
Saimaa University of Applied Sciences
Faculty of Technology Lappeenranta
Double Degree
Information Technology

Bronislav Draška, Jakub Stonawski, Ladislav Barabáš

Job-Ticket system for Tehohydro company

Thesis 2013

2

Abstract
Bronislav Draška, Jakub Stonawski, Ladislav Barabáš
Job-Ticket system for Tehohydro company, 69 pages
Saimaa University of Applied Sciences
Faculty of Technology, Lappeenranta
Information Technology, Double Degree
Thesis 2013
Instructor: Lecturer Pasi Tiihonen, Saimaa University of Applied Sciences

This bachelor thesis discusses a technical task, which was connected with the
real company located in Lappeenranta. The objective of the work was to design
and create a new information system used for management and administration
inside the company. The idea about implementation of the new system was a
response to the old one, which had several improvement needs. The work was
commissioned by Tehohydro company.

The system has been developed with the help of Microsoft technologies. The
development environment was Microsoft Visual Studio 2010 and the
programming language was C# using Microsoft .NET Framework 4.0. The
database was designed and created in Microsoft SQL Management Studio. All
knowledge and information about these technologies was mostly gathered from
previous experience during studies in the home university, from real practice
work in a company and from the internet.

The final result of this project was a fully functional information system, which
has been the subject of numerous testing and subsequently has been deployed
into the praxis. Many meetings with the customer in the phase of development
ensured that all necessary functionality is included. The work can also be used
as a task for the future students, because it may, for example, be extended by a
web interface.

Keywords: C#, .NET, SQL, Information system, Design pattern

3

List of terms

IT Information technology
CRM Customer Relationship Management
DBMS Database Management System
ORM Object Relational Mapping
MS Microsoft
C# Programming language C#
.NET Framework Software framework developed by Microsoft
JAVA Programming language JAVA
SQL Structured Query Language
T-SQL Transact-SQL
TFS Team Foundation Server
DP Design pattern
DO Data object
ID Identifier
GUI Graphical User Interface
IDE Integrated Development Environment
PDF Portable Document Format
MD5 Message-Digest
RAM Random-access memory
GB Gigabyte
VBA Visual Basic for Applications
1.NF First Normal Form
LAN Local Area Network
DLL Dynamic-link library

4

Table of contents

1 Introduction ... 5
2 About the Job-Ticket project ... 7

Team work ... 7
3 Tehohydro company overview .. 10

4 Current system ... 12
4.1 Job-Ticket system .. 12

4.2 Used technology .. 14
MS Access ... 15

4.3 Analysis of current system ... 16
5 New system .. 18

5.1 Used technology .. 19
5.2 Used development tools .. 19

5.2.1 MS Visual Studio 2010 .. 19

5.2.2 Team Foundation Server ... 20
5.2.3 OneNote .. 21

5.2.4 Prezi .. 22
5.2.5 GanttProject .. 24

5.3 Architecture .. 25
5.4 Database ... 27

5.4.1 E-R Diagram.. 27
5.4.2 Database specifications .. 28

5.4.3 Old Data Transferring .. 29
5.5 Functionality ... 30

5.5.1 Customer data processing .. 32
5.5.2 Salesman data processing .. 33

5.5.3 Mechanic data processing ... 34
5.5.4 Job-ticket data processing ... 35

5.5.5 Extended mode ... 36
5.6 Solution of the Job-Ticket system .. 36

5.6.1 Customer ... 39
5.6.2 Salesman .. 40

5.6.3 Mechanic ... 42
5.6.4 Job-ticket ... 45

5.6.5 Extended mode ... 55
5.7 Other Features ... 57

5.7.1 Language mutations .. 57
5.7.2 Plug-in support .. 58

5.7.3 Notifications ... 59
5.8 Testing and debugging .. 60

5.9 Deployment .. 61
6 Evaluation ... 62

6.1 Meeting the requirements .. 62
6.2 Personal review ... 62

6.3 What needs to be done .. 63
7 Summary and discussion ... 64

References.. 66
Figures .. 68

5

1 Introduction

Internal information systems are a very important aspect for a correct operation

of a company at present. Every company has its own management and

administration system which is necessary for the function of a whole company.

That kind of system was in the past presented in a paper form, where all

important data has been written by hand and stored in a card file. But with

coming of new technologies all data have been stored on servers by using

information systems. This technology can save much more time and work as

well, but on the other hand if an information system is not designed correctly the

problems may appear. And about this case deals this thesis. An opportunity

was offered by Tehohydro company, whose information system had a few

unsolved tasks. The system had several improving needs like database

handling so if the team would want to improve anything, it would mean that all

corporate data would be deleted. Instead of this solution, it was suggested to

create a new system with new architecture, all functionality from the previous

system and many improvements, which were discussed on the meetings with

employees of the company.

The thesis describes the architecture, functionality and database of the created

information system called Job-Ticket. All technologies used in development are

mentioned as well. This document should serve for students or developers for

better understanding of this application from a viewpoint of implementation.

The first chapter explains conditions for deciding to create a new system and

what reason led to this decision. The job in the team is described as well and

what specialization each member of the team had during the whole

development.

The second and third chapters describe basic information about Tehohydro

company and their current system, which is actually used. A reader is familiar

with technologies, which were used to implementation. There are also

advantages and disadvantages in the current system, which were discovered.

This part should explain what exactly the system deals and what the main

utilization is.

6

The next chapter contains detailed description of the process during

implementation of the created system. It is the most important part, where the

architecture with designed diagrams, the database schema with description of

linear entities, the functionality of the system and its solutions and finally the

phase of the development – testing and deployment are explained. It also

explains how data from the old system was transferred into the new one.

The last chapter contains the team’s personal review, what this work gave and

what the dealing with customer gave to the team. The work will still continue

with the project after submission of this document so there is also one small

passage that describes the rest of programming matters, which needs to be

done before the final deployment finished version into praxis.

7

2 About the Job-Ticket project

Everything started in autumn semester 2012. At that time several local

companies were visited and the team looking for IT (Information technology)

cases for its bachelor thesis. One of these was Tehohydro company that was

finally chosen. At the beginning, a couple of possible IT issues that team could

solve for them, were obtained for example sugar CRM (Customer Relationship

Management). Than all issues were analyzed and finally an issue related to

Job-Ticket system was chosen based on discussion with Tehohydro. This issue

was about improvement functions of this system, creating new functions and

troubleshooting errors.

Unfortunately, during analysis of that Job-Ticket system many aspects how to

improve the old system were discovered. Due to those facts the team offered to

Tehohydro company to create a new system with better technology, without all

these mistakes and with many other advantages which are described later in

this thesis.

Team work

The team consists of three members with different experiences and skills in

different areas of IT. This fact was used as much as possible so every member

was responsible for the area that he understood better than the others. Here is

a division of the work on implementation:

o Jakub Stonawski was responsible for testing the user interface, its

behavior as well as behavior and stability of the whole application. He

was also working on many support staff like old data transferring for

testing, password handling or checking connection to database server

and so on.

o Ladislav Barabáš was the main graphic designer. He took care of the

look of user interface and its design style as well as of icons or images.

Generating of PDF (Portable Document Format) file for printing the

job-ticket or sending via e-mail was also completely under his

management.

8

o Bronislav Draška designed application architecture, implemented

Application logic layer and Database layer of the application. He also

took care of the database configuration as well as configuration of the

whole database server.

Figure 1 - Team work

Next to implementation related work the team also worked on many

organizational and support issues:

o Jakub Stonawski participated on communication with customer,

presentations of the main ideas, solutions and demo applications.

o Ladislav Barabáš took care of reports and notes from all meetings with

customer.

o Bronislav Draška was responsible for TFS (Team Foundation Server)

as well as SQL (Structured Query Language) server. He also managed

the work of the whole team and communicated with customer.

9

There was also amount of work that was participated together, for example

design of the whole system, documentation, discussions during the meeting and

solving of major problems as well as key functions during the implementation.

10

3 Tehohydro company overview

Tehohydro represents a small company that provides hydraulics and

pneumatics services. This Finnish company was founded in 1983 (European

Commision, 2005). Tehohydro operates in industry, which is mainly focused on

the production, maintenance and repairs of the hydraulic and pneumatic tool

(Tehohydro Oy, n.d.). This company makes a wide range of tests and analysis,

which task is checking correct functionality of many products. They perform also

measuring techniques for checking levels of impurities in oil and water and all

data are collected by special devices. These procedures are very important for

solving problems with which the customers come, because mechanics can

advise if maintaining or repairing is a better option than purchasing of a new

product. They offer repairing and testing of many products like: hydraulic

systems, pumps, cylinders, engines, valves, etc. All mechanics are specialized

and regularly trained in their field.

Most of their customers are medium-sized and large manufacturing companies

and machine shops. The main place of work is South Karelia and Kymenlaakso.

The factory is located in Lappeenranta and it serves also like a shop, where

customers can buy (or bring to repair) all necessary components and where

most of the repairs are made. Figure 2 shows the factory in Lappeenranta.

Figure 2 - Tehohydro company located in Lappeenranta

11

Surely for this service in such a company it is necessary to have a basic

information system, which is able to store all important data from the production

and sale to database (Paisley University, 2003). Large part of these data

consists of information about customers, employees and their working hours. All

these data bring together a structure called job-ticket and the information

system is created directly for keeping this structure. Salesmen use the system

for storing the information about new customers, mechanics have to keep

records about their finished work and they use this system for these purposes.

12

4 Current system

In the following paragraphs, the current Job-Ticket system is described as it is

now used in Tehohydro. There are also the basic characteristics of technology

which was used in the current solution. Because it is quite a specific information

system, which was created exactly for one company the first subchapter starts

with the description of the main functions which job-ticket system should

contain.

Figure 3 - Current Job-Ticket system

4.1 Job-Ticket system

Because Tehohydro is a company with hundreds of customers, they have to

manage all works related to repairs or development of products in a very

effective way. Nowadays for this type of a company it is almost impossible to

manage all paperwork related to each job by hand. For this propose they are

13

using a specific information system which enables any employee of the

company to create a new order of job for a specific customer. Then they can

add other important information such as customer’s declaration about the

problem, estimated time of finish of this order, etc. Finally they save this

job-ticket to the database and from this point every mechanic when he will work

on this order can add his own working hours. In a very late stage the head of

the company can easily check how many mechanics were working on a specific

job-ticket, how many orders the company had during a specific period of time

and other important information like if there are any job-tickets with delay of

finish time.

Every job-ticket should contain:

o customer and all necessary data about him, like address, phone, etc.

o salesman (this person received order from customer, it can be also

mechanic himself)

o specification of problem (from both sides, customer’s and mechanic’s)

o responsible mechanic (primary mechanic)

o list of mechanics which ever worked on this job (with numbers of hours

what they spend on it).

14

Figure 4 - Job-ticket paper form example

4.2 Used technology

The whole system is made in MS (Microsoft) Access. Most part of this system is

made in design view. Behavior and properties of the system made in this way

are based on relationships of tables, their attributes and constrains. This is an

advantage for creating this kind of application but every saved time can be

easily lost in any future changes. (Blue Claw Database Design, n.d.)

15

MS Access

This software was developed by Microsoft and it is basically used for

management of relational databases. This basic type of database is based on a

so-called relational model which means that tables are connected to each other

in a specific logical way. This model was developed by Dr. E.F. Codd in 1969.

(Codd, 1969)

MS Access also enables the user to create own applications that can be easily

deployed on every computer with this software. Creation of this application can

be based on mouse-clicking actions during which the user just chooses what

the application should do. It is a strong tool for users who have no experiences

with programming with the help of real programming languages. MS Access

also contains a lot of templates which can even more help the user to create

his/her own application. (Microsoft Corporation, n.d.)

There is also a possibility of programming using VBA (Visual Basic for

Applications) language. VBA is similar to VB (Visual Basic) and uses VB

Runtime Library. This language is used for macros in MS Access.

16

Figure 5 - MS Access environment

4.3 Analysis of current system

During the analysis of the system many issues on the database were

discovered:

1) Tables are not even in 1.NF (First Normal Form). For example the whole

address is represented by one attribute.

2) Name and surname of mechanics are stored as one attribute and

moreover, it is a primary key.

3) Customers and their subscribers are stored in a table with job-tickets

themselves. This makes the database inconsistent since there is nothing

handling unification of customers.

4) Job-tickets have primary key ‘tyomaarainID’ which is automatically set by

auto incrementation. But another attributed called ‘tyomaarainNro’ is

17

used in the whole system as primary key. Additionally ‘tyomaarainNro’ do

not have to be unique, can be edited by user and it is not even required.

The entity-relationships of the database used in this system are shown in

Figure 6.

Figure 6 - Entity-relationship diagram of the current system

The final version of this improvement would probably be unstable and also lot of

functions which were requested by the customer could not be created due to

MS Access environment limitations.

18

5 New system

Based on the previous facts it was really necessary to create a new system

from scratch which also means that more optimal technologies and approaches

can be used. The scope of this project is to develop a windows-form application

that will provide all described functions of Job-Ticket system. There is also need

to develop a database for this system. The architecture of this system will be

based on Domain Model design pattern. (Lasater, 2010) That means that no

server application is needed and all communication between the database and

the application instances will be based on transactions and their isolation levels.

MS SQL Server is a strong enough tool to handle all of this. Considering the

scope of the whole system it was also decided to create own ORM

(Object-relational mapping) for communication between the windows-form

application and the database.

Figure 7 - New Job-Ticket system

19

5.1 Used technology

Based on discussions with the customer it was decided to develop the system

as a standard Win-Form application. For developing the system C#

programming language and MS .NET Framework 4.0 were used. This choice

was based on previous experiences of all members of the team. On database

level standard SQL queries and commands for manipulation with the data were

used. Some commands were supplemented with short anonymous procedures

in T-SQL (Transact-SQL) language. Own ORM was also used instead of any

frameworks.

5.2 Used development tools

During the development of the new system many tools were used. These tools

were used in the implementation phase, for presenting the results to the

customer or for scheduling the work in a team. Among them belong MS Visual

studio 2010, Team Foundation Server, OneNote, Prezi and Gantt Project.

5.2.1 MS Visual Studio 2010

As a main tool to create the new Job-Ticket system MS Visual studio 2010 in

two different versions was chosen. The first version, Professional, was used for

most of functionality in the system. The Ultimate version was necessary for final

testing and optimization of the whole system because it contains a special tool

for these propose. It is able to analyze the application during run-time and after

that it shows where a code is the slowest. (Microsoft Corporation, n.d.) After this

analysis it is possible to optimize the code manually.

MS Visual studio is an ideal development environment because it provides very

useful tools for developing these types of information systems. Additionally this

tool has Team Foundation Server (5.2.2).

MS Visual studio also provides an environment where the GUI (Graphical User

Interface) was created. The Figure 8 shows, how the environment looks.

20

Figure 8 - MS Visual Studio environment

5.2.2 Team Foundation Server

TFS (Team Foundation Server) supports agile development practices, multiple

IDE (Integrated Development Environment) and platforms locally or in the cloud

and gives the tools you need to effectively manage software development

projects throughout the IT lifecycle. (Microsoft Corporation, n.d.)

TFS was primarily a tool for merging the code of multiple users working on the

same project. It is also a useful tool for backup and archiving of historic versions

where the name of developer as author of the last change for each row can be

seen. Whole source code history with names of authors is also provided as

Figure 9 shows.

21

Figure 9 - MS Visual Studio Source code history

Management of TFS server is done by Team Foundation Server Administration

Console shown in Figure 10. Source control is managed via Source control

Explorer in Visual Studio.

Figure 10 - Team Foundation Server Administration Console

5.2.3 OneNote

OneNote is an improved notepad-style application made by Microsoft which

enables to make and share all notes and to-do lists inside the team. (Microsoft

Corporation, n.d.) It can be part of MS Office pack but is also available

separately. For this project OneNote was used for sharing notes and for

distribution of work between all developers. One of the most used parts of this

application was Snapshot tool which enables to crop the taken screenshot and

22

save it to clipboard. In shared notebooks the identification of the author of the

last change is shown as it can be seen in Figure 11.

Figure 11 - OneNote environment

Synchronization can be invoked manually by the user but in default it is made

automatically when changes are finished. Notebooks in OneNote can be shared

via SharePoint Server or cloud service SkyDrive. For SkyDrive synchronization

Microsoft Live account is used.

5.2.4 Prezi

The presentation of the proper idea about product to customer is one of the

most important parts of the process of the product offer. It can be done

successful and the customer is satisfied. This means that everything is clearly

explained and every important point is mentioned as easily as possible. But on

the other hand, these important parts of concept development are not always

met and then misunderstanding or confusion from the customer’s side could

come. To avoid these potential threats, the team decided to use Prezi as a tool

23

to create the bridge of imagination between the two sides – the team and the

customer.

Prezi is a very simple cloud-based presentation software, which offers easily to

users make own presentation via internet browser. (Prezi Inc., n.d.) This service

is freeware and the only thing, what is needed is to be registered as Prezi user.

It is mostly widespread as online service, so the internet connection is required

for using. But there is also a possibility to use Prezi offline by using the desktop

application. This desktop application is an extended version, which is

chargeable. Freeware version was fully sufficient for the project purposes.

Working in Prezi environment is intuitive and easy. The user will quickly learn

the main functions. It is possible to use many predefined templates, which are

offered for creating new presentation before. There is also a possibility to

convert a Microsoft PowerPoint presentation directly on Prezi canvas. All

created presentations are automatically saved in user’s profile, but presentation

can also be exported to a flash file and saved in local computer. Figure 12

shows, how Prezi environment looks.

Figure 12 - Prezi environment

24

The main difference compared to usual presentations (for example Microsoft

PowerPoint) is that the user works only with one canvas instead of traditional

slides. This canvas contains all objects, just like text, images, videos, sounds,

etc., and these objects are in a particular order zoomed in and out depending

on the user’s choice. As a result an easily understandable presentation can be

created, which does not bore the audience and what more – can impress them.

The main reason for choosing this tool was because of its simplicity, ability to

engage the viewers and also because Prezi is about creativity.

Figure 13 - Prezi’s main functions

5.2.5 GanttProject

If any team starts to develop a specific project (for example information system),

the work inside the team must be organized if good results are expected. Each

member should know his/her own position in a team. The team should also

decide together on the project schedule, which will divide the whole project work

into single phases and tasks. This is the first step leading to successful

objectives of the work. The team has decided to use GanttProject for these

purposes. (Barashev & Thomas, n.d.)

GanttProject is a work scheduling and time management desktop application.

This software is freeware and its code is open source. It is programmed in Java

language so it means that software is cross-platform. The user can create

25

project tasks, for which the start and finish date are set, it is easy to watch

progress through the whole development. The resource load chart allows

writing records about the workload of each member of the team. The schedule

plan with individual tasks and their progress is possible export to PDF

document. The Figure 14 shows, how the environment looks.

Figure 14 - GanttProject environment

5.3 Architecture

The architecture of the application is based on Domain Model DP (design

pattern). This enables to divide application into three layers:

o Presentation layer

This layer takes care of the user interface and its behavior. From this

layer domain logic layer is controlled.

o Domain logic layer

All main logic parts of the application according to the system

functionality requirements are placed in this layer. Greater part of the

application behavior is implemented in this layer. This layer is dependent

on the database layer through which it obtains the data for its work.

26

o Database layer

Database layer provides the data for layers above. This layer also

enables to manipulate with the data as well. Data itself are placed in data

storage outside the application, like MS SQL Server database in this

case. Database layer is thus dependent on the type of data storage.

CLIENT APPLICATION

DATABASE LAYER

DOMAIN LOGIC LAYER

PRESENTATION LAYER

Win-FormWeb client...

DATABASE

JOB-TICKET SYSTEM

<root>
...

</root>

Language translations

PLUGINS
...

Figure 15 - System architecture

There is no dependency of any layer on the layer above. Due to that fact

implementation and maintenance of the source code of the application is

clearer. Another reason why this pattern was chosen is the possibility of

replacing the presentation layer with any other type of user interface of .NET

technology without touching the application logic or even creating a new one.

27

According to customer’s requirements the application was supplemented by

support of plug-in and Multilanguage user interface. Both of them are described

in the chapter Other Features.

5.4 Database

This chapter describes everything important about the database used in

Job-Ticket system.

5.4.1 E-R Diagram

All entities in the database are shown in Figure 16, all relations between them

as well as types of these relations. Primary and foreign keys are shown there

too.

28

WorkingHours

PK id

 date
 tyo0
 tyo50
 tyo100
 tyo150
 tyo200
 driveKm
 description
FK2,I2 mechanicId
FK1,I1 jobTicketId
 dailyAllowance
 drivingHours

Customer

PK id

 name
 addStreet
 addCity
 addPC
 billAddStreet
 billAddCity
 billAddPC
 phone
 email

Mechanic

PK id

 name
 surname
 isActive

PasswordTB

PK id

 hash

Salesman

PK id

 name
 surname
 isActive

DeliveryMethod

PK id

 deliveryM

JobTicket

PK id

FK2 deliveryMethodId
 product
 orderNumber
 customerDeclaration
 mechanicDeclaration
FK3,I5 primaryMechanicId
FK1,I4 customerId
FK4,I6 salesmanId
FK6 subscriberId
 mark
FK7 workTargetId
FK5,I8 stateId
 vismaNumber

WorkTarget

PK id

 workT

State

PK id

 stateJT

Subscriber

PK id

FK1,I1 companyId
 name
 surname
 phone
 email

Figure 16 - E-R Diagram of a new system

5.4.2 Database specifications

As a primary key auto incrementing number of integer type is used. This

enables to store up to 231 – 1 records in each table since it is the maximum

value of integer and the first inserted has value ‘1’. All primary keys are solved

in the same way for all entities.

For descriptions ‘nvarchar’ types with unlimited number of character are used.

The maximum length of ‘nvarchar’ stored in one row is 4000 characters. When

this length is exceeded, the data in specific row is replaced by pointer to one or

more pages where these data really are stored.

29

There was also need to secure best performance for filters. For this purpose

indexes for important attributes were created. For primary keys indexes are

created automatically by DBMS (Database Management System). Indexes

reduce performance for updating since the index tree must be reorganized. On

the other hand they increase performance for queries because records do not

have to be read sequentially. Job-ticket system does not expect many parallel

updates but queries of filters have great demands on DBMS. Nevertheless MS

SQL Server is a strong enough system for the amount of data flow that

Job-Ticket system can produce and the user will not recognize any reduction of

performance during updating the database.

5.4.3 Old Data Transferring

Before starting an analysis, the team agreed with the customer that data from

the old system will be transferred to the new one. Unfortunately information

about the real condition of data in the old system was not quite clear. Relations

between entities were analyzed and from that point of view it looked like there

should not be any crucial problem. But after taking a closer look at records in

tables the team discovered a lot of empty domains as well as domains with

incorrect values for important attributes which were needed for transferring the

data. The database needed crucial improvements because of its inconsistent

and lack of integrity.

Two ways were found to solve those problems. The first one was to start from

the scratch and not transfer any old data to the new system. The second

solution was to transfer only the correct data and then try to find out which

records can be considered as correct ones. After explaining the problems to the

customer the team decided not to transfer the old data at all. This decision

saved some time but on the other hand a phase for testing the system with data

from the old system was also included in the plan. For that purpose only a part

of data was transferred from the old system. If there were records with incorrect

values the values were replaced with any random but correct values. The

amount of the data was huge enough for debugging as well as optimization of

speed of the new system.

30

5.5 Functionality

The following text describes the main functions that the new Job-Ticket system

contains. All these functions were subject of discussions between the team and

Tehohydro representatives as well as other critical behavior of the whole

application.

For better clarity this description is divided into subsections that are logically

structured according to objects which relate to a specific functionality. Figure 17

shows Use-case diagram for the Job-Ticket system.

31

Normal user

Extended user

Add Customer

Add Subscriber

Browse Job-Tickets

Add Mechanic
Working Hours

Add Job-Ticket

Show Job-Ticket

Send Job-Ticket

Print Job-Ticket

Extended Mode

Add Mechanic

Edit Mechanic

«uses»

«uses»

«extends»

«extends»

«extends»

«uses»

«uses»

«uses»

Browse Mechanics

Autentication

«uses»

Password Change

«uses»

Edit Job-Ticket

«extends»

Edit Mechanic
Working Hours

«uses»

Filter Job-Tickets

«extends»

Show Mechanic

«extends»

Add Salesman
«uses»

Edit Salesman

«uses»

Browse Customers

Edit Customer Edit Subscriber

«extends»
«extends»

Browse Mechanic
Working Hours

«extends»

Filter Working
Hours

«extends»

«extends»

Browse Salesmen

«extends»

Change Language

«extends» «extends»

Figure 17 - Use-case diagram for a new system

32

5.5.1 Customer data processing

Since customer is one of the most important objects in the system everybody

who will use Job-Ticket system should be able to add a new customer, edit any

data of an already saved customer as well as browse all customers who are

saved in the database.

There is also a special type of customer (mostly bigger companies) who has

one or even more subscribers. It means that when an employee of Tehohydro

wants to create a new job-ticket for this customer he has to fill in also data

about a specific subscriber who has the right to act as customer. It means that

everybody from Tehohydro should also be able to add a new subscriber or edit

any of his data. There must also be a possibility to select a specific subscriber

as non-active, which means that from this point there is no possibility to create a

new job-ticket with this subscriber.

In a phase of adding a new customer, the user has to fill in all data about the

customer which is necessary for saving this customer to the database (name,

address ...). If there is any important data missing the customer must not be

saved. There must not be a possibility to save a customer, who is already in the

database. All mentioned functions for adding a customer also apply for

subscriber object. Especially in a subscriber case there must be solved situation

that subscriber must have own customer, so there must not be a situation

during which the user can create a subscriber without a customer. In the system

there are two possibilities how a new customer or a subscriber can be added.

The first one is directly from special windows form for this purpose. The second

variant will be adding these objects from a form for creation of the new

job-ticket.

If somebody would like to edit any data of the customer there are two

possibilities how to do this. The first option is that the user chooses a specific

person from a list of all customers and then he is able to edit any field. A

situation must also be handled when the user deletes any of the required

field - these changes must not be saved to the database. The second way how

to edit a customer is directly from Job-ticket form, when the user chooses a

33

specific customer, all other fields related to the customer are automatically

pre-filled and that user can change any of them. Similar situation is during

editing of a subscriber. There are also two options how to do that. The only

change is in the first situation, when the user has to select a specific customer

from the list of all customers and then select a subscriber who would like to edit.

During the phase of browsing all customers there must also be a function to

search across the name of customers which helps the user to find the right

object.

5.5.2 Salesman data processing

Salesman is a special type of employee. It is a person who receives an order for

the new job-ticket from the customer. It can be (and usually in Tehohydro it is)

mechanic but the salesman has to be filled independently of the primary

mechanic in Job-ticket form.

Unlike in a case of a customer or subscriber object any user can not add a new

salesman. Since the salesman is an official employee of Tehohydro only the

extended user can add him to the database.

For an extended user there is also a function for editing the name and surname

of the existing salesman. In order to maintain consistency of database, there is

no function for deleting the salesman, but the extended user can mark a specific

salesman as non-active as in a case of subscriber. As in customer and

subscriber case, also here must be handled the situation that the user does not

fill in (or delete) the required field.

The only function about the salesman that can be accessed by any user will be

browsing all salesmen from the database. There will also be a possibility to

search during this phase. Because salesman contains only information about

his name and surname there is no need to show any detail information about

this object.

34

5.5.3 Mechanic data processing

Mechanic is the second type of the previously mentioned employee. It means

that also for creating and editing this object, the user has to log into the

extended mode. After that authentication, the user is able to add a new

mechanic, edit any data of a particular mechanic and also select a mechanic as

non-active, so there is no possibility to assign this mechanic to new job-ticket or

create new working hours for him. As in the previous objects also there

protection must be done for saving incorrect records to the database.

For this object, the only one function that can be done, without extended user

permission, is to browse all mechanics in the database. Also here there will be a

search function for better user experience.

Each mechanic has also his own list of working hours for each job-ticket where

he ever worked. It also means a set of special functions for this propose. Each

mechanic must be able to add own working hours to a particular job-ticket. This

record of working hours must contain special fields for hours of work which have

been done during a specific period of working time (tyo0, tyo50 ...). There also

must be a possibility to add driving distance to working place, drive hours, daily

allowance as well as description of work and date of work. The fact must be

solved, that a mechanic cannot add own working hours for a job-ticket which is

already marked as finished.

In the list of mechanic’s all working hours there must also be a function for

filtering working hours which helps the user to find the right record. It should be

able to filter by date or period of time as well as by particular job-ticket.

The special function above all mechanics in the database is a statistics tool. It

enables the user to check how many hours are spent by a particular mechanic

or a couple of mechanics on a specific job-ticket or what is the average

performance of all mechanics.

35

5.5.4 Job-ticket data processing

One of the crucial functions of the whole Job-Ticket system is creating and

editing job-ticket. Everybody has to be able to access to any particular

job-ticket, viewing all details about it and also modify fields.

During the addition phase, the user has to fill in all necessary information which

is required for a successful saving of job-ticket. If this job-ticket is for the

customer, who is already in the database, there must be a function which

enables the user to choose a specific customer from the list. Then all other

already saved data are pre-filled in Job-ticket form. If a customer has any

subscribers, a list of these objects must be loaded in Job-ticket form too. If the

user chooses one of the subscribers he must also be able to modify any

information about this particular subscriber. The user must also be able from

this point to create a new one.

During browsing of all customers from Job-ticket form there should also be an

option for easy search throw of all records for better user experience.

Also assignment of a primary mechanic and salesman has to be done with the

help of lists of all mechanics/salesmen. These lists will only contain mechanics

and salesmen who are marked as an active in the database. When all

necessary data is filled in Job-ticket form, it can be saved to the database.

During this phase there will automatically be filled data about the creation date

of this job-ticket.

Because there is expectation that the system contains a really big amount of

job-tickets, sophisticated filtering for searching the right job-ticket(s) must be

done. There must be a possibility to filter job-tickets by date of creation, date of

start work, and date of finished work. The user must also be able to filter by

primary mechanics, customers, and salesman as well as by the current state of

job-ticket.

When a user will open any job-ticket for editing he must be able to edit some of

the data but not all of them. For example the user must not be able to modify

the date of start work on job-ticket which is already in the started phase.

36

Another important function involves saving of job-ticket to PDF file, printing

job-ticket or sending job-ticket via e-mail. After consulting this topic with

Tehohydro the team has decided to make these functions together. It means

that after the user will want to print or send job-ticket both of actions lead to

creation of a PDF file. From this point it is much easier to choose if the user

would like to print it now or send it.

5.5.5 Extended mode

As it was mentioned before, some of the functions require a special extended

mode. It is a mode only for the head of the company and the main secretary. To

enter to this mode the user has to know the password. User interface in this

special mode should be a little bit different for better clarity, for example with the

help of different colors or other features.

In extended mode the user is able to access a special function mentioned

before, like adding a new mechanic or salesman, as well as modify this object.

There are also special statistics for the head of the company related to all

job-tickets in the database. The user in extended mode is also able to change

the password for this mode. Saving of the password has to be done in a safe

mode; it must not be saved as plain text in the database.

5.6 Solution of the Job-Ticket system

The following subchapters briefly describe the chosen solutions of all

functionalities according to the previous chapter. Problematic and critical parts

will be described more deeply. The design patterns will be mentioned as well if

any of them are used.

Customers, subscribers, salesmen, mechanics, job-tickets and their working

hours are in the system represented by instances of classes with the same

names. Their data are processed basically in the same way which is shown on

Figure 18. This figure also shows the process of deleting but this function is

implemented just for working hours. Only working hours can be deleted without

disruption of data consistency in the database because there is no dependency

37

in the database on this entity. Salesmen and mechanics have special

workaround which is mentioned later.

DATA MANIPULATION

GUI FORM DOMAIN LOGIC OBJECT DATA OBJECT DATABASE

Save()

SaveToDB()

InsertNew()

UpdateInDB()

INSERT

UPDATE

isSuccessful

IsSuccessful

isSuccessful

isSuccessful

DeleteFromDB()

DELETE

isSuccessful

isSuccessful

Delete()

[isNew==FALSE]

[isNew==TRUE]

Figure 18 - Data processing

The object which handles all methods and SQL queries for this data

manipulation also holds the loaded data. That is why this object is called DO

(Data object). The members of the object from the domain logic and Data object

from the database layer are shown in Figure 19, in this case for the customer.

38

Figure 19 - Data object

This solution was only inspired by Data Mapper design pattern. Mapping itself

handles the method of object in the domain logic layer. So in fact this solution is

also inspired by Active Record design pattern but with benefits from code

separation of Data Mapper. Another advantage of this solution is only one-way

dependency in the same direction through all layers of the system.

39

Every Data object also encapsulates its ID (identifier) loaded from the database.

This ID is accessible from outside of the object only for reading and maintains

identity between the in-memory object and the database row. Here Identity Field

design pattern is used.

5.6.1 Customer

Customers are displayed in two main ways. The first way displays all customers

in a list of their names as is shown in Figure 20. For this case ListBox object

was used and its property DataSource was set to collection (specifically generic

List) of all customers. But this would not be enough if the ToString method

would not be override in Customer class. Now the method returns the text string

of customer’s name.

Figure 20 - Customer browse

40

The second way shows all the details of the customer as well as his subscribers

if there are any. This form is shown in Figure 21. For subscribers component

DataGridView is used but only its visual part. Filling in the list of subscribers is

managed manually. All of this is shown in Figure 21.

Figure 21 - Customer form

To minimize the amount of data transferred from the database all customers are

not loaded one by one but all together with only name and ID loaded. All other

properties (including collection of subscribers) of one customer are loaded

together but only once for each object and only when they are really needed,

according to design pattern Lazy load and its type Ghost. (Fowler, 2003)

5.6.2 Salesman

Salesmen are shown in very similar ways as the customer. In case of displaying

all salesmen the only difference is in overridden ToString method. For salesmen

this method also returns indication whether the salesman is inactive. Inactive

indicator is mentioned later. Salesmen are not shown separately because there

41

is no other needed information about salesman than name, surname and

‘inactive’ indication. Figure 22 shows all salesmen. At the first place inactive

salesman is shown.

Figure 22 - Form for browsing of all salesmen

Text above mentions inactive state. This is a workaround used instead of

deleting the salesmen mentioned earlier. This inactive state causes the

salesman`s invisibility in lists of all salesmen during the phase of creating new

job-ticket but has no effect on a salesman in already created job-tickets created

by him.

For salesman there is no place for Lazy load design pattern because there is all

information about salesman needed every time they are shown.

42

5.6.3 Mechanic

Mechanics are very similar to salesman from the system point of view. Indeed,

classes of both objects inherit form the same abstract class Employee as is

shown in Figure 23. This inheritance is only on the domain logic layer because

Data objects must retain their independence on domain logic.

Figure 23 - Employees class diagram

43

As is evident from Figure 24, mechanic is a little bit more complicated than

salesman. That is why the rest of this subchapter is focused on this difference.

From the user point of view the main difference is in the possibility to show

details of one mechanic separately. This is due to the need to show also

mechanic’s working hours, as is shown in Figure 24. Here is evident similarity

with customer and his subscribers. In addition to this, there is also need to

display description of work for selected working hours.

Figure 24 - Form for mechanic

As mentioned above, a mechanic also encapsulates the collection of his

working hours. From implementation point of view working hours are also

represented by instances of a special class. All members of this class are

shown in Figure 25. Working hours can also be deleted as the only one entity in

44

the whole Job-Ticket system. The reason is already described at the beginning

of this chapter.

Figure 25 - Working hours class

For description of work design pattern Lazy load (its type Ghost) is used.

Description of work can be very long. Even infinitely long from database point of

view. Strings in .NET cannot have more than 231 characters since property

‘Length’ of the String is a 32-bit integer. (StackOverflow, n.d.) There may also

be problems with allocation of memory in heap for that long String. On the other

hand so long text string in the whole system is not expected at all. Description is

also the only property of working hours which is not needed for showing all

working hours.

Whereas the list of working hours should be the largest set in the whole system,

filters are also needed. Because filters are one of the most demanding functions

45

there was an effort to use already implemented and tested functions from

another part of the system. Filter of job-ticket’s working hours is based on

filtering of job-tickets themselves. This is the only way how to specify job-tickets

for filtering since the ID of the job-ticket is not accessible for the user. Filter for

working hours of a specific mechanic is based on both these filters. Figure 26

provides better explanation.

Mechanic's working
hours filter

Working Hours
filter

Job-Tickets filter

«uses» «uses»

Figure 26 - Filters

All the logic is divided into two parts. The first part is done on the database

system level by dynamically created parameterized SQL queries. The second

part is solved in an application by filtering generic lists via lambda expressions

(MSDN, n.d.) . An example of a used lambda expression can be seen in

Figure 27 where working hours (allFilteredWH) obtained from filtered job-tickets

are filtered and then compared with the collection of working hours of a specific

mechanic (mechanicWH but also workingHours).

Figure 27 - Lambda expression example

More details about filters are described in the next chapter.

5.6.4 Job-ticket

From Job-Ticket system point of view JobTicket class is the most important

part. It is a class where everything is connected together via its IDs (and

references) and extended by other information related to job-ticket. More details

about job-ticket class are shown in Figure 28.

46

Figure 28 - JobTicket class

On the presentation layer job-tickets are also shown in two ways as customers

or mechanics. The first way displays all job-tickets together in DataGridView

component as can be seen in Figure 29.

47

Figure 29 - Browsing of job-tickets

Because of many rows used for better differentiation filling the DataGridView is

not so fast. For 5000 job-tickets it takes approximately 5 seconds meanwhile

downloading from the database via wireless LAN (Local Area Network) takes

about 1,5 seconds. Execution time of query was unmeasurable. The

performance analyzator of Visual Studio recognized as the slowest part of code

adding a new empty row. The result of this analysis is shown in Figure 30. This

adding of rows is implemented in assembly ‘System.Windows.Forms.ni.dll’.

Figure 30 - Performance analysis in Visual Studio

Due to that problem it was needed to show information about loading for the

user. For this purpose ProgessBar and information text about how many items

are already loaded were used as shown in Figure 31. Unfortunately it made

loading even more slower (approximately 20-30% depending on performance of

current computer). Even though everything about loading itself is made in

separate thread. This fact is caused by performing steps of ProgressBar and

updating text of Label displaying number of processed items. There is no way to

48

improve performance in this case since visual components in .NET are

accessible only from the main thread. Setting the visual components from a

separate thread is done by Method invoker invoked on the main thread.

Figure 31 - Loading of job-tickets

The second way for displaying the job-ticket is separately in a special form. The

principle is in many ways the same as in the previous cases. All automatically

filled fields for the customer are worth mentioning here. Depending on the

selected customer in a specific ComboBox also other fields related to the

customer of Job-ticket form are filled. This ComboBox itself is prefilled by all

customers from the database. The user can select one of the customers by

mouse from drop-down list or by typing. During typing first appropriate customer

is suggested and other ones are shown under the ComboBox like in Figure 32.

Form itself is shown in Figure 33.

Figure 32 - ComboBox for customer

49

Figure 33 - Job-ticket form

Because creating a new job-ticket also enables to create a new customer with

all needed details as well as his subscriber there is a very important way and

50

order how all data are saved. First of all the customer with all his details must

be saved. Then his subscriber is saved if there was any. Job-ticket itself is

saved as the last one. This is the only right order because for maintenance of

references the subscriber is saved with the ID of customer that he belongs to.

Job-ticket needs to know the ID of both of them. These IDs are returned by the

database system through the call of SCOPE_IDENTITY() method called in SQL

command after INSERT statement. This command must be executed as scalar

(method ExecuteScalar). If saving of any of those fails, other items in order

cannot be saved.

Properties CreateDate, StartDate and FinishDate are set automatically,

depending on the previous and current state of job-ticket. This is done by

anonymous methods placed in SQL commands. The key part of anonymous

method used in an update command is shown in Figure 34. Under the numbers

IDs of states from the database table States are hidden. This solution secures

that these dates will be set by the same clock, no matter the system time on

computers where the instances of Job-Ticket system are installed because

those do not have to be synchronized.

51

Figure 34 - Anonymous procedure example

Job-ticket is the only place in the system where working hours can be also

created, edited and deleted. Showing of the list of working hours is very similar

to the way they are shown for a mechanic. The only difference is in buttons

making available modifications as shown in Figure 35. The form for editing or

creating new working hours is shown in Figure 36 .

52

Figure 35 - Browse working hours

Figure 36 - Edit working hours

The filter of job-tickets is undoubtedly the most sophisticated part of the system.

Its logic is divided into application and database system. Everything starts by

dynamic creating of parameterized SQL query. Here are records filtered by date

of creation, date of start, date of finish, desired delivery date and state(s). For all

these attributes indexes were set in the database table. On application level

there are processed filters by customers, primary mechanics and salesmen.

Lambda expressions are used instead of sequential browse of generic

collections.

Setting the filter by all kinds of used dates is solved by DateTimePickers with

checkboxes. These checkboxes are here because the user can set a range of

dates but also one concrete date as is shown in Figure 37. Unchecked whole

pair is ignored. In case of a range of dates the system prevents the user to set

an empty range. Then the user cannot select an older date ‘from’ then date ‘to’

and vice versa.

53

Figure 37 - Filtering by time range

Filters by state, primary mechanic, salesman and customer work in the same

principle. There is always a list with checkboxes and the user can choose which

items should be taken into account. If all or none are selected in a specific

category, filter is ignored for this category. An example is shown in Figure 38.

54

Figure 38 - Filtering by state of job-ticket

Filter for mechanic’s working hours is extended by selecting the date range for

working hours date shown in Figure 39. A mechanic whose working hours are

filtered is taken from a mechanic whose working hours are already shown.

55

Figure 39 - Filter of mechanic’s working hours

5.6.5 Extended mode

On presentation layer an extended mode is accessible from the right top corner

of the main form. Then the user is asked to fill in the password. This can be

done in form in Figure 40.

56

Figure 40 - Login form to extended mode

Then the user interface is switched into easily recognizable appearance shown

in Figure 41.

Figure 41 - Extended mode appearance

For password hash it was decided to use MD5 (Message-Digest) algorithm. It is

a widely used hash function which creates 128 bit hash value. The method

providing this functionality is in Figure 42. This value is saved into a special

table in the database.

57

Figure 42 - Hash method

5.7 Other Features

This chapter describes all functionalities which do not have any effect to the

main functionality of the system but makes the system easier to use, improves

its functionality or gives other opportunities how to expand the system with a

new functionality.

5.7.1 Language mutations

Requirement for language mutation was known from the very beginning. The

system was developed in English language including the user interface. But in

the end there had to be a possibility to switch the user interface into Finnish

language as well.

For static labels in user interface localization properties provided by Visual

Studio in design view of Forms are used. These localization properties are

saved in separated resource files for each language mutation and can be edited

outside of the whole project or solution. These resource files are usually filled

automatically by Visual Studio while editing the form in any of the language

mutations but can also be edited or created manually and included into the

existing project if the format in these files is followed properly. These resource

files are separated for each form. For text strings used in drop-down lists, in

message boxes, dynamically changing and so on own resource file common to

all these through all forms is used. All these resource files were created only in

English language but after that copied and renamed to a correct format for

Finnish language. The content of these files was translated by Finnish student

58

Olli Maaranen. After translation these files were copied back to the folder with

other resource files. Switching the language of the user interface is solved by

setting the language culture of the whole application, according to the selection

of language from the menu by the user.

Figure 43 - Localization in MS Visual Studio

Figure 44 - Resource file list

5.7.2 Plug-in support

The decision of making the plug-in support was made as response on the

impossibility of adding the new functionality to the system without impact of the

main application. By impact is meant changing or adding the source code,

recompiling the application and re-deployment of the whole system. The main

property of the plug-in is integration to the system even though it was created

later than the system itself. In our application these improvements are

accessible from the main menu in a separate category.

59

The technical background of this support is strictly designed with focus on easy

implementation and isolation of a running plug-in from the main application.

Isolation is secured by running plug-in in a separate thread and application

domain. Due to that the unstable plug-in will not cause instability of the main

application. Implementation of the plug-in is based on a few simple rules, which

must be followed for successful integration of the plug-in into the main

application of the system. All these rules are included in C# interface, which

must be implemented by the main class of the plug-in. This interface was

forwarded to the customer during deployment of the system as dll (dynamic-link

library) file. Plug-in must be placed in the required folder and those, which do

not implement the required interface, are skipped during loading of the plug-in.

Execution of the plug-in is made by using the Reflection in .NET technology

(MSDN, n.d.)

5.7.3 Notifications

Let us imagine two situations. One or more job-tickets are given. These job-

tickets have the set desired delivery date, which will expire in a couple of days.

The second situation is about job-ticket when it is not possible to wait for it but

somebody is working on it and the point is to need to know as quickly as

possible when this job-ticket is done. For both situations notifications are

implemented. They should simply aggregate and show job-tickets which are in

hurry as well as those which are already done few moments before. These

notifications are also something like shortcuts to job-tickets which they are

representing. All notifications are shown and accessible from the bottom tool-

bar on the main form of the application.

Both kinds of notifications have the same way how they work. This way is based

on sending SQL queries to get all the needed data for assessing whether the

notification should be raised or not. Notifications are asking for finished or

canceled Job-tickets which have been done in the last few hours or minutes.

Units and number can be set from settings, as well as refresh rate. Notifications,

which are responsible for job-tickets in hurry, are asking for started or not

started job-tickets and checking their desired delivery dates. The user can set

in-hurry limits in three levels indicating how many days before the desired

60

delivery expiration the notifications should be shown. For the distinction of these

three levels in notification colors of traffic lights are used.

Figure 45 - Notification area

5.8 Testing and debugging

A project of this size requires advanced methods for debugging. Every function

of the system or even every part of the function needs to be debugged and

tested to discover and repair as much bugs as possible and minimize the

amount of bugs which could get into the next iterations of implementation.

Testing itself was done in three main steps:

1) Testing during or immediately after implementation was performed by

person(s) working on functionality which is or was implemented. During

that testing only the standard scenario was usually tested and made sure

that it works. Every found bug was usually repaired immediately.

2) Testing the development version took place before demonstration and

was related to demo application. This testing was focused on stability

and optimization and was done usually by all members of the team.

Every found error or bug was documented including its simulation

process and repaired by creator of the function where the bug was

founded.

3) Testing by customer was done at customer’s place, in customer’s

environment and in real situations if possible. This testing required at first

deploying of the test version at customer’s computer. Bugs were reported

61

to the team and repaired in the current development version but not in

the deployed test application at customer’s place.

In the next development version debug reporters will be implemented so testing

and reporting of the bugs at customer’s place will be much easier for both sides.

There was also need to test the triggers attached to tables in the database.

Unfortunately debugging of the triggers would be too time-consuming in

comparison with their task so they were replaced by anonymous procedures

included into command strings in the application.

5.9 Deployment

Deployment of the test version was usually done by simple ClickOnce

applications. This was enough for testing purposes but in the final version there

has to be a comfortable and user-friendly way. Not to mention that deployment

of the test version required another configuration before the first start. What is

more, this configuration required knowledge of the implementation of the

system.

The standard installation package will be included in the final version of the

application. The user will be able to choose for example where the application

should be installed or whether he wants to put a shortcut to his desktop. This

application will have its own work folder on known place as well as a configured

network-shared folder for data which should be shared between every instance

of application installed on computers in the local network. This shared folder will

be possible to be set from the application itself.

This kind of deployment expects that there will already be a working Job-ticket

database in a network. Fortunately configuration is as simple as was expected.

Only snapshot isolation level must be enabled for database instance and that is

all. Everything else is set by default. For configuration of the database content a

script was created, which takes care of the creating all tables, indexes,

relations, data for dictionary tables, etc. This script needs to be run only once

but it is also prepared to regenerate the whole database content and start again

from scratch with empty tables.

62

6 Evaluation

Evaluation discusses the results of the work. This chapter describes objectives

that were set at the beginning of the work and whether these objectives were

successfully met. Evaluation includes also paragraph that explains problems

accompanying the development of the system. These problems had not

serious character and were resolved. The last subchapter describes tasks that

need to be done in the future.

6.1 Meeting the requirements

Dealing with customers during the work progress is a very important part of the

entire development. Feedbacks from the meeting with them may help the

developers for better understanding what exactly the customer wishes and how

the final product should look like overall. That is why numerous meetings with

Tehohydro company were arranged to create a system that would be entirely

satisfactory to their requirements and wishes. Feedbacks acquired from these

meetings made it possible to create a system that was expected.

At the start of the work there was a clear idea about the system, but many

essential modifications were made because of these feedbacks. In the end, the

customer was impressed by the final solution. All demands were fulfilled and

some of them even exceeded the expectations. The customer also appreciated

that the environment of the system looks simple and easy for orientation. The

idea was to try to keep the placement of user interface components from the

previous system for better use orientation so there is no need to read the user

manual to start using that. Also Tehohydro’s IT specialist liked chosen technical

solutions.

6.2 Personal review

The realization of this project accompanied a few small threats, which were

sometimes quite difficult to solve, but on the other hand these threats were not

of serious nature so the continued development was not compromised. At the

beginning the team had three available laptops that were provided by the

university. These laptops were very helpful tools in the implementation phase.

63

One was provided as a special case that offered administrator rights so it was

easy to install all necessary software selected by us. SQL server and TFS were

running on this special case. The problem was that this laptop had only 2 GB

RAM (random-access memory), which was very little, because of too many

intensive-processor running programs. There was a problem with frequent

paging inside the system. As a result there was a very slow speed of the whole

operation system but because this laptop had only a 32-bit operation system,

the next extension of the memory was meaningless. (MSDN, n.d.)

The next problem was connected with merging of the source code by using

TFS. The problem can occur in the situation, when a programmer keeps his

source code long time, does not upload his code version often and makes

important changes in the code. Then the problems with merging the code may

appear. The solution of these problems was found in using history library, where

all previous source code versions are recorded. This library is included in TFS

for purposes of losing some important code. .

6.3 What needs to be done

Because the work will still continue after submission of this thesis, there are a

few programmed issues that need to be done. The whole system needs to have

localization of the user interface in Finnish language. This part of work is

important because the current system is translated into Finnish language so

localization in the new system is necessary for this language as well. Another

task is adding of the notification function that shows job-tickets which are in

hurry as well as those which are already done. This functionality is useful,

because it should serve like a shortcut for each job-ticket. And finally there is

need to create an installation package, which creates a local folder where all

important files for running the system will be created (and also stored). All these

tasks will be done next month.

64

7 Summary and discussion

Information systems are one of the important parts of information technology.

These sets of technological resources and methods serve data processing and

data storage. The purpose is to present information for user’s needs. This thesis

described the design and solution for the new information system dealing with

administration and management inside Tehohydro company. The system was

named Job-Ticket and kept all important functionalities from the previous old

system but it was programmed by using completely different technologies.

Moreover this system is extended with new features, which were the wishes of

the employees in order to simplify the work. Finally, a few features were added

by us to improve the system for more convenient use and for the possibility of

continued expansion of this system in the future.

The development was conducted with Microsoft technologies. We were

developing the solution in a work team and we were sharing the actual

version of the project through the Team Foundation Server provided by

Microsoft Visual Studio. During the development of the system we had

numerous meetings with the customer (Tehohydro representatives) and also

with our supervisor. On these meetings we presented what we had done so far

and discussed the next opportunities that would be possible to implement. This

kind of feedback helped us also to find out errors and remove them. We were

lucky in dealing with Tehohydro company, because their IT specialist, Mr. Jari

Harju, was able to provide us all necessary information and he helped us with

the deployment of our system into praxis.

The system was subjected to testing by using corporate data provided by the

company. The first functional version was deployed into praxis in one meeting.

This version was fully functional without some less important details, which are

also included in the implementation plan. This is the current state, where we

actually are. We are planning to have the last meeting with Tehohydro at the

beginning of May, where we will deploy our final version of the application.

This work gave us many experiences. We have learned how to organize work in

a team. Each team member knew what his role is and what his job description

65

is as well. For this purpose there was a very powerful tool called OneNote.

In the implementation phase we used our previous experiences from home

university but we also worked with new technologies that were not familiar to us

before. These experiences we consider to be the greatest contribution to us.

Due to the fact that we had many meetings with Tehohydro company, we

learned how to clearly present our ideas to the customer, how to deal with him

and how to gain his feedback into our side as well. We have realized that

exactly this part is one of the most important of the whole process because a

satisfied customer represents the image of the product quality.

66

References

Barashev, D. & Thomas, A., n.d. Gantt Project. [Online]
Available at: http://www.ganttproject.biz/learn
[Accessed 18 4 2013].

Blue Claw Database Design, n.d. Comparison of Microsoft Access vs. Other
Database Systems. [Online]
Available at: http://www.blueclaw-db.com/access_versus/
[Accessed 18 4 2013].

Codd, E. F., 1969. Derivability, Redundancy, and Consistency of Relations
Stored in Large Data Banks, s.l.: IBM Research Report.

European Commision, 2005. Impact Assesssment of Regional & National E-
Business Policies. [Online]
Available at:
http://ec.europa.eu/enterprise/newsroom/cf/_getdocument.cfm?doc_id=5350
[Accessed 18 4 2013].

Fowler, M., 2003. Patterns of Enterprise Application Architecture. s.l.:Addison-
Wesley.

Lasater, C. G., 2010. Design Patterns. s.l.:Jones & Bartlett Publishers.

Microsoft Corporation, n.d. Microsoft Access. [Online]
Available at: http://office.microsoft.com/en-us/access/
[Accessed 18 4 2013].

Microsoft Corporation, n.d. MS OneNote. [Online]
Available at: http://office.microsoft.com/en-us/onenote/
[Accessed 18 4 2013].

Microsoft Corporation, n.d. MSDN. [Online]
Available at: http://msdn.microsoft.com/en-us/cc136611
[Accessed 18 4 2013].

Microsoft Corporation, n.d. Team Foundation Server. [Online]
Available at: http://msdn.microsoft.com/en-us/vstudio/ff637362.aspx
[Accessed 18 4 2013].

MSDN, n.d. Lambda Expressions - Programming Guide. [Online]
Available at: http://msdn.microsoft.com/en-us/library/bb397687.aspx
[Accessed 18 4 2013].

MSDN, n.d. Memory Limits for Windows Releases. [Online]
Available at: http://msdn.microsoft.com/en-us/library/aa366778.aspx
[Accessed 18 4 2013].

MSDN, n.d. Reflection - Programming Guide. [Online]
Available at: http://msdn.microsoft.com/en-

67

us/library/ms173183%28v=vs.80%29.aspx
[Accessed 18 4 2013].

Paisley University, 2003. Is there a need for information systems?. [Online]
Available at: http://www.aylos.com/Default.aspx?tabid=76
[Accessed 18 4 2013].

Prezi Inc., n.d. Prezi Manual/FAQ. [Online]
Available at: https://prezi.zendesk.com/forums
[Accessed 18 4 2013].

StackOverflow, n.d. StackOverflow.com. [Online]
Available at: http://stackoverflow.com/questions/140468/what-is-the-maximum-
possible-length-of-a-net-string

Tehohydro Oy, n.d. Tehohydro Oy. [Online]
Available at:
http://www.hydrauliikka.eu/index.php?sivu=yritys&alasivu=henkilosto
[Accessed 18 4 2013].

68

Figures

Figure 1 - Team work .. 8

Figure 2 - Tehohydro company located in Lappeenranta 10

Figure 3 - Current Job-Ticket system .. 12

Figure 4 - Job-ticket paper form example.. 14

Figure 6 - MS Access environment ... 16

Figure 5 - Entity-relationship diagram of the current system 17

Figure 7 - New Job-Ticket system ... 18

Figure 8 - MS Visual Studio environment .. 20

Figure 9 - MS Visual Studio Source code history .. 21

Figure 10 - Team Foundation Server Administration Console 21

Figure 11 - OneNote environment ... 22

Figure 12 - Prezi environment ... 23

Figure 13 - Prezi’s main functions ... 24

Figure 14 - GanttProject environment ... 25

Figure 15 - System architecture .. 26

Figure 16 - E-R Diagram of a new system .. 28

Figure 17 - Use-case diagram for a new system ... 31

Figure 18 - Data processing .. 37

Figure 19 - Data object ... 38

Figure 20 - Customer browse .. 39

Figure 21 - Customer form .. 40

Figure 22 - Form for browsing of all salesmen .. 41

Figure 23 - Employees class diagram ... 42

Figure 24 - Form for mechanic .. 43

Figure 25 - Working hours class ... 44

Figure 26 - Filters .. 45

Figure 27 - Lambda expression example .. 45

Figure 28 - JobTicket class ... 46

Figure 29 - Browsing of job-tickets .. 47

Figure 30 - Performance analysis in Visual Studio .. 47

Figure 31 - Loading of job-tickets .. 48

Figure 32 - ComboBox for customer ... 48

69

Figure 33 - Job-ticket form .. 49

Figure 34 - Anonymous procedure example ... 51

Figure 35 - Browse working hours .. 52

Figure 36 - Edit working hours .. 52

Figure 37 - Filtering by time range .. 53

Figure 38 - Filtering by state of job-ticket .. 54

Figure 39 - Filter of mechanic’s working hours .. 55

Figure 40 - Login form to extended mode ... 56

Figure 41 - Extended mode appearance ... 56

Figure 42 - Hash method .. 57

Figure 43 - Localization in MS Visual Studio ... 58

Figure 44 - Resource file list ... 58

Figure 45 - Notification area .. 60

