
ENHANCED TESTING AUTOMATION PROOF
OF CONCEPT FOR FREENEST

Niko Korhonen

Bachelor's thesis
November 2012

Software Engineering
The School of Technology

OPINNÄYTETYÖN
KUVAILULEHTI

Tekijä(t)
KORHONEN, Niko

Julkaisun laji
Opinnäytetyö

Päivämäärä
20.11.2012

Sivumäärä
75

Julkaisun kieli
Englanti

Verkkojulkaisulupa
myönnetty
(X)

Työn nimi
PARANNELLUN TESTAUSAUTOMAATION ESIMERKKI FREENESTILLE

Koulutusohjelma
Ohjelmistotekniikka

Työn ohjaaja(t)
PIETIKÄINEN, Kalevi

Toimeksiantaja(t)
RINTAMÄKI, Marko

Tiivistelmä

Työssä oli tarkoituksena luoda toimiva testausautomaation esimerkki
käyttämällä TestLink, Robot Framework ja Git -työkaluja. Testausautomaatin on
tarkoitus ajaa TestLinkistä valitut testit automaattisesti pilviympäristössä
käyttämällä Robot Frameworkia ja raportoida tulokset takaisin TestLinkille.
Testien uusimmat versiot haetaan Git-repositoriosta ajon aikana.

Työn teoriaosassa on esitelty ohjelmiston testausta, pilvipalveluita, sekä
projektissa käytettyjä työkaluja. Käytännön osassa on esitelty työssä tehdyn
testausautomaatin elementtejä, arkkitehtuuria ja komponentteja, sekä itse
automaation toimintaa. Asennusohjeet ovat työssä mukana liitteenä.

Testausautomaation perustoiminnallisuus saatiin rakennettua ajallaan siten,
että sitä pystyi käyttämään FreeNestin testaamiseen. Osa suunnitelluista
lisäominaisuuksista jäi kuitenkin keskeneräisiksi tai puuttumaan kokonaan ajan
puutteen vuoksi, mutta niiden puuttumisesta ei kuitenkaan koitunut
huomattavaa haittaa testausautomaation toiminnalle.

Avainsanat (asiasanat)
FreeNest, SkyNest, Robot Framework, Git, TestLink, Selenium,
testausautomaatio

Muut tiedot

DESCRIPTION

Author(s)
KORHONEN, Niko

Type of publication
Bachelor´s Thesis

Date
20.11.2012

Pages
75

Language
English

 Permission for
web publication
(X)

Title
ENHANCED TESTING AUTOMATION PROOF OF CONCEPT FOR FREENEST

Degree Programme
Software Engineering

Tutor(s)
PIETIKÄINEN, Kalevi

Assigned by
RINTAMÄKI, Marko

Abstract

The purpose of this thesis was to create a working testing automation proof of
concept by using TestLink, Robot Framework and Git. The automation is
supposed to run the tests given from TestLink in a cloud environment by using
Robot Framework and report the results back to TestLink. Git is used for getting
the most recent versions of tests during the testing run.

Software testing, cloud services and the tools used in the project were
introduced in the theory part of this thesis. The elements, architecture,
components and the functions of the testing automation are described in the
practical part of this thesis. Installation instructions are included in appendices.

The basic functionality of the testing automation was built in time well enough
for it to be used for testing FreeNest. However, a part of the planned features
was left either unfinished or completely missing due to limited time; however,
they did not cause any noticeable trouble for the testing automation.

Keywords
FreeNest, SkyNest, Robot Framework, Git, Testlink, Selenium, testing
automation

Miscellaneous

1

CONTENTS

TERMINOLOGY . 3

1INTRODUCTION . 5

1.1 FreeNest . 5

1.2 Cloud Software Finland . 6

1.3 Objective . 6

2 MAIN CONCEPTS .7

2.1 Cloud computing . 7

2.1.1 Software as a Service . 8

2.1.2 Platform as a Service .9

2.1.3 Infrastructure as a Service .9

2.2 Software testing .10

2.2.1 Testing in general . 10

2.2.2 Testing approaches .10

2.2.3 Testing levels .11

2.2.4 Automated testing .15

3 TOOLS . 17

3.1 TestLink .17

3.2 Robot Framework . 22

3.3 Selenium . 28

3.4 Git . 31

3.5 OpenStack . 36

4 OBJECTIVES . 38

5 ARCHITECTURE OF FNTC . 39

5.1 Development .39

5.2 Environment elements .41

5.3 Components .44

5.3.1 Core .44

5.3.2 Testlink API . 46

5.3.3 Git wrapper . 48

5.3.4 Plug-in system .49

2

5.3.5 Robot engine .53

5.3.6 Grid engine . 54

5.4 Installation .55

5.5 Usage .55

6 RESULTS .56

6.1 Current state . 56

6.2 Future improvements .57

REFERENCES . 59

FIGURES

FIGURE 1. Cloud computing layers . 8

FIGURE 2. Major software testing levels . 12

FIGURE 3. A screenshot of TestLink 1.9.4 demo 18

FIGURE 4. An example of a passed test case 21

FIGURE 5. Robot Framework's high-level architecture 23

FIGURE 6. A screenshot of RIDE's interface . 25

FIGURE 7. Failed and passed reports from Robot Framework 27

FIGURE 8. Simplified Selenium architecture diagram 30

FIGURE 9. Distributed version control diagram 33

FIGURE 10. OpenStack operating system diagram 36

FIGURE 11. The original testing automation architecture plan 42

FIGURE 12. The required structure of the Engine -class 50

FIGURE 13. The class diagram of FNTC .65

FIGURE 14. The sequence diagram of FNTC . 66

3

APPENDICES

APPENDIX 1. Example of a robot framework test script 64

APPENDIX 2. The class diagram of FNTC . 65

APPENDIX 3. The sequence diagram of FNTC 66

APPENDIX 4. FNTC installation instructions . 67

TERMINOLOGY

FreeNest A project management environment developed

in SkyNest -project.

SkyNest A project hosted at JAMK University of Applied

Sciences.

Cloud Software Finland

A program of TIVIT that aims to improve Finnish

competitiveness in software development.

Tekes The Finnish Funding Agency for Technology and

Innovation.

MIDEaaS Mobile IDE as a Service, a project where

testing automation is used.

NSN Nokia Siemens Networks, the supporter of

Robot Framework.

Robot Framework A generic testing automation framework

supported by NSN.

4

TestLink A web based test management tool.

Git A code version control system.

Python An object-oriented, high-level programming

language that emphasizes code readability.

(What is Python? Executive summary,

Python.org, 3.10.2012)

PHP Hypertext Preprocessor, A general-purpose

server-side scripting language used for dynamic

web pages. (PHP, Wikipedia, 3.10.2012)

HTML HyperText Markup Language, mainly used for

displaying web pages and documents. (HTML,

Wikipedia, 3.10.2012)

OpenStack An open source cloud computing platform.

JunkCloud Projects' own OpenStack cloud built from scrap

computers.

Selenium A tool suite for automating web browsers.

Selenium Grid Hub The central point of the grid, distributes all

the tests for nodes to run.

Selenium Grid Node A slave machine in the grid, does all the hard

work and reports the results to the hub.

5

1 INTRODUCTION

1.1 FreeNest

FreeNest is an open source application life cycle management

environment developed in the SkyNest -project at the School of

Technology at JAMK. Since the project is hosted at JAMK, most of the

workers in the project are students either performing their internships

or working on their bachelor's thesis projects. SkyNest is part of the

Cloud Software Finland -program and it is funded by Tekes, the Finnish

Funding Agency for Technology and Innovation. (Projects, Jyväskylä

University of Applied Sciences)

FreeNest is meant to be used for managing the project life cycle from

the initial idea to the development of the application, to support after

the release. It integrates several widely used open source tools and

acts like glue between them, making it possible for the tools to

communicate between each other. It is built in a way that one FreeNest

should be used in one project and when the project ends and a new

one starts, the environment gets taken down and a new one is

launched for the new project. If there are several projects, there have

to be several FreeNests. (FreeNest, 2012)

FreeNest includes more or less all the tools that are needed in a

software project and it can be configured for users' own needs. The

current version at the time of writing this thesis, 1.3, is available as a

virtual machine image, but 1.4 will be available as Debian packages,

making the installation more flexible. The user can then decide which

tools to install and the environment is ready for use in a short time.

(FreeNest, 2012)

6

1.2 Cloud Software Finland

Cloud Software Finland is Tivit's four-year program initiated in 2010

and aiming to “significantly improve the competitive position of Finnish

software intensive industry in global markets” according to Janne

Järvinen, the Focus Area Director in the program. The most important

factors are operational efficiency, user experience, web software, open

systems, security engineering and sustainable development, and those

are the areas the project focuses on. Tivit was founded in 2008 for the

purpose of predicting the products and services of the future. It is

owned by 46 companies and public research communities and funded

by Tekes. (Cloud Software Finland brochure, August 2011)

1.3 Objective

The objective in this thesis is to create a proof of concept of a working

testing automation tool chain. The tool chain should include a test

management tool for all the test cases, a version control repository for

the test scripts and a testing framework for running the tests on virtual

machines. The integration should run all the tests related to the test

case when the test run is started in the test management tool. It

should pull all the latest test scripts from the version control repository

and give them for the testing framework to take care of. After testing is

finished, the test results should be combined and collected from the

testing framework and finally sent pack to the test management tool in

correct format.

7

2 MAIN CONCEPTS

2.1 Cloud computing

A cloud can be considered to be a large pool of resources, like a cluster

of computers connected to each other, acting as one very powerful and

flexible computer. All the data and power is spread on multiple nodes,

so if some nodes break, their tasks are moved on to other nodes and

the cloud is still working without any data loss. The computing

resources can be distributed as services in the form of applications,

servers, virtual machines or platforms over the Internet where ever

they are needed and they can be scaled up or down depending on

demand. The user does not have to buy or maintain new hardware

since all the hardware is located in large data centers maintained by

the service provider. (What is cloud computing?, IBM; Cloud

Computing, Wikipedia)

There are several types of cloud services, the most notable ones being

SaaS (Software as a Service), PaaS (Platform as a Service) and IaaS

(Infrastructure as a Service)(See figure 1).

8

FIGURE 1. Cloud computing layers (Cloud Computing, Wikipedia)

2.1.1 Software as a Service

Software as a Service means a single application accessible via a client

interface, such as a web browser. The application can be anything from

project management tools like Trac to email services like Gmail. The

users do not have to install or maintain anything on any of their

computers since the software is installed in the cloud and maintained

by the service provider. The user only needs to log in to the service

from any computer and start using the application. (Cloud Computing,

InfoWorld; What is cloud computing?, IBM; Cloud Computing,

Wikipedia)

9

2.1.2 Platform as a Service

Platform as a Service means a software development environment

complete with an operating system, development tools, database and

a web server. Developers can use these tools to create their own

software, which is then available for the end users directly from the

web server. What development tools and technologies are available

depends on the service provider, so the developers will not have

complete freedom over what they can create; however the system is

more predictable and manageable that way. Good examples of this

type of cloud service are Google's App Engine and Salesforce.com's

Force.com. (InfoWorld; IBM; Cloud Computing, Wikipedia)

2.1.3 Infrastructure as a Service

Infrastructure as a Service is the most basic type of cloud services. The

user only receives machines or virtual machines including web servers,

data storages and networking which are maintained by the service

provider and it is the user's own responsibility to install the operating

system and all the required software and keep them up to date. The

user does not have to buy his own hardware to run his software and he

can request more computing power if necessary. (IBM; Cloud

Computing, Wikipedia)

2.2 Software testing

2.2.1 General testing

Software testing is a process to detect differences between the given

input and expected output. It is used for assessing the quality of the

10

software and should be handled throughout the software's

development. It is a verification and validation process, making sure

the product behaves the way it is wanted to behave and that the

product is built according to customer requirements. (CodeProject,

March 2012)

Manual software testing is performed by a human sitting in front of the

computer, going through the application, trying different usage and

input combinations and comparing the results to the expected results.

Testers follow a test plan and execute the tests according to the

detailed test cases assigned to them. The results are then gathered

from all testers and compiled into a test report. (SmartBear; Manual

testing, Wikipedia)

2.2.2 Testing approaches

White-box testing

There are three approaches for testing software: white-box, black-box

and gray-box testing. White-box testing, also known as glass box or

structural testing, means that the tester has full understanding about

what happens inside the program and test cases are designed using

that knowledge and programming skills. The tester chooses his inputs

in a way that he can check all the paths through the code and

determine appropriate results. (CodeProject, March 2012; Software

testing, Wikipedia)

Black-box testing

Black box testing, also known as functional testing treats the program

like a black-box. The tester has no knowledge about the internal

11

functions of the program; he only knows what the program is supposed

to do and not how it does it. The tester takes the role of an end user;

tries different inputs and checks that the program returns appropriate

outputs. (CodeProject, March 2012; Software testing, Wikipedia)

Gray-box testing

Gray-box testing is a combination of white-box and black-box testing.

The tester can have access to the internal code of the program and has

some knowledge about the functions of the program. The test cases

are designed using that knowledge; however all testing is still done in

black-box level. The testers can for example manipulate the data inside

a database, which would not be possible in black-box level, or use

reverse engineering to determine boundary values or error messages

and then test the program like they would normally do in black-box

testing. (Software testing, Wikipedia; Software Testing Fundamentals)

2.2.3 Testing Levels

Software testing can be categorized into testing levels based on the

depth, scale and subject of the tests. There are three main levels of

software testing: unit, integration and system testing as shown in

figure 2. Acceptance testing is the last level of testing where the

functionality of the software is compared to the business requirements

and while it is an important part of testing, this thesis will not go into

specifics or acceptance testing. (Software testing Fundamentals;

Software Testing, Wikipedia)

12

FIGURE 2. Major software testing levels (Software testing

Fundamentals)

Unit testing

Unit testing means testing an individual unit or a group of units. This

can be a simple method, a module or a class, basically the smallest

testable part of the application. Unit testing is usually conducted by the

programmer during the development process to determine if the unit

he implemented produces the expected output. They need to be built

in a way that they go through different inputs and can force errors and

exceptions to be raised, they should only cover one unit at a time and

they should be fast and small enough to be run while developing the

software. They are meant to be used for catching errors as accurately

and early in the development as possible, meaning that if a unit test

fails, the developer most likely knows almost immediately what went

wrong. Since knowing the system is required and the testing is usually

carried out by the developers, unit testing falls under the white-box

13

testing approach. (CodeProject, March 2012; CodeThinked, June 2009;

Unit Testing, Wikipedia)

Integration testing

Integration testing focuses on testing the interaction between a group

of units of the system. While unit testing makes sure that individual

units work as they should, integration testing makes sure they also

work well together. If the software and hardware have any relation,

that is also tested in integration testing. The testing is usually handled

using the unit interfaces, simulating different scenarios by using

different inputs, therefore integration testing usually falls under the

black-box testing approach. (CodeProject; Software testing Tutor;

Integration Testing, Wikipedia)

There are three approaches how to carry out integration testing: Top-

down, Bottom-up and Big bang. In top-down approach the integration

starts from the graphical user interface and follows the architectural

structure to the bottom level, while in bottom-up approach the

integration starts from the bottom level. In big bang approach all the

developed modules are integrated together to form a complete

system. This can save time compared to other approaches, but if the

tests are not designed and recorded correctly, the testing process

becomes more complicated and might even prevent testing the system

properly. (Software testing Tutor; Integration Testing, Wikipedia)

System testing

The purpose of system testing is to verify that the software works as

expected as a whole, fully integrated system. The software should be

fully installed on different platforms with different configurations to

14

make sure that all scenarios are covered. Testing that the system

installs correctly and uninstalls without leaving any traces are also

covered in system testing. Test case designs are based on the original

requirements from the end user's perspective, thus system testing falls

under black-box testing approach. (Guru99; System Testing, Wikipedia)

System testing includes over 50 types of testing from usability and

interface testing to stress, load and hardware/software testing, which

means testing the interactions between the hardware and software. In

most cases it is impossible to use all testing types for system testing

due to limited resources and huge number of testing types, thus the

tester needs to decide which parts are important enough for full testing

to be necessary. (Guru99; System Testing, Wikipedia)

Regression testing

Regression testing, also known as verification testing is a special type

of testing executed on all testing levels. It means repetitive tests that

are run every time the application source code has changed. Its

purpose is to verify that recent code changes have not affected the

existing features of the application, created new bugs or resurfaced old

bugs. Regression testing should cover features that undergo frequent

changes and are most visible for users, and a good amount of test

cases, including but not limited to all integration and complex test

cases and the test that verify the core features of the application. Due

to the repetitive nature of regression testing it can take up huge

amount of resources depending on the frequency of the changes, so

testing automation would be a valid solution to save testing time.

(Guru 99; What is regression testing, Webopedia, 2012)

15

2.2.4 Automated testing

Automated testing means that instead of a human going through the

software clicking buttons and collecting results, a machine can go

through the tests and report the results to the test manager after it is

done. It can be used in all testing levels from unit tests to full system

testing on different environments. While it can be used for almost all

kinds of testing, it is mostly used for regression testing, meaning the

tests that need to be run frequently to make sure the software is

working as it should.

Benefits

Making regression tests automated usually reduces the time and

resources required for testing the system, since they have to be run

every time someone makes changes to the source code. Running those

tests manually multiple times is costly and time consuming, while

automated tests can be run over and over again once the

corresponding test scripts have been created. A machine also follows

the given scripts precisely making the tests more reliable, while a

human can and most likely will make mistakes during long testing

runs. (SmartBear, 2012; Testing automation, Wikipedia)

There are also some test types that cannot be run manually. For

example, they can take extremely long times, like when testing system

stability, they can be too complex for a human to run perfectly or they

might require huge amounts of resources like hundreds of users using

the system at the same time to test the system performance. Testing

automation can be left running over night and results can be collected

in the morning, which saves working time. It can also simulate multiple

users running the system at the same time using virtual machines.

16

(SmartBear, 2012; Testing automation, Wikipedia)

Downsides

While test automation can make a huge difference in bigger projects, it

cannot be used efficiently in some cases and it can be more harmful

than beneficial. Setting up the tool chain in the middle of the project

can take a great deal of time and resources, and testing scripts need to

be written for all the tests that need to be automated. This can be a

serious problem if the project has been going on for a while and

hundreds of tests need to be converted into automated tests. That is

why automation must be considered at the beginning of the project,

tools can be set up at the same time with the development

environments and scripts are faster to create while developing new

features.

3 TOOLS

3.1 TestLink

TestLink is a web based test management system developed by the

TestLink community. It is designed to provide support for test

specification and execution, and monitor test activities. It helps the

testers to keep track of which tests are assigned to which testers,

which tests are supposed to be run in the build and the total progress

of the tests. In general it keeps the testing process under control. A

screenshot of TestLink's interface can be seen in figure 3. (TestLink

user Manual, March 2012)

17

FIGURE 3. A screenshot of TestLink 1.9.4 demo.

Test projects

A test project is the base of the whole testing process in TestLink,

without it there is nothing to be tested. It can mean a product or

solution to be tested and it contains the requirements documentation,

test specification, test plans and project specific user rights. Test

projects do not share data, so each project should be used for only one

product and by only one testing team if possible. Creating a new test

project is usually the first thing that needs to be done after logging in

with administrator's rights for the first time. This can be done by

clicking “Test Project Management” -link in the front page after logging

18

in. When creating a project, there are two mandatory fields: name and

prefix, which is used for test case IDs. The user can give some

additional info or enable some features for the project, or use old

projects as templates for the new project. (TestLink user Manual, March

2012)

Test plans

Test plans are the basis of the new testing activity. They hold the

information about what needs to be tested and one project can contain

several test plans, for example one plan for integration testing and

another for system testing. New test plans can be created in “Test Plan

Management” and they need a name, description and the status if the

plan is active or not. The description should include information about

the plan, like the scope of the plan, what needs to be tested, what

should not be tested, risks, tools, references to documents etc. Test

plans can also be removed or deactivated; however, removing is not

recommended since it wipes all the data related to the plan, including

test cases and their results. Deactivating only hides the plan from

everywhere else except the overall test report. (TestLink user Manual,

March 2012)

Test cases

Test cases are testing tasks that consist of test steps and their

expected results and they are located in test suites like files inside

folders. Test suites should be used for sorting the test cases into

categories depending on the test subject for easier test management.

Each test case can be considered as one test that verifies the

functionality of a small part of the system under test and they can be

executed either manually or automatically. Test cases are project

19

specific and they can be added into more than one test plan. (TestLink

user Manual, March 2012)

Test cases can be created inside test suites right after the project has

been created. The user can give a name, summary, preconditions and

keywords for the test case, from which only the name is required.

Summary and preconditions however are recommended since they

give additional information for the tester and that can be crucial for the

test to pass. After the test case has been created, the user can start

adding steps for the test by clicking “Create step” -button. A step

consists of the step actions and the expected results, and both are

required for a proper test. Adding test steps is not required for

automated tests, but the testing automation needs to be enabled from

the TestLink configuration file. See an example of a passed test in

Figure 4. (TestLink user Manual, March 2012)

20

FIGURE 4. An example of a passed test case.

Before test cases can be executed, they need to be added into test

plans by clicking “Add to Test Plans” -button in the test case overview.

The button will not show up if there are no test plans in the project.

Tests can be run from Test Execution -section in TestLink and the tests

will not show up in the list before they are added into the test plan.

Test execution also requires a build to be active in the plan. A build can

be considered as a software release that needs to be tested, thus

every time a new version of the software needs to be tested, a new

build should be created for it and only the tests related to the changes

should be run in the build. New builds can be created and activated

from “Builds / Releases” in the project main page. (TestLink user

21

Manual, March 2012)

Custom fields

The user can modify the test cases to be more accurate by defining

additional custom fields into the test project. They can be used for

giving additional data while specifying new tests cases, making test

reporting more accurate during the test execution, for example by

saving execution times or additional notes, or for passing test

parameters for testing automation. The custom fields can be visible for

all projects, but they need to be assigned to a project before they can

be used. By assigning the custom fields properly, each project can

have its own set of custom fields in use. (TestLink user Manual, Mrch

2012)

Custom fields need to be defined by navigating in “Define Custom

Fields” -link in the project main page in TestLink. The user can give the

custom field a name, field type, availability and time allowed for

editing, like during test specification or execution. Before the custom

field can be used, it needs to be assigned to the test projects. This can

be done by navigating in “Assign Custom Fields” in the project main

page. They can only be assigned into the project that is currently

selected in TestLink, thus they have to be assigned separately in each

project. (TestLink user Manual, March 2012)

3.2 Robot Framework

Robot Framework is a generic test automation framework for end-to-

end acceptance testing and acceptance-test-driven development. It

can be used for all testing levels from running groups of simple unit

tests to full scale system tests, and several types of applications like

22

simple command line applications as well as web sites. Its modular

architecture allows it to run tests without the core knowing anything

about the target system, all interaction between Robot Framework and

the target system are handled by test libraries and lower level testing

tools. See figure 5 for Robot Framework's architecture. (Robot

Framework User Guide, September 2012)

FIGURE 5. Robot Framework's high-level architecture. (Robot

Framework User Guide, September 2012)

Robot Framework runs on Python and Jython, which is based on Java,

and at least one of them is required to be installed. Robot Framework

2.7 and newer also have support for IronPython which is based on

.NET. New keywords and functionalities can be enabled by importing

libraries in tests, new libraries can be created using the provided

library API and they can be implemented with Python or Java. (Robot

Framework User Guide, September 2012)

23

Creating tests

Robot Framework uses test case files that are treated as test suites for

all test cases in the file. The directories that contain test case files are

considered as higher level test suites and they can also contain test

suite directories, forming a deep hierarchical structure. One test case

file can contain several test cases and each one of them is run when

the script is executed. The test case file can be in HTML, TSV or plain

text format, each one having slightly different structures. Their

functionality however is the same, so the format to be used depends

on the tester's preferences and the tools available. (Robot Framework

User Guide, September 2012)

A test script can have tables with different purposes. The tester can

change the test behavior by importing libraries, resource files and

variable files, defining metadata for test cases or suites, or setting tags

in the Settings -table. The variables used in the tests are defined in the

Variables -table and user made keywords are created from lower level

keywords in the Keywords -table. The test cases are created using

keywords in the Test cases -table. All keywords are written in English,

one keyword being in one row with its arguments. This makes the test

scripts easily readable and manageable. See Appendix 1 for an

example of a test script. (Robot Framework User Guide, September

2012)

Testers can create their tests using any editor they want, but there is

also a tool called RIDE, which is designed for creating test case files

more easily. Instead of writing all the keywords with a text editor, the

user can create tests using a graphical interface shown in figure 6.

RIDE can import libraries automatically when specific keywords are

added, test settings are written in their own text boxes and keywords

24

can be chosen and added into the table from a list. The user can also

run the test directly from RIDE to make sure it is working properly and

export the test when it is finished. However, unlike Robot Framework,

RIDE does not support Jython or Iron-Python, the regular Python is

required for using RIDE. (How To, RobotFramework/RIDE Wiki, October

2011)

FIGURE 6. A screenshot of RIDE's interface (How To,

RobotFramework/RIDE Wiki, October 2011)

25

Usage

Once Robot Framework is installed and tests are created, they can be

executed from the command line using command “pybot [options]

testScript1.txt”, or jybot with Jython or ipybot with IronPython. It also

accepts several scripts at once or folders that contain scripts. The user

can control Robot Framework's behavior using additional arguments in

the command, for example redirecting or disabling output files with “-r

NONE -l NONE”, giving meanings like criticality for certain tags with “--

noncritical noncrit” or giving the suite a unique name for better

readability with “--name MySuite”. The user can also pass variables for

the script by giving the variable names and values in front of the test

script, for example “--variable USERNAME:johndoe”. If the user

installed RF as an executable Jar-file, tests are run using command

“java -jar robotframework-2.7.5.jar [options] testScript1.txt”. (Robot

Framework User Guide, September 2012; Robot Framework

Introduction, 2012)

Robot Framework prints the test steps and their results to the

command line when it starts going through the tests. If one step fails,

by default the whole test fails and Robot Framework continues running

the remaining tests. Unless a critical tag was set, all tests are treated

as critical tests and failing one test will result failing the whole suite. If

a non-critical test fails, the test suite can still pass, thus it is

recommended that all tests that are still in development or have a

huge chance to not pass are tagged as non-critical. (Robot Framework

User Guide, September 2012)

Once all tests are run, Robot Framework prints a short compilation of

the test results and creates three output files: log.html, report.html and

output.xml. The log and report can be viewed using a browser and they

26

contain detailed information about all test steps and pictures of the

failed steps, and they are meant for the tester to go through manually

after running the tests. Output.xml is an XML-file containing all data

from the tests. The XML-file can be used for importing the test results

into the test management tool, or the data can be easily parsed for

other tools to use. See figure 7 for the report files. (Robot Framework

User Guide, September 2012)

FIGURE 7. Failed and passed reports from Robot Framework (Page 11,

Robot Framework Introduction, 2012)

27

Rebot

Rebot is an output post-processing tool included in the Robot

Framework installation. The tester can use it to generate the log and

report files if they were not generated during testing, or most

importantly combine several output.xml -files into one. This is useful

when tests have been executed on several machines or instances, for

example when the same tests were run on different environments, and

the test data should be readable from only one file. The output files

can be combined easily by running a command “rebot [options]

output1.xml output2.xml”. Since the names Robot Framework

generates are not user friendly in the case of huge test suites, it would

be a good idea to use the “--name MySuite”-option when combining

the output files. (Robot Framework User Guide, September 2012)

3.3 Selenium

Selenium is a suite of tools for automating web browsers by Sauce

Labs. It is mostly used with various testing frameworks for

automatically testing web applications, but it can be used for example

for automated web administration tasks as well. It also has support for

multiple platforms, like Windows, OS X, Linux and Solaris, and it can be

controlled by many programming languages (C#, Java, Perl, Python

etc.) and testing frameworks (Bromine, Junit, Nunit, Rspec, Robot

Framework etc.). (Selenium, August 2012)

There are several components of Selenium, each one having slightly

different purposes, thus the users can choose which ones to use based

on their needs.

28

Selenium IDE

Selenium IDE is an add-on for Mozilla Firefox, which allows users to

record, edit, debug and run tests straight in the browser. The user can

record his actions on the browser while he goes through the tasks that

need to be automated, let it be some repetitive maintenance task or a

complex website interface test, and turn it into an automated test

script. He can save all the steps into an HTML -file, Ruby script or some

other format and the task can then be run automatically whenever the

user wants. The users can also edit their scripts if needed, in some

cases some steps might not be recorded correctly and they need to be

fixed manually in order to run the task properly. Tasks can also get

changed for example due to interface updates, therefore occasional

manual editing is always required. (Selenium IDE Plugins, August 2012)

Selenium RC / WebDriver

Selenium Remote Control (RC) is a website testing tool. It consists of

two parts, Selenium Server and Selenium Core. Selenium Server acts

as a receiver between Selenium Core and the testing program like

Robot Framework; it receives the commands, translates and gives

them to Selenium Core, and reports the results back to the testing

program. Selenium Core attaches itself into the browser and runs the

translated “Selenese” commands in the browser. See Figure 8 for the

architecture.

29

FIGURE 8. Simplified Selenium architecture diagram. (Selenium

Documentation, August 2012)

Selenium WebDriver is a more advanced version of Selenium Remote

Control. The main difference between them is that selenium RC uses

JavaScript functions for running all the supported browsers and finding

the correct elements from websites, while WebDriver uses each

browsers built-in support for automation, running the browser directly

instead of using JavaScript. This makes it more reliable to test dynamic

websites where the content can change without the page being

reloaded. It also fixes some limitations RC has and makes tests easier

30

to read and maintain than with RC. Although RC can be considered

deprecated, it is still actively supported in maintenance mode due to

providing support for more languages and most browsers. (Selenium

Documentation, August 2012)

Selenium Grid

Selenium Grid is a built-in Selenium Server functionality. While RC /

WebDriver usually runs on only one machine, Grid can form a network

full of machines connected to each other. It consists of two kinds of

servers: Hubs and nodes. A hub acts like central point in the network; it

receives all the test requests and distributes them for all the nodes to

execute. Nodes are the slaves in the network; they are all connected to

the hub and when they receive tests, they execute them and report

the results to the hub. In other words, test suites are not run on a

single machine one at a time, they are run on several machines in

parallel. This does not have much effect when the tests are simple and

there are not many of them; however, Grid can run the tests several

times faster than a single server when used with large and complex

test suites, in theory twice as fast with two nodes, four times as fast

with four nodes and so on and so forth. (Selenium Documentation,

August 2012)

3.4 Git

Git is an open source distributed version control system. It was

originally developed to hold the source code of the Linux kernel since

the free-of-charge status of the original version control system,

BitKeeper, was revoked in 2005. The design was based on the lessons

the developers had learned while using BitKeeper and the main goals

31

of the new system were speed, simple design, strong support for non-

linear development, fully distributed and ability to handle large

projects. Git is used in some of the largest FOSS projects like Linux

kernel, Ruby on Rails etc. (Getting Started - A Short History of Git)

Distributed version control system

Distributed version control system means that every copy of the

repository is a full clone of the contents and the history of the

repository. Instead of having all the files on a central version control

server, everyone in the project has a full local copy of the project as in

figure 9. In case the server dies, each one of the copies can be used as

a backup for restoring the data into a new server. Furthermore, Git

does not require network connection to work. The user can work on

features and commit changes while being offline and push the work on

the server when network comes available. Since the repository history

is also saved locally, the user can compare the current version to a

version committed a month ago for example, unlike with centralized

version control systems where the project history is located on the

server. (Getting Started – Git Basics)

32

FIGURE 9. Distributed version control diagram (Getting Started - About

Version Control)

Unlike most version control systems, Git does not save keep track of

files as a list of changes to the original files. With each commit, Git

saves snapshots of the current state the project and treats them like a

small file system. Git only takes snapshots of the changed files while it

creates a link to the previous snapshot of the unchanged files. (Getting

Started – Git Basics)

Branches

Branching is one of the special features of Git. The project is always

saved in a default branch called master. Branches are meant to be

used for developing new features without interfering with the master

branch and when the feature is finished, it can be merged to the

33

master branch and removed. Each branch is independent of other

branches. For example a developer can work on new features in a

development branch, checkout to master and create a new branch for

a hotfix. After the hotfix is done, it can be merged with the master

branch and the development of new features can continue from where

the developer left off. This way the developers can work on their own

parts of the project safely without causing conflicts with the rest of the

team. (Git Branching - What a Branch Is ; About Git)

Usage

When the user starts working on a new feature, the first step would be

creating a new branch for the feature by using a command “git branch

featureX”. At this point the user is still in the master branch, so the

branch needs to be changed with command “git checkout featureX”.

The user can switch the branch at any point, but if there are untracked

changes, Git will not allow the switch before the changes have been

committed. The new branch is a complete copy of the master branch

from the moment when the branch was created, so the user can start

working on the feature. (Getting Started – Git Basics)

Whenever the user has made progress that needs to be saved, the

work has to be added into the staging area first. This can be done with

command “git add index.html”, index.html being the changed file. This

does not mean that the file is saved; it only means that git will be

tracking its changes. The file can be saved into the repository by

committing it with command “git commit -m 'edited index.html'”. Now

the changes have been saved locally into the branch where the user is

working currently. (Getting Started – Git Basics)

34

After enough development the user can merge the branch to the

master branch. This is done by switching to the master branch and

using command “git merge featureX”. Git will automatically try to

merge the changes but in some cases there have been changes to the

same file in two branches. In these cases git might not be able to

merge them automatically, thus the user has to open the conflicting

file and fix the conflicts manually. Git adds conflict markers to the

areas where the conflicting changes are located to make it easier for

the user to solve the conflicts. After the file has been fixed, the

changes must be committed again and the merging should work

properly. (Getting Started – Git Basics)

The project can be shared either by cloning it, pulling the changes or

pushing it to a remote server. Cloning is the first time operation when

the project needs to be downloaded and it can be done with command

“git clone server:path/to/repository.git” provided that the user has

sufficient rights for cloning the repository. After the project has been

cloned, the original repository is remembered as origin. The changes

done to the repository after the cloning or latest pull can be pulled

using command “git fetch origin”. This will only get the latest changes

but it will not try to merge them. Using “git pull origin” however pulls

the latest changes to the current branch and the files are merged, thus

it can be more user friendly in some cases. The latest changes can be

sent to the repository by using command “git push origin”, but it

requires that the latest changes have been pulled from the repository

and all conflicts have already been solved. (Getting Started – Git

Basics)

35

3.5 OpenStack

OpenStack is an open source cloud operating system founded by

Rackspace Hosting and NASA. Their mission is to produce a massively

scalable but easy to use cloud computing platform that will meet the

needs of public and private clouds. The system can be installed on

standard hardware, like a group of desktop computers and there are no

system requirements. The cloud architecture consists of three main

parts; compute, networking and storage, and it all can be controlled

via browser by using the dashboard, which is also known as Horizon.

See figure 10 for the architecture. (Software, OpenStack)

FIGURE 10. OpenStack operating system diagram (Software,

OpenStack)

Compute

OpenStack Compute, which is also known as Nova, handles the

computing resources of the cloud. It can manage large networks of

36

computers and turn them into computing power that can be distributed

on demand. It is designed to scale horizontally on standard hardware

and it can use MaaS, Metal as a Service automatically when a new

computer is plugged into the network and use it as additional

computing resources. (Compute, OpenStack)

Networking

OpenStack Networking, also known as Quantum, manages the device

networking in the cloud. Administrators and users can use it for

creating and managing internal networks and IP addresses, and

controlling traffic. Quantum allows users to use floating IP addresses

for dynamically rerouting the traffic for other instances during system

maintenance or a system failure. Its purpose is to ensure that the

network will not be the limiting factor in the cloud deployment.

(Networking, OpenStack)

Storage

OpenStack Storage supports two types of storage; Object storage, also

known as Swift, and Block storage which is also known as Cinder.

Object storage means a distributed, static storage, like backups and

archives. Swift stores the data across the cloud on multiple drives and

if a server or a hard drive breaks, the data is replicated on other active

nodes. This ensures the integrity of the data even if the cloud consists

of cheap common hardware instead of expensive equipment. Block

storage is the opposite of Object storage; it means more dynamic type

of storage like databases and expandable file systems. Users can

attach blocks into server instances by using the dashboard, allowing

them to manage their own storage needs. The storage can be unified

with enterprise storage platforms and backed up by using snapshot

37

management. Snapshots can then be used for restoring data or

creating new block storage volumes. (Storage, OpenStack)

JunkCloud

JunkCloud is SkyNest's own OpenStack cloud. It has been mostly built

out of low powered computers that were either salvaged or donated for

the project, hence the name JunkCloud. It is mainly used for

researching how the cloud behaves, and testing FreeNest and other

applications in a cloud environment. The project has its own Cloud

team assigned to maintaining and researching JunkCloud and further

developing new features to it. One example of the developed features

is CloudNest -tool, which can be used for executing commands in the

cloud from external machines.

4 TARGET OF WORK

Problem

Since FreeNest is being developed using agile working methods and

new features and tools are added and developed, all components need

to be tested frequently to make sure everything works as intended.

Every tool needs to be tested separately to make sure the tool still has

everything working, and with other tools to make sure that installing

one tool does not break any other tools or their functionalities. Some of

the tools are also connected to each other enabling some additional

features, thus the connections between those tools need to be tested

as well.

38

Previously all testing was conducted by a testing team, where each

team member picked a suite full of test cases and used the instructions

in the test cases to run the tests and check the results. Even though

there are only a few hundred test cases, it still took a lot of time to go

through each one of them by hand. Considering that in bigger

companies some projects can have tens of thousands of test cases,

going through all of them manually would be a huge waste of time and

resources.

Solution

The solution would be setting up a testing automation tool chain to

make testing faster. Instead of having a team of testers going through

the features of FreeNest, a group of virtual machines would go through

it several times faster and more accurately. New tests could be created

by the developers at the same time when they are working on new

features and after that the scripts can be run whenever a feature

needs to be tested. With the testing automation up and running there

would be no need for a testing team, which has not been active in

months at the time of writing this thesis.

5 ARCHITECTURE OF FNTC

5.1 Development

When the project started in February 2012, only a few requirements

were set: TestLink should be used as the test management tool since it

is already in FreeNest and widely in use, and Robot Framework should

be used as the testing framework. It started as a research about how

they could be integrated together so that when the user presses the

39

“Execute and save results” -button in TestLink, it starts Robot

Framework automatically and saves the results in TestLink. When no

ready-made solutions were found, the development of TestLink - Robot

Framework -integration was started and Python was chosen to be used

as the programming language.

After the first version that could run the tests was completed, Git was

added to the requirements to be used as a test version control system.

It was chosen because of the same reasons as TestLink, It is widely

used and already integrated in FreeNest. Even though it was added to

the requirements at the early stages of the integration, it was not

implemented before the core of the integration was further developed

and refined.

During May 2012 the integration was chosen to be included in Vaadin's

MIDEaaS -project, which means Mobile IDE as a Service and is part of

Tivit's Digital Services -program (Digital services SRA, Tivit, December

2011). The software they are developing, Arvue, allows users to design,

create and test their own mobile applications using a web browser, and

Testlink-Robot Framework -integration was chosen to handle the

automatic testing. Mikko Ojala joined the team to work on the

integration for MIDEaaS and mainly helped to rethink the structure of

the integration for better modularity and develop new features like

logging, configuration and the plug-in system. At the same time the

integration name was changed to FNTC, FreeNest Test Controller.

The current version of FNTC is almost completely class based and most

of the parts can be swapped to similar ones with some modifications.

When the testing run is started, it asks for testing data from TestLink's

custom fields and decides the testing engine by the received data. It

comes with two testing engines by default, the simpler Robot engine

40

and more advanced Grid engine. FNTC can also pull the newest test

versions from the Git repository just before running the tests making

sure that no outdated tests are used in the testing run. See figure 13 in

Appendix 2 for FNTC's class diagram.

5.2 Environment elements

The tool chain is spread across several virtual machine instances for

better flexibility and performance. There are four types of machines

used in the tool chain, each one having their own tools and

configurations to serve their purpose better. The purposes of the

virtual machines have been defined more accurately since the original

plans and a new type of virtual instance, Grid Slave, had to be added

into the tool chain, but the original presentation picture about the

architecture of the test automation is still mostly accurate. See figure

11 for the original architecture plan.

41

FIGURE 11. The original testing automation architecture plan (Marko

Rintamäki, Q1 2012)

Team Server

The first instance in the tool chain is called Team Server. Its purpose is

to act as a base of operations where the testing team can keep track

on, modify and execute the tests, thus it needs to contain a test

management tool and a version control repository. In this case an

instance of FreeNest 1.3 is being used as a Team Server, more

precisely SkyNest's own FreeNest instance called Strongbow. TestLink

and Git are included in the FreeNest installation, leaving only some

configuration to be done in TestLink in order to enable the testing

42

automation. Team server is the only machine that is located outside

the JunkCloud and there should be only one Team Server per one

project.

Master Tester

The second type of virtual machines is called Master Tester. Its

purpose is to process and run all the tests it receives from Team

Server, or distribute the tests for slave machines to run if the testing

framework allows it. The machine has Robot Framework, Selenium

Server, Git and FNTC installed, but Robot Framework and Selenium can

be replaced with the testing frameworks of tester's choice with some

modifications in FNTC. Depending on the testing frameworks used and

the complexity of the tests, Team Server and Master Tester are the

only machines required in the tool chain.

Grid Slave

The third type of virtual machines in the tool chain are the slave

machines that run the tests, Grid Slaves. They are the dumb slaves in

the tool chain, they run the tests they receive from Master Tester and

return the test results after they are done testing. The tool chain is

designed in a way that there are several Grid Slaves, each one of them

has one Deep Forest to run the tests against and they can be taken

down if they are not needed. The connection between the slaves and

Master Tester is handled using Selenium Grid, the hub being located in

Master Tester and Slaves containing the nodes. When tests are

executed, the hub chooses those slaves that are currently inactive and

uses them for running the tests.

43

Deep Forest

The systems under testing are located in the last type of virtual

machines which are called as Deep Forests. Their only purpose is to be

on-line while tests are run against the systems installed in them and

when the system becomes too corrupt due to all the testing, it can be

taken down and replaced with a fresh system. All Deep Forest

instances can have different configurations like operating systems or

different tools to bring more variety and coverage into testing. In this

case the system under testing is an instance of FreeNest 1.4, which is

supposed to be installed right after launching the instance the first

time. At the time of writing this thesis the installation has to be done

manually with command “sudo apt-get install freenest” in every

instance of Deep Forest; however, it is planned to be automatic in the

future.

5.3 Components

5.3.1 Core

The core of FNTC consists of two files: fakeXMLRPCTestRunner.php and

fntc.py. The PHP file is only used as a middle hand, converting data

from TestLink for FNTC and the other way around. The file used to be

only an example of XML-RPC usage developed by the TestLink team. It

acted as a fake server inside TestLink; when it received some test data

from TestLink, it returned hard coded results depending on the test

data it received. When the development of FNTC began, the hard

coded results were replaced with a Popen-function that calls fntc.py.

The same method is still used for running FNTC, but it will be changed

in the future.

44

The python script is the main part of the core. It handles all the data

received from arguments and TestLink API and chooses the testing

engine and test scripts depending on the data it receives. The testing

itself is handled by the testing engines and when the engine has done

testing, FNTC takes the results and sends them back to Testlink.

FNTC comes with a simple logging feature. It launches a Python logging

facility that writes logs about everything that happens in FNTC and its

components for the user to keep track on. The logging system prints

the exact time of the event, the class where the event took place, the

type of the event and a short message that explains what happened.

The type can be info, log, debug, warning, exception, error or critical,

but only debug and critical are used in FNTC at the time of writing this

thesis. Full logs can be found from testlink_robot_client.log, which is

located in the FNTC installation folder.

The behavior of FNTC can also be controlled using a configuration file

called testlink_client.conf. The data from the configuration file is loaded

using PyYAML -library's load -function and the loaded data is handled

as key – value pairs. The values are then assigned to variables for

easier data handling. An example of loading the data is shown below:

getting variables from config
f = open('testlink_client.conf')
conf = yaml.load(f)
f.close

SERVER_URL = conf['general']['serverURL'] + "lib/api/xmlrpc.php"
devKey = conf['general']['devkey']
vOutputdir = conf['general']['outputdirectory']
testdir = conf['general']['testingdirectory']
logdir = conf['general']['logdir']

45

The configuration file also contains some data used in the testing

engines. Since every engine behaves slightly differently, the data they

need is not consistent, thus the configuration file has separate sections

for every engine with the engine specific data. The correct sections are

then loaded inside the engines and the correct data is assigned to

variables.

FNTC also has error handling throughout the script. If something goes

wrong, for example if TestLink API cannot establish a connection to

TestLink or an engine fails to load, the rest of the functions are aborted

and a blocked result is returned to TestLink. The error message is then

displayed in TestLink and in logs, making troubleshooting easier.

5.3.2 TestLink API

In order to successfully run the correct tests FNTC needs to ask for

some additional data from TestLink. The information FNTC needs is the

engine, runnable tests, the amount of times the tests are run and test

failure tolerance, and those are given separately using the custom

fields in every automated test case in TestLink. The only way FNTC can

access that data is by using the TestLink API.

The API used in FNTC is TestLinkAPI.py, a python class written in 2011

by Olivier Renault and based on James Stock's testlink-api-python-

client R7. It contains methods for connecting to TestLink's XML-RPC

interface, some basic methods for verifying the functionality of the API

and several methods for polling additional information from TestLink

and creating new test projects, plans, builds and cases. There are also

two additional methods for reporting test results and uploading

attachments into TestLink, added by the author of this thesis. The

method for reporting test results is shown on the next page.

46

def reportTCResult(self, tcid, tpid, status):
""" reportTCResult
Report test result directly into Testlink
"""
data = {"devKey":self.devKey, "testcaseid":tcid, "testplanid":tpid,
"status":status, "guess":True}
return self.server.tl.reportTCResult(data)

The API needs two arguments for setting up the connection to TestLink:

The server URL and an API access key. The server URL needs to point

to the specific file in the TestLink installation, xmlrpc.php in <TestLink

installation path>/lib/api -folder, which handles the connection on

TestLink's end. The developer's key is user specific and needs to be

generated in the user profile in TestLink, so it would be a good idea to

have a separate profile for FNTC. Both the server URL and the access

key are written in testlink_client.conf -file in FNTC installation and they

are used automatically after FNTC has been set up properly. They are

given for the API when the class is initialized and the API is fully

functional after that.

At FNTC's current state the API is only used for polling the custom field

information from TestLink. However, the API requires information for

polling and some of the information might not be available before

asking for it, therefore FNTC needs to execute five polls before it has

all the data needed for polling the custom field values, and additional

four polls for getting all the custom field values. An example about

polling the custom field value can be found below.

client = TestLinkAPI.TestlinkAPIClient(SERVER_URL, devKey)

--- Other polls are required here for getting all the information ---

cfEngine=(client.getTestCaseCustomFieldDesignValue(prefix + "-" + tcidlist[0]
['tc_external_id'], tcinfo[0]['version'], sys.argv[4], "testingEngine", ""))

logger.debug('Got engine from custom field: %s', cfEngine)

47

5.3.3 Git wrapper

Git wrapper is a small class used for interacting with Git. The main

purpose of Git in FNTC is holding a repository of all test case versions,

testers are able to write and update their tests on their own computers,

push the changes to the repository and the tests will always be

updated to the latest versions just before running them. It has also

been planned that certain test versions could be tagged using Git's

tags and the Git wrapper would be able to pull those specific test

versions when needed.

For now the Git wrapper consists of two parts: git_puller.py and

git_wrapper.sh. The sole purpose of the python file is to run the shell

script using the Popen -function of the subprocess and catch the

possible exceptions that can occur during the process. At the current

state the error situations are slightly unclear, which lead to disabling

the error handling. However, a possible exception is unable to break

anything, the only thing it affects is failing to pull the newest test

versions and the failure can be seen from the logs as blank Git output.

The pull -method in git_puller.py as it is now can be found on the next

page.

48

def pull(self, testdir):
try:

self.logger.debug('Starting GIT process')
gitpull = subprocess.Popen(["sh",
"git_wrapper.sh"],cwd=testdir,stdout=subprocess.PIPE,stderr=s
ubprocess.PIPE).communicate()

#self.logger.debug('GIT output list: %s', str(gitpull))
check and raise an exception if errors occur , disabled for now
if str(gitpull[0]).find == ' ':

raise Exception(str(gitpull[1]))
else:

self.logger.debug('GIT output: %s', gitpull[0])
return "ok"

except Exception as e:
if something weird happens, a message will be
returned and old tests are run
self.logger.critical('GIT process exception: %s', str(e))
return str(e)

The shell script is located in the base folder of the Git repository that

contains all the test scripts. Its purpose is to run the actual Git

commands inside the repository and use the correct SSH key for

authenticating. The script uses SSH-agent for finding the correct key

and then runs the Git command. In the future the alternate commands

could be run in this same file based on additional arguments it would

receive from git_puller. Here are the contents of git_wrapper.sh as they

are now:

#!/bin/sh

ssh-agent bash -c 'ssh-add /var/www/.ssh/wwwdata; git pull'

5.3.4 Plug-in system

One of the key features making FNTC more flexible is the plug-in

system. It allows users to use their own testing frameworks by creating

their own engine plug-ins. This way FNTC can be relatively easily

49

extended to cover more frameworks and technologies than just Robot

Framework and its libraries, and the engine can be swapped by just

changing the custom field value in TestLink. The code for the plug-in

system was found from a tutorial “Python Style Plugins Made Easy” at

LuckyDonkey and it was slightly modified to fit in FNTC.

There are three things that are considered when looking for the right

engine. The file that contains the engine has to be named in a specific

way, it has to start with “engine_” and end with “.py”. After the file has

been found, the class name inside it must contain the word “Engine”,

in this example it is “exampleEngine”, and it must be a child class of

the Engine -class. Other than that, the class can behave however it

pleases and it can be located in any folder inside FNTC. Of course the

class must have some specific methods for it to work correctly with

FNTC, see the required structure of the class in Figure 12.

FIGURE 12. The required structure of the Engine -class.

50

The first thing the plug-in system does is looking for all the available

engines. It starts from the folder where FNTC is located and continues

looking through all the sub folders for files that match the name

requirements. Here is the code of the part that walks through the

directories looking for correct files:

engine_defined = False
cls = Engine
engines = []

path = "./" # will start from the folder where the script is installed
for root, dirs, files in os.walk(path):

for name in files:
if name.endswith(".py") and name.startswith("engine_"):

path = os.path.join(root, name)
modulename = path.rsplit('.', 1)[0].replace('/', '.')
modulename = modulename.rsplit('.', 1)[1]
result = look_for_subclass(modulename)
if result == "error":

break

Every time a file with correct type of name is found, it is be checked for

classes. The script walks the dictionaries inside the file to get to the

last one and checks if their names have “Engine” in them. When a

class with the name Engine is found, the script checks if the class is a

sub class of Engine. If everything matches, the engine is added into the

list of found engines. The code for checking classes can be found on

the next page.

51

def look_for_subclass(modulename):
try:

logger.debug("Checking module: %s", modulename)
module = __import__(modulename)

walk the dictionaries to get to the last one
d = module.__dict__
for m in modulename.split('.')[1:]:

d = d[m].__dict__

#look through this dictionary for the correct class
for key, entry in d.items():

if key == cls.__name__:
continue

try:
if issubclass(entry, cls):

logger.debug("Found engine: %s", key)
engines.append(entry)

except TypeError:
#this happens when a non-type is passed in to
#issubclass. Non-types can't be instances, so they
will be ignored.
continue

return "ok"

except Exception, e:
if something goes wrong while loading modules, loading is
aborted
logger.critical('Error while loading modules: %s', str(e))
return "error"

After all usable engines are found, their class names are compared to

the engine name that was polled from TestLink's custom fields. The

engine name in the custom field must be a match to the class name of

the engine, thus the engines in the custom field are named the same

way as “exampleEngine”. Once a matching engine is found, it is loaded

immediately and the script proceeds to testing. However, if there are

no matching engines, engine_defined will remain false and the testing

run will be aborted. The code for loading the engine can be found on

the next page.

52

for e in engines: #scroll through all found engines and find the correct one
if e.__name__ == cfEngine:

engine = e(sys.argv[2], vOutputdir, testdir, sys.argv[8])
engine_defined = True
break

5.3.5 Robot engine

Robot engine is the default engine used in FNTC. It used to be a solid

part of the main script, but when the plug-in system was implemented,

Robot engine was moved into its own class. Its purpose is to simply use

Robot Framework for running the given tests one by one on a single

machine, process the test results and send them for FNTC to take care

of.

The engine contains two important methods: run_tests and

get_test_results. The run_tests -method takes three arguments; the

test case name, a list of tests and the amount of times to run the tests,

and uses them to build a command for starting Robot Framework. First

it uses the test case name as the test suite name in reports and sets

the non-critical tag in the case of non-critical tests. Then it goes

through the test list making sure that the test scripts exist and adds

each found script into the command. The command is finally executed

using the Popen -function of the subprocess, Robot Framework runs the

tests, the results are written into different folders and the engine will

not proceed before all related tests have been executed for required

number of times. Error handling is used whenever there is a possibility

for something to go wrong, and the error message and a blocked result

are returned to TestLink when an error occurs.

53

After Robot Framework has finished testing, get_test_results is called.

It takes three arguments: test case name and amount of times to run

the tests, which are used for finding correct output folders, and

tolerance which is used for deciding if enough non-critical tests have

passed. The method parses the test results from the XML-files Robot

Framework generated and combines them into notes that are returned

to TestLink. The notes include the number of times the tests were run,

how many of the total, critical and non-critical tests passed, did the

test suite pass and the reason if it did not pass and the results

separately from each test case and test run. The method also

generates links that lead to the original reports, but it only works if the

tester has access to the same network where the testing environment

is located.

There is also one experimental method called upload_results. It was

used for packing Robot Framework's report and log files and uploading

them as an attachment in the corresponding test case in TestLink, but

it came with two problems. The first problem was a design flaw; while it

does sound tempting to have the test results quickly at hand in

TestLink and it would work even if the tester did not have access to the

testing network, the attachments from hundreds of test cases and

multiple test runs would fill up the database rather quickly and that

could lead to performance issues. The second problem is a bug that

was left unfixed due to the realization of the first problem. For some

currently unknown reason the uploaded attachments get corrupted

while uploading them, making it impossible to unpack the packages

and view the results.

54

5.3.6 Grid engine

Grid engine is a more advanced version of Robot engine. Unlike Robot

engine, Grid engine separates the given tests into blocks and executes

them on separate virtual machines in parallel. Tests that can not be

executed in parallel are not tagged and they will be executed

afterwards on a single machine using serial execution. It then compiles

the test results into one XML-file and the results are parsed from that

file.

The base of the engine is almost the same as in Robot engine, but

most of the functionality is handled using Parabot. Parabot was found

from SeleniumLibrary's Google Code page “Advanced test distribution

utilizing Selenium GRID”, and it was originally written by Thomas Klein

in 2009 and heavily modified to fit in FNTC by the author of this thesis.

Parabot.py was turned into a class that can be imported directly into

the engine and the functionality was modified for more suitable test

handling and test execution. Due to different ways of handling the

tests and several other modifications, Grid engine is not fully functional

at the time of writing this thesis; however the development will

continue in the near future.

Instead of forming the command, the engine makes sure that the test

scripts exist and send them to Parabot for execution. Parabot checks

all the tests it receives, divides them into parallel tests and serial tests

depending on the tags and the parallel tests are then further divided

into test blocks. Parabot then starts a pybot instance for every test

block, polls when each one of them is finished testing and kills the

instances when they are finished. Serial tests, meaning the tests that

would have conflicts with parallel tests, are then executed one by one

on a pybot instance. After all tests are finished, the results are

55

collected and combined into one XML-file. The results are parsed the

same way as in Robot Engine, but since Parabot disables Robot

Framework's report and log files, links cannot be generated.

5.4 Installation

At the current state the installation process can be very long and

tedious for a new user. It requires installing several tools, setting up

connections and manual configuration file editing on three different

machines, and multiple test runs before there is even hope for FNTC to

work as it should. This problem could be fixed by carefully building

Debian packages that would automatically handle the installation on all

machines, but until then, the installation will be the hardest part in

using FNTC. The instructions can be found in Appendix 4, however it

should be noted that they might not be perfect.

5.5 Usage

Testing is started by creating a new test case in TestLink. It is

recommended that all fields are filled to clarify what is supposed to be

tested in the test case, however only the test case name and custom

fields are required for FNTC to work correctly. The test case name

should not contain any spaces since they break the parameters and

the test run will fail due to incorrect data. Once all fields are filled, the

test case should be added to the test plan for it to show up in test

execution.

FNTC is started by clicking the “Execute and save results” -button in

the test case in TestLink. TestLink will use XML-RPC -protocol for

contacting FNTC and it sends eight parameters for it: Test case name,

56

internal ID, version ID, test project ID, test plan ID, platform ID, test

build ID and execution mode. These are received by

fakeXMLRPCTestRunner.php, which passes them for FNTC. After FNTC

is launched, it will use the parameters for polling the remaining data

from TestLink by using TestLink API. All results are returned in lists and

it will take several polls before FNTC has all the data required for

running the tests.

Once all data has been gathered, FNTC makes sure all test scripts are

up to date by using the Git wrapper. At this point it would also create

new Grid Slaves by using the CloudNest -tool, since it already has

sufficient data for calculating the need for new nodes. CloudNest would

ask OpenStack for running instances and it would create new ones if

there are not enough nodes online. Each node would register itself

automatically to the grid hub and FNTC would not continue before

CloudNest has verified that all nodes are online. However, CloudNest is

not implemented yet.

After updating the tests and setting up nodes, FNTC looks for the

correct engine plug-in by comparing the class name to the custom field

value that was polled from TestLink. In this case Robot engine will be

used for running the tests. It launches Robot Framework and gives the

correct tests for it, which will use Selenium Grid for running the tests

against Deep Forest, the test instance of FreeNest. Even though Grid

has the capability to run the tests using several nodes, in this case only

one node is used. After Robot Framework has finished testing, FNTC

uses the same engine for getting the test results. The results are

returned as a list and they will be passed on to

fakeXMLRPCTestRunner.php and then to TestLink, which updates the

test case with the results.

In case errors happen during some part of the execution, FNTC will

57

always wait for a result string from classes and other parts. If

everything is in order, the string contains only a word “ok”. If the string

is not “ok”, it is assumed that something is not working as it should

and the string is returned to TestLink as an error message along with a

blocked result. The whole process can be seen in Figure 14, which is

located in Appendix 3.

6 RESULTS

6.1 Current state

The testing automation built in this project was mostly finished in time.

Some of the features did not get further than the planning phase and

some features were left unfinished; however, the basic functionality is

works properly. The core parts of the automation were built to be

relatively modular, thus creating and implementing new features

should be easy. If there is need for other testing frameworks, the users

can create their own plug-ins and new frameworks are taken into use

when the plug-ins are loaded. The testing automation can be used as it

is for any kind of testing Robot Framework and selenium are capable

of, and since Robot Framework and Selenium are sufficient enough for

testing FreeNest 1.4, it can be used for internal software testing in

SkyNest, provided that the developers get some training for creating

new test scripts.

It was also noticed during the project that moving from manual testing

to automatic testing is not easy or quick. The project can contain

hundreds of tests and even when they are simple tests, converting

them into automatic tests is a huge and very time consuming task.

Even when the test automation is taken into account at the beginning

58

of the project, additional measures are still needed. The developers

need some training to be able to write the testing scripts for their code

and extra knowledge is also needed for using and maintaining the

testing automation. The test automation tool chain contains more tools

than just one and if one of them stops working, the maintainer will

need to know where to look in order to find and fix the problem quickly.

6.2 Future improvements

While FNTC works well enough for it to be used for internal testing in

SkyNest, it can not be considered as a valid testing automation

solution yet. Since the author of this thesis did not have much

experience of Python when the project started, most parts of FNTC

could be built differently and more efficiently. The core could be

written to be truly modular since some parts are currently hard coded

to support only specific tools, TestLink API and Git wrapper being

examples of this. TestLink API will not have any use if FNTC is not used

with TestLink, and Git should be replaceable with Subversion if the user

prefers.

TestLink could also be modified to better support testing automation.

The interface looks messy when the results are returned, notes being

just raw text without any kind of formatting unless the user realizes to

press one small button for the formatted notes to show up. The

interface does not give any kind of feedback about when the tests are

being executed; it just waits for them to be finished and then updates

the page with results. This can lead to the user thinking that nothing is

happening and pressing the execution button again, possibly creating

conflicts in the scripts. The interface should be more user friendly and

provide sufficient feedback for the user to prevent misunderstandings.

59

It was planned that the testing automation could be integrated into

JunkCloud in a way that it could control the cloud resources.

Implementing the CloudNest -tool into FNTC would allow it to launch

new Grid Slaves into the cloud depending on the amount of tests to be

run. It would also be able to kill unneeded instances after running the

tests. This would make FNTC more automated, removing the need to

manually launching and setting up new nodes for it to use.

At the time of writing this thesis, Mikko Ojala has already started

refactoring and improving the core parts of FNTC for better modularity

and fit in MIDEaaS -project. Instead of using the

fakeXMLRPCTestRunner.php, Twisted Framework is used for creating a

server that receives the test requests and launches FNTC. It can be

used as a daemon, meaning that the server starts up automatically

when the machine starts, and it runs in the background listening for

test requests. This makes it possible to have several FNTC instances

running at the same time in separate threads, and it is not as strict

towards the data it receives unlike fakeXMLRPCTestRunner.php. This

way PHP can also be removed from the software requirements.

The installation process is also unnecessarily complex and has several

possible points of failure if the user does not know exactly what needs

to be done. That is why FNTC will be Debian packaged properly in the

future, either by Mikko Ojala or the Cloud team. The file locations will

be changed to more suitable ones, for example FNTC would be located

in AdminUser's home folder instead of /var/www/ -folder, which can be

considered as a security issue.

60

REFERENCES

Cloud Software Finland brochure. August 2011. Referred on November

8, 2012. http://www.cloudsoftwareprogram.org/rs/2226/6e620c3b-

438c-425c-bfcc-a70731023c59/8b3/fd/1/filename/cloudbroch-aug2011-

net.pdf

CodeProject. 20 March, 2012. What is software testing? What are the

different types of testing? Referred on October 16, 2012.

http://www.codeproject.com/Tips/351122/What-is-software-testing-

What-are-the-different-ty

CodeThinked. June 30, 2009. What is Unit Testing? Referred on October

25, 2012. http://www.codethinked.com/what-is-unit-testing

FreeNest.org. 2012. Portable Product Platform. Referred 4.10.2012.

http://freenest.org/about

Git. n. d. About Git, getting started. Referred on November 14, 2012.

http://git-scm.com/about , http://git-scm.com/book/en/Getting-Started

Guru 99. n. d. What is System Testing? Referred on October 26, 2012.

http://www.guru99.com/system-testing.html

IBM, n. d. IBM Cloud Computing: What is cloud computing? Referred on

October 24 - 25, 2012. http://www.ibm.com/cloud-

computing/us/en/what-is-cloud-computing.html

http://www.cloudsoftwareprogram.org/rs/2226/6e620c3b-438c-425c-bfcc-a70731023c59/8b3/fd/1/filename/cloudbroch-aug2011-net.pdf
http://www.cloudsoftwareprogram.org/rs/2226/6e620c3b-438c-425c-bfcc-a70731023c59/8b3/fd/1/filename/cloudbroch-aug2011-net.pdf
http://www.cloudsoftwareprogram.org/rs/2226/6e620c3b-438c-425c-bfcc-a70731023c59/8b3/fd/1/filename/cloudbroch-aug2011-net.pdf
http://www.ibm.com/cloud-computing/us/en/what-is-cloud-computing.html
http://www.ibm.com/cloud-computing/us/en/what-is-cloud-computing.html
http://www.guru99.com/system-testing.html
http://git-scm.com/book/en/Getting-Started
http://git-scm.com/about
http://freenest.org/about
http://www.codethinked.com/what-is-unit-testing
http://www.codeproject.com/Tips/351122/What-is-software-testing-What-are-the-different-ty
http://www.codeproject.com/Tips/351122/What-is-software-testing-What-are-the-different-ty

61

InfoWorld. n. d. What cloud computing really means. Referred on

October 24, 2012. http://www.infoworld.com/d/cloud-computing/what-

cloud-computing-really-means-031?page=0,0

JAMK. n. d. Projektit, SkyNest. Referred on October 31, 2012.

http://www.jamk.fi/projektit/1233

LuckyDonkey. January 2, 2008. Python Style Plugins Made Easy.

http://www.luckydonkey.com/2008/01/02/python-style-plugins-made-

easy/

OpenStack. n. d. Software, Compute, Networking, Storage. Referred on

November 12, 2012. http://www.openstack.org/software/

Python. n. d. What is Python? Executive Summary. Referred on October

3, 2012. http://www.python.org/doc/essays/blurb.html

RobotFramework-SeleniumLibrary. February 1, 2011. Advanced test

distribution utilizing Selenium GRID. Referred on November 7, 2012.

http://code.google.com/p/robotframework-

seleniumlibrary/wiki/UseSeleniumGRIDwithRobotFramework

Robot Framework. 2012. Robot Framework Introduction. Referred on

November 4, 2012.

http://wiki.robotframework.googlecode.com/hg/RobotFrameworkIntrodu

ction.pdf

Robot Framework. September 30, 2011. Robot Framework User Guide.

Referred on November 9, 2012.

http://robotframework.googlecode.com/hg/doc/userguide/RobotFramew

orkUserGuide.html

http://robotframework.googlecode.com/hg/doc/userguide/RobotFrameworkUserGuide.html
http://robotframework.googlecode.com/hg/doc/userguide/RobotFrameworkUserGuide.html
http://wiki.robotframework.googlecode.com/hg/RobotFrameworkIntroduction.pdf
http://wiki.robotframework.googlecode.com/hg/RobotFrameworkIntroduction.pdf
http://code.google.com/p/robotframework-seleniumlibrary/wiki/UseSeleniumGRIDwithRobotFramework
http://code.google.com/p/robotframework-seleniumlibrary/wiki/UseSeleniumGRIDwithRobotFramework
http://www.python.org/doc/essays/blurb.html
http://www.openstack.org/software/
http://www.luckydonkey.com/2008/01/02/python-style-plugins-made-easy/
http://www.luckydonkey.com/2008/01/02/python-style-plugins-made-easy/
http://www.jamk.fi/projektit/1233
http://www.infoworld.com/d/cloud-computing/what-cloud-computing-really-means-031?page=0,0
http://www.infoworld.com/d/cloud-computing/what-cloud-computing-really-means-031?page=0,0

62

Selenium Documentation. August 26, 2012. Selenium WebDriver,

Selenium 1 (Selenium RC). Referred on October 24, 2012.

http://seleniumhq.org/docs/

SmartBear. 2012. Why Automated Testing? Referred on October 10 –

24, 2012. http://support.smartbear.com/articles/testcomplete/manager-

overview/

Software Testing Fundamentals. n. d. Gray Box Testing. Referred on

October 17, 2012

http://softwaretestingfundamentals.com/gray-box-testing/

Software testing Fundamentals. n. d. Software Testing Levels. Referred

on November 14, 2012.

http://softwaretestingfundamentals.com/software-testing-levels/

TestLink. March 18, 2012. TestLink User Manual. Referred on

November 14, 2012.

http://www.teamst.org/_tldoc/1.9/testlink_user_manual.pdf

Tivit. December 15, 2011. Strategic Research Agenda for services.

Referred on November 19, 2012.

http://www.tivit.fi/file_attachment/get/Services_SRA_2011-12-14.pdf?

attachment_id=57

Webopedia. 2012. Regression testing. Referred on November 1, 2012.

http://www.webopedia.com/TERM/R/regression_testing.html

http://www.webopedia.com/TERM/R/regression_testing.html
http://www.tivit.fi/file_attachment/get/Services_SRA_2011-12-14.pdf?attachment_id=57
http://www.tivit.fi/file_attachment/get/Services_SRA_2011-12-14.pdf?attachment_id=57
http://www.teamst.org/_tldoc/1.9/testlink_user_manual.pdf
http://softwaretestingfundamentals.com/software-testing-levels/
http://softwaretestingfundamentals.com/gray-box-testing/
http://support.smartbear.com/articles/testcomplete/manager-overview/
http://support.smartbear.com/articles/testcomplete/manager-overview/
http://seleniumhq.org/docs/

63

Wikipedia, n. d. Cloud computing, Integration testing, Manual testing,

Software testing, System testing, Testing automation, Unit testing.

Referred on October 10 – 26, 2012.

http://en.wikipedia.org/wiki/Cloud_computing ,

http://en.wikipedia.org/wiki/Software_testing

http://en.wikipedia.org/wiki/Software_testing
http://en.wikipedia.org/wiki/Cloud_computing

64

APPENDIX 1. EXAMPLE OF A ROBOT

FRAMEWORK TEST SCRIPT

This test case verifies that the AboutFreeNEST -page in FosWiki works

correctly. It logs in FreeNest as AdminUser, clicks the link in the

Dashboard and verifies that the page is correct by checking if it

contains text “About FreeNEST”. The test was originally created by

Teemu Ojala and it has been used for verifying the testing automation

functionality, hence the simplicity of the test.

*** Settings ***

Library SeleniumLibrary 5

Suite Tear Down Close Browser

*** Test Cases ***

WikiwordDashboard

 Open Browser http://192.168.42.111/ ff

 Maximize Browser Window

 Input Text username AdminUser

 Input Password password adminuser

 Click Button Log in

 Click Link FreeNEST

 Page Should Contain About FreeNEST

 Click Element logoutBtn

 Close Browser

65

APPENDIX 2. THE CLASS DIAGRAM OF FNTC

FIGURE 13. The class diagram of FNTC. The picture had to be rotated

due to the large size.

66

APPENDIX 3. THE SEQUENCE DIAGRAM OF FNTC

FIGURE 14. The sequence diagram of FNTC. The picture had to be

rotated due to the large size.

67

APPENDIX 4. FNTC INSTALLATION

INSTRUCTIONS

Team Server

The easiest way of setting up the Team Server is installing FreeNest

1.4 from the package repository, since it has TestLink and Git already

installed and configured. FreeNest 1.4 is not yet released for public,

thus it can only be installed from SkyNest own private repository. When

having access to SkyNest's private network, this can be done by adding

the repository into the following line into /etc/apt/sources.list -file:

deb http://192.168.42.104/packages/ubuntu/precise precise main

After the file has been updated, it is time to run three commands to

install FreeNest:

sudo apt-get update

sudo apt-get install freenest-preseed

sudo apt-get install freenest

After running those commands FreeNest should be ready for use.

TestLink is the only tool in Team server that needs to be configured.

The first this that needs to be done is editing the config -file. The

custom_config.inc.php can be located in TestLink's installation folder,

which is usually /var/www/ProjectTESTLINK. There are two lines that

need to be added into the config:

$tlCfg->exec_cfg->enable_test_automation = ENABLED;
$tlCfg->api->enabled = TRUE;

68

These values can also be edited in config.inc.php but according to

TestLink documentation, that is strongly discouraged. There are also

three values that need to be increased in PHP in order to prevent

timeout problems during testing. The php.ini can be located in

/etc/php5/apache2 -folder, and the values that need to be edited are

session.gc_maxlifetime, max_execution_time and

default_socket_timeout. Their values need to be much higher, for

example 360000 has worked well enough in this project.

Now TestLink can be configured using its own interface. First thing to

do after logging in and creating new test projects and plans is creating

new custom fields. There are three custom fields that are required for

testing automation and four that are required for FNTC. The first three

custom fields can be imported using the XML-file included in TestLink

installation, the file can be found in

ProjectTESTLINK/docs/file_examples and it is named as RE-XMLRPC-

customFields.xml. The custom fields can be defined by clicking “Define

Custom Fields” in TestLink project main page. The additional custom

fields are testingEngine as a list, scriptNames as a test area, runTimes

as a string and tolerance as numeric value. They need to be enabled

on test specification and displayed in test execution, nowhere else.

After the custom fields have been defined, they need to be assigned to

the project by clicking “Assign Custom Fields” in the project main page.

The last step in TestLink is creating the API access key. This can be

done by clicking “My Settings” in TestLink's top bar and then clicking

“generate a new key” -button under API interface. The key is then

printed above the button and it can be added into the configuration file

in Master Tester.

69

The last step in Team Server is creating a new Git repository for the

test scripts. This can be done either by using the Control Panel in

FreeNest 1.4 or by using Gitolite. In FreeNest it should be as easy as

going in Administration, then Control Panel and then Git Admintools

and adding a new repository under repositories -tab. Adding an new

repository is not hard with Gitolite either, only a few lines need to be

added into gitolite-admin/conf/gitolite.conf. Those lines consist of the

repository name and user rights as shown below:

repo robot_testing_scripts
RW+ = @admin
R = gitweb

Master Tester

The Master Tester is the most complex machine in the tool chain and

while it is mostly straight forward, there are some parts that most likely

will not succeed the first time. The installation is started by installing

the required software by using the command:

sudo apt-get install apache2 php5 openjdk-7-jre git

After they have been installed, Robot Framework, Selenium server and

the library between them can be downloaded and installed. They can

be found here:

http://code.google.com/p/robotframework/downloads/list

https://github.com/rtomac/robotframework-selenium2library/downloads

http://seleniumhq.org/download/

The newest versions at the time of writing this are robotframework-

2.7.5.tar.gz, selenium-server-standalone.2.25.0.jar and

robotframework-selenium2library-1.1.0.tar.gz. Robot Framework and

SeleniumLibrary can be installed by unpacking them with command

http://seleniumhq.org/download/
https://github.com/rtomac/robotframework-selenium2library/downloads
http://code.google.com/p/robotframework/downloads/list

70

“tar -xzf <package name>” and running the script inside them with

command “python setup.py install”. Selenium Server is a runnable jar-

file, thus it can be moved somewhere safe. PyYAML is also required for

FNTC to work, it can be found here: http://pyyaml.org/wiki/PyYAML and

it is installed the same way as Robot Framework.

Before FNTC can be installed, a folder needs to be created to hold all

FNTC related files. The folder can be created in /var/www -folder with

command “sudo mkdir Testlink-Robot” and FNTC can be cloned inside

that folder from Strongbow's repository with command “git clone

strongbow:testlink_robot”. This will only work if Git has been set up

correctly and the user has enough rights for cloning the repository.

Testing scripts are cloned into the same folder and one more folder is

created for the output data with command “sudo mkdir

robot_testing_output”. Now there should be testlink-robot,

robot_testing_scripts and robot_testing_output -folders inside Testlink-

Robot -folder.

Before FNTC can be used, it needs to be configured properly. First thing

to do is creating the log-file for FNTC with the command “touch

testlink_robot_client.log” in testlink_robot -folder. Testlink_client.conf

needs to be updated with Team Server's IP address and the API key

generated in TestLink, the rest of the options should work as they are

by default. To ensure that FNTC can be run remotely, the owner of all

the folders needs to be changed to www-data. This can be done with

command “sudo chown -R www-data:www-data Testlink-Robot”.

Now Selenium hub can be started with command “java -jar selenium-

server-standalone-2.25.0.jar -role hub”.

http://pyyaml.org/wiki/PyYAML

71

Grid Slaves

The Grid Slaves are the easiest virtual machines to set up in the tool

chain. They only contain Firefox, Selenium Server for setting up the

node, Java, which is required for Selenium, and VNC4Server, which acts

as a virtual display. VNC4Server is not required if the machine is a

desktop Ubuntu, but it is required for Ubuntu Server and it is useful for

remotely checking the status of the node machine.

The installation should be started by installing Java, VNC4Server and

Firefox:

sudo apt-get install openjdk-7-jre vnc4server firefox

Firefox requires a display before it can be used at all, thus starting the

VNC4Server would be a good idea. It can be started using command

“vnc4server”, it will ask for a password and finally give a number of the

display. The virtual display can then be viewed from another computer

using Vinagre. After starting Vinagre, the user can create a new

connection by pressing “connect”, changing the protocol to VNC and

giving the IP address and the port of the display. For example, if the IP

is 192.168.42.104 and the display number is 1, the address would be

“192.168.42.104:1”. Then Vinagre will ask for password and after that

the connection should be working.

The next step is important for escaping the SSL certificates, since there

are no keywords for them in Robot Framework, all tests get stuck in the

certificate dialog and fail due to timeout. For that selenium needs a

Firefox profile, thus Firefox profile manager needs to be started using

72

command “firefox -Profilemanager” in the command prompt visible in

Vinagre. It should give a file path for the profile while creating it; it will

be needed later on. The only way to get past the certificate is using the

new profile for visiting the site and accepting the certificate manually

so the choice will be remembered. Firefox can be safely closed after

accepting the certificate.

The last step is starting the Selenium Server. The server can be

downloaded here, 2.25.0 being the latest one at the time of writing

this: http://seleniumhq.org/download/

It does not matter where selenium-server-standalone-2.25.0.jar is

saved as long as it can not disappear; AdminUser's home folder was

used in this case. Now the server can be started using command:

DISPLAY=:1 java -jar selenium-server-standalone-2.25.0.jar -role node -hub

http://192.168.42.104:4444/grid/register -firefoxProfileTemplate

“/home/adminuser/.mozilla/firefox/f02n6b5q.Selenium"

“DISPLAY=:1” defines the display that is used for running Firefox, “-role

node” defines the role of the server, “-hub (IP:port)” defines the

location of the hub and “-firefoxProfileTemplate (path)” is the profile

that is used for running Firefox. After the connection has been

established, the tool chain is ready for testing.

http://seleniumhq.org/download/

