

CLOUD SERVICE LIFE CYCLE
MANAGEMENT IN CONTEXT OF

FREENEST SERVICE

Ari Karhunen

Bachelor Thesis
December 2012

Degree Programme in Information Technology
Technology, Communication and Transport

DESCRIPTION

Author(s)
KARHUNEN, Ari

Type of publication
Bachelor Thesis

Date
06122012

Pages
78

Language
English

Confidential

() Until

Permission for web
publication
(X)

Title
CLOUD SERVICE LIFE CYCLE MANAGEMENT IN CONTEXT OF FREENEST SERVICE

Degree Programme
Information Technology

Tutor(s)
MANNINEN, Pasi

Assigned by
RINTAMÄKI, Marko – SkyNest project

Abstract

The main objectives of this study were to find the tools that can be used to automate the life cycle of
a virtual computer at JunkCloud reference cloud environment that was implemented using
OpenStack, and to point out what processes described in IT Infrastructure Library (ITIL) can be used to
support the automation process and vice versa.

JunkCloud is SkyNest project’s test environment that can be used to test the FreeNest service and
which is a playground for the project members to learn from the new technologies. FreeNest is a
multiplatform project management tool that is developed by the SkyNest project hosted in the
premises of JAMK University of Applied Sciences.

The thesis was carried out by creating a work flow representing the manual steps that were required
to start the virtual computer and FreeNest service to the JunkCloud environment. When the work
flow was created, the ITIL processes were also referred. Using the activities described in the workflow
as a basis, the tools that can be used to create the activities in automated manner were discovered
and represented.

This study can be used to support the actual work to create the automated solution, although this
study does not provide all or the best solutions because of the broad coverage of the subject, it points
to the right direction where to find more information.

Keywords
ITIL, OpenStack, FreeNest, Cloud, IAAS, SkyNest, Python

Miscellaneous

 OPINNÄYTETYÖN
 KUVAILULEHTI

Tekijä(t)
KARHUNEN, Ari

Julkaisun laji
Opinnäytetyö

Päivämäärä
06122012

Sivumäärä
78

Julkaisun kieli
Englanti

Luottamuksellisuus

() Saakka

Verkkojulkaisulupa
myönnetty
(X)

Työn nimi
PILVIPALVELUN ELÄMÄNKAAREN HALLINTA FREENEST-PALVELUN YHTEYDESSÄ

Koulutusohjelma
Tietoverkkotekniikka

Työn ohjaaja(t)
MANNINEN, Pasi

Toimeksiantaja(t)
RINTAMÄKI, Marko - SkyNest project

Tiivistelmä

Opinnäytetyön tarkoituksena oli etsiä tarvittavat työkalut, joita voidaan käyttää virtuaalitietokoneen
elämänkaaren automatisoinnissa OpenStack-pohjaisessa JunkCloud-testausympäristössä. Lisäksi
työssä oli tehtävänä osoittaa mitä IT Infrastructure Library (ITIL) prosesseja voidaan käyttää
automatisoinnin tukena ja mitkä ITIL-prosessit voivat saada tukea automatisoinnilta.

JunkCloud on SkyNest-projektin testiympäristö, jota voidaan käyttää FreeNest-palvelun testaamiseen
ja on projektiryhmän pilvipohjainen testiympäristö uusien teknologioiden ja ratkaisujen testaamiseen.
FreeNest on SkyNest-projektin kehittämä monialustainen projektinhallintatyökalu ja itse projekti
toimii Jyväskylän ammattikorkeakoulun sisällä.

Työ aloitettiin tekemällä työvuokaavio joka esittää tarvittavat käsin tehtävät toimet virtuaalikoneen ja
FreeNest-palvelun käynnistämiseksi JunkCloud-ympäristöön. Työvuokaavioiden vaiheita käytettiin
myös osoittamaan mitä ITIL-prosesseja voidaan käyttää hyödyksi kyseisissä kohdissa.
Työvuokaavioiden pohjalta ehdotettiin työkaluja, joiden avulla kyseinen aktiviteetti voidaan tehdä
automatisoidusti.

Opinnäytetyötä voidaan käyttää automatisointiratkaisun rakentamisen tukena, vaikkakaan työ ei
tarjoa kaikkia tai parhaita ratkaisuja aiheen laajuuden takia, opinnäytetyö ohjaa oikeaan suuntaan
tiedon löytämiseksi.

Avainsanat (asiasanat)
ITIL, OpenStack, FreeNest, Cloud, IAAS, SkyNest, Python

Muut tiedot

1

CONTENTS

ABBREVATIONS AND ACRONYMS .. 4

 BACKGROUND .. 7 1

1.1 CONCEPTS OF CLOUD COMPUTING ... 7

1.2 ASSIGNER OF THESIS AND SKYNEST .. 7

1.3 JUNK CLOUD AS A REFERENCE ENVIRONMENT .. 8

1.4 RESEARCH OBJECTIVE .. 10

 CLOUD SERVICES .. 10 2

2.1 SOMETHING AS A SERVICE .. 10

2.2 INFRASTRUCTURE AS A SERVICE ... 12

2.3 PLATFORM AS A SERVICE .. 12

2.4 SOFTWARE AS A SERVICE ... 12

 INFRASTRUCTURE ... 13 3

3.1 CLOUD INFRASTRUCTURE ... 13

3.2 OPENSTACK .. 13

3.2.1 What is OpenStack ... 13

3.2.2 OpenStack Compute .. 14

3.2.3 OpenStack Image Service .. 15

3.2.4 OpenStack Object Storage ... 15

3.2.5 Other OpenStack Services ... 16

 ITIL .. 17 4

4.1 WHAT IS ITIL ... 17

4.2 ITIL SERVICE LIFE CYCLE .. 18

4.2.1 The Framework .. 18

4.2.2 Strategy, Design, Transition and continual service improvement . 19

4.2.3 Service Operation ... 20

 SERVICE AUTOMATION ... 22 5

5.1 PROBLEM AND MISSION .. 22

5.2 SCENARIOS ... 24

5.3 MANUAL CONFIGURATION EXAMPLES .. 25

5.3.1 Objective .. 25

2

5.3.2 Starting up the service .. 26

5.4 WORK FLOW .. 29

5.4.1 Objective .. 29

5.4.2 Starting up .. 30

5.5 TOOLS FOR WORK FLOW .. 36

5.5.1 Objective .. 36

5.5.2 Starting up .. 37

 CONCLUSION .. 43 6

REFERENCES ... 47

APPENDICES .. 49

APPENDIX 1. MANUAL CONFIGURATION EXAMPLES (RUNNING) 49

APPENDIX 2. MANUAL CONFIGURATION EXAMPLES (TERMINATING) 52

APPENDIX 3. LIST OF VARIABLES ... 53

APPENDIX 4. CREATING WORK FLOW (RUNNING) ... 55

APPENDIX 5. CREATING WORK FLOW (TERMINATING) 63

APPENDIX 6. TOOLS FOR WORK FLOW (RECOVERY) ... 67

APPENDIX 7. TOOLS FOR THE WORK FLOW (BACKUP) 71

APPENDIX 8. TOOLS FOR THE WORK FLOW (TERMINATING) 74

APPENDIX 9. TOOLS FOR THE WORK FLOW (LOGGING) 78

FIGURES

FIGURE 1. Illustrative figure of JunkCloud ... 9

FIGURE 2. Services provided from cloud ... 11

FIGURE 3. OpenStack nova architecture ... 15

FIGURE 4. ITIL lifecycle model .. 17

FIGURE 5. A basic process defined in ITIL .. 19

FIGURE 6. Resources vs. time .. 23

FIGURE 7. Objects for the starting up sequence flow. 31

FIGURE 8. Sequence flow for staring script ... 31

FIGURE 9. Work flow for starting script .. 33

FIGURE 10. Proposed solution for activity 1. in the startup script 38

3

FIGURE 11. Proposed solution for activity 2. in the startup script 39

FIGURE 12. Proposed solution for activity 3. in the startup script 40

FIGURE 13. Proposed solution for activity 5. in the startup script 41

FIGURE 14. Proposed solution for activity 4. in the startup script 42

FIGURE 15. Proposed solution for activity 7. in the startup script 42

FIGURE 16. Proposed solution for activity 8. in the startup script 43

FIGURE 17. Objects for the recovery sequence flow. 55

FIGURE 18. Sequence flow for recovery script. ... 56

FIGURE 19. Instances disaster recovery work flow 57

FIGURE 20. Objects for the backup sequence flow. 59

FIGURE 21. Sequence flow for backup script .. 60

FIGURE 22. Work flow for backup script. ... 61

FIGURE 23. Sequence flow for terminating script. ... 63

FIGURE 24. Work flow for terminating script. ... 65

FIGURE 25. Proposed solution for activity 1. in the recovery script 67

FIGURE 26. Proposed solution for activity 2. in the recovery script 68

FIGURE 27. Proposed solution for activity 4. in the recovery script 69

FIGURE 28. Proposed solution for activity 5. in the recovery script 70

FIGURE 29. Proposed solution for activity 1. in the backup script 71

FIGURE 30. Proposed solution for activity 2. in the backup script 72

FIGURE 31. Proposed solution for activity 3. in the backup script 72

FIGURE 32. Proposed solution for activity 4. in the backup script 73

FIGURE 33. Proposed solution for activity 5. in the backup script 73

FIGURE 34. Proposed solution for activity 6. in the backup script 74

FIGURE 35. Proposed solution for activity 1. in the terminating script 75

FIGURE 36. Proposed solution for activity 2. in the terminating script 75

FIGURE 37. Proposed solution for activity 4. in the terminating script 76

FIGURE 38. Proposed solution for activity 5. in the terminating script 76

FIGURE 39. Proposed solution for activity 3. in the terminating script 77

FIGURE 40. Proposed solution for inform activity in the terminating script 77

FIGURE 41. Proposed solution for Logging activity 78

4

ABBREVATIONS AND ACRONYMS

API Application Programming Interface is a definition for a term how

different applications communicate to each other.

BLOB Binary Large Object is a large file that requires special handling

when placing in to database backend due to its large size.

BLOB-storage is a database-backend that is capable of handling

these large objects.

Cloud Cloud is a term to abstract a cluster of computers or a system

and the exact definition differs based on subject and point of

view. It is something that just works.

Cloud-init Ubuntu package for managing early initialization of instance at

cloud environment.

EC2 Amazon Elastic Compute Cloud

Euca2ools Is a toolset for managing instances at ec2 type cloud. Instances

at OpenStack environment can be managed with these tools.

Fabric A library for python that provides tools to execute local and

remote shell commands.

GlusterFS Gluster File System is an open source, network file system that

is capable to scale up to petabytes in storage.

GUI Graphical User Interface

IAAS Infrastructure as a service is a cloud model that provides either

physical or virtual machines as a service along with network

environment and possibility to manage the environment to a

certain degree.

Instance Term for a virtualized computer in a cloud defined by Amazon.

ISO/IEC 20000 International Standard for IT Service Management.

5

ITIL Information Technology Infrastructure Library, is a collection of

practices, or a framework, that can be used to support IT

services for the business.

JSON Java Script Object Notation, simple way to transfer human

readable data.

KVM Kernel based Virtual Machine is support build in Linux kernel that

enables virtualization to happen in hardware rather than in

software.

OpenStack This is open source project that aims to deliver tools to create a

private or public cloud with common hardware. More detailed

information in this thesis.

PAAS Platform as a service is a cloud model that provides computing

platform along with operating system as a service

Ping A nickname for ICMP-echo request defined in RFC 792. Ping is

a tool found in different systems to make a ping request to target

a host machine in network that in term replies the ping request

with pong reply, more accurate term would be ICMP-reply. This

tool can be used to verify end-to-end network connectivity to a

certain degree and can be used as a debug tool.

Project Alternative term is “tenant”. At OpenStack environment this

means isolated resource container containing VLAN, volumes,

instances, images, keys and user. Project can also be described

to be a sandbox, and within one sandbox there is

interconnectivity, but not to other sandboxes.

Python A high level dynamic programming language.

Rest/ful Representational State Transfer, rest, is architecture model

using HTTP protocol to gain additional functionalities from it.

Within the rest architecture there is a way of reusing the HTTP

protocols vocabulary (GET POST PUT DELETE) and to add

more information within these simple messages. Restful service

is a service that uses HTTP protocol and principles of rest.

6

Volume Term for virtual hard drive located in network.

VT-support Is a term for Intel CPU to have a support for Virtualization

Technology that is required to run virtual machines in hardware.

WSGI Web Server Gateway Interface, interface between web server,

web application or framework.

XML Extensive Markup Language, document format that is in human

and machine readable format.

7

 BACKGROUND 1

1.1 Concepts of cloud computing

Cloud computing is a term that can be nowadays heard almost everywhere

where IT comes into play and new types of services are made that are

distributed from cloud for the end users. The management of the cloud

infrastructure is one of the key concepts in this thesis and the thesis begins by

describing the key cloud service models and then moves to describing the

OpenStack, one of the possible tools to deploy cloud infrastructure.

OpenStack is the solution decided to be used in the reference environment

and there is a need to simplify the launching and managing of the virtual

computers in this environment to free up human resources to other relevant

tasks. The goal is to describe steps to manage the virtual computer in the

infrastructure, and then based on these steps find out the tools with which the

management can be simplified using scripts. In this thesis ITIL is also taken

into notice at the point when the workflows are made for the scripts to point

out what processes and activities described in ITIL can be used to help the

automating process.

1.2 Assigner of thesis and SkyNest

The thesis was assigned by the SkyNest project that works within JAMK

University of Applied Sciences; the project is founded by Tekes and is also

one of the side projects of ICT-SHOCK’s cloud software program. (JAMK ICT,

n.d). Within the SkyNest project, one of the goals is to develop the FreeNest

portable project platform that has all the necessary tools to house a project

from the very beginning to the end of the project’s life. The FreeNest itself is

built by gluing together open source tools required to handle different tasks in

project management and collaboration. The glue for these tools is the

FreeNest web based GUI, that can be used to manage and use all the tools

found in FreeNest. Another goal of the SkyNest project is to research how the

8

so called cloud works and find out the tools required to build and manage an

own private or public cloud. This cloud research is derived from the idea that

the FreeNest Portable Project Platform would be something that could be later

delivered as PaaS-solution from the cloud, Platform as a service. To

accomplish this need, the students within the project work for their internship

with given tasks to find out and learn how to use the tools to build a cloud

cluster and then build it in practice for testing and learning purposes. One of

the results from this task is the emerging of the reference testing environment

called “JunkCloud”, which is described later.

The cloud software program is a research co-operation initiative by TIVIT. The

goal of the program is to raise Finland’s position in software development in

the global markets, and the cloud software program especially aims at

creating new models of business, lean software enterprise models and cloud

software infrastructure (TIVIT - Cloud Software Finland, n.d). The TIVIT is a

Finnish strategic center for science, technology and innovation in the field of

ICT, and is owned by companies and public corporations.

1.3 Junk Cloud as a reference environment

The “JunkCloud” is an infrastructure made using cheap computers that have

been salvaged wherever it was possible to find them. The only requirements

for those machines were support for virtualization in the CPU and that they

were at least somehow functional. The infrastructure is administrated by

students doing their internship or thesis for the SkyNest project. The

JunkCloud environment is more like a learning environment rather than a

production environment and thus it gives the students freedom to test and use

software that might even still be under development or not ready for live

environment. For the students this is a great learning environment as there is

no real stress if the environment breaks because there will be no monetary

losses and the environment can be brought back up from scratch in less than

a day.

9

The operating system used in JunkCloud is Ubuntu server and the software

used to create the cloudlike abilities to the infrastructure is OpenStack.

OpenStack is described later in this thesis in more detail. Illustrative figure

(see figure 1) of JunkCloud represents the cluster where the machines are

interconnected through a single 48-port 100Mbps switch and one server acts

as a gateway to the internet. All together there are around twenty machines

that are all participating in some role in the infrastructure, the machines

without VT-support are participating to provide the media backend to the

infrastructure and the rest of the machines that have the VT-support are

participating in an active role for providing the cloud computing abilities to the

JunkCloud environment. Although the performance of the environment is

relatively poor in every aspect, it suits well as a testing and learning

environment.

FIGURE 1. Illustrative figure of JunkCloud

10

1.4 Research objective

The objective of this thesis was to find the tools with which the launching and

terminating virtual computers at the JunkCloud environment can be

automatized. In addition to launching and terminating, the tools for the running

phase of a virtual computer need to be discovered; within the running phase,

the backup solution and error recovery are on focus. The first objective of this

thesis is to plan and create work flows for the different stages of instance’s life

that are then used as a reference to find out the tools to automatize the

instance’s life at JunkCloud-infrastructure. To reach this objective, the first

step is the ground work to describe how the infrastructure can be manually

managed and to describe the actions and/or commands used, especially the

parts of commands that have different variables that affect the functionality of

instance in some relevant way. At the same time as the planning goes on, it

should be kept in mind that the work flow should also be suited as tool for

ITIL’s process, for example the event management that can be found in ITIL.

After the work flows are created, the second objective is to find out the tools

that can be used to script the activities in described work flows. Within this

work, the objective is not to plan or create a fully automated infrastructure, but

to just represent the tools that are required to launch and terminate a virtual

computer and are relevant when the virtual computer is running in the

environment.

 CLOUD SERVICES 2

2.1 Something as a Service

When running into a term that describes something being delivered as a

service, the “as a Service” usually informs right away that this “something” is

delivered from the cloud. The term “cloud” is reference to a highly automated

11

infrastructure that has been used to deliver the service and all of this is

abstracted under a single term or a figure to hide the complexity that lies

beneath the hood, and some of the different services can be seen in figure 2.

where the different services are within the cloud figure and the clients using

the cloud services are represented outside the cloud figure. Usually the cloud

services that are distributed from the cloud can be divided into different

service models or types of service clouds depending on what kind of service is

provided for the end user. The most common types of cloud service models

today are IaaS (Infrastructure as a Service), PaaS (Platform as a Service) and

SaaS (Software as a Service); these are described in more detail later.

(Wikipedia - Cloud Computing, n.d).

Along these three most common service models, there are a lot of additional

models and new ones are made up as time goes by. Probably one the most

commonly used services is the Dropbox that provides the STaaS (Storage as

a service) for the end users.

FIGURE 2. Services provided from cloud (Wikipedia – Cloud computing)

12

2.2 Infrastructure as a Service

Infrastructure as a service (IaaS) is one model of cloud computing where the

cloud usually provides either virtual or physical computers for the end user on

demand basis. Along with these virtualized platforms, the cloud provides other

controllable resources for the user, such as networking to interconnect the

computers, storage resources and other relevant resources for the virtual

computers to deliver the designated services from the cloud. The benefits of

the IaaS-model are: releases resources from managing the IT infrastructure,

dynamic scaling, smaller investments on required hardware and utility of used

services. The best known IaaS provider is the Amazon Web Services that

provides the computing services from their EC2 type cloud. (Wikipedia - Cloud

Computing, n.d), (theResearchpedia, n.d)

2.3 Platform as a Service

Platform as a Service (PaaS) is a cloud service model where a service

provider delivers just the computing platform for the user and the management

of the underlying infrastructure is left for the service provider. The platform can

then be used to develop, build, test and deliver the wanted services without

needing to handle the infrastructure. Some benefits of PaaS model are for

example reduced costs and scaling of resources. One of the best known PaaS

providers is the Google with the Google App Engine, with which web services

can be developed and hosted. (Wikipedia - Cloud Computing, n.d)

2.4 Software as a Service

Software as a Service (SaaS) is a model where software is delivered on

demand from the cloud without the user to be able to manage the underlying

infrastructure or the platform from where the service is provided. For the end

user, this means that there is no need to handle issues regarding

13

infrastructure or server management and configuration; the software can be

used from anywhere and anytime via web browser or another special tools.

The best known SaaS provider is Google with the Google Apps. (Wikipedia -

Cloud Computing, n.d)

 INFRASTRUCTURE 3

3.1 Cloud Infrastructure

The cloud infrastructure is the foundation of cloud computing and supports all

the services that are delivered from the cloud. The cloud infrastructure can be

rented as a service from the service provider, but there are solutions to build

your own cloud infrastructure. To name a few commercial tools that can be

used to build the cloud infrastructure are the wmware’s vSphere solution,

Microsoft’s Hyper-V, Citrix’s CloudPlatform and Oracle’s cloud solutions.

There are also non-commercial solutions for building your own cloud

infrastructure, and to name a few there are the OpenNebula’s project,

Eucaluptys and OpenStack project. From the open source solutions, the

OpenStack is the solution that is already in use in the JunkCloud environment

and it is described later in better terms.

3.2 OpenStack

3.2.1 What is OpenStack

OpenStack is an open source collaboration divided into three main projects to

create a software family that has the capabilities of creating a public and/or

private cloud infrastructure using only common hardware. These projects

within the OpenStack are called computing, networking and storage, and they

are described in the next chapters of this thesis. The OpenStack platform is

14

intended to be massively scalable, easy to operate and rich in features. There

are over 180 companies collaborating in the OpenStack project and it has

been founded by NASA and Rackspace Hosting. (OpenStack project, n.d)

3.2.2 OpenStack Compute

Openstack Compute, codename nova, is software to manage and allocate

virtual computers in networked server environment. Nova handles all the

required tasks needed to start virtual computers to the environment and

provides the tools to control the cloud environment.

The nova itself is divided into smaller components that can be then distributed

and duplicated to different machines creating redundancy. These smaller

components are orchestrated by a component called nova-api that makes the

calls to the other components by using queue-server called RabbitMQ.

Therefore, as long as the nova-api knows where all the smaller components

are located, it can use the services those smaller components provide. The

other main components in nova are nova-scheduler, nova-network, nova-

compute and nova-volume. The role of nova-scheduler is to provide the nova-

api information where there are enough free resources to start the instance.

The next component is nova-network whose task it is to create rules relating

to networking and allocate private and public addresses to the upcoming

instance. Nova-volume’s role in this system is to provide virtual hard drives for

the instance that can be mounted to the upcoming instance. After consulting

these components, nova-api then informs the nova-compute to start the task

to run the virtual computer using the credentials and configurations that it

defines for the nova-compute to use. After receiving the information, nova-

compute then gets the image required to run the instance using OpenStack’s

imaging service and boots up the virtual computer (Pepple, 2011) (OpenStack

Project, n.d). All the components that the nova hides beneath the hood can be

seen in figure 3.

15

FIGURE 3. OpenStack nova architecture (Pepple, 2011)

3.2.3 OpenStack Image Service

OpenStack Image service, codename glance, is software to work as a

middleware between nova-compute and database backend where the images

are located and delivers the data for the nova-compute. The glance is divided

into two main components called glance-api and glance-registry. Glance-

registry’s function is to store information where the image data can be found,

and the function of glance-api is to relay that information between nova-

compute and glance-registry (OpenStack Project, n.d). The relationships

between the described services can be seen in the previously represented

figure 3.

3.2.4 OpenStack Object Storage

OpenStack object storage, codename swift, is software to create a database

backend for storing data. The data stored into swift is considered to be long

term, meaning it is not a tool for distributing data backend for real time data

16

that could be changing constantly. The meaning of “long term” in this case is

that the data located in the backend is static data that can either be retrieved

or updated if necessary. Swift itself is responsible for the integrity of data

located in the database in a way there should never be a situation where the

data is lost from the backend. This integrity is accomplished within swift by

data replication, eliminating the centralized control of the database backend,

and automatic error resolving in a situation where one or more of the nodes in

swift should fail.

The swift itself consists of different main components: swift-proxy, object-

server, container-server and account-server. The proxy’s role is to relay

information between other parts working in swift and act as a relay to public-

API. The object-server functions as BLOB-data storage for the swift

responsible for saving, deleting and modifying data in local system. Container-

server is responsible for handling the listing of objects in different container, it

does not actually know where those items are physically, but it is well aware of

what objects do belong on what container and then replicates this information

to other container servers. Account-server’s function is to be aware and keep

a list of containers that are at use. (OpenStack Project, n.d)

3.2.5 Other OpenStack Services

OpenStack identity service, codename keystone, is works as a common

authentication channel for all the different components in OpenStack

infrastructure. Another commonly used OpenStack service is the Dashboard

that provides the web interface to launch and manage the virtual machines in

the infrastructure.

17

 ITIL 4

4.1 What is ITIL

Information Technology Infrastructure Library, ITIL, is a collection of practices

that provide a framework of good practices and guidance to produce and

manage IT-services. The main focus on ITIL practices is the management of

IT-services through processes. This framework is made so that it covers the

whole lifecycle of the IT-process and within the core of this lifecycle functions

the service strategy and it guides the designing, transition and operating the

service management lifecycle and all of this is surrounded by continuous

service improvement as can be seen in figure 4.The ITIL models describe the

goals, general activities, inputs and outputs of the processes which can be

used within IT organizations. “ITIL provides a proven method for planning

common processes, roles and activities with appropriate reference to each

other and how the communication lines should exist between them” (OGC,

2002) (itsmf.fi, 2009)

FIGURE 4. ITIL lifecycle model (OGC, 2007)

18

4.2 ITIL service life cycle

4.2.1 The Framework

The different stages of ITIL life cycle describe different processes and

activities that the service can be managed with. The main concepts in the ITIL

service lifecycle are the Service strategy, Service Design, Service Transition,

Service Operation and Continual service improvement; these provide the

framework of best practices, or a checklist to provide the service. The different

phases of ITIL lifecycle are described briefly in the next chapter and the

service operation is opened up in own chapter.

The ITIL uses functions, processes and activities to describe certain actions

within each phase of a service’s lifecycle. Within the ITIL the functions are

defined to be a group of people or organizational units to carry out specific

work and are responsible for the outcomes. These functions are self-

contained and have the capabilities and resources necessary to perform and

accomplish the outcomes. The capabilities include the work methods internal

to the functions. The functions are used to structure the organization and

define roles and associate authority and responsibility for outcomes. The

process is defined in ITIL to be set of activities used to deliver a specific result

or outcome. The characteristics of a process are: the process is measurable

so the cost, quality and other variables can be validated, the process delivers

a specific result, and the results are individually identifiable and countable.

The processes deliver the results for the customer and in this case the

customers may be either internal or external, the process responds to a

specific event and the triggering event should be traceable; the previously

described is illustrated in a figure 5. The activity is defined as a set of actions

designed to achieve a particular result and the activity is usually documented

in the procedure (document) that describes the steps to achieve the particular

activity. (OGC, 2007)

19

FIGURE 5. A basic process defined in ITIL (OCG, 2007)

4.2.2 Strategy, Design, Transition and continual service improvement

The service strategy is the core of the ITIL service life cycle and as a strategic

resource it guides in the designing, improving and producing the service. Its

goal is to form a plan or strategy how to serve the customers. The Service

Strategy covers and explains the development of markets, internal and

external service assets, service catalogue and implementation of strategy

through the service lifecycle, financial management, service portfolio

management, organizational development and strategic risks.

Service Design handles the designing and development of services and

service management processes. The most important goal is to plan how the

new or changed services are taken into use in production environment. The

Service Design explains the design principles and methods for converting

strategic objectives from the Service Strategy into portfolios of services and

service assets. This phase also includes the changes and improvements

necessary to increase or maintain the value to customers over the lifecycle of

services, the continuity of services, achievement of service levels and

conformance to standards and regulations.

The Service Transition consists of managing and coordinating the processes

and systems that build, test and deploy the new and changed services. The

20

service transition creates the services defined in the service strategy aligned

with customers and support groups. Efficient service strategy ensures that the

new and changed services are better compatible with customers’ business.

The service transition includes practices in release management, program

management and risk management, and places them in practical context of

service management. It provides guidance on managing the complexity

related to changes in services and service management processes preventing

undesired consequences while allowing room for innovation.

Continual service improvement comes in when there are services that need to

be continuously improved, as it happens to be today in many IT-departments.

In this phase there is a need to be able to separate the profitable services

from services that still need to be developed. Within separating these, the

measuring and analyzing is a central theme. Continual service improvement

measures and supervises that the processes are attended, checks that the

processes fulfill the goals and see to that the process is efficient, and whether

or not the processes provide extra value. The Continual service improvement

combines principles, practices and methods from Quality Management,

Change Management and Capability Management. The Plan-Do-Check-Act

(PDCA) model specified in ISO/IEC 20000 is used at this phase. (OGC, 2007)

(itsmf.fi, 2009)

4.2.3 Service Operation

Service Operation’s function is to coordinate and produce the activities and

processes that are needed to deliver and manage the services for business

users and customers in a way that the delivery and management function on a

level agreed on the service level. The service operation is also responsible for

producing services and supports the management of required technologies.

Within the Service Operation there is the Event Management process that

oversees all the events taking place in the infrastructure during normal usage

21

to measure the capacity. The Event management requires automated solution

to track the anomalies and it can be used as a basis for automating, for

example executing scripts based on the anomalies. The Event management

can be applied to any aspect of service management that needs to be

controlled and can be automated. The events in event management are

basically just notifications of something that has happened and these events

can be categorized.

Incident Management process concentrates on fixing errors on services as

soon as possible in a way that it has the least interference with business and

for the customer, thus ensuring that the SLA levels are maintained. Most of

the incidents that occur are not new occurrences and they most likely involve

something that has already happened before and might happen again, so

there is need for predefined model to handle these issues

The Problem Management process includes root-cause analysis to resolve

the issues behind the incidents, proactive methods to prevent incidents before

the incidents can arise and a Know Error sub-process to resolve and diagnose

incidents that might occur in the future. Also the Problem Management

includes the tasks to minimize the impact of the incidents that cannot be

prevented. This process maintains the knowledge about the problems and

how to resolve or work around these problems. Access Management Process

handles the access rights to decide whether the user has proper rights to use

the service and denies access from those who do not have proper credentials.

The previously described processes do not themselves provide the effective

Service Operation and there is a need for stable infrastructure and skilled

people; the Service Operation relies on the groups of skilled people. The main

groups defined in Service Operation are the Service Desk, which is the

primary point of contact; Technical management provides the technical skills

and resources to support the operation of the IT infrastructure; the Operations

Management executes the daily operational activities to manage the IT

22

infrastructure; the Application Management is responsible to managing

Applications throughout the application’s lifecycle.

Some of the common Service Operation activities that are referred later at to

this work are briefly opened up as follows (OGC, 2007):

The Monitoring and Control activity measures and controls the services and is

fundamental to the delivery, support and improvement of services. The

monitoring refers to actions that are made to observe the environment and to

detect the changes that happen in the environment. The Control refers to the

actions and processes that are made to manage the utilization and behavior of

device, system or service.

Service Level Management process is responsible for negotiating the service

level agreements, makes sure that these levels are met by monitoring these

levels.

The Server- and Network - Management describes actions and procedures

the server team makes to support, manage and measure the environment.

Backup And Restore is described in the IT Operations and includes the

checklist how to plan the backup and restore activities.

 SERVICE AUTOMATION 5

5.1 Problem and Mission

When managing the infrastructure, there are a many different tasks that need

to be repeated time after time. When working in small environments or the

scale of services provided is small, the task repetition might not be an issue;

however, when the scale rises the amount of work spent on these tasks might

become overwhelmingly resource consuming. To ease up the infrastructure

management and to free the resources to other tasks there is a need to

automate some of the repeatedly done tasks that consumes the work

23

resources. When the automation is at work, the freed resources can be

redirected to other relevant tasks and there is more room for improvement of

the productivity. Although all these automatized solutions sound “god’s

blessings to geeks”, these solutions need a significant amount of planning to

be implemented, and when at use, these automatized solutions need to be

supervised to verify the overall functionality of the solution. Figure 6. is

somewhat of humorous figure, which still is a good figure to describe the issue

at hand.

FIGURE 6. Resources vs. time (Johnson, 2012)

The mission is to ease up the management of launching the instance at

OpenStack cloud environment. The work around this thesis starts with

describing some scenarios and then moves to describing how the virtual

computers can be manually started at JunkCloud environment. The manual

chapter describes what are configurations required to launch the virtual

computer are, what tools can be used in a case disaster, what the tools to

locate the problem are and finally what tools are used when shutting down the

virtual computer. After describing the manual steps, the work with forming up

24

the automatized solution begins using sequence flows and work flows based

on the information from the manual work. The function of the sequence flow is

to open up and describe the relationships between used services and

machines to point out the possible need for some sort of API-solutions and

where the automation solutions are needed. The work flow’s function is to

describe the process and functions/activities that are required to create the

script. The work flows itself does not provide any solution, but it is used as a

reference to find out the necessary tools with which the Python scripts can be

made. When describing the manual steps, creating the sequence flows and

creating the work flows, all these phases are divided into three different sub

steps. These sub steps are “starting up”, “running” and “terminating”, which

represent the services current phase. Finally, the tools with which the

automation can be accomplished are represented in their designated chapter.

5.2 Scenarios

This chapter describes three different scenarios from the lifecycle of the

services from the administrator’s point of view. The scenarios describe the

three main stages of service: the launching of service, the service upkeep,

and shutting down the service. These scenarios are later used as a reference

in this thesis.

The first scenario, launching the service:

The whole process starts when the cloud administrator receives a request

from the service desk that describes the customer’s need for a FreeNest

service for his project group. The request also states that the administrator

should inform the customer as soon as the service ready to be used and also

all the required information regarding the usage of the service should be sent

for the customer. The work that the administrator does to bring up the service

is all done manually punching the commands step by step without any scripts

that could help in this cause. First the administrator creates the networking

related configurations to the environment for the service to be reached and be

later usable. After the network is configured the virtual computer is booted up

to the environment and the services are installed and configured within the

25

virtual computer. The steps required to launch the instance are described in

the manual configuration examples.

The second scenario (upkeep of service):

As the service is running in the cloud environment, the administrator’s tasks

are to take the daily backups from the services and to resolve the disasters

that might occur while the service is running at the environment. As in the first

scenario, the work is mostly manual work and the incidents are resolved as

they appear. In this scenario the incidents can be triggered not just by the

administrator, but also by the customer through the service desk.

The third scenario (terminating the service):

As the customer sees that the service is no longer needed, the customer

contacts the administrator through the service desk and informs about the

request to terminate instance. The administrator makes the tasks required to

terminate the instance manually using the command line and removes the

instance and the data related to the instance from the infrastructure.

5.3 Manual configuration examples

5.3.1 Objective

This chapter describes the required steps and commands to start a virtual

computer in JunkCloud environment. The steps to launch the instance are

described and the variables that are used in the commands are also

mentioned if those variables have an effect how the instance functions in the

environment. The variables are listed for later reference and are needed when

actually creating/writing the script; the creation of the script is not within the

scope of this thesis. The work is carried out using fully functional OpenStack

multi node environment. The manual configuration examples are divided into

26

three different chapters based of the instance’s lifecycle; “starting up”

representing the steps to boot the instance; “running” representing the phase

when the instance is running in the environment; and “terminating”

representing the steps when the instance is brought down. To keep the thesis

little more fluent to read, the Running and Terminating phase can be found in

Appendix 1. Manual configuration examples (Running) and Appendix 2.

Manual Configuration examples (terminating).

5.3.2 Starting up the service

Based on the first scenario, this is the point where the administrator has

already gotten the information to start the virtual computer through the service

desk. As the administrator starts to work, the first task that needs to be

performed, is to export project environment variables from the file called

“novarc”, thus making the euca2ools and/or OpenStack related commands

functional. The novarc file is a key file to operate the OpenStack environment

and the file itself is related to only one project. As the euca2ools commands

require to be issued with sudo rights, the simplest way for the administrator is

to change to “root” –user using the “sudo –i” command, and after changing to

root user the environment variables are exported to system. Below is an

example of used commands and it is done using the OpenStack nova-api

machine:

$ sudo –i
$./root/creds/novarc

After exporting the environmental variables, it is time to start the instance.

When starting the virtual computer, there are different variables that affect

how the instance functions, for example how much memory is allocated for the

virtual computer, additional virtual disk space, security group etc. At this point,

there is base image(ami), kernel(aki) and ramdisk(ari) available in the

environment that can used to start the instance. The image codes can be

found using the “euca-describe-images” command and the instance can be

booted using the “euca-run-instance” command. Below is an example of these

27

commands and the euca-run-instance command contains the minimum

required information to start an instance; the minimum amount of information

is the instance-type “–t” (memory allocation) and base image information. The

mandatory and alternative variables of this command can be found in

Appendix 3, list of variables.

$ euca-describe-images
 [Prints list of available images]
$ euca-run-instance -t m1.tiny ami-00000024 --kernel aki-00000012 \\
 -g server-group

The virtual computer might also require additional disk space for numerous

reasons. The first step is to introduce this to the environment using the “euca-

create-volume” command, the command creates the volume that can be

distributed from nova-volume to instances. After the volume has been created,

it needs to be attached for the instance using “euca-attach-volume” command.

The “euca-attach-volume” requires few attributes to be used successfully and

can also be seen in the example command below; the information required is

instance to be attached to “-i”, device name with which the instance sees the

volume “-d”, and the volume id that will be used.

$ euca-create-volume -s “size” -z nova
$ euca- attach-volume –i i-0000018 –d /dev/vdb vol-0000009

As all the traffic designated for the instance is blocked by default, the traffic

needs be allowed for the instance to be able to listen incoming traffic. The

traffic originating from outside source can be allowed by using “euca-authorize

command”. The instance can be allocated an additional IP address, public

address, with which the instance can be reached from outside of the local

area network. The address is firstly introduced using the “euca-allocate-

address” command, and then the address attached to the instance using the

“euca-associate-address” command. The example commands below allow

28

the SSH and ICMP-echo traffic to reach the instances that are in security

group called “server-group” and gives the instance a public IP address.

$ euca-authorize –P tcp –p 22 server-group
$ euca-authorize –P icmp –t -1:-1 server-group
$ euca-allocate-address “some.public.ip.address”
$ euca-associate-address –i i-0000018 “some.public.ip.address”

When the instance has been launched, the state of the machine can be

inspected using “euca-describe-instances” tool. When the state of the

machine is “running”, it can be assumed that the instance has been booted up

successfully and is ready to act as a virtual computer. The command can also

be parsed using the piped grep command to get the relevant data out of the

console output.

$ euca-descrbe-instances
$ euca-describe-instances | grep i-0000018

In JunkCloud environment, the connection from outside network can be

allowed by adding port forwarding rules for the routing machine using iptables

commands, the routing machine is a Ubuntu server that acts as a router for

the environment. As an example command below, the traffic that has

destination address 192.168.123.123 and port 2222 will be translated to be

forwarded to address 10.0.11.45:22, that is the address of the instance

located within the JunkCloud. The Second rule in the example is to allow the

traffic to be forwarded that has come from interface eth1(WAN interface) and

is destined to address 10.0.11.45 using port 22.

$ iptables –t nat –A PREROUTING –p tcp –i eth1 –d 192.168.123.123 –
dport 2222 –j DNAT –to 10.0.11.45:22
$ iptables –A FORWARD –p tcp –i eth1 –d 10.0.11.45 –dport 22 –j
ACCEPT

29

Using the information explained, the instance should be successfully running

in the environment, but the instance still needs to be configured for it to deliver

the requested services. The configuration of the FreeNest services within

virtual computer is done through shell connection and is outside the scope of

this thesis.

5.4 Work Flow

5.4.1 Objective

As some knowledge how to manage the infrastructure has been gained

through manual work, the planning of upcoming system or scripts can be

started. The first step is to abstract the previously used users and user

interfaces as objects. These objects represent the “place” where the actions

are performed and the relationships between these objects are clarified. As a

result there will be sequence charts that visualize the relationships between

these objects and the goal is to clarify the spots where some sort of API

solution might be needed and to highlight where the automation occurs. After

these sequence charts are done and described, the work flows will be made

for all the three different stages of the instance’s life. The activities within the

process will be made using the knowledge how the infrastructure was

manually managed. As the activities for the work flows are done, the activities

will then provide some technical problems and questions regarding what kind

of solutions are needed to be solved for the scripts. The work flows will work

as a frame for finding the tools with which the scripts can be made. At the end

of this chapter the work should stand in a situation where there should be a lot

of questions about how the functions in activities can be achieved; these

problems are resolved later in thesis.

As in Manual configuration examples chapter, the Running and Terminating

phases can be found in Appendix 4 and 5.

30

5.4.2 Starting up

The objective of this chapter is to create the work flow that describes the steps

and activities necessary to start a virtual computer in JunkCloud environment.

Based on the first scenario and the steps done on manual work, the virtual

computer was brought up and configured using three different machines

altogether. The machines that were necessary to bring up the virtual computer

were as follows: a machine that was used to issue the nova/ec2 related

commands to launch the instance, a machine that was used to configure

networking; and the instance itself had to be configured for it to deliver the

wanted services. As the launching of instance, configuring the instance and

configuring networking were carried out using different machines, these are

separated as different objects called nova, Instance and Networking for the

use in sequence flow. The post configuration is made an own object to

highlight the need for post configuration of instance and especially to highlight

that there is a need to get the configuration information from somewhere in a

way that there is at least user or administrator intervention. The infrastructure

admin that was responsible for issuing the commands to launch the instance

is now abstracted to be “Script” object and the same is done for the imaginary

user that requested the instance. As there is always little waiting time when

launching the instance because of the time that data takes to transfer from

point A to B, there is a need for a “poller” object that checks when the instance

is in a proper state to be delivered. The last thing that is needed is to come up

with some sort of a logging object, because in a manual working environment

the administrator is a well aware what is going on and on what phase the work

is going on, however, when automating this information need to be available

though some other channel. The objects and source of the objects are

represented in figure 7.

31

FIGURE 7. Objects for the starting up sequence flow.

Figure 8 represents the relationship between the objects for startup script and

it is visualized in a timeline, as some events or actions between these objects

require some event to be finished before the next object can operate.

FIGURE 8. Sequence flow for staring script

The sequence flow in figure 8 is opened up as follows:

User & Script (1) – The first relationship is between the user object and

script object where the user initiates the whole process to start the virtual

computer and there is a need to eliminate the service desk personnel in

the middle. This is the point where the first API solution is required, and

also this is the start of the automation process.

Script & Net (2) – The script uses the Net object to configure the

networking in a way that the network connectivity can be made to an

32

instance and the instance also has connectivity to outside world. The

networking configuration cannot be issued to the same machine where

the script is located so the relationship between these two objects needs

to be accomplished in a way where the commands or configurations to

configure network can be issued non-locally.

Script & Post (3) – Before the instance boots, the script uses the post

object. The post object is used in a way that the instance can later obtain

the configuration information from the location where this object has

placed them. When the instance boots for the first time, it gets the

required information from the post configuration database to configure

itself and all the services that the machine needs to deliver. The

relationship between these three objects, the script, post and instance

most likely need some sort of solution that cannot be made just using

one machine.

Script & Nova (4) – The script handles the tasks required to launch the

instance and it uses the nova object to accomplish the instance

launching. The relationship between these two might need some sort of

API solution if for some reason the nova/ec2 related commands are not

used and the script itself is not, and most likely will not be located in the

same machine where the nova-api is located.

Script & Poller (5) – The second last object that the control script uses

is the poller. The poller’s function is to check when the launched instance

becomes up and ready to be delivered. This information can be obtained

from the nova object and making some sort of a reachability test for the

instance. When manually booting up a virtual computer, there is always a

little wait time before the virtual computer is up and running, thus the

instance cannot be delivered right after the instance launching command

is issued.

Script & Deliver (6) – After the controlling script gets a verification from

poller, the script relays the mandatory information and credentials for the

end user through the same media as the request came through.

Logging (*) – All of the objects push logging data for the logger object.

This data can then be used for error management, measurement and to

33

trigger events. The logger object is responsible for handling the

messages that the objects send. The relationship between the logger

and other objects requires a way for the objects to send the logging data

for the logger.

Using the sequence chart that visualizes the relationships between interfaces

and knowledge how the instances were manually launched, the activities for

the work flow can be made. The result of this will be represented in figure 9

and the activities within the figure are opened up and described activity at a

time. Within the descriptions there are references to ITIL processes and

activities that can be used to support the activities in the process of starting

the new service to environment or what activities can be used in the work flow

to support other ITIL processes and activities. As the activities in the work flow

have more or less relationships in different processes and activities described

in ITIL, there is only a short notification about with which process, activity or

function the work flow has a relationship with. The internal state machine in

this workflow follows the path of the activities and the state of the system

changes based on the current activity.

FIGURE 9. Work flow for starting script

34

Activities within figure 9 are described as follows:

Start Activity (1) – This is the first activity that initiates the whole

process to start the instance. This activity listens for incoming triggers

that come from either web or shell terminal. Start activity represents the

situation where the administrator receives the order to start a virtual

computer to the environment. When referencing to ITIL, this can

represent the situation where the Service Desk has gotten the request

to deliver the new service and the request will be forwarded to Server

Management that will handle the process to start the service to system.

Validate Activity (2) – The next activity the administrator has to do, is

to check that he had all the required information required to start the

instance and the information gotten is in correct form. Validate activity’s

function is to make different validation checks for the request to decide

whether the instance can be started or not. The check can be made

cross referencing the information in database “base1” containing the

information what kind of request can pass the sanity check. When

referencing to ITIL, this activity needs to use the information from the

Access Management process to determine whether the user has proper

rights to start the service.

Push Post Config Activity (3) – This activity pushes the information or

configurations to “post” database where the instance can get the

configuration information required to complete its software installation

and configurations as post-install. When referencing to the scenario 1,

this activity represents the information that can be gotten from the

request that were designated for the administrator and represents the

need for the services and configurations that the instance must deliver.

Networking Activity (4) – After pushing the information to post

database, the networking related configurations are to be done, so the

instance to gain network connectivity. The relevant information about

the configurations made will be placed on database base1, as this

information will be later needed on different activities. This activity

represents the actions that the administrator must do for the instance

35

gain network connectivity. To reference the ITIL, this activity can be

made using the help of Network Management described in ITIL.

Init Activity (5) – The Init activity is responsible for starting the instance

in the infrastructure using the information originated from the request

and information from the database “base1”. This activity represents the

actions that must be made to launch the instance to infrastructure.

Configure Instance Activity (6) – After the instance has booted, it

does not mean that the instance is up and ready to deliver the wanted

services; the instance still requires the post install and configurations to

be completed. The Configure Instance activity handles the post

configuration of the instance using the information that can be found in

the location where the (3)Push Post Config activity placed this

information. This represents the configurations that the administrator

must make for the instance to deliver the services. ITIL reference here

is the Server Management and Support thus the work is made by the

group whose responsibility is to manage the servers.

Polling Activity (7) – As the instance is booted, there is always little

wait time as the infrastructure moves instance data to the compute-

node. The poller activity checks from the infrastructure when the

instance becomes up and active. Once the instance is up, the work can

move to next activity.

Deliver Activity (8) – After the instance has been brought up and is

configured, the information how an end user can connect to an instance

can be delivered for the end user using the same channel where the

request originally came from. This activity represents when the

administrator informs the user about the usage of instance in first

scenario. Referencing to ITIL, as the Server Management has finished

the instance configuration, the tasks to deliver the instance related

information are delegated for the Service Desk.

Er-Deliver Activity (9) – In a case the request does not pass the sanity

check, the instance launching the process is terminated and the end

user is informed about this incident. Referencing to ITIL, in a case there

36

are some errors in some stage of the process, the customer can be

informed through Service Desk.

Logging Activity (10) – All the activities send information to Logging

activity. This activity handles the information based on the type of the

message received and triggers events based on the received message.

Referencing to ITIL, everything that can be monitored can be sent

through Event Management for tracking and measurement. In a case of

errors, the Even Management makes appropriate actions based on the

triggering error. .

5.5 Tools for Work Flow

5.5.1 Objective

At this point there is a clear vision of what is wanted to be achieved, a script

that simplifies the launching of the instance, creates backups, tries to resolve

disasters, and simplifies the terminating of the instance. The activities these

scripts keep within are described using the work flows, however what is not

yet clarified are, the tools with which these activities can be made to function.

The goal of this chapter is to find the tools with which the activities can be

accomplished. When discovering the tools, it has to be kept in mind that these

tools have to be someway compatible with Python scripting language that is

used to glue these pieces together.

As in the previous chapters, the work is structured to three different sections

based on what phase the instance is in; these phases are the starting up,

running and terminating. The activities in work flows are opened up one

activity at a time and the required tools are described for this activity. The

tools and solutions represented might not, and most likely are not the most

optimal or the best solution for the represented issue. The research for the

most optimal tools is left outside the scope of this thesis.

37

The recovery, backup, terminating and logging chapters can be found in

Appendices 6 – 9.

5.5.2 Starting up

The previously represented figure 9. Work flow for starting script can be found

in chapter 5.3.2 and is used as a reference point to find the required tools to

accomplish the described activities within the work flow. The activities

described previously are opened up activity at a time and the tools to

accomplish the functions in activities are represented.

The first activity in figure 9, start activity (1), is responsible for listening the

incoming triggers and initiating the process; the goal is to find out how the

system can gain information originated in the web terminal. Running the script

through command terminal is not an issue, but the initiation of the script

through web is something that is preferably wanted for the system. The

solution for this problem can be achieved by using restful solution creating

client-server relationship between the web terminal and the initiation script,

where the web terminal acts as a client for the service (WSGI, n.d). The

activity also needs to parse the JSON or XML data that comes within the

trigger for the next activities to properly function (Python Software Foundation,

n.d). Figure 10 summarizes the described solutions for this activity.

38

FIGURE 10. Proposed solution for activity 1. in the startup script

As the trigger to initiate an instance has been received, the validation activity

(2) makes comparisons between the data parsed from the trigger and the data

in the database. The comparison is conducted to check if the user has the

rights to start the instance and the information in the trigger is in the correct

form. These sanity checks can be done with simple comparisons between the

data within the request and data in database. Additionally the data must also

be in correct form for the request to be passed on to the next activity to

minimize the possible problems from misconfiguration and to prevent abusive

usage using altered messages. In a case where this received information

does not pass the sanity check, the received event will be dropped and

information of this occurrence will be sent to logging activity. Within the script,

the database connection can be made using python sqlite3 library (Python

Software Foundation, n.d). Figure 11 summarizes the described solutions for

this activity.

39

FIGURE 11. Proposed solution for activity 2. in the startup script

Pushing information to post configuration database is done by Push Post

Config activity (3), and the activity is responsible for accomplishing the base

work that is required to get the configuration information for the later use in

instance configuration. The goal is to find a way to automate the instance

configuration. This activity can be made using cloud-init compatible startup

script that is also introduced in OpenStack documentation. Within the activity,

the script is first made and then it is located so it can be later used when

required. The cloud-init is a package with which configurations can be made to

the instance during the instance’s first boot (Ubuntu, n.d). Within the cloud-init

there is one function that comes handy when creating something that has to

be achieved as a post install, the User-Data scripts. This User-Data script is

run at the later phase of the first boot of instance and it is written as normal

shell or Python script. By using this script the instance can be configured to be

exactly as it is wanted to be. The downside of the cloud-init tool is that it is

only usable on Debian based operating systems. For other operating systems,

there are other solutions to run the startup scripts, however, there are no

proper tools that would work on every operating system as most of these tools

are specific to some operating systems only. Figure 12 summarizes the

described solutions for this activity.

40

FIGURE 12. Proposed solution for activity 3. in the startup script

The Init activity (5) is one of the activities that have the most relevant

functionality for the startup phase, so a proper tool must be found to

orchestrate the OpenStack infrastructure using scripts. Whatever the tool is,

the goal is to start the instance using the information that has been gained

through previous activity.

To accomplish this goal, there are three different solutions that can be used.

The first is to issue the launch of an instance from local machine where the

script is located, and this requires the Ubuntu Nova tools to be installed. The

second way is to send restful messages to nova-api machine using either curl

or pythonic nova commands. The third solution is to find a tool with which the

commands can be issued to remote machine. The second solution would be

the most laborious to make to work; also as the OpenStack is still under

development, the way the restful messages are handled and sent might

change and it might bring some unwanted problems and changes to script. In

this case, the simplest way would be to use the local nova or euca2ool tools to

launch the instance and it would mean that the internals of the tool can be

changed without changing the functionality of the script. The downside of

using the nova/euca2ool is that the credentials to handle the cloud

infrastructure are located in the local machine and it could bring some

unwanted problems that the author of this thesis is at the moment aware of.

The third solution requires some tool to be used to orchestrate the cloud or

41

remote machines. Based on Ossi Rantapuska’s thesis, Configuration

management of FreeNest (Rantapuska), the tool that could be used to

orchestrate the system is called Fabric. This tool comes into play because

with it the terminal commands can be issued to local or remote locations.

Thus, the fabric can be used as glue for the system to overcome these issues,

basically, if things can be done through command line, it can be scripted and

issued using fabric. The way the OpenStack glues pieces together is to use

messaging queue technology, RabbitMQ for example. Figure 13 summarizes

the described solutions for this activity.

FIGURE 13. Proposed solution for activity 5. in the startup script

Networking related activities (4) were carried out using shell connection to the

remote machine, therefore here the Fabric comes in play, as the networking

related commands are something that can be easily scripted. There is also a

new OpenStack project called Quantum that aims to provide “network

connectivity as a service”. In short, the Quantum provides API to manage

networking connectivity and uses plugins to manage the virtual and physical

switches and also virtual interfaces related to OpenStack environment

(OpenStack project, n.d). As the Quantum is still under development at Essex

release, it is only recommended to be used at development environments and

it is not used in this solution, although definitely a tool to look for in the future.

Figure 14 summarizes the described solutions for this activity.

42

FIGURE 14. Proposed solution for activity 4. in the startup script

The instance configure activity (5) has become an obsolete activity and should

not require any special activity as the goal is that the instance gains the

possible configuration information with the help of cloud-init.

For the polling activity (7) the script checks when the launched instance is

ready to be delivered. The problem here is to find a way to make sure when

the instance is up and ready to be delivered. Manually it can be checked using

the ping tool and checking from the nova-api. The solution will be achieved

using Fabric to check the infrastructure when the instance has been brought

up and checking that the instance is reachable using ping, which also can be

issued using fabric. Figure 15 summarizes the described solutions for this

activity.

FIGURE 15. Proposed solution for activity 7. in the startup script

43

The delivery activity (8) places the information targeted for the end user in to a

location where the web terminal can get this information and deliver it for the

end user as dynamic content. The problem is to find a way to deliver the

information from the infrastructure to the web server. The simplest solution is

to locate the information to database where the web terminal can retrieve this

information and represent it for customer. Figure 16 summarizes the

described solutions for this activity.

FIGURE 16. Proposed solution for activity 8. in the startup script

The logging activity (10) can be found in Appendix 9 where it is opened up in

more detail.

 CONCLUSION 6

The goal of this thesis was to find the tools to automate the lifecycle of

instance at OpenStack based JunkCloud environment and the results of this

thesis are the suggested tools described in the chapter 5.5.1 and in

44

Appendices 6 – 9. The work was done structuring the steps from the manual

work to activities that were used in work flow to describe the whole process.

The activities were then used as a reference to find out the required tools with

which the described activities could be made in automated manner. In the

end, there are suggestions of tools with which the proposed solution can be

made, but the tools suggested are just one solution among other possible

solutions and can be later used as a starting point if there is a need to find the

most optimal tool for the current issue at hand. The results of this thesis don’t

provide conclusive information how to build the complete solution to automate

the service lifecycle at the JunkCloud environment, but it provides the

suggestion of tools with which the solution can be made and can be used as a

starting point for future work to support the process to decide what tools to be

used.

The other task of the work was to pointing out the ITIL processes and

activities that could be used to support the automation process and vice versa.

Pointing out the ITIL processes and activities was done when creating the

work flows and describing the activities for the automated processes;

references for ITIL processes can be found in chapter 5.4.2, Appendix 4 and

Appendix 5. The ITIL referencing ended up being sort of a notification to point

out the names of the ITIL processes that can be used to support the activities

in the work flow and the detailed ITIL process descriptions were left outside of

this thesis. The more detailed use of ITIL in this work was left outside as the

ITIL requires much information to be clarified and explained about the

processes and activities before it starts to make much sense; in the case of

this thesis it would have bloated this work to cover issues enough for another

thesis. The more detailed use of ITIL at the FreeNest service could easily give

coverage for another thesis. Also it feels that it is somewhat hard to find exact

answers from the ITIL, as it is a framework for service providing, it does not

tell “it has to be done exactly like this”, the answers are more likely a checklist

of issues that need to be considered to deliver a healthy service.

45

In principle, this thesis followed a structure where the big question was pieced

into smaller questions and again the questions were pieced into more smaller

questions, until the questions were specific enough to be answered with

something other than more questions. That is because the service is a sum of

many components, and the deeper the system is inspected the more of these

smaller tools are found that create the big picture, and that is how the answer

for the big question can be found. To open up the big question, the work flow

approach was used in this thesis and it seemed like a fluent way to go, at least

for the author of this thesis; and by doing so it was possible to point out the

ITIL processes at the same time while describing the activities in the work

flow. The work flow used in this thesis is highly ITIL influenced due to the

author’s previous service management classes and lack of programming

classes where the “proper” way to approach these things would have been

gained, thus it was easy for the author to use this approach. For the people

with more programming experience, the workflow approach might not open up

the same way as for example describing schematics using the UML.

The biggest problem in this thesis for the author was to figure out how much

the subjects explained can be cropped to keep the background information

informational enough. There are a lot of subjects in this thesis that need more

clarification, and if done so in this thesis it would have bloated the thesis too

much for some of these subjects are broad enough to cover another thesis.

The possible future research topics found in this research are: more detailed

usage of ITIL in consept of FreeNest; REST WSGI solution with which the

connection can be made between the infrastructure and web interface; how

RabbitMQ can be used as glue to bind different systems together and what

kind of problems can be solved with it in cloud infrastructure environment;

alerting administrative personnel through SMS-system; automated

configuration of launched instance using cloud-init package; research on

OpenStack Quantum to manage networking configurations.

The future of cloud computing opens up a lot of questions about information

security and these issues cause “grey hairs” to people who are concerned in

this area of expertise, as it is not enough just to guarantee the data safety in

the local premises, but also the safety of data transfer between the local

46

premises and cloud needs to be ensured. For the groups that find the lack of

security inadequate, there is always a possibility to create private clouds to

keep the full control in their own hands; also the management of the

environment becomes easier as time goes by because of improvements in

automation and this eases up the management of the environment. The

openness in the internet’s data traffic is one of the key concepts in making

cloud service providing worthwhile and as long as it stays this way, cloud

service will remain a growing area. The future of OpenStack seems bright as

there are numerous “big names” collaborating to develop this toolset and it is

open, thus making it a worthwhile solution to be implemented. The

deployment of OpenStack becomes easier as time goes by and soon it might

even be possible to initialize your own private cloud with just a “single click of

a button”.

The future where FreeNest service can be provided from the cloud gives the

advantage of speed how fast the service is provisioned for the new user and

in the future these issues become more essential. Also in the concept of

FreeNest, the cloud opens other possibilities of what services/tools can be

integrated to FreeNest service, for example automated service testing

environment that can be launched through FreeNest service. For the future of

JunkCloud, the author hopes that the environment stays as a testing

environment for the sake of the project members, and thus giving them the

freedom to test and play around in the environment and thus providing an

environment in which to improve themselves without the risk of any monetary

losses.

47

REFERENCES

itsmf.fi. 2009. ITIL v3 Taskukirja. s.l. : Van Haren Publishing, 2009.

JAMK ICT. n.d. Projektit - Jyväskylän ammattikorkeakoulu. n.d. Cited: 10 15,

2012. http://www.jamk.fi/projektit/1233.

OGC. 2007. ITIL Service Operation. s.l. : The Stationery Office, 2007.

OGC. 2002. ITIL Service Support. s.l. : Office of Government Commerce,

2002.

OpenStack project. n.d. Official OpenStack site. n.d. Cited: 7 7, 2012.

http://www.openstack.org/.

OpenStack Project. n.d. OpenStack Compute Administration Manual. n.d.

Cited: 7 15, 2012. http://docs.openstack.org/essex/openstack-

compute/admin/content/users-and-projects.html.

OpenStack project. n.d. OpenStack Quantum administration guide. n.d. Cited:

8 19, 2012. http://docs.openstack.org/trunk/openstack-

network/admin/content/WhatIsQuantum.html.

Pepple, Ken. 2011. OpenStack Nova Arhitechture. April 22, 2011. Cited: 11 4,

2012. http://ken.pepple.info/openstack/2011/04/22/openstack-nova-

architecture/.

Python Software Foundation. n.d. Python Documentation. n.d. Cited: 10 7,

2012. http://docs.python.org/library.

Rantapuska, Ossi. Configuration management of FreeNEST.

theResearchpedia. n.d. theResearchpedia - What is infrastructure as a service

(Iaas). n.d. Cited: 8 15, 2012. http://www.theresearchpedia.com/research-

articles/what-is-infrastructure-as-a-service-iaas.

TIVIT - Cloud Software Finland. n.d. Cloud Software Program. n.d. Cited: 9

15, 2012. http://www.cloudsoftwareprogram.org/cloud-software-program.

48

Ubuntu. n.d. CloudInit Community Ubuntu Documentation. n.d. Cited: 8 12,

2012. https://help.ubuntu.com/community/CloudInit.

Wikipedia - Cloud Computing. n.d. Cloud Computing - Wikipedia. n.d. Cited:

15 6, 2012. http://en.wikipedia.org/wiki/Infrastructure_as_a_service.

WSGI. n.d. WSGI - WSGI.org. n.d. Cited: 16. 11 2012.

http://wsgi.readthedocs.org/en/latest/.

49

APPENDICES

Appendix 1. Manual configuration examples (Running)

Based on the first scenario, as the instance is successfully running, there is a

situation where the administrator needs to make backups from the running

instance. These backups can be made taking snapshots from the running

instance for backup purposes. The snapshot can be taken using the “nova

image-create” command and the volume information can be snapshotted

using the “euca-create-snapshot” command.

$ nova image-create [instance-id] [name]
$ euca-create-snapshot “volume-id”

Based on the first scenario, the administrator does not use any automatized

tools to check if the instance is alive and running, so the admin has to do this

manually or to start checking the problem if s/he gets information that the

service is unreachable. There are various tools and methods to check if the

instance is up and running; and the functionality of instance also relies on

other parts of the infrastructure to work, not just the nova-compute component

where the instance is located. The first thing there is, is a need to find out

what part or component of the infrastructure has failed, so the recovery can be

made without affecting other parts of the infrastructure. The most common

problems solving tools that have been used to find the source of problem are

described next.

The ping command line tool is very useful to find out if the network between

two hosts is functional and it has end to end connectivity. As this tool mainly

just gives information about the end to end connectivity, it is usually the first

tool that is used to check the connectivity. The con of this tool is that it does

not provide any information if there is a problem in between the end devices,

so from this tool’s point of view if there is a problem in between the devices or

in the end device, it always gives the same result.

50

$ ping target.host.ip.address

Euca2ools has command “euca-describe-instances” that gives the list of all

the instances running in the environment. The tool gives the information

whether the instance is running or not and it should be described to be in

running state. If the instance is described to be in some other state than

running, it means that during the launching of the instance something has

gone wrong or the instance data has not yet been transferred to nova-

compute machine.

$ euca-describe-instances
 [LIST OF ALL INSTANCES AND INFORMATION]
$ euca-describe-instances | grep “ip.address.of.instance”
 [INSTANCE INFORMATION]

The information whether the instance data transfer has been started or not

can be checked from the logs of glance and the logs of target nova-compute

where the instance is supposed to be booted.

The booting up of instance requires the other parts of the infrastructure to

work properly, so when booting up the instance for a first time, the nova-api

machine must know where the other components of OpenStack are located.

This can be checked using the “nova-manage service list” command that

prints information of whereabouts of the components. If the list is empty, or it

does not contain the required services, it means that the required service has

failed to register itself to the database and has been misconfigured. The list

should include at least nova-network, nova-scheduler, nova-compute and

nova-volume.

$ nova-manage service list
 [LIST OF AVAILABLE SERVICES]

Sometimes the single component can crash and other services try to use it

because the stateless nature of the services. To check that the service is

running in the host machine the “ps aux” tool can be used and the location of

service can be checked in the “nova-manage service list”.

51

$ nova-manage service list
$ ssh serviceX
$ ps aux |grep nova

The instance that has been suspended by some reason can be brought up by

using “euca-restart-instance” command. The command tries to reboot or start

the instance in its current location.

$ euca-describe-instance | grep i-12345678
 [instance i-12345678 state shutdown]
$ euca-restart-instance i-12345678

If the instance still fails to change it state to running state, the instance’s

console output can be checked using “euca-get-console-output”. The

command displays information about the instance’s boot process.

$ euca-get-console-output i-12345678
 [INSTANCE CONSOLE OUTPUT]

In a case the host machine is not responsive, the situation might require that

the instance will be booted using the latest snapshots. In this case, the public

IP must be removed from the non-responsive instance and allocated to for the

new instance. The booting of the new instance is done the same way as

described in the chapter 5.3.1.

52

Appendix 2. Manual Configuration examples (terminating)

The tasks required to terminate the instance are relatively straight forwarded

when it comes to destroying all the data related to instance. In a case, where

the instance data is required to be kept, it requires the snapshot to be made

before the instance is terminated from the system. There might also be a

situation where the instance is just wanted to be suspended rather than be

terminated; if the instance is suspended, the data is not removed from the

host nova-compute machine.

If the instance is just wanted to be terminated and the data is wanted to be

removed from the host machine, the “euca-terminate-instance” command

does this trick.

$ euca-terminate-instance i-12345678

If the instance is wanted to be suspended, the “euca-stop-instances”

command can be used to achieve this. This way the instance data will not be

removed from the nova-compute machine.

$ euca-stop-instance i-12345678

The instance data can be transferred to long term storage by taking snapshot

from the instance that is either running or stopped. The snapshot can be taken

using “nova image-create” command and the mounted volume can be

snapshotted using “euca-create-snapshot” command.

$ nova image-create [instance-id] [name]
$ euca-create-snapshot “volume-id”

53

Appendix 3. List of variables

List of variables that can be used in commands found in the manual

configuration examples chapter:

euca-run-instance

Variable Explanation

-t m1.example, - -instance-type Amount of virtual memory allocated for the

instance, varies from m1.tiny(256MB) to

m1.xlarge(16GB). Mandatory

ami-12345678 HD-image for the instance. Contains the

operating system. Mandatory.

--kernel aki-12345678 Kernel image for the virtual machine

(usually when published kernel is attached

to certain ami)

--ramdisk ari-12345678 RAM disk image for the virtual machine.

-n “amount” How many instances to start with same

attributes

-g “group” To what security group the instance will be

allocated

-k rsa public key that will be transferred to

instance for later SSH connection

-d Custom user data, used to give instance

custom startup scripts.

--addressing Addressing mode, public or private IP

-z –availability-zone Security zone that influences the instance.

- block-device-mapping Attach Elastic Block Store or instance store

54

volume to instance.

-s – secret-key User’s secret key

55

Appendix 4. Creating Work Flow (Running)

The running phase includes two different processes. One is responsible for

creating backups from the instances, and the other is for polling the instances

and components to check reachability. The second is also responsible for

trying to recover from the disasters. The goal here is to create the work flows

and describe the activities within these two work flows that are necessary to

accomplish the processes.

As in the previous chapter, first the sequence flow is made. From the

administrators actions the next objects can be derived for the first function; the

objects are script, poller, recovery and logging. The “script” object represents

the administrator that initiates the reachability tests and starts to act

accordingly if the reachability tests indicate so. The “poller” object comes from

the real work where the administrator manually makes the instance

reachability tests and checks that all important services are alive and

reachable. Recovery object is derived from the tasks what the administrator

makes to recover crashed instance or service that has failed infrastructure.

The used systems in this case are the instance, infrastructure and nova; which

are described in sequence flow as different objects. The objects and source of

the objects are represented in figure 17.

FIGURE 17. Objects for the recovery sequence flow.

56

Figure 18 represents the relationship between the objects for recovery script

and is visualized in a timeline, as some events or actions between these

objects require some event to be finished before the next object can operate.

FIGURE 18. Sequence flow for recovery script.

The sequence flow in Figure 18 is opened up as follows:

Script & Poller (1) – The controlling script initiates the polling object that

in term returns information whether the reachability test was successful

or not.

Poller (2) – The poller makes the reachability tests to instances and to

specified parts of infrastructure. The relationship here is poller’s

requirement to know where the services are located and what services

are required to be polled.

Script & Recovery (3) – Recovery object is initiated if the poller returns

information for the controlling script that states that instance or service is

found to be unreachable. As recovery attempts have been made, the

recovery object returns information whether the recovery has been

successful or not.

Recovery (4) – This object attempts to recover the instance or service

based on the information gotten from the controlling script.

57

Logging (*) – All of the objects push logging data for the logger object.

This data can then be used for error management, measurement and to

trigger events. The logger object is responsible for handling the

messages that other objects send for it. The relationship between the

logger and other objects require some way for the objects to send the

logging data for the logger.

Using the sequence chart that visualizes the relationships between interfaces

and knowledge how the instances were manually launched, the activities for

the work flow can be made. The results are represented in Figure 19, and the

activities in the figure are opened up and described activity at a time. Within

the descriptions there are references to ITIL processes and activities that can

be used to support the activities in the process of starting the new service to

environment or what activities can be used in the work flow to support other

ITIL processes and activities. As the activities in the work flow have more or

less relationships in different processes and activities described in ITIL, there

is only a short notification about with which process, activity or function the

work flow has a relationship with.

FIGURE 19. Instances disaster recovery work flow

58

Activities within the recovery work flow are opened up as follows:

Sleep Activity (1) – The sleep activity is something that is required for

the system not to trigger polling activities too often as this loop would

otherwise result in too much consumption of the server’s resources. As

the idle time has been passed, the sleep activity triggers the polling

activity. ITIL reference for this activity the daily tasks described in the IT

Operations what describes the Job Scheduling.

Polling Activity (2) – The Polling activity handles the reachability test

made for instances and services. The Polling activity checks the

database for what instances and services are required to be tested for

reachability and where these are located. In a case this activity finds

some service or instance to be unreachable, the recovery activity is

called. This activity represents the activities that the administrator must

make to check whether the services are reachable or not. The

administrator must also locate the source of the problem so it can be

acted accordingly. Referencing to ITIL, this activity can be made with the

help of Monitoring and Control activity.

Recovery Activity (3) – The Recover activity is responsible for trying to

resolve the instance or service disasters based on information that is

received from the polling activity and information on database. This

activity represents the activities the administrator must make to recover

the service from the disaster. Referencing to ITIL, this activity can be

made using the help of Backup and Restore Activity, and the information

in Known Error Database that is included in Problem Management

Process.

ER-polling Activity (4) – This activity tests just the single service or

instance for reachability after the service has been tried to be recovered.

The problem here is to define what kind of wait time is required for the

instance data to be transferred to target compute-node machine when

re-launching instance. This is because the instance cannot be reachable

before the data has been transferred to target machine, and the instance

has been booted. As this activity gives results whether the problem has

been fixed or not, the alert activity is issued if the result is negative.

59

Alert Activity (5) – Alert activity invokes the message to system

administrator to inform about the current emergency. This activity also

can be handled either through the logging activity. To reference to ITIL,

this alert goes through the Event management process to trigger the

Incident Management.

Logging Activity (6) – All the activities send information to Logging

activity. This activity handles the information based on the type of the

message received and triggers events based on the received message.

Referencing to ITIL, everything that can be measured can be sent to

Event Management for tracking and measurement. In a case of errors,

the Even Management makes appropriate actions based on the

triggering error.

The goal of the second function is to create backups from the instances that

are running in the environment. For this function, the sequence chart includes

objects called script, nova/backup, move BU and Logging. The “script” object

comes from the manual work where the administrator stars the process to

create the backups from instances. The nova/backup object is derived from

the commands that were used to make a snapshot from the running instance.

Moving the backups to a long term storage is called “move BU” object. The

objects and source of the objects are represented in figure 20.

FIGURE 20. Objects for the backup sequence flow.

60

Figure 21 represents the relationship between the objects for backup script

and is visualized in a timeline, as some events or actions between these

objects require some event to be finished before the next object can operate.

FIGURE 21. Sequence flow for backup script

Figure 21 shows the relationship between objects and these relationships are

opened up as follows:

Script & Nova/backup (1) – The controlling script initiates the scheduled

backup for instance and/or volume. As the script object can reside in some

other location than the nova-api, so the relationship between these two

objects require some way to communicate.

Script & Move BU (2) – When the backups from volume and instance are

done, the Move BU object moves these fresh backups to the long term

storage. The relationship requirement here is the need to be able to move

the backups from one location to another and the middle storage might not

be in same location as where the script itself is located.

Logging (*) – All of the objects push logging data for the logger object.

This data can then be used for error management, measurement and to

trigger events. The logger object is responsible for handling the messages

that other objects send for it. The relationship between the logger and

61

other objects require some way for the objects to send the logging data for

the logger.

Using the sequence chart that visualizes the relationships between interfaces

and knowledge how the instances were manually launched, the activities for

the work flow can be made. The result of this will be represented in figure 22

and the activities in the figure are opened up described activity at a time.

FIGURE 22. Work flow for backup script.

Activities within the backup work flow are described as follows:

Sleep Activity (1) – The sleep activity is something that is required for the

script not to trigger the cloning activities too often as this loop would

otherwise result in too much consuming servers resources. As the idle time

has been passed, the sleep activity triggers the Clone Instance Activity.

Clone Instance Activity (2) – The Clone Instance Activity is responsible

for creating the snapshot of the running instance. What instance is to be

snapshotted is checked from the database, as there might be different

intervals for backup schedule, also the back upping of different instances

62

can be divided into larger time window to preserve recourses. As the

snapshot is done, the information of this newly created image is placed to

database in case there were some issues with taking the snapshot from the

instance, the alert activity is issued. The Backup and Restore described in

ITIL can be used to support this activity.

Clone Volume Activity (3) – Clone volume activity is very much the same

as Clone instance activity, except the virtual hard drive of instance is

snapshotted.

SCP Clones Activity (4) – The SCP Clones activity is responsible for

moving the fresh snapshots to long term storage where this data can be

later retrieved if required.

Alert Activity (5) – Alert activity invokes the message to system

administrator to inform about the current emergency. This activity also can

be handled through the logging activity. The Event Management described

in ITIL can be used reference here.

Validate Activity (6) – The Validate activity is there to check the integrity of

the backup data, so it will be later usable for disaster recovery or for other

purposes. If the data does not pass the validation check, this occurrence

results in moving to alert activity.

Logging activity (7) – All the activities send information to Logging

activity. This activity handles the information based on the type of the

message received and triggers events based on the received message.

Referencing to ITIL, everything that can be measured can be sent to Event

Management for tracking and measurement. In a case of errors, the Even

Management makes appropriate actions based on the triggering error.

63

Appendix 5. Creating Work Flow (terminating)

In the terminating phase the focus is to create a work flow that describes the

steps and activities required to terminate the instance and store the instance

data to long term storage in case it is required.

Based on the third scenario and the steps done on manual work, the instance

was brought down using just one computer, the nova-api computer. This

nova-api machine is described to be a Nova object for the purposes of

sequence flow. The same thing is done here as in the running phase, the

user, administrator and logging are also made to be objects for the same

reasons as described before. The copy object comes from the tasks that are

required to be made in different machine than the nova-api machine and is

derived from that.

Figure 23 represents the relationship between the objects for terminating

script and this is visualized in a timeline, as some events or actions between

these objects require some event to be finished before the next object can

operate.

FIGURE 23. Sequence flow for terminating script.

64

The sequence flow in figure 23 is opened up as follows:

User & Script (1, 5) – User starts the process to stop or terminate the

instance using either the web terminal or shell terminal. The relationship

between these two objects requires some sort of API solution. After the

instance has been stopped or terminated, the script informs the user

through the same channel where the request came.

Script & Nova (2, 4) – The script uses the nova object to stop the

requested instance. Most likely the script and the nova-api are located in

different locations so the relationship between these two objects requires

some sort of API solution. Later as the instance and volume data has

been copied and moved to long term storage, the script issues the

instance and volume to be terminated.

Script & Copy (3) – If the instance and volume data were to be saved to

long term storage, the instance and volume data will be first snapshotted

and transferred to long term storage. The relationship between these two

objects requires some sort of an API solution.

Logging – All of the objects push logging data for the logger object. This

data can then be used for error management, measurement and to

trigger events. The logger object is responsible for handling the

messages that other objects send for it. The relationship between the

logger and other objects require some way for the objects to send the

logging data for the logger.

Using the sequence chart that visualizes the relationships between interfaces

and knowledge how the instances were manually launched, the activities for

the work flow can be made. The result of this will be represented in figure 24.

Work flow for terminating script and the activities in the figure are opened up

described activity at a time.

65

FIGURE 24. Work flow for terminating script.

Activities within the terminating work flow are described as follows:

Stop Activity (1) – The Stop activity initiates the whole process to

terminate the instance. It listens to incoming messages that states

whether to stop or terminate the instance, and what instance. When this

activity receives trigger to stop the instance, it cross- references the

information in database to make the decision whether to make a backup

from the instance before termination or not. Alternatively the instance

could be just stopped without removing the instance data. When

referencing to ITIL, this can represent the situation where the Service

Desk has gotten the request to stop the service and the request will be

forwarded to Server Management that will handle the process to

terminate the service at the system.

Delete Instance Activity (2) – The Delete Instance activity either

deletes the instance related data from computing environment or just

shuts down the instance based on the information on the trigger that

activated this activity.

Stop Instance Activity (3) – The Stop Instance shuts down the instance

before moving to the next activity.

Clone instance and Volume Activity (4) – Clone instance and Volume

activities function in the same way as in the activities in the backup

phase. The Backup and Restore activity can be used to support this

activity.

66

SCP Instance Activity (5) – SCP instance activity moves the instance

related data to long term storage and functions in the same way as the

activities in the backup phase.

Logging Activity (6) – All the activities send information to Logging

activity. This activity handles the information based on the type of the

message received and triggers events based on the received message.

Referencing to ITIL, everything that can be measured can be sent to

Event Management for tracking and measurement. In a case of errors,

the Even Management makes appropriate actions based on the

triggering error.

67

Appendix 6. Tools for Work flow (recovery)

The previously represented figure 19. Instances disaster recovery work flow

can be found in Appendix 4. Creating Work Flow (Running) and is used as a

reference point to find the required tools to accomplish the described activity.

The activities are opened up activity at a time and the tools to accomplish the

functions in activities are represented.

The sleep activity (1) is responsible for timing the backup schedule. To make

this activity work, there is a requirement for some way to schedule the

initiation of polling activity. The scheduling could be easily done using the

server’s cron job to schedule the initiation of the script, but there must be also

a way to accomplish this using the Python. Python equivalent solution is to

use python time module, with which the scheduling of the polling activity can

be made (Python Software Foundation, n.d). Figure 25 summarizes the

described solutions for this activity.

FIGURE 25. Proposed solution for activity 1. in the recovery script

The polling activity (2) is used to check the reachability of services and

instances, but these checks can be somewhat tricky to achieve in a way that it

does not give false positive results. The requirement to make this activity to

work is to find a way how the tools installed to the server can be used and with

which commands can be issued to remote locations. The solution is to use the

python “subprocess” module with which the commands can be issued for local

68

machine (Python Software Foundation, n.d). The commands to remote

locations can be done using Fabric, which is already described before. When

using the tools either in local or remote machine, the output of these tools

needs to be parsed to determine whether the instance or service is reachable.

For example, in a case if the instance is not responding, all the services used

between the script and instance also need to be verified to minimize the false

positives resulted from faulty service in between. What is important is to pin

point the source of the problem thus actions to resolve it can be made

properly. The activity also checks the database what services are scheduled

to be checked, and with this the different polling intervals for services can be

made to minimize the timely spam traffic made by the reachability checks. The

database connection can be made using the python sqlite3 module. Figure 26

summarizes the described solutions for this activity.

FIGURE 26. Proposed solution for activity 2. in the recovery script

In a case the polling activity finds one component to be unreachable, the

recovery activity (3) tries to resolve this issue. The recovery mechanism

decides the actions based on the occurred failure; the failures can be divided

into two different categories. In scenario where the infrastructure is healthy,

but the instance is unreachable, the instance can be first hard rebooted using

fabric or re-launched using the latest available backup based on information in

database if the reboot did not provide the wanted results. In a case where one

or more components seem to have failed at the infrastructure, the recovery

69

activity will try to restart the services at servers where the service failed to run.

The restarting of services can be achieved using the commands with Fabric.

ER-polling activity (4) is the same as the polling activity with the exception that

the failed service or instance will be polled. In a case the service or instance is

still unreachable, the alert activity will be used. Figure 27 summarizes the

described solutions for this activity.

FIGURE 27. Proposed solution for activity 4. in the recovery script

Alert activity (5) is there to send the error message to system administrator.

The problem here is to find a way to send the message to administrators in a

way that the issue will be noticed as fast as possible. To ensure that the

information receives the administrators, multiple communication solutions

must be used. The first way is to use the logging activity to forward the

message. The second is to send the message through mail using python

smtplib module (Python Software Foundation, n.d). Additional ways to send

the message are to send it through system that uses SMS to deliver the

messages; this is in a case the network is unable to forward the messages

through physical media. The SMS solution is just represented as a possibility

to trigger this event, the whole SMS process and system would require its own

activities and systems to be solved and possibly could even be large system

enough to cover own thesis. Figure 28 summarizes the described solutions for

this activity.

70

FIGURE 28. Proposed solution for activity 5. in the recovery script

The logging activity is opened up in in Appendix 9.

71

Appendix 7. Tools for the Work Flow (backup)

The previously represented figure 22. Work flow for backup script can be

found in Appendix 4. Creating Work Flow (Running) and is used as a reminder

to previously presented work flow that and used as a reference point to find

the required tools to accomplish the described activity. The activities are

opened up activity at a time and the tools to accomplish the functions in

activities are represented.

For the backup script, the sleep activity (1) handles the timing of backups. The

activity faces the same problems and solutions represented in the work flow

on the recovery script and the solution is to use the python time module.

Figure 29 summarizes the described solutions for this activity.

FIGURE 29. Proposed solution for activity 1. in the backup script

Clone Instance activity (2) represents the actions required to take the

snapshot from the running instance. The problem here is to take a live backup

from the instance that is running in the environment. The problem can be

solved issuing the commands for the nova-api machine using fabric, and the

activity checks the database to decide what instances are required to be

snapshotted. Figure 30 summarizes the described solutions for this activity.

72

FIGURE 30. Proposed solution for activity 2. in the backup script

 The clone volume activity (3) handles the tasks to create backup from the

volume designated for the instance and it works very much the same way as

the clone instance activity (2), except that it creates the backup from the

volume designated for the instance. The backups can be made using the

same tools as represented in previous activity. Figure 31 summarizes the

described solutions for this activity.

FIGURE 31. Proposed solution for activity 3. in the backup script

The SCP clones activity (4) is used to move the backup data to long term

storage. The activity can be made to work using the fabric that is used to

handle the commands in remote locations to move the data using SCP,

secure copy. Figure 32 summarizes the described solutions for this activity.

73

FIGURE 32. Proposed solution for activity 4. in the backup script

The Alert activity (5) is there to send the error message to system

administrator. The problem here is to find a way to send the message to

administrators in a way that the issue will be noticed as fast as possible. To

ensure that the information receives the administrators, multiple

communication solutions must be used. The first way is to use the logging

activity to forward the message. The second is to send the message through

mail using python smtplib module (Python Software Foundation, n.d).

Additional ways to send the message are to send it through system that uses

SMS to deliver the messages; this is in the case the network is unable to

forward the messages through physical media. The SMS solution is just

represented as an idea. Figure 33 summarizes the described solutions for this

activity.

FIGURE 33. Proposed solution for activity 5. in the backup script

74

Validation activity (6) handles the verification of the data that has been

transferred to long term storage. The problem here is to find a way to verify

the integrity of BLOB-object. The first step of verifying the data is to check the

size of the file; if there is a difference in size, the file has been altered. Even if

the size has not been changed, the data can still be changed somehow, thus

there is also a need to make and compare the file’s hash before and after. The

hash from the file will be created before the file has been transferred and will

be recalculated after the file transfer using the Python zlib library (Python

Software Foundation, n.d). Figure 34 summarizes the described solutions for

this activity.

FIGURE 34. Proposed solution for activity 6. in the backup script

Appendix 8. Tools for the Work flow (terminating)

The previously represented figure 24. Work flow for terminating script can be

found in Appendix 5. Creating Work Flow (terminating) and is used as a

reminder to the previously presented work flow that is used as a reference

point to find the required tools to accomplish the described activity. The

activities are opened up activity at a time and the tools to accomplish the

functions in activities are represented.

75

The stop activity (1) gets the trigger to stop the instance in same way as the

first activity in startup script. The stop activity listen incoming triggers that are

originated from the web service and it makes decision whether to save or

delete the instance data based on the information on trigger. The activity can

be made using the same solutions as described in the first activity in chapter

5.5.2. Figure 35 summarizes the described solutions for this activity.

FIGURE 35. Proposed solution for activity 1. in the terminating script

Stop Instance (2) activity stops the instance if the instance were requested to

be suspended, not terminated. The instance can be suspended using fabric to

issue the commands to nova-api machine in the same way as described in the

running script. Figure 36 summarizes the described solutions for this activity.

FIGURE 36. Proposed solution for activity 2. in the terminating script

76

Clone instance and volume (4) activity handles the tasks to create the last

backup from the instance and from the volume related to instance. This can

be made using fabric as described in the backup script. Figure 37 summarizes

the described solutions for this activity.

FIGURE 37. Proposed solution for activity 4. in the terminating script

SCP instance (5) activity handles the tasks to transfer the instance to long

term storage. This can made using the fabric as described in SCP clones

activity in backup script. Figure 38 summarizes the described solutions for this

activity.

FIGURE 38. Proposed solution for activity 5. in the terminating script

77

Delete instance activity (3) handles the instance removal from the system if it

were requested to be removed. The removal of instance can be made using

the fabric to issue the instance terminating commands to nova-api machine.

Figure 39 summarizes the described solutions for this activity.

FIGURE 39. Proposed solution for activity 3. in the terminating script

As the instance has been terminated or suspended, the user will be informed

using the same channels as the ones the request came through. This activity

is done same way as described in in startup phase; placing the information to

database where the web terminal can get this information. Figure 40

summarizes the described solutions for this activity.

FIGURE 40. Proposed solution for inform activity in the terminating script

78

Appendix 9. Tools for the Work flow (logging)

The logging activity can be found on all the three different phases of an

instance’s life and this activity will be opened up here in more detailed terms.

There are two possible outcomes what this logging activity can be. The simple

version is where this logging activity is just used as a centralized location

where the logs are dumped and other services use this information. The

complicated way is where this activity is used to manage the logging

information and make actions based on this information. In the complicated

way, the logging activity can be used as event management to trigger

processes/events based on the logging information. The second solution

follows the ITIL event management process.

The requirement for the simple logging activity is that it must be able to

receive the information that other activities send for this activity, it must parse

the information to human readable format when saving to log file and be able

to categorize the incoming information. The solution is to use the python

library logging, with which the centralized logging can be achieved and the

sqlite3 library can be used to support the activity. Figure 41 represents the

summary of solutions for the logging activity.

FIGURE 41. Proposed solution for Logging activity

