-engines, 2021 c), 36

Graph databases (DB-engines, 2021 d), 53 Document stores (DB-engines, 2021 e). Ac-

cording to them, the most popular are MongoDB (document), Redis (Key Value), Cassandra

(Wide Column) and Neo4j (Graph).

3.3.1 Quality parameters for evaluating NoSQL databases

To compare the performance of (among others) the various available NoSQL database the

"Yahoo! Cloud Serving Benchmark" (YCSB) framework was developed (Cooper et al., 2010

). Performance indicators in this benchmark are read/write, latency and elasticity capabili-

ties. In their studies, Lourenço et al. (2015) have added the quality attributes consistency,

robustness and maintainability to better evaluate NoSQL databases.

Online, a significant amount of technical articles can be found which compare and/or test

NoSQL databases. Unfortunately, these gave only partial insight into what type of NoSQL

database would be advisable for the Dutch Tax Office. This is caused by the fact that these

articles:

• Have been written for specific applications like geospatial workloads (Kim and

Kanwar, 2019) or big data use cases (Endres et al. 2020).

• Cover only part of the functional demand (Flores et al., 2018 about evaluation of

NoSQL queries in response time for E-government), (Nurhadi et al., 2020 about

Smart City Data Lake management).

• Are probably too old to be completely useful (Lourenço et al., 2015)

• Often have only an abstract that is free of charge and obtaining the complete article

is costly.

As explained above, the conducted desk study into the four most popular NoSQL databases

(MongoDB, Redis, Cassandra and Neo4j) didn’t give sufficient substantiation for advising

the Dutch Tax office. Therefore, in the following paragraphs, only the (major) advantages

and disadvantages of these databases are listed. In addition to the desk study, a practical

test has been performed with two Document stores (MongoDB and RavenDB); see chapter

4. Paragraph 3.3.6 contains a theoretical comparison between these two types of document

stores.

12

3.3.2 Evaluation of MongoDB

MongoDB is an open-source document store NoSQL database. According to Zollmann

(2012), it was developed to handle large amounts of data. Since it is a document-oriented

database, data is organized as a collection of documents with possibly different structures

(Krstić, 2018). According to Krstić (2018) document stores are the most popular type of

NoSQL database because of their flexibility, performance, and ease of use.

Document stores are especially suitable for (Ploetz et al., 2018), (Krstić, 2018):

• Storing large amounts of data

• Working with quick-changing data

• Regularly adding new data groups

• Filtering documents based on attributes in the document itself.

• Tracking changeable metadata types

In Table 2 some advantages and disadvantages are listed of the MongoDB document store.

These are based on the articles by Ploetz et al. (2018) and Krstić (2018).

Table 2 Advantages and disadvantages of MongoDB. Based on Ploetz et al. (2018), Krstić (2018), Knowledge-

nile (n.d. a)

Advantages of MongoDB Disadvantages of MongoDB

It is very simple to work with (a.o. easy environ-
ment and quick set-up)

Limited data size 16 MB for a document)
and nesting (100 levels)

Complex joins are not required High memory usage

It is easy to scale Transactions may lead to corruption of
data

It is flexible It doesn’t support the joining of docu-
ments

It uses sharding while handling large datasets The domain of application is limited

Conversion or mapping between database objects
and application objects is simple

Some applications do not allow ad hoc
querying and changing data

Fast access of data is achieved by integrated
memory support

some implementations do not stand high-
frequency data changes

It has rich query support

Semi-automatic replication and horizontal collec-
tion partition are supported.

Documents inserted in the collections can have dif-
ferent sets of fields

13

3.3.3 Evaluation of Redis

Redis is an open-source, in-memory data structure store, used as a database, cache, and

message broker (Redis, n.d.). It provides data structures such as strings, hashes, lists, sets,

sorted sets with range queries, bitmaps, geospatial indexes, and streams. According to

Krstić (2018), a Key Store database like Redis can be seen as a table in a relational data-

base with two columns (the key and the value).

Key Store databases in general, and Redis, in particular, are useful for (Krstić, 2018),

(Knowledgenile (n.d. b):

• Situations in which simple data models can be used and applications have frequent

short readings

• Storing huge amounts of data while maintaining fast responses and with relatively

low risks of downtimes

• Monitoring temporary attributes in a Web application

• Storing configurations and user information for mobile applications,

• Storing large objects (e.g. audio files and images)

Table 3 Advantages and disadvantages of Redis. Based on Krstić (2018) and Weekly Webtips (2020).

Advantages of Redis Disadvantages of Redis

It is fast It has a high level of redundancy

It is easy to set-up Larger numbers of collections lead to more complex
structures

It can work with huge amounts of
data

Huge decrease in efficiency when data is ‘densely’ linked

It has flexible data structures and
almost all types of data structures
can be used.

There is no mechanism for ensuring the integrity

Keys and value pairs can be as
large as 512 MB

The search condition is limited to a fixed key value or a
range of
key values.

It has its own hashing machine Data is sharded based on the hash-slots assigned to each
Master. If Master holding some slots is down, data to be
written to that slot will be lost.

Scaling down doesn’t cause down-
time and has no performance im-
pact

A huge ram is needed

Semi-automatic replication and
horizontal collection partition are
supported.

14

3.3.4 Evaluation of Cassandra

According Appache (n.d.) Cassandra is “an open-source NoSQL distributed database

trusted by thousands of companies for scalability and high availability without compromising

performance. the perfect platform for mission-critical data”. Review sites score Cassandra

an average of seven (out of 10), but they also show that a lot of reviewers prefer other

NoSQL solutions (TrustRadius, n.d.), (Capterra, n.d.).

Table 4 Advantages and disadvantages of Cassandra. Based on Krstić (2018), TrustRadius (n.d.) and Cap-
terra n.d.).

Advantages of Cassandra Disadvantages of Cassandra

It can handle large amounts of data It has a high level of redundancy

It is fast (except in some cases of values with ex-
tremely complex structures)

Larger numbers of collections lead to
more complex structures

It can work with huge amounts of data Huge decrease in efficiency when data is
‘densely’ linked

It is great for distributed data design There is no mechanism for ensuring the in-
tegrity

It allows for operating from multiple datacenters
with little or no data loss

The search condition is limited to a fixed
key value or a range of
key values.

It has continuous data availability Problems can arise with querying on a
large amount of data.

Automatic replication and horizontal collection
partition are supported.

Scalability is difficult

3.3.5 Evaluation of Neo4j

Neo4j is an open-source, distributed data store used to model graph problems. According

to Ploetz et al. (2018) Neo4j stores information in schema-less, entity-like structures which

are called nodes. These nodes are connected to other nodes via relationships or edges. It

is also possible to group nodes together with optional structures, or so-called labels. Ac-

cording to Krstić (2018) Graph databases are suitable for applications in which data solving

and storage can be done using graphical structures. Graph databases are the best solution

for handling connected data and are optimized for managing relations (RubyGarage, n.d.).

This makes this type of database convenient to use for, amongst others:

• identity and access management

• IT infrastructure management

• Fraud detection and analytics

15

• Recommendation of specific products based on functional demands

• Privacy and risk compliance

Table 5 Advantages and disadvantages of Neo4j. Based on Krstić (2018) and RudyGarage (n.d.)

Advantages of Neo4j Disadvantages of
Neo4j

They are very effective in the case of common operations with
graphs

The application domain
is restricted

The structure and schema of a graph model can be easily adjusted to
the changes in an application

The data structure can be easily upgraded without damaging existing
functionality.

The structure of the database can be easily upgraded. Therefore the
data store can evolve along with your application.

3.3.6 Comparison between MongoDB and RavenDB

According to RavenDB (2019), RavenDB is a document database built for fast performance,

minimal complexity, short release cycles and little to no need for support. In Table 2 some

aspects are compared for RavenDB and MongoDB (Lavi, 2021), Warda (2019). This com-

parison is only meant to give some insight into the differences between these two data-

bases. To make a decision on which database is most suitable for the Dutch Tax office all

aspects should be taken into account. Warda (2019) gives an in-depth analysis of the dif-

ferences between the two Document Style databases. However, it is beyond the scope of

this thesis to make the necessary theoretical analysis to use his results. Therefore, some

practical tests have been performed with both RavenDB and MongoDB; see chapter 4 for

the results.

Table 6 Global comparison between MongoDB and RavenDB. Based on Lavi (2021) and Warda (2019)

Aspect Comparison between MongoDB & RavenDB

total implemen-
tation cost (TCI)

TCI of RavenDB is higher

the total cost of
ownership
(TCO)

TCO of RavenDB is higher

Available fea-
tures

They both have Data Import/Export, Basic Reports, Online Customer
Support

Target cus-
tomer size

MongoDB: medium business, Large business, Private use
RavenDB: Small, medium and large size businesses.

Learning to do
queries

MongoDB doesn’t use SQL like syntax for query operations. There-
fore, a significant amount of time has to be invested in learning to do
this. RavenDB query syntax is SQL-like.

16

4 Practical comparison between different types of NoSQL databases

To advise the Dutch Tax office on which type of NoSQL database would best fit their key

performance indicators on information management both theoretical and practical studies

have been performed. As presented in section 3, the four different types of database solu-

tions have been included in the theoretical studies. Ideally, all these types of databases

would have been tested as well. However, because of several practical reasons, the possi-

bility for a practical comparison is limited:

• Because the major part of the information the Tax offices is confidential, it was not

possible to work with real data.

• Only non-subscription, free database trials could be used. This comes with the dis-

advantage of the available features being very limited.

• The scope of a bachelor thesis doesn't allow for building large databases and de-

veloping complex queries.

Because of the limitations mentioned above, the practical test has been limited to

• Testing only two database solutions

• Setting up the database environment

• Populating the test database with JSON data documents

• Running simple queries

RavenDB and MongoDB have been selected for performing the practical experiment. From

the available options, they offered the most user-friendly non-subscription trial clients.

4.1 RavenDB

RavenDB offers both commercial and non-commercial licenses. The commercial license is

only available as a yearly subscription. Therefore, the non-commercial license, which is free

of charge, has been used for this practical comparison. When considering the results of this

test, it has to be kept in mind that this non-commercial license offers significantly fewer

features than the commercial one which the tax office would need to have.

17

Figure 6. Example of the basic RavenDB User Interface and the control panel.

Timeframe for implementing, documenting and testing the sample database is also limited,

so quick-to-learn and implement technology took priority.

The next section of this study will also act as a brief documentation on how to get started

with RavenDB. This section will only cover the steps to downloading the database, creating

a simple example database and then populating it with sample documents. This study will

not go into more advanced features due to time restraints.

4.1.1 Setting up the database

The first step is to download RavenDB from the official distribution site (RavenDB, n.d.).

Figure 7 shows the home screen of RavenDB. The test database will be built on a Windows

environment, so the process for different operating systems might vary.

18

Figure 7. RavenDB download page and the location of the download button.

After downloading the package, the installation process can be started via the Powershell

command:

Alternatively, the installation can be started by extracting the newly downloaded package.

The extraction process can be started by right-clicking the .zip file.

Figure 8 will illustrate the location of the extraction action.

19

Figure 8. The location of the Extract button.

Once the extraction process is finished, the installation can be started by navigating to the

newly created folder and locating the file called “run.ps1”. Installation is started by right-

clicking the file and choosing the “Run with PowerShell” option. After running the command,

the RavenBD Setup Wizard prompts the user to choose the security settings for the new

database. For the purpose of this test, the unsecured free database setup will be used, as

the database will only be used inside of a controlled testing environment.

After successful setup, the user will be directed to the RavenDB control panel screen. Figure

9 illustrates how this screen looks.

20

Figure 9. RavenDB Control panel.

RavenDB database is now up and running. RavenDB provides a pre-built feature that allows

the users to create a pool of sample documents to populate the new database with. This

feature can be found in the sidebar. See Figure 10.

Figure 10. RavenDB Taskbar.

21

By selecting the task “Create sample data” in the sidebar, documents will be created and

stored in the documents; see Figure 11.

Figure 11. The newly created database will be populated with sample documents.

All data is not generated and stored as JSON data, which the user can now populate the

practise database with.

Figure 12. All RavenDB data is stored as JSON files.

22

4.1.2 Running simple queries

RavenDB uses a query language called RQL (Raven Query Language), which is designed

to be similar to SQL query languages. This makes it easier for the end-users to shift from

using SQL based queries to RQL queries.

Figure 13. A basic query from the ‘Employees’ database, where ‘FirstName’ equals Janet.

4.1.3 Conclusion

From the tests performed with RavenDB, the following conclusions could be made: Raven

DB was found slightly inconvenient to get started with, even though the RQL querying lan-

guage is rather similar to the SQL querying languages. In the free trial, populating the da-

tabase with custom documents was seen to be too time-consuming, so the document pack-

age offered by RavenBD was used instead.

However, once the basic queries had been learned, pulling data from the database was

seen to be efficient and easy.

The UI and the control panel was clear and easy to use. However, this might be due to the

missing features in the free trial client.

Performance-wise, RavenDB was running smoothly and without any issues during the

whole testing period.

4.2 MongoDB

For this database performance test, MongoDB Atlas will be used, as it is the most accessi-

ble option for non-subscription users and offers improved service and security features

for an enterprise-level subscription. MongoDB Atlas supports Windows, macOS and Linux

operating systems.

4.2.1 Setting up the database

On the MongoDB homepage (MongoDB Atlas, n.d.) the option ‘start free’ is chosen. As a

next step, an account needs to be created. In the overview of products which follows the

23

option ‘Visit MongoDB Atlas’ needs to be selected. This leads to the ‘Create your first data-

base’ starting page; see figure below.

Figure 14 MongoDB starting screen for creating a database.

In the next screen, the option to create a shared cloud database is selected since this is the

only one free of charge. After selecting a cloud provider and a region a so-called cluster can

be created. The next screen is the Security Quickstart.

After creating the MongoDB Atlas account and choosing the cluster, connecting to Mon-

goDB Shell requires some additional steps. “Connect with the MongoDB Shell” will start the

process. In the next screen, the user will be prompted to download and install mongosh 5.1

After the download, a simple installation is performed via the installation wizard. After that,

the user has to add mongosh to their PATH variable.

24

Figure 15. Cluster selection view.

Once mongosh has been successfully installed and configured, the MongoDB Atlas control

panel will give the user their unique connection string that can be used to access the data-

base via shell command.

mongosh "mongodb+srv://cluster0.zwfto.mongodb.net/{database name}" --username {user

name}

Figure 16. Successful connection (with identifying info covered)

A new database can be either created from the dashboard or the shell. The shell command

for creating a new basic database is:

use DATABASE_NAME

25

4.2.2 Queries

After creating the database, it is now possible to populate it with sample data. To create an

empty collection, the user inputs the following query:

db.createCollection("CollectionName")

Figure 17 illustrates how the successfully performed query looks like when the collection is

created.

Figure 17. Collection created successfully.

Next, a simple JSON data document is created, see Figure 18 for the example syntax.

Figure 18. A simple example document for MongoDB database.

Alternatively, the same can be achieved via the MongoDB Atlas control panel.

Now the data query can be performed to confirm the data has been created and put into

the ‘testCollection’ collection as it should. If the newly created JSON document has been

inserted into the collection successfully, the following query illustrated in Figure 18 should

return data instead of an empty field. The user can query the whole collection by running

the command:

>db.COLLECTION_NAME.find()

If a more precise query needs to be made, filter words can be used:

Figure 19. Example query with filters for MongoDB.

> db.testCollection.insertOne(

 {

 First_Name: "Mary",

 Last_Name: "Sue",

 Date_Of_Birth: "1992-07-18",

 e_mail: "mary_sue.123@gmail.com",

 phone: "02343784"

 })

{

 "acknowledged" : true,

 "insertedId" : ObjectId("5dd62b4070fb13eec3963bea")

}

>

db.COLLECTION_NAME.findOne({First_Name: "Mary"})

26

This should return all the fields where the First_Name value is “Mary”

4.2.3 Conclusion

MongoDB was slightly more difficult to get started with than RavenDB due to their different

approach to the shell connection. The need to install a mongosh added an extra step to the

setup process, but it was noted the connection via mongosh was more stable and easy to

use after the installation was done. This also makes future connections to the system a bit

easier, since the connection is always done via an unique mongosh credential key that

automatically connects the user to the database.

Command prompt queries work similarly to RavenDB’s PowerShell queries. However, com-

pared to the RavenDB control panel, the MongoDB Atlas control panel is not quite as user

friendly and clear. Another disadvantage of MongoDB Atlas was that it was also very difficult

to add documents to the database from the control panel itself. The documents would not

often show up correctly or they were incorrect or messy. This might get easier with additional

training but during the performed tests, RavenDB’s control panel felt more accessible.

4.3 MongoDB vs RavenDB

4.3.1 Usability

In these practical tests usability aspects of both databases have been examined. Indicators

for this usability are:

• The ease with which the database could be set up,

• The clarity of the user interface and the control panel

• The accessibility of the documentation.

Setup for RavenDB proved to be slightly troublesome and in the testing phase, some prob-

lems with PowerShell capability were encountered. This required using some outside re-

sources. Even though, setting up RavenDB was easier and faster when compared to Mon-

goDB.

The user interface and the control panel for both of the tested databases were clear and

easy to use, with RavenDB being slightly more accessible. This can be due to limits in the

free trial version since the free trial of MongoDB Atlas offered a slightly more diverse selec-

tion of settings and features.

27

Running queries on both tested databases was simple and the learning curve is not too

intimidating. This especially holds for if the end-user has previous experience with SQL

languages since both options are specifically designed to function in a similar syntax. How-

ever, RQL, the RavenDB syntax is more similar to SQL syntax, so transitioning from SQL

to RQL would be significantly easier.

Both technologies have good, well accessible documentation that covers both basic and

more advanced level queries and during the testing phase. There was no issue with running

sample queries even with little or no experience with NoSQL query languages.

During the tests, queries made with the RavenDB test database proved to be slightly faster

and more performance efficient. Again, this might be due to the limitations the free trial of

RavenDB has in features since the stripped-down version is most likely to be more light-

weight.

Both databases offer multiple levels of data protection via their tiered subscription model.

However, more research is needed due to MongoDB having had some issues with data

security in the past (Spadafora, A. 2020).

4.3.2 Performance

Both RavenDB and MongoDB ranked well in the performance test, with the data being

available without issues and easily. Both options offer real-time access with their cloud-

based control panel and both RavenDB and MongoDB can also be accessed via quick and

fast-performing shell connection.

With both RavenDB and MongoDB to access the free trial version of the database, contin-

uous access to the internet is needed. This is due to how the connection to the database is

handled via the control panel environment. However, both RavenDB and MongoDB sub-

scription services offer ways to securely access the data even with no internet connection.

This is worth noting when conducting further research on the topic since the Dutch tax office

must be able to access the data in cases where there is no internet connection.

Updating data is easy for both database solutions and their documentation offers good guid-

ance on the different operations and functions available.

Since both RavenDB and MongoDB Atlas use cloud-based control panels that allow easy

and quick connection from multiple different authorized instances, accessing the database

from multiple data centres is not an issue. Security-wise, RavenDB’s cloud access uses

two-factor authentication to make multiple connections more secure, in addition to the con-

trol panel management, where new access rights can be granted and revoked. MongoDB

28

also offers a way to control user credential access from the control panel, but it is unclear if

two-factor authentication is available. Since these features are not available for free trial

users, so it is recommended that further research looks more into the available options

within the subscription tiers.

Both RavenDB and MongoDB offer standard backup management features in case of data

corruption, however, it is important to notice that the backups have to be manually managed

and set up during the initial database setup and backing up large amounts of data requires

additional investments on top of the initial subscription costs. Backups are also not available

for free users.

4.3.3 Flexibility

RavenDB promises high flexibility and future technology access coverage. This means, that

if the database needs to expand, accommodate new types of data and adapt to future tech-

nologies, RavenDB should stay updated and maintained by the vendor. This is especially

important for the Dutch tax office since the need to store different types of data might change

over time. MongoDB promises similar features, in addition to that updating the cluster can

be done with no downtime in the system, meaning the database will stay available even

during the update.

Both systems are highly flexible and elastic, offering good possibilities for future expansion,

for example in terms of how much and what kind of data can be stored.

29

5 Conclusions and recommendations for further research

5.1 Conclusions

The objective of this study is to advise the Dutch Tax office which type of NoSQL database

best suits their needs. To fulfil this objection, the question “How well do the different types

of databases perform on the key performance indicators” needs to be answered. The

NoSQL databases included in these studies were: MongoDB (document store), Redis (key-

value store), Cassandra (wide column store), Neo4j (graph database) and RavenDB (doc-

ument store). As described in section 2.2, key performance indicators used in these studies

are usability, performance and flexibility.

5.1.1 Conclusions on the usability of the examined databases

To estimate the usability of a specific database the following questions have been formu-

lated to determine how well the chosen database technologies fulfil the needs of the Dutch

tax office:

1. Is it possible to store all information types needed?

2. Can it handle the type of queries that are needed for accountability?

3. Can the data be protected?

4. How much effort is storing data and making queries?

Based on both the theoretical framework as presented in section 3 and the practical com-

parison between MongoDB and RavenDB the following conclusions can be made:

• For a graph database like Neo4j, it is not clear whether or not they can handle both

structured and unstructured information. Since it has a restricted application domain

graph databases will most probably not be suitable for the Dutch Tax office. The

other three types of databases can store all information types needed. However,

some authors have mentioned that Redis is mostly useful for situations in which

simple data models can be used and applications have frequent short readings

• These databases can store different information types does not automatically mean

that they can also be included in a combined query, for example, “find all information

about allowances for childcare in the last 5 years”. The literature examined for this

study did not give much insight into this aspect. An exception is Cassandra from

which it is known that the search condition is limited to a fixed key value or a range

of key values. It was out of scope for the practical comparison.

30

• Both MongoDB and RavenDB offer multiple levels of data protection. However, it

was discovered that there have been security issues with MongoDB in the past. No

information was found on how well security works for the other databases.

• Since MongoDB doesn’t use SQL like syntax for query operations more time has to

be invested in learning to work with it than needed for using RavenDB. However, as

concluded from the practical tests, they both have good, well accessible documen-

tation.

5.1.2 Conclusions on the performance of the examined databases

For this study, performance is defined by the following questions:

1. Is information continuously available?

2. Can information be updated regularly?

3. Can multiple data centres work with the same database?

4. Is the data protected against corruption?

Literature on Cassandra indicated that one of its advantages is the continuous availability

of the stored data. The practical compassion showed that both RavenDB and MongoDB

offer cloud-based services, which come with real-time access. In the theoretical study part,

no information was found on this aspect for the other types of databases.

As indicated in section 3, document stores are especially suitable for working with quick-

changing data and allow for regularly adding new data groups. This was confirmed in the

practical tests. For the other databases, no specific mention of this aspect was found.

Both RavenDB and MongoDB Atlas allow easy and quick connection from multiple different

authorized instances. Therefore, accessing the database from multiple data centres should

not be an issue. In reviews of Cassandra, it was found that they can be operated from

multiple data centres with little or no data loss.

For both Cassandra and Redis it was mentioned that there is no mechanism for ensuring

integrity. RavenDB and MongoDB Atlas offer standard backup management features in

case of data corruption. However, these backups have to be manually managed and back-

ing up large amounts of data requires additional investments.

5.1.3 Conclusions on the flexibility of the examined databases

The Dutch Tax office needs a database that is flexible which means that:

31

1. The database can easily be expanded (size, type of information)

2. New types of queries can be incorporated

3. It will be possible to make use of newly developed underlying technology

It was concluded that all four types of NoSQL databases can be easily expanded, but some

restrictions have to be taken into account. MongoDB allows a limited number of nestings

(100 levels) and doesn’t support the joining of documents. When using densely linked data,

both Redis and Cassandra show a huge decrease in efficiency. They also have the problem

that larger numbers of collections lead to more complex structures. Ne4j can only be ex-

panded within the application domain (connected data). Both MongoDB and RavenDB offer

good possibilities for future expansion and new data type storage.

Whether or not new types of queries can be incorporated is not clear from the theoretical

part of these studies. Except that, as mentioned before, reviews of Cassandra indicate that

search conditions are limited to a fixed key value or a range of key values. These reviews

also mention that problems can arise with querying on a large amount of data.

5.1.4 Overall conclusions on which type of database fits the needs of the Tax of-

fice best

As mentioned in section 2, to be able to make a justifiable decision on what database fits

their needs the best, the tax authorities also have to consider the technical, financial, or-

ganizational, legal and administrative feasibility of a database solution. Unfortunately,

based on the results obtained in this study it is not possible to give well-founded and sub-

stantiated advice on the technical feasibility of using a specific NoSQL database solution.

Reasons are:

• The functional requirements have not yet been established by the Tax office. For

example, the tax authorities are still working on mapping out the amount and types

of data that must be stored now and in the near future.

• The situation that has to be solved is extremely complex and no studies are available

on similar situations as the Tax office faces.

• It was not possible to work with real data from the Tax office.

• A practical test could only be performed with free trial versions.

32

Therefore, the original aim of this study cannot be achieved. However, a lot of insight was

gained on necessary topics for further research. In addition, the following, more general

conclusions can be made regarding the use of NoSQL databases:

• It is most likely that using a NoSQL database is a feasible option for the Dutch tax

office

• Graph databases don’t fit the functional demands of the Tax office. A key store da-

tabase also doesn’t seem acceptable. Of the four types of NoSQL solutions, a doc-

ument style database seemed to be the most feasible.

5.2 Recommendations for further research

Several recommendations can be formulated based on the conducted theoretical study on

NoSQL databases and the practical tests with MongoDB and RavenDB. These recommen-

dations fall into two categories: recommendations for actions that the tax authorities should

execute themselves and recommendations for further research and testing they should in-

vest in.

5.2.1 Recommendation for actions to be taken

As part of the Dutch government, the tax authorities must deal efficiently and effectively with

public money. Consequently, investing in a new DMS and potentially a NoSQL database

solution should be the solution to a problem that the tax authorities are experiencing or

facing in the (near) future. To be able to assess how this problem can best be tackled, it

must first be clear what the core problem is. In addition, clear indicators need to be estab-

lished on what this solution needs to provide for now and in the future. Therefore, the fol-

lowing recommendations can be made:

• Make a thorough estimate of how much information and what kind of information

needs to be stored. Including an estimate of how this will change in the future

• Make an overview of the requirements for the management of this information (min-

imum and maximum retention periods, necessary security measures, etc)

• Make an overview of the type of queries that are expected and the type of infor-

mation that need to be accessed for these queries.

• Decide on functional demands and divide these between ‘need to have’ and ‘nice to

have’.

33

• Set SMART performance indicators

5.2.2 Recommendation for further research

To be able to decide if NoSQL databases are suitable for the Dutch tax office and choose

which NoSQL solutions fit the functional demand and performance indicators best, substan-

tially more knowledge on and practical experience with NoSQL databases is needed. To

obtain the necessary information the following recommendations are given:

• Have a more extensive and in-depth study carried out on the characteristics of the

four types of NoSQL databases. In addition, search for comparable organizations

who have already decided on using a NoSQL solution (or decided not to use this

type of database) and learn from their experience.

• Establish a trend watching program in the field of technical and social developments.

• Perform an extensive test with the most promising database solutions. First with test

information and queries specifically created for this purpose. In a second stage with

actual data and queries from the tax office.

• Investigate not only the technical feasibility of the different database solutions but

also the financial, organizational, legal and administrative feasibility.

34

References

Apache (n.d.). Open Source NoSQL Database. Retrieved on 10 October 2021. Available

at https://cassandra.apache.org/_/index.html

Burleson Consulting (1996). The CODASYL Network Model. Retrieved on 3 March 2021.

Available at http://www.remote-dba.net/t_object_codasyl_network.htm

Capterra (n.d.) Apache Cassandra Reviews. Retrieved on 10 October 2021. Available at

https://www.capterra.com/p/148406/Apache-Cassandra/reviews/

Codd, E.F. (1970). A relational model of data for large shared data banks. Communica-

tions of the ACM, 13(6), 377-387. A Framework for the Evaluation of NoSQL Databases

for Big Data Use Cases. Retrieved on 10 October 2021. Available at https://www.igi-

global.com/chapter/a-framework-for-the-evaluation-of-nosql-databases-for-big-data-use-

cases/256670

Cooper, B.F., Silberstein, A., Tam, E., Ramakrishnan, Sears, R. (2010). Benchmarking

cloud serving systems with YCSB. Proceedings of the 1st ACM symposium on Cloud

computing. Retrieved on 4 November 2021. Available at

https://dl.acm.org/doi/10.1145/1807128.1807152

DB Engines (2021 a). DB-Engines Ranking of Relational DBMS. Retrieved on 10 October

2021. Available at https://db-engines.com/en/ranking/relational+dbms

DB Engines (2021 b). DB-Engines Ranking of Key-value Stores. Retrieved on 10 October

2021. Available at DB-Engines Ranking - popularity ranking of key-value stores

DB Engines (2021 c). DB-Engines Ranking of Wide Column Stores. Retrieved on 10 Oc-

tober 2021. Available at DB-Engines Ranking - popularity ranking of wide column stores

DB Engines (2021 d). DB-Engines Ranking of Graph DBMS. Available at https://db-en-

gines.com/en/ranking/document+store

DB Engines (2021 e). DB-Engines Ranking of Document Stores. Retrieved on 10 October

2021. Available at DB-Engines Ranking - popularity ranking of document stores

Endres, J., Bernsteiner, R.C., Ploder, C. (2020).

Flores, A., Ramirez, S. Toasa, R., Vargas, J., Urvina, R., Lavin, J.M. (2018). Performance

Evaluation of NoSQL and SQL Queries in Response Time for the E-government. Availa-

ble at https://ieeexplore.ieee.org/abstract/document/8372362

Foote, K.D. (2018). Available at A Brief History of Non-Relational Databases - DATAVER-

SITY

IBM (n.d. a). IBM’s 100 Icons of Progress. Retrieved on 29 October 2021. Available at

https://www.ibm.com/ibm/history/ibm100/us/en/icons/

IBM (n.d. b). Relational Database. Retrieved on 29 October 2021. Available at

https://www.ibm.com/ibm/history/ibm100/us/en/icons/reldb/

https://cassandra.apache.org/_/index.html
http://www.remote-dba.net/t_object_codasyl_network.htm
https://www.capterra.com/p/148406/Apache-Cassandra/reviews/
https://www.igi-global.com/chapter/a-framework-for-the-evaluation-of-nosql-databases-for-big-data-use-cases/256670
https://www.igi-global.com/chapter/a-framework-for-the-evaluation-of-nosql-databases-for-big-data-use-cases/256670
https://www.igi-global.com/chapter/a-framework-for-the-evaluation-of-nosql-databases-for-big-data-use-cases/256670
https://dl.acm.org/doi/10.1145/1807128.1807152
https://db-engines.com/en/ranking/relational+dbms
https://db-engines.com/en/ranking/key-value+store
https://db-engines.com/en/ranking/wide+column+store
https://db-engines.com/en/ranking/document+store
https://db-engines.com/en/ranking/document+store
https://db-engines.com/en/ranking/document+store
https://ieeexplore.ieee.org/abstract/document/8372362
https://www.dataversity.net/a-brief-history-of-non-relational-databases/
https://www.dataversity.net/a-brief-history-of-non-relational-databases/
https://www.ibm.com/ibm/history/ibm100/us/en/icons/
https://www.ibm.com/ibm/history/ibm100/us/en/icons/reldb/

35

Kim, S., Kanwar, Y.S. (2019). GeoYCSB: A Benchmark Framework for the Performance

and Scalability Evaluation of NoSQL Databases for Geospatial Workloads. Available at

https://ieeexplore.ieee.org/abstract/document/9005570

Knowledgenile (n.d. a). Understanding the Pros and Cons of MongoDB. Retrieved on 10

November 2021. Available at https://www.knowledgenile.com/blogs/pros-and-cons-of-

mongodb/

Knowledgenile (n.d. b). Top 7 Use Cases of Redis. Retrieved on 10 November 2021.

Available at https://www.knowledgenile.com/blogs/redis-use-cases/

Kunda, D., Phiri, H. (2017). A Comparative Study of NoSQL and Relational Database.

Available at https://ictjournal.icict.org.zm/index.php/zictjournal/article/view/8

Krstić, L.J., Krstić, M.S. (2018). Testing the performance of NoSQL databases via the da-

tabase benchmark tool. Available at Microsoft Word - 11 15928-86721-1-CE Krstic

(ceon.rs)

Lavi, S. (2021). MongoDB Vs RavenDB. Retrieved on 22 November 2021. Available at

https://www.itqlick.com/compare/mongodb/ravendb

Lourenço, J.R., Cabral, B., Carreiro, P., Vieira, M., Bernardino, J. (2015) . Choosing the

right NoSQL database for the job: a quality attribute evaluation. Journal of Big Data 2 (18).

Available at https://doi.org/10.1186/s40537-015-0025-0

Nurhadi, H., Kadir, R.B.A., Surin, E.S.B.M. (2020). Evaluation of NoSQL Databases Fea-

tures

and Capabilities for Smart City Data Lake Management. Information Science and Applica-

tions – Proceedings of ICISA 2020, 383-392. Retrieved on 12 September 2021. Available

at https://www.researchgate.net/profile/Nurhadi-Hadi/publication/350586264_Evalua-

tion_of_NoSQL_Databases_Features_and_Capabili-

ties_for_Smart_City_Data_Lake_Management/links/617e961deef53e51e10ddc8c/Evalua-

tion-of-NoSQL-Databases-Features-and-Capabilities-for-Smart-City-Data-Lake-Manage-

ment.pdf#page=379

Ploetz, A., Kandhare, D., Kadambi, S, Wu, X. (2018). Seven NoSQL databases in a week.

Available at

https://books.google.nl/books?hl=nl&lr=&id=irZTDwAAQBAJ&oi=fnd&pg=PP1&dq=funda-

mentals+NoSQL&ots=rcXbIH3nrH&sig=hZOV5gPtK8sIe6RGJKX_p-yFRkI#v=onep-

age&q=fundamentals%20NoSQL&f=false

Radoev, M. (2017). A Comparison between Characteristics of NoSQL Databases and Tra-

ditional Databases. Computer Science and Information Technology 5(5): 149-153. Availa-

ble at https://www.researchgate.net/profile/Mitko-Radoev/publication/321799978_A_Com-

parison_between_Characteristics_of_NoSQL_Databases_and_Traditional_Data-

bases/links/5e82dc62299bf1a91b8d1a37/A-Comparison-between-Characteristics-of-

NoSQL-Databases-and-Traditional-Databases.pdf

https://ieeexplore.ieee.org/abstract/document/9005570
https://www.knowledgenile.com/blogs/pros-and-cons-of-mongodb/
https://www.knowledgenile.com/blogs/pros-and-cons-of-mongodb/
https://www.knowledgenile.com/blogs/redis-use-cases/
https://ictjournal.icict.org.zm/index.php/zictjournal/article/view/8
https://scindeks-clanci.ceon.rs/data/pdf/0042-8469/2018/0042-84691803614K.pdf
https://scindeks-clanci.ceon.rs/data/pdf/0042-8469/2018/0042-84691803614K.pdf
https://www.itqlick.com/compare/mongodb/ravendb
https://doi.org/10.1186/s40537-015-0025-0
https://www.researchgate.net/profile/Nurhadi-Hadi/publication/350586264_Evaluation_of_NoSQL_Databases_Features_and_Capabilities_for_Smart_City_Data_Lake_Management/links/617e961deef53e51e10ddc8c/Evaluation-of-NoSQL-Databases-Features-and-Capabilities-for-Smart-City-Data-Lake-Management.pdf#page=379
https://www.researchgate.net/profile/Nurhadi-Hadi/publication/350586264_Evaluation_of_NoSQL_Databases_Features_and_Capabilities_for_Smart_City_Data_Lake_Management/links/617e961deef53e51e10ddc8c/Evaluation-of-NoSQL-Databases-Features-and-Capabilities-for-Smart-City-Data-Lake-Management.pdf#page=379
https://www.researchgate.net/profile/Nurhadi-Hadi/publication/350586264_Evaluation_of_NoSQL_Databases_Features_and_Capabilities_for_Smart_City_Data_Lake_Management/links/617e961deef53e51e10ddc8c/Evaluation-of-NoSQL-Databases-Features-and-Capabilities-for-Smart-City-Data-Lake-Management.pdf#page=379
https://www.researchgate.net/profile/Nurhadi-Hadi/publication/350586264_Evaluation_of_NoSQL_Databases_Features_and_Capabilities_for_Smart_City_Data_Lake_Management/links/617e961deef53e51e10ddc8c/Evaluation-of-NoSQL-Databases-Features-and-Capabilities-for-Smart-City-Data-Lake-Management.pdf#page=379
https://www.researchgate.net/profile/Nurhadi-Hadi/publication/350586264_Evaluation_of_NoSQL_Databases_Features_and_Capabilities_for_Smart_City_Data_Lake_Management/links/617e961deef53e51e10ddc8c/Evaluation-of-NoSQL-Databases-Features-and-Capabilities-for-Smart-City-Data-Lake-Management.pdf#page=379
https://books.google.nl/books?hl=nl&lr=&id=irZTDwAAQBAJ&oi=fnd&pg=PP1&dq=fundamentals+NoSQL&ots=rcXbIH3nrH&sig=hZOV5gPtK8sIe6RGJKX_p-yFRkI#v=onepage&q=fundamentals%20NoSQL&f=false
https://books.google.nl/books?hl=nl&lr=&id=irZTDwAAQBAJ&oi=fnd&pg=PP1&dq=fundamentals+NoSQL&ots=rcXbIH3nrH&sig=hZOV5gPtK8sIe6RGJKX_p-yFRkI#v=onepage&q=fundamentals%20NoSQL&f=false
https://books.google.nl/books?hl=nl&lr=&id=irZTDwAAQBAJ&oi=fnd&pg=PP1&dq=fundamentals+NoSQL&ots=rcXbIH3nrH&sig=hZOV5gPtK8sIe6RGJKX_p-yFRkI#v=onepage&q=fundamentals%20NoSQL&f=false
https://www.researchgate.net/profile/Mitko-Radoev/publication/321799978_A_Comparison_between_Characteristics_of_NoSQL_Databases_and_Traditional_Databases/links/5e82dc62299bf1a91b8d1a37/A-Comparison-between-Characteristics-of-NoSQL-Databases-and-Traditional-Databases.pdf
https://www.researchgate.net/profile/Mitko-Radoev/publication/321799978_A_Comparison_between_Characteristics_of_NoSQL_Databases_and_Traditional_Databases/links/5e82dc62299bf1a91b8d1a37/A-Comparison-between-Characteristics-of-NoSQL-Databases-and-Traditional-Databases.pdf
https://www.researchgate.net/profile/Mitko-Radoev/publication/321799978_A_Comparison_between_Characteristics_of_NoSQL_Databases_and_Traditional_Databases/links/5e82dc62299bf1a91b8d1a37/A-Comparison-between-Characteristics-of-NoSQL-Databases-and-Traditional-Databases.pdf
https://www.researchgate.net/profile/Mitko-Radoev/publication/321799978_A_Comparison_between_Characteristics_of_NoSQL_Databases_and_Traditional_Databases/links/5e82dc62299bf1a91b8d1a37/A-Comparison-between-Characteristics-of-NoSQL-Databases-and-Traditional-Databases.pdf

36

RavenDB (2019). RavenDB vs MongoDB: Performance, Cost, and Complexity. Retrieved

on 22 November 2021. Available at https://ravendb.net/articles/ravendb-vs-mongodb-per-

formance-cost-and-complexity

RavenDB (n.d.). NoSQL Document Database. Retrieved on 10 October 2021. Available at

https://ravendb.net/

Redis (n.d.). Redis. Retrieved on 12 October 2021. Available at https://redis.io/

RubyGarage (n.d.). Capabilities of the Neo4j Graph Database with Real-life Examples.

Retrieved on 12 October 2021. Available at https://rubygarage.org/blog/neo4j-database-

guide-with-use-cases

Spadafora, A. 2020. Millions of online shoppers have data exposed. Techradar. Retrieved

on 24 November 2021. Available at https://www.techradar.com/news/amazon-and-ebay-

shoppers-data-exposed-online

Strozzi, C. (2007). Why NoSQL, in the first place? Retrieved on 18 August 2021. Availa-

ble at http://www.strozzi.it/cgi-bin/CSA/tw7/I/en_US/NoSQL/Philosophy%20of%20NoSQL

TrustRadius (n.d.) Cassandra reviews. Retrieved on 12 October 2021. Available at

https://www.trustradius.com/products/apache-cassandra/reviews

Warda, S. (2019). MongoDB vd RavenDB. Retrieved on 22 November 2021. Available at

https://indexoutofrange.com/RavenDBvsMongoDB/

Weekly Webtips (2020). Redis — What and Why?. Retrieved on 12 October 2021. Availa-

ble at https://medium.com/weekly-webtips/redis-what-and-why-pros-cons-ae2f5bc750fd

Wikipedia (n.d.). Relational database. Available at https://en.wikipedia.org/wiki/Rela-

tional_database#Relationships

Zollmann, J. (2012). NoSQL Databases. Available at

https://www.csee.umbc.edu/courses/graduate/691/fall18/data-science/nosql_chap-

ter.pdf#cite.EdlichFriedlandHampeBrauer201010

https://ravendb.net/articles/ravendb-vs-mongodb-performance-cost-and-complexity
https://ravendb.net/articles/ravendb-vs-mongodb-performance-cost-and-complexity
https://ravendb.net/
https://redis.io/
https://rubygarage.org/blog/neo4j-database-guide-with-use-cases
https://rubygarage.org/blog/neo4j-database-guide-with-use-cases
https://www.techradar.com/news/amazon-and-ebay-shoppers-data-exposed-online
https://www.techradar.com/news/amazon-and-ebay-shoppers-data-exposed-online
http://www.strozzi.it/cgi-bin/CSA/tw7/I/en_US/NoSQL/Philosophy%20of%20NoSQL
https://www.trustradius.com/products/apache-cassandra/reviews
https://indexoutofrange.com/RavenDBvsMongoDB/
https://medium.com/weekly-webtips/redis-what-and-why-pros-cons-ae2f5bc750fd
https://en.wikipedia.org/wiki/Relational_database#Relationships
https://en.wikipedia.org/wiki/Relational_database#Relationships
https://www.csee.umbc.edu/courses/graduate/691/fall18/data-science/nosql_chapter.pdf#cite.EdlichFriedlandHampeBrauer201010
https://www.csee.umbc.edu/courses/graduate/691/fall18/data-science/nosql_chapter.pdf#cite.EdlichFriedlandHampeBrauer201010

Appendix A Glossary

Availability: what percentage of time a system is operating correctly

CODASYL: Conference On Data System Language (network database model developed

in the 1960s)

Consistency: The reliability of the performance of the functions of a database

DBMS: Database Management System

DMS: Document Management System.

Durability: The requirement that data be valid and committed to disk after a successful

transaction

Elasticity:

GDPR: General Data Protection Regulation (Regulation which lays down rules relating to

the protection of natural persons concerning the processing of personal data and

rules relating to the free movement of personal data).

IMS: Information Management System (hierarchical database model developed by IBM in

the 1960s)

Labels: Used to group nodes in a graph database. Each node can be assigned multiple

labels. Labels are indexed to speed up finding nodes in a graph.

Latency:

Maintainability: The ease with which a product can be maintained, i.e., upgraded, re-

paired, debugged and met with new requirements.

Nodes: The main data elements in graph databases that are interconnected through rela-

tionships. A node can have one or more labels (that describe its role) and proper-

ties (i.e. attributes).

NoSQL: Not-only sequel

Relationships: Connects two nodes in a graph database. Nodes can have multiple rela-

tionships. Relationships can have one or more properties.

TCI: Total implementation cost

TCO: Total cost of ownership

YCSB: Yahoo! Cloud Serving Benchmark (YCSB), proposed and implemented by Cooper

et al. (2010)

