
Bachelor’s Thesis

Information and Communications Technology

2021

Tiia Leppänen

Data visualization and monitoring
with Grafana and Prometheus

Bachelor’s Thesis | Abstract

Information and Communications Technology

2021 | 49 pages

Tiia Leppänen

Data visualization and monitoring with Grafana and
Prometheus
Visual monitoring raises awareness of changes in the IT environment. In visual
monitoring, the monitoring of targets must have a clear meaning and the
visualization must be easy to understand.

The purpose of this thesis was to implement a visual monitoring system in the
client's network environment.

Two monitoring solutions, Zabbix and LibreNMS, were already in use in the
client's network environment. A solution had to be found for presenting the
monitored data, for which the Grafana visualization system was selected.
Prometheus was chosen as Grafana's counter part for the monitoring tool.

In order to gain the best possible insight into the client's needs, differences of
the monitoring systems in the data collection and the differences in the data
visualization of the different visualization methods were compared. The
strengths and advantages of these two systems (Prometheus and Grafana)
were examined and compared to Zabbix and LibreNMS’ features. The intention
was not to replace the old monitoring systems, but to utilize the advantages of
the new systems in Tietopartio's network environment.

A Prometheus server was installed on a Unix-based virtual server to collect data
from that virtual server and from a switch located in Tietopartio’s data center.
The Grafana visualization platform was also installed on the same virtual server.
Grafana's visualization capabilities were tested by importing a ready-made
dashboard for monitoring Unix operating systems. A completely new dashboard
was created to monitor the switch.

The final result was a functional example of Prometheus and Grafana’s working
in different environments. Issues to be taken into account in the further
development of the monitoring system include implementation of an encryption
method and alarms.

Keywords:

Grafana, Prometheus, monitoring, visualization

Opinnäytetyö (AMK) | tiivistelmä

Tieto- ja viestintätekniikka

2021 | 49 sivua

Tiia Leppänen

Datan visualisointi ja monitorointi Grafanan ja
Prometheuksen avulla

Visuaalinen monitorointi lisää tietoisuutta IT-ympäristössä tapahtuvista
muutoksista. Visuaalisessa monitoroinnissa kohteiden monitoroinnilla tulee olla
selkeä merkitys sekä visualisoinnin pitää olla helposti ymmärrettävä.

Tämän opinnäytetyön tavoitteena oli visuaalisen monitoroinnin toteuttaminen
toimeksiantajan laiteympäristöön.

Toimeksiantajan laiteympäristössä oli jo käytössä kaksi monitorointiratkaisua,
Zabbix ja LibreNMS. Monitoroidun datan esittämiseen oli löydettävä ratkaisu,
johon valikoitui visualisointijärjestelmä Grafana. Grafanan pariksi
monitorointityökaluksi valikoitui Prometheus.

Jotta saatiin mahdollisimman hyvä kuva toimeksiantajan tarpeista, vertailtiin
monitorointijärjestelmien välisiä eroavaisuuksia datan keruussa sekä eri
visualisointialustojen datan visualisoinnin eroavaisuuksia. Lisäksi tarkasteltiin,
mitä vahvuuksia näillä kahdella järjestelmällä (Prometheus ja Grafana) on
Zabbixiin ja LibreNMS:ään verrattuna. Tarkoituksena ei ollut syrjäyttää vanhoja
monitorointijärjestelmiä, vaan hyödyntää uusien järjestelmien hyviä puolia
toimeksiantajan laiteympäristössä.

Datan kerryttämistä varten Unix-pohjaiselle virtuaalipalvelimelle asennettiin
Prometheus-palvelin keräämään dataa kyseisestä virtuaalipalvelimesta sekä
konesalissa sijaitsevasta kytkimestä. Samalle virtuaalipalvelimelle asennettiin
myös visualisointialusta Grafana. Grafanan visualisointiominaisuuksia testattiin
tuomalla valmis, Unix-käyttöjärjestelmien monitorointia varten tehty kojelauta.
Kytkimen monitorointia varten luotiin täysin uusi kojelauta.

Loppuratkaisuna saatiin toimiva esimerkki Prometheuksen ja Grafanan
toiminnasta eri ympäristöissä. Järjestelmän jatkokehityksessä huomioon
otettavia asioita ovat mm. salausjärjestelmän ja hälytysten käyttöönotto.

Asiasanat:

Prometheus, Grafana, monitorointi, visualisointi

Content

List of abbreviations 6

1 Introduction 8

1.1 Objectives 9

2 Used technologies, softwares, and environments 10

2.1 Monitored devices 10

2.1.1 Ubuntu 18.04 10

2.1.2 HP Network Switch 11

2.2 Prometheus 11

2.2.1 PromQL 12

2.3 Used methods for collecting data 13

2.3.1 Exporter 13

2.3.2 Node exporter 14

2.3.3 SNMP exporter 14

2.4 Grafana 14

2.4.1 Dashboards 15

3 Comparison of the systems 17

3.1 Existing monitoring systems 17

3.1.1 Zabbix 17

3.1.2 LibreNMS 18

3.2 Comparing the monitoring systems 18

3.2.1 Data collection 18

3.2.2 Data storage 19

3.2.3 Server structure 20

3.3 Advantages of Prometheus 20

3.4 Comparing visualization platforms 21

3.4.1 Data visualization in Zabbix 21

3.4.2 Data visualization in LibreNMS 22

3.5 Advantages of Grafana 24

4 Implementation of Prometheus and Grafana 26

4.1 Prometheus 26

4.2 Node exporter 29

4.3 SNMP exporter 31

4.4 Grafana 37

4.5 Node exporter dashboard 40

4.6 SNMP exporter dashboard 42

5 Conclusion 45

5.1 Challenges 45

5.2 Future improvements and developments 46

References 47

List of abbreviations

ARP Address Resolution Protocol

CPU Central Processing Unit

DEB the format, as well as extension of the software

package format for the Debian Linux distribution and its

derivatives

Debian Also known as Debian GNU/Linux, is a GNU/Linux

distribution composed of free and open-source

software (Wikipedia, Debian)

HP Hewlett Packard

HTTP Hypertext Transfer Protocol

IT Information Technology

iTerm2 A terminal emulator for macOS

Linux A family of open-source Unix-like operating systems

based on the Linux kernel

MariaDB Open source relational database

Metrics A set of numbers that give information about a

particular process or activity (Cambridge dictionary)

MIB Management information base

MySQL Open-source relational database management system

(SQL = Structured Query Language)

OID Object Identifier

OSPF Open Shortest Path First

PHP General-purpose scripting language

PNG Portable Network Graphics

PromQL Prometheus query language

RRD Round-robin database

SNMP Simple Network Management Protocol

SQLite Relational database management system

SSH Secure Shell

STP Spanning Tree Protocol

Time series sequence taken at successive equally spaced points in

time (Wikipedia, Time series)

TSDB Timeseries Database

UI User Interface

Unix A family of multitasking, multiuser computer operating

systems (Wikipedia, Unix)

URL Uniform Resource Locator

YAML Human-readable data-serialization language

Turku University of Applied Sciences Thesis | Tiia Leppänen

1 Introduction

A functional and well-maintained monitoring system has become a crucial part

of almost any company and business in this era of Internet and IoT where

computers are basic work environment tools, and any device is and can be

connected to the Internet. It is important to have knowledge of the performance,

network traffic and storage capacity of companies’ infrastructure. Monitored

targets can vary from physical devices to services and applications and to

virtual machines. Visual representation and alerting are key elements of a

proper monitoring system. Alerts can be implemented for different occasions.

For example, the monitoring system will send an email notification whenever a

certain service is down. In this way the IT personnel can act as fast as possible

to fix the problem. By visualizing the devices and services’ data, a good overall

view of the environment can be given. Displayed information can be great for

preventive monitoring by showing past incidents and trends. Therefore, IT

specialist can make predictions for future events or fix what could become a

problem later on and send out an alert. There are numerous monitoring

solutions available for download free as open-source or paid licenses.

This thesis was implemented as a commission for Tietopartio Oy, an IT

solutions provider based in Turku. Tietopartio was looking for a data visualizing

platform to display valuable data from their data center. A more flexible

monitoring tool was also needed to accompany this visualization system. The

employer had their mind set on Grafana as the visualization software and

Prometheus as the monitoring tool. The provider already had two monitoring

systems, Zabbix and LibreNMS, monitoring their own network environment and

their customers’ backups. These systems were mainly used for alerting and not

for graphical representation of the monitored targets.

The theoretical part of this thesis consists of research of the differences, and

advantages of the new and old graphical interfaces and monitoring software.

Zabbix and LibreNMS will be briefly introduced and compared with Grafana and

Prometheus.

 9

Turku University of Applied Sciences Thesis | Tiia Leppänen

There was not much to debate on what softwares to use in this project, so the

questions came to be: What made Grafana more special than the old systems’

visualization platforms? Why was Prometheus chosen to be paired up with

Grafana when there already were two systems for collecting data? What

advantages did these two monitoring systems have against the old systems?

1.1 Objectives

The main objective of this thesis was the implementation of a new monitoring

system and graphical interface on the side of the current monitoring systems.

There has not been a proper solution to display the client’s own and their

customers’ data. The goal was to install and configure a visualization software,

Grafana, for creating informational and aesthetical dashboards for Tietopartio’s

network environment which could also be used for customers’ monitoring needs

in the future. Prometheus was installed and configured as the monitoring tool to

accompany Grafana.

A Unix-based server, where Grafana and Prometheus were installed, and a HP

network switch were chosen as the example environments to monitor with

Prometheus’ different data gathering techniques. These techniques were node

exporter and SNMP exporter. Two example dashboards were created in

Grafana based on the collected data from the devices.

 10

Turku University of Applied Sciences Thesis | Tiia Leppänen

2 Used technologies, softwares, and environments

The main methods and softwares used in this project are explained in the

following sections. The monitored devices are introduced briefly to give a better

perception of the used backround in the client’s environment. Prometheus and

two of Prometheus’ data collecting methods are introduced here, as well as

Grafana and Grafana’s data visualization methods.

For this project, a new virtual server was created in one of the client’s servers in

their data center. On that virtual server, a Unix-based Ubuntu 18.04 operating

system was installed and iTerm2 was used to connect to the server via SSH.

2.1 Monitored devices

The monitored devices were the Ubuntu 18.04 virtual machine and a HP

network switch in the client’s data center.

2.1.1 Ubuntu 18.04

Ubuntu is a Debian-based Linux operating system with free and open-source

software. There are three three different editions of Ubuntu: desktop, server and

core. For this project a generic Linux kernel Image was downloaded and

installed to the virtual server (Ubuntu packages 2021) (Image 1). That means

that there was no graphical interface and all the configuration had to be done in

terminal with command line. (Wikipedia – The free encyclopedia 2021)

Image 1. Installed Ubuntu operation system.

 11

Turku University of Applied Sciences Thesis | Tiia Leppänen

2.1.2 HP Network Switch

Tietopartio’s data center had many possible candidates for monitoring

purposes. HP 1810-24G network switch was selected for this project’s example

SNMP monitoring subject (Image 2).

Image 2. HP 1810-24G switch ports in use.

2.2 Prometheus

Prometheus is an open-source monitoring and alerting toolkit based on

collecting time series by scraping metrics over HTTP. The scrape is done by

pulling the time series data from the targets. Prometheus is highly customizable,

and the base server consists of only of the Prometheus server, database where

timeseries data is stored locally and an expression browser where you can

access and visualize collected data (Image 3). Other Prometheus’ features are

completely optional, but you won’t get too far in monitoring without adding these

features to the server. These optional features are client libraries, exporters,

plugins and an alertmanager to handle alerts, which help you monitor whatever

devices and services you have in your network environment. Prometheus

supports various client libraries and exporters, but only a handful are under

Prometheus’ own management. Most of the features are developed and

maintained by third party operators, so caution should always be taken into

consideration when applying them into your Prometheus server. If for some

reason, the user cannot find an exporter or a client library for their needs, they

can always make their own with the help of Prometheus’ documentation on how

to write exporters and client libraries (Prometheus Authors 2014-2021a;

Prometheus Authors 2014-2021c).

 12

Turku University of Applied Sciences Thesis | Tiia Leppänen

Prometheus also comes with its own query language, PromQL, which helps

selecting and analyzing the time series data. (Brazil 2018; Prometheus Authors

2014-2021g)

Image 3. Prometheus’ architecture (screenshot from Prometheus’ Overview

page)

2.2.1 PromQL

Prometheus provides its own query language PromQL for querying metrics.

PromQL significantly improves viewing and graphing metrics with different

query methods. It allows the user to select, filter, group and aggregate metrics

using functions and operators. The results can be viewed in a tabular form or

shown as a graph in Prometheus’ expression browser or in an external system.

To avoid slow graphing or time outs, it is advised to construct the query in

expression browser’s tabular view before using it in a graph. (Brazil 2018;

Prometheus Authors 2014-2021h)

 13

Turku University of Applied Sciences Thesis | Tiia Leppänen

2.3 Used methods for collecting data

Prometheus supports a few ways to collect data from various devices: client

libraries, pushgateway, exporters and integrations. Client libraries enable

monitoring by implementing lines of code to the target device or service and a

matching client library installation to the Prometheus server (Prometheus

Authors 2014-2021a). Pushgateway allows Prometheus to scrape targets that

don’t support the pull mechanism for data collection. Pushgateway transforms

pushed data into a temporary job that Prometheus can scrape.

Since most of Tietopartio’s environment consists of network devices, the main

method of collecting data was using SNMP and snmp exporter. The second

method that was used, was node exporter to collect time series data from the

virtual server where Grafana and Prometheus servers were installed. Both

exporters are part of the official Prometheus GitHub organization officially

supported methods of collecting data.

2.3.1 Exporter

Not all applications and devices are accessible or controlled by the user, so

exporters are the answer. Exporter is a piece of software that can be deployed

to the application or a device where monitoring is required. Prometheus sends

requests to the exporter, exporter takes those requests, gathers the requested

data from the target and transforms the data into a format that Prometheus can

read and returns the data to Prometheus server. There are a numerous of

exporters supported by Prometheus. In the following section, two of these

exporters are introduced; node exporter and snmp exporter. These are the two

methods used with Prometheus in this project. (Prometheus Authors 2014-

2021c)

 14

Turku University of Applied Sciences Thesis | Tiia Leppänen

2.3.2 Node exporter

Node exporter is designed to collect data from Unix environments. It exposes

hardware- and kernel-related metrics from the target machine, for example

CPU, memory, and disk space metrics. The Node exporter is intended only to

monitor the machine itself, not individual processes or services on it (Brazil

2018). The exporter can be downloaded from Prometheus’ download page, and

it should be installed to the target machine. The node exporter runs on port

9100 as a default. (Github Inc. 2021a)

2.3.3 SNMP exporter

The SNMP exporter is especially useful when the user is trying to monitor

network devices such as switches, routers or firewalls. SNMP function needs to

be enabled on the target machine before the exporter is able to pull metrics

from it. Using SNMP exporter requires knowledge of MIBs and OIDs. MIBs and

OIDs define the information that is possible to pull from the devices. OID

defines certain metrics in a MIB tree. There are universal MIBs that almost all

the network devices support, but some devices require the manufactures own

MIBs for specific information. OIDs are inputted to snmp.yml file where the

exporter gets the information of the data to be searched and translates the data

for Prometheus to understand. (Github Inc. 2021b; Prasath 2018)

2.4 Grafana

Grafana is an open-source database analytics and visualization tool. The

purpose of Grafana is visualizing your most important data in an organized and

informative manner. Grafana doesn’t have any means of collecting data itself,

but it supports numerous different data sources and has a unique query editor

for all those data sources (Grafana Labs 2021b). Grafana is a running process

on your computer or server and the interface is accessed through a web

browser. Visual alerts are also possible to deploy in Grafana’s graphs and

 15

Turku University of Applied Sciences Thesis | Tiia Leppänen

Grafana can send notifications about alerts to your email, for example (Grafana

Labs 2021j).

2.4.1 Dashboards

Visually pleasing and useful dashboards can be either created or imported from

Grafana’s dashboard download page. Different kinds of panels are used to

showcase the most important data (Image 4). Grafana’s website defines a

dashboard as “A set of one or more panels, organized and arranged into one or

more rows, that provide an at-a-glance view of related information.” (Grafana

Labs 2021d). Panels are dashboard’s basic building blocks. They consist of a

query and a graphical representation of the query results. The time range of the

dashboard can be controlled by the user. Time ranges can vary from a specific

time and date to, for example, the last two hours. Grafana also has a feature

called “variables”. Variables enable a selection of a target in the dashboard so

that same dashboard can be used by multiple targets. There is a playlist option

that lets the user to create a playlist containing already made dashboards.

When the playlist is played, the dashboards change like in a slide show. The

time between the dashboards can be altered (Grafana Labs 2021k).

 16

Turku University of Applied Sciences Thesis | Tiia Leppänen

Image 4. Example dashboard with different panels. (Copied image from

Grafana’s Dashboards page via Google image search, Grafana Labs 2021c)

 17

Turku University of Applied Sciences Thesis | Tiia Leppänen

3 Comparison of the systems

Existing monitoring systems’ basic functions are introduced briefly here. After

the introduction, the existing systems are put side by side with the new

monitoring systems to find out more of what each of them are good at, what

sets them apart form each other and what kind of similarities they have.

This section compares Prometheus and Grafana to Zabbix and LibreNMS to

determine why Prometheus was selected as the data collector and Grafana was

selected as the visual representation for this project and what are the

advantages of using these two monitoring tools.

3.1 Existing monitoring systems

Currently there are two monitoring systems actively monitoring Tietopartio’s

network environment. These are Zabbix and LibreNMS. Both are configured to

alert on various of events that require an IT-specialist’s actions. Zabbix and

LibreNMS also offer their own visualization system, but these visualization

systems haven’t been fully utilized in the company for displaying data.

3.1.1 Zabbix

Zabbix is an enterprise-level monitoring tool, and the first beta version was

released as early as 2001. Zabbix is an open-source software, which means it

is free to download and the source code is accessible to anyone.

Zabbix consists of several components, but the major ones are the Zabbix

server, database, Web interface and an Agent. With these components, you

can easily and effectively collect metrics from your devices and services. The

Agent is deployed on the target device or application to retrieve metrics for the

Zabbix server. Metrics, as well as configurations and statistics, are stored in the

Zabbix database. The Web interface allows the data being examined and

viewed through dashboard visualizations.

 18

Turku University of Applied Sciences Thesis | Tiia Leppänen

Zabbix also offers alerting and notification system to stay on top of the

network’s performance. It can be configured to send e-mail notifications of

different events. (Zabbix SIA 2001-2021d; Zabbix SIA 2001-2021f; Zabbix SIA

2001-2021h)

3.1.2 LibreNMS

LibreNMS is an open-source monitoring software that has many useful features

for operating system and network monitoring. LibreNMS is based on PHP and

uses multiple protocols for data collection (SNMP, STP, OSPF, etc). Some of

LibreNMS’ supported features are auto discovery, alerting, API, Syslog and

many more. LibreNMS also has its own dashboard system for utilizing the data

in a graphical manner (LibreNMS Docs c).

3.2 Comparing the monitoring systems

In comparing the data collector tools, the focus was on the data collection

method, data storage and server structure. The goal was to gain better insight

on how the systems worked and what are their primary use and strengths.

3.2.1 Data collection

Prometheus uses pull mechanism to collect data from its targets. It is also

possible to use push mechanism when needed. The data is collected in the

form of time series. Prometheus can be configured to scrape various kinds of

devices and applications by downloading and installing exporters or using client

libraries. Some of the exporters need to be installed on the target machine (i.e.,

node exporter) to extract metrics like an agent and some, for example SNMP,

only need to be enabled on the target machine without any software installation

on the target machine. The targets are configured in Prometheus’

prometheus.yml file and sometimes in exporters own YAML-files.

 19

Turku University of Applied Sciences Thesis | Tiia Leppänen

Zabbix gathers data by deploying an agent to a monitored device, called host.

Agents perform active and passive checks. Active checks are the ones where

the Zabbix agent requests a list of items to gather form the host and in passive

checks the Zabbix server is the one requesting the data (Zabbix SIA 2001-

2021c). Zabbix also supports agentless monitoring, like Prometheus, when

installing an agent to a host device is not possible. Zabbix uses both pull and

push mechanism to collect metrics depending on the use case. Hosts can be

added easily from the web interface. The user can define the collection method

(Agent, SNMP) in the Add hosts -form (Zabbix SIA 2001-2021a).

LibreNMS supports Unix agent to collect data from Unix-based systems. It also

supports various protocols like SNMP, OSPF and ARP to gather metrics from

devices which don’t support agent installation. Monitored devices can be added

from the Web UI, like in Zabbix, and auto discovery of devices is also possible.

3.2.2 Data storage

Prometheus stores the collected metrics data in a time series database (TSDB)

on a local disk. An external storage is also supported. The data is stored 15

days as a default but can be overwritten to be a shorter or a longer time period.

Log files are not supported in Prometheus, but there is a way to include logs

into Prometheus monitoring by using Loki, a Grafana plugin for monitoring logs.

(Prometheus Authors 2014-2021i)

In Zabbix the data is stored in an external database, for example MySQL,

SQLite or Oracle. Data is stored in a form of history and trends. History keeps

all the collected values which is resource consuming. Trends only keep

minimum, maximum, average and total number of values making it less

resource consuming way of storing data (Zabbix SIA 2001-2021g). The user

can decide for how long to keep the acquired data. Besides time series

monitoring, Zabbix also supports monitoring text and log files. (Zabbix LLC

2001-2021i)

 20

Turku University of Applied Sciences Thesis | Tiia Leppänen

LibreNMS uses external database for data storage, like Zabbix. Supported

databases are MySQL, MariaDB et cetera. The metrics are stored as RRD

(round-robin database) files, and they can be exported to other monitoring

systems as well (i.e., Prometheus, Graphite). With LibreNMS, the user can

monitor logs (LibreNMS Docs b; LibreNMS Docs d).

3.2.3 Server structure

Prometheus server consists of a time series database (TSDB), prometheus.yml

configuration file, a script to run the Prometheus software and an HTTP server

with web UI (see Image 3 from page 12).

Zabbix server is made of three core components, the server, agent and web

interface. The data and configuration files are stored in the server part in a

database that is configured during the installation. (Zabbix SIA 2001-2021e)

LibreNMS’s basic installation contains a device poller/discovery, a time series

data storage for RRD, an external database and a webserver (LibreNMS Docs

b).

3.3 Advantages of Prometheus

It is safe to say that all these three monitoring systems have advantages of their

own. But what are the advantages of using Prometheus?

Its level of customization is a clear advantage. Depending on the monitored

systems and services, the user can install the right exporter or client library to

match that system or service. And if there is no right data collector, the user can

always create a new one with the help of Prometheus’ documentation.

Prometheus has two powerful features: PromQL and the pre-installed TSDB.

There is no need to install any external databases because Prometheus

provides one automatically during installation. PromQL is a rich query language

that can be used to analyze collected time series.

 21

Turku University of Applied Sciences Thesis | Tiia Leppänen

Pull mechanism, that Prometheus uses to gather data, is an efficient way to

collect metrics. The monitoring server actively requests data form the targets,

rather than the server passively waiting for targets to push their metrics to the

monitoring server.

Prometheus provides an extensive community that offers support and help to

Prometheus users. Documentation, blog post and courses also help

Prometheus users to develop their skills in using the monitoring platform.

(Prometheus Authors 2014-2021b)

3.4 Comparing visualization platforms

Tietopartio needed a system that is both eye-catching and informative for data

display and data analytic purposes.

This section compares Grafana’s graphical interface to Zabbix’s and LibreNMS’

ways to visualize data. The purpose is to look at the dashboard features,

functionalities, and appearances. There are of course, a numerous amount of

other open source and paid graphical solutions, but since Zabbix and LibreNMS

are already used in Tietopartio’s network environment, the comparison is done

between these systems.

Grafana’s dashboard features and functions were explained earlier beginning

from the page 14.

3.4.1 Data visualization in Zabbix

Like Grafana, Zabbix dashboard is also accessed via web UI. Zabbix dashboard

consists of panels that are called widgets (Image 5). The user selects type of

widget and fills the configuration form and then Zabbix creates the widget based

on the supplied information. Graph widgets can be customized and configured

in multiple ways, for example an aggregation function can be added, and the

colors of the graph can be changed. Widgets can be resized and moved around

 22

Turku University of Applied Sciences Thesis | Tiia Leppänen

in the dashboard editing mode. Dashboards can have multiple pages and they

can be displayed in a slide show. Pages can be reordered and copied to a new

dashboard or to an existing page. Graph widgets can be downloaded as PNG

image.

It is also possible to configure a “Dynamic Item”, which enables selecting a host

for a dashboard. The benefit is that the user can have the same dashboard for

multiple hosts, the data changes in the widgets when selecting a different host,

just like in Grafana. (Zabbix SIA 2001-2021b)

Image 5. Example Zabbix dashboard with different widgets. (Image copied from

the Zabbix Dashboard page, Zabbix SIA 2001-2021b)

3.4.2 Data visualization in LibreNMS

LibreNMS dashboards are accessible through web UI. Dashboards are created

by using various widgets. LibreNMS widgets offer easy to use overall view of

 23

Turku University of Applied Sciences Thesis | Tiia Leppänen

your network. Selected widgets transform into panels in the dashboard

environment (Image 6). The panels can be rearranged, and the size is

adjustable. You can also name the panels as you please, and if you don’t name

the panel, LibreNMS creates an automatic title.

A standout feature in LibreNMS is the automatically created graphs from device

discoveries. For example, LibreNMS creates an overall view of the selected

device with system information (name, hardware, operation system, etc) overall

traffic, processors, and memory. For closer inspection of the devices’

performance, the user can browse graphs throughout different time periods.

There is a downside for everything being automatic. The user is not given so

much freedom when creating the panels. The user cannot change visualizations

or colors of the panels. Widgets/panels or dashboards can’t be copied from one

dashboard to the other. You also cannot copy automatically created panels for

your own dashboard. LibreNMS dashboards support only its own data source

(LibreNMS Docs a).

Image 6. Example LibreNMS dashboard with different panels. (Image copied

from LibreNMS’ Dashboard page, LibreNMS Docs a)

 24

Turku University of Applied Sciences Thesis | Tiia Leppänen

3.5 Advantages of Grafana

Compared to Zabbix and LibreNMS, Grafana has some advantages. Zabbix

and LibreNMS support only one data source, their own, whereas Grafana

supports several data sources. Some of the data sources, for example,

Prometheus and Graphite, are built-in features in Grafana and other data

sources can be added by installing plugins. Because of this, Grafana has a

specific Query Editor for all the data sources. Creation of multiple panels with

different data sources in the same dashboard is also supported in Grafana.

All these monitoring systems offer versatile visualization types and

modifications to dashboards. Grafana, on the other hand, is specialized in

visualization and modification of dashboards. Even in the monitoring world,

looks matter. Grafana’s dashboards are aesthetically pleasing while still being

informative, and therefore Grafana is so popular among monitoring

communities.

What sets Grafana aside from other visualization tools, is the ability to share

and import dashboards. There is a whole page in Grafana’s web site dedicated

to dashboards where the user can search and import dashboard into their own

Grafana. Also anyone can submit their dashboards to that page.

One impressive feature is automatic rendering of panels as PNG images.

Images can also be downloaded straight from the dashboard (Grafana Labs

2021h).

Grafana is constantly evolving with newer versions that are trying to make

monitoring easier and more versatile. With several visualization choices, the

user can make their dashboards look outstanding while still being easy to

understand and informative.

Communities are very important and a big part of open source softwares.

Grafana community offers a comprehensive documentation, guides, tutorials

and webinars and videos about the software and its usage (Image 7).

 25

Turku University of Applied Sciences Thesis | Tiia Leppänen

Community page offers support and help for users’ problems and the users can

discus all things related to Grafana.

Image 7. Example of a tutorial offered in Grafana’s website. (Screenshot from

Grafana’s tutorials page, Grafana Labs 2021g)

 26

Turku University of Applied Sciences Thesis | Tiia Leppänen

4 Implementation of Prometheus and Grafana

Implementation of Prometheus, exporters, Grafana and dashboards are

reviewed in this part. The Images show the Unix operating system, Prometheus’

expression browser and Grafana’s web interface in use. Installations of each

software are written separately and explained in depth for better understanding

of the process.

4.1 Prometheus

A new virtual server was created to one of Tietopartio’s servers and Unix 18.04

operating system was installed in the virtual server. A user and a password for

that user were created to the server. To gain access to the virtual server, SSH

connection in iTerm2 software was used.

Using ‘wget’ command enabled the download of the latest installation media

from Prometheus’ web site and with ‘tar’ command the media file was installed

on the server. Image 8 shows the downloaded and installed Prometheus server.

Image 9 shows the contents of the installed Prometheus server.

Image 8. Highlighted in red is the downloaded Prometheus server. In blue, is

the installed Prometheus server.

Image 9. Contents of the Prometheus server.

The prometheus.yml file is where targets are specified and what Prometheus

will monitor. The most important lines in the YAML file are scrape_interval, and

the ones starting with scrape_configs. The prometheus.yml file can be modified

 27

Turku University of Applied Sciences Thesis | Tiia Leppänen

as long as the YAML syntax stays right, otherwise the code doesn’t work. So

far, there is only one job, named ‘prometheus’, with a scrape interval of 15

seconds and a target ‘localhost:9090’. This job monitors Prometheus itself

(Image 10).

Image 10. Default prometheus.yml. The lines marked with # are comments and

therefore don’t affect to the execution of the program.

To start up Prometheus, the ‘prometheus’ scipt was run (Image 11).

 28

Turku University of Applied Sciences Thesis | Tiia Leppänen

Image 11. Starting up Prometheus server. The top line in the picture is the

command to start up the server. The bottom line indicates that the server is up

and running and ready to pull data.

The server is working properly, as can be seen form the bottom line “Server is

ready to receive web requests.” (Image 11)

After letting Prometheus scrape its target, the metrics were viewed in

Prometheus’ expression browser. Image 12 confirms that the Prometheus

server is working and getting metrics from its target ‘prometheus’ job.

Image 12. Prometheus expression browser’s overview of the targets.

Prometheus’ graphical interface is very basic and is not useful for the long run.

It is better to use another software for graphical purposes. Prometheus’

expression browser is great for ad-hoc quaries. (Prometheus Authors 2014-

2021d; Prometheus Authors 2014-2021e)

 29

Turku University of Applied Sciences Thesis | Tiia Leppänen

4.2 Node exporter

To monitor the virtual server where Prometheus was installed, the latest node

exporter pakage was downloaded from node exporter Github page using ‘wget’

command and it was installed using ‘tar’ command, just like previously for

Prometheus server. To get the node exporter to monitor the server, a job using

node exporter needed to be configured in prometheus.yml file. A ’node’ job was

added in the scrape_configs section of the YAML file and targeted to the

localhost on port 9100 (Image 13). The node exporter was started from the

script with ‘./node_exporter’ command (Image 14).

Image 13. prometheus.yml configuration with ‘node’ job.

 30

Turku University of Applied Sciences Thesis | Tiia Leppänen

Image 14. Node exporters running sequence. All the collectors are listed what

kind of data node exporter is collecting from the target. Last line tells the port

which node exporter is using to listen the target.

The working of the node exporter was verified in the Prometheus expression

browser (Image 15). (Github Inc. 2021a ; Prometheus Authors 2014-2021f)

Image 15. From the Prometheus expression browser Targets tab with

‘prometheus’ and ‘node’ jobs.

 31

Turku University of Applied Sciences Thesis | Tiia Leppänen

4.3 SNMP exporter

To be able to use SNMP to monitor devices, SNMP has to be enabled from the

target device (Image 16). Since SNMPv2 was used in this project, the

community string needed to be known for identification of the device. ‘public’ is

the default community string and it is adviced to use something stronger and

safer string in the actual use.

Image 16. SNMP enabled on the network switch and the switche’s community

string.

SNMP expoter was downloaded and istalled the same way as Prometheus and

node exporter by using ‘wget’ (Image 17) and ‘tar’ (Image 18) commands.

Image 17. Using wget command to download snmp exporter from Github web

page.

Image 18. Using tar command to extract the snmp exporter file.

In order to get the SNMP exporter to work, SNMP needed to be enabled on the

server.

 32

Turku University of Applied Sciences Thesis | Tiia Leppänen

‘libsnmp-dev’ a Debian-based distribution of SNMP development files were

installed on the server as shown in the Image 19.

Image 19. Debian-based distribution download command.

Because Prometheus is written in Go language, the snmp exporter needed a

Go environment, therefore Go was downloaded and installed to the server.

Go was downloaded and installed on the server and copied to /usr/local/go. The

/etc/profile file was edited by implementing a path variable for the system to find

Go’s executable binaries (Image 20).

Image 20. Path variable, Go root and Go path for Go.

A network switch in Tietopartio’s data center was selected as an example for

the SNMP exporter. In order to configure prometheus.yml with the SNMP target,

the snmp.yml needed to be configured first. It is not advised to configure

snmp.yml manually and therefore a generator has been developed to do the

work. The generator can be downloaded from the snmp exporter Github page.

With ‘go get’ command the generator was downloaded to the server (Image 21).

Contents of the downloaded generator are displayed in the Image 22.

Image 21. Generator download.

 33

Turku University of Applied Sciences Thesis | Tiia Leppänen

Image 22. Contents of the generator directory.

‘go build’ command created the generator script that was needed for running

the program (Image 23).

Image 23. Building of the generator script which can be seen on the green.

The ‘make mibs’ command created a directory called ‘mibs’ to the generator

directory and it downloaded a bunch of different MIB files to the ‘mibs’ directory

(Image 24). (Bradley 2020-2021; Github Inc. 2021b; Github Inc. 2021c)

 34

Turku University of Applied Sciences Thesis | Tiia Leppänen

Image 24. ‘make mibs’ command and few examples of downloaded MIBs.

With all the preparations done, it was time to configure a generator.yml file for a

generator script to use. The generator script uses generator.yml to create

snmp.yml. The generator came with a pre-configured generator.yml file full of

 35

Turku University of Applied Sciences Thesis | Tiia Leppänen

ready-made modules. Instead using the default generator.yml file, a new YAML

file was made with only one module for the network switch (Image 25).

Image 25. Configured generator.yml file

The layout of one the premade modules was copied to the new generator.yml

file and was filled with the information from the network switch.

Generator.yml consists of modules and the modules in the simplest form can

consist of only module name and list of OIDs to walk. In the Image 25 example,

the module consists of:

• Module name
• OIDs to walk
• Version
• Auth
• Lookups
• Overrides

The user can define module name to be whatever, preferably the devices name

or something to distinguish from other modules if there are a lot of them. OIDs

can be listed in their numerical form or their SNMP object name, for example

 36

Turku University of Applied Sciences Thesis | Tiia Leppänen

1.3.6.1.2.1.2 and ‘interfaces’ mean the same thing. Version defines what SNMP

version to use. Auth, short for authentication, uses a community string to

authenticate the device. Lookups can create a different label and keep the

same value from the table it is looking from, for example ifIndex will lookup

ifAlias table entry and create a ifAlias label. Overrides allow bits of MIBs to be

overridden. Ignore: true drops the metric from the output and type: EnumAsInfo

overrides the metric type as an enum for which a single timeseries is created.

(Github Inc. 2021c; Github Inc. 2021d)

The generator needed to be told where to find the MIB files before starting up

the process. The commands ‘export MIBDIRS=<location of the MIBs>’ and

‘MIBS=ALL’ defined the location of the MIB files for generator script to read

them. The generator script was run and it didn’t have any errors as can be seen

from the last line of the Image 26. The snmp.yml file was created and copied to

the SNMP exporter directory with ‘sudo cp snmp.yml

/home/tpamd/snmp_exporter-0.17.0.linux-amd64’ command (Image 26).

Image 26. Creating a snmp.yml file via generator.

Next step was to configure prometheus.yml file to receive SNMP requests from

the network switch.

In this example, the job was simply named ‘snmp’ and were given a little bit

longer scrape time since network switched can take longer to scrape the

assigned metrics. Target is the IP address of the device (Image 27). Module

needs to be exactly the same as the one determined in the generator.yml file. If

the user has multiple modules, they need to have a unique name otherwise

 37

Turku University of Applied Sciences Thesis | Tiia Leppänen

Prometheus cannot determine which module it needs to check and therefore

the scrape will fail.

Image 27. Prometheus.yml configuration for the network switch.

After the prometheus.yml file configurations, the SNMP and Prometheus server

scripts were run to start up the monitoring. Image 28 defines that the ‘snmp’ job

is up and running.

Image 28. Prometheus’ expression browser shows that ‘snmp’ job is up and

running.

4.4 Grafana

After configuring Prometheus server to scrape metrics via node exporter and

SNMP exporter, Grana server was ready to be downloaded and installed on the

same server as Prometheus.

 38

Turku University of Applied Sciences Thesis | Tiia Leppänen

For contrast to all above downloads and installations, the latest Grafana server

DEB package from Grafana’s download page was downloaded and installed by

following the installation instructions (Grafana Labs 2021e) (Image 29).

Image 29. Download and installation of Grafana server. (Screenshot from

Grafana’s Downloads page, Grafana Labs 2021e)

After the installation the Grafana server was started with systemd using the

following commands listed in the Image 30:

Image 30. Grafana startup with systemd. (Screenshot from Grafana’s

Downloads page, Grafana Labs 2021i)

‘sudo systemctl status grafana-server’ command shows if the server is running

or not (Image 31).

Image 31. Example of running Grafana server.

The Grafana server was configured to start at boot (Image 32).

 39

Turku University of Applied Sciences Thesis | Tiia Leppänen

Image 32. Making a service for Grafana to start at boot. (Screenshot from

Grafana’s Downloads page, Grafana Labs 2021i)

The Grafana server didn’t need much configuration in the server. Grafana was

accessed through a web browser at http://localhost:3000/. First time visiting the

address, the user is asked to change the password for login. The default

username and password are ‘admin’.

To be able to make dashboards for visual representation of the collected data, a

data source needed to be assigned. Data source name and URL were

configured to point to the created Prometheus server (Grafana Labs 2021a).

Image 33 depicts the data source configuration in Grafana’s web UI.

 40

Turku University of Applied Sciences Thesis | Tiia Leppänen

Image 33. Data source configuration page.

4.5 Node exporter dashboard

A premade dashboard, that somebody else had made to be used with node

exporter, was imported from Grafana’s dashboard download page (Grafana

Labs 2021f). The dashboard had all the vital information about Unix

environment, and it was a good starting place to getting to know how Grafana

 41

Turku University of Applied Sciences Thesis | Tiia Leppänen

and Prometheus work together before trying to make new dashboards from

scratch Image 34).

Image 34. Imported node exporter dashboard with different panels.

The imported dashboard gave a good idea of how dashboards and panels work.

What makes this a good dashboard, is that the panels state clearly what they

are used for, and they fit into the screen without having to scroll down the page.

From the above Image 34 information about the monitored system can be seen.

For example, how much memory and storage the system has and how much is

used and how much is still available. The network traffic that system is receiving

and transmitting can also be monitored with node exporter.

For example in the Image 35, the CPU Basic panel is telling how much the

system is using the processor cores in each state. Total is all the works minus

the idle state, user means the time spent in user’s processes and system is the

time spent in kernel mode.

 42

Turku University of Applied Sciences Thesis | Tiia Leppänen

Image 35. Panel about processor usage in percentage.

4.6 SNMP exporter dashboard

For SNMP exporter target, the network switch, an entirely new dashboard was

created. The wanted information for the network switch were network traffic,

system up time and up panels. The panels work by implementing a PromQL

query about wanted information.

Below, Image 36 represents the queries used in defining the incoming and

outgoing network traffic from the switch. IfHCInOctets and IfHCOutOctets return

the total number of octets received or transmitted through the switch’s

interfaces in 64-bit form. ‘job’ and ‘ifName’ labels were used to define what the

queries are looking for. Irate function with [5m] returns the per-second rate of

the two most recent data points per time series within the five-minute time

range. A little math was also needed, because the results wanted to be

displayed in megabits, so the query had to be multiplyed by 8 because of octets

and to get megabits the query needed to be divided by 1000 and then again by

1000. (Prometheus Authors 2014-2021h)

Image 36. PromQL query about incoming and outgoing traffic.

 43

Turku University of Applied Sciences Thesis | Tiia Leppänen

The below graph in the Image 37 displays the incoming and outgoing traffic of a

network switch from the last three hours. On the right side of the panel are all

the switch’s interfaces and their minimum, maximum and average values.

The end result looked like this:

Image 37. The result of the network traffic monitoring query.

‘Up’ and ‘System up time’ panels were added to the dashboard as can be seen

on the Image 38. The ‘System Up / Down’ panel is displayed in ‘gauge’ form

and ‘System up time’ panel is shown as ‘stats’. ‘Graph’ form is used in the

network traffic panel. The panels are named clearly and informatively. The

‘System Up / Down’ panel shows as a green gauge when the device is ‘up’ or

the value is 1. When the value is 0 the gauge turns red indicating the device is

down.

 44

Turku University of Applied Sciences Thesis | Tiia Leppänen

Image 38. The network switch dashboard.

 45

Turku University of Applied Sciences Thesis | Tiia Leppänen

5 Conclusion

Tietopartio already had a vision about a monitoring system that could be put on

display in their office environment and what could be shown to customers. The

work carried out in this thesis was the realization of this vision.

Since the client knew exactly what systems they wanted to be used in the

project, this thesis focused on comparing the suitable options to carry out the

project. The client had previously implemented two other monitoring systems to

their environment. Therefore, it was obvious that the next step was to compare

the old systems to the new ones to gain a better understanding of why there

was a need for additional monitoring systems.

The objective of this thesis was the installation, the configuration and the testing

of the new visual monitoring system Grafana and the new data monitoring tool

Prometheus. These objectives were met, and both systems continued to be

used in Tietopartio’s environment. Data was successfully collected from the

targets, therefore, demonstrating that the installation and configuration of the

systems were successful. The visual representations of the data were shown in

clearly constructed dashboards and panels. Information of the targets’

performance could be viewed and analyzed through the dasboards. With the

setup done and with the gained knowledge of the monitoring systems, new

targets can be added to the monitoring domain with ease.

5.1 Challenges

Working with Prometheus was a bit challenging since Prometheus had a quite

steep learning curve. There is so much that the user can do with Prometheus. A

first time user needs some time to study to fully understand and grasp all the

information of the capabilities of the monitoring tool. I had some difficulties in

Using the PromQL was challenging as it requires mathematical thinking and

mastery of its features.

 46

Turku University of Applied Sciences Thesis | Tiia Leppänen

SNMP was also a new protocol and this thesis provided an opportunity for the

author to gain better understanding and experience of MIBs and OIDs. MIB

Browswer and ‘snmpwalk’ method were useful tools in the learning process of

understanding how SNMP works.

5.2 Future improvements and developments

The idea was that Tietopartio would install monitors to their office walls to

display the monitored data so that the IT specialists could see, for example how

much free space a specific server has, and react to it, before another monitoring

system would send an alert about disk space being low. The next logical step

would be implementing the monitoring system to all Tietopartio’s devices in the

office and data center.

Setting up alerts either to Prometheus or Grafana would also be beneficial for

the overall monitoring purpose. Alerting needs would first be assessed since

there already are two alert systems on the same devices.

Implementing proper security measurements would be crucial to have at some

point and is definitely an important improvement step.

Joining Zabbix and LibreNMS to Grafana or deactivating them completely and

relaying only on Prometheus as the means of data collecting would also be

taken into consideration. It is also important to determine if there is a need for

three different monitoring tools and whether they all should be monitoring the

same targets.

Lastly, when the monitoring service is made clear and safe, it could also be

deployed to Tietopartio’s customers environments.

 47

Turku University of Applied Sciences Thesis | Tiia Leppänen

References

Bradley, S. 2020-2021. SBCODE. SNMP Exporter Configuration Generator.
Accessed 30.11.2021. https://sbcode.net/prometheus/snmp-exporter-generator/

Brazil, B.; Robust Perception Ltd. 2018. Prometheus: Up & Running -
Infrastructure and application performance monitoring. 1005 Gravenstein
Highway North, Sebastopol, CA 95472. O’Reilly Media, Inc.

Github Inc. 2021a. Node exporter. Accessed 30.11.2021.
https://github.com/prometheus/node_exporter

Github Inc. 2021b. Prometheus SNMP exporter. Accessed 30.11.2021.
https://github.com/prometheus/snmp_exporter

Github Inc. 2021c. SNMP Exporter Config Generator. Accessed 30.11.2021.
https://github.com/prometheus/snmp_exporter/tree/main/generator

Github Inc. 2021d. SNMP Config Generator. Accessed 30.11.2021.
https://pkg.go.dev/github.com/prometheus/snmp_exporter/generator#section-
readme

Grafana Labs 2021a. Add a data source. Accessed 30.11.2021.
https://grafana.com/docs/grafana/latest/datasources/add-a-data-source/

Grafana Labs 2021b. Add a data source. Accessed 30.11.2021.
https://grafana.com/docs/grafana/latest/datasources/

Grafana Labs 2021c. Dashboards. Google search result. Accessed 30.11.2021.
https://grafana.com/static/img/grafana/showcase_visualize-954.jpg

Grafana Labs 2021d. Dashboard overview. Accessed 30.11.2021.
https://grafana.com/docs/grafana/latest/dashboards/

Grafana Labs 2021e. Download Grafana. Accessed 30.11.2021.
https://grafana.com/grafana/download

Grafana Labs 2021f. Export and import. Accessed 30.11.2021.
https://grafana.com/docs/grafana/latest/dashboards/export-import/

Grafana Labs 2021g. Grafana tutorials. Accessed 30.11.2021.
https://grafana.com/tutorials/

Grafana Labs 2021h. Image rendering. Accessed 30.11.2021.
https://grafana.com/docs/grafana/latest/Image-rendering/

Grafana Labs 2021i. Install on Debian or Ubuntu. Accessed 30.11.2021.
https://grafana.com/docs/grafana/latest/installation/debian/

Grafana Labs 2021j. Introduction to Grafana. Accessed 30.11.2021
https://grafana.com/docs/grafana/latest/introduction/

 48

Turku University of Applied Sciences Thesis | Tiia Leppänen

Grafana Labs 2021k. Panel overview. Accessed 30.11.2021.
https://grafana.com/docs/grafana/latest/panels/

LibreNMS Docs a. Dashboards. Accessed 30.11.2021.
https://docs.librenms.org/Extensions/Dashboards/

LibreNMS Docs b. Distributed Poller. Accessed 30.11.2021.
https://docs.librenms.org/Extensions/Distributed-Poller/

LibreNMS Docs c. Features. Accessed 30.11.2021.
https://docs.librenms.org/Support/Features/

LibreNMS Docs d. Metric storage. Accessed 30.11.2021.
https://docs.librenms.org/Extensions/Metric-Storage/

Prasath, M. 2018. SNMP monitoring and easing it with Prometheus. Article.
Accessed 30.11.2021. https://medium.com/@openmohan/snmp-monitoring-
and-easing-it-with-prometheus-b157c0a42c0c

Prometheus Authors 2014-2021a. Client libraries. Accessed 30.11.2021.
https://prometheus.io/docs/instrumenting/clientlibs/

Prometheus Authors 2014-2021b. Comparison to alternatives. Accessed
30.11.2021. https://prometheus.io/docs/introduction/comparison/

Prometheus Authors 2014-2021c. Exporters and integrations. Accessed
30.11.2021. https://prometheus.io/docs/instrumenting/exporters/

Prometheus Authors 2014-2021d. First steps with Prometheus. Accessed
30.11.2021. https://prometheus.io/docs/introduction/first_steps/

Prometheus Authors 2014-2021e. Getting started. Accessed 30.11.2021.
https://prometheus.io/docs/prometheus/latest/getting_started/

Prometheus Authors 2014-2021f. Monitoring Linux host metrics with the node
exporter. Accessed 30.11.2021. https://prometheus.io/docs/guides/node-
exporter/

Prometheus Authors 2014-2021g. Overview. Accessed 30.11.2021.
https://prometheus.io/docs/introduction/overview/

Prometheus Authors 2014-2021h. Querying Prometheus. Accessed
30.11.2021. https://prometheus.io/docs/prometheus/latest/querying/basics/

Prometheus Authors 2014-2021i. Storage. Accessed 30.11.2021.
https://prometheus.io/docs/prometheus/latest/storage/

Ubuntu packages 2021. Linux Image generic. Accessed 30.11.2021.
https://packages.ubuntu.com/bionic/linux-Image-generic

Wikipedia – The free encyclopedia 2021. Ubuntu. Wiki platform. Accessed
30.11.2021. https://en.wikipedia.org/wiki/Ubuntu

 49

Turku University of Applied Sciences Thesis | Tiia Leppänen

Zabbix SIA 2001-2021a. 1 Configuring a host. Accessed 30.11.2021.
https://www.zabbix.com/documentation/current/manual/config/hosts/host

Zabbix SIA 2001-2021b. 1 Dashboard. Accessed 30.11.2021.
https://www.zabbix.com/documentation/current/en/manual/web_interface/fronte
nd_sections/monitoring/dashboard

Zabbix SIA 2001-2021c. 2 Agent. Accessed 30.11.2021.
https://www.zabbix.com/documentation/current/manual/concepts/agent

Zabbix SIA 2001-2021d. 2 What is Zabbix. Accessed 30.11.2021.
https://www.zabbix.com/documentation/5.2/en/manual/introduction/about

Zabbix SIA 2001-2021e. 3 Components. Accessed 30.11.2021.
https://www.zabbix.com/documentation/1.8/manual/installation/components

Zabbix SIA 2001-2021f. 3 Zabbix features. Accessed 30.11.2021.
https://www.zabbix.com/documentation/5.2/en/manual/introduction/features

Zabbix SIA 2001-2021g. 4 History and trends. Accessed 30.11.2021.
https://www.zabbix.com/documentation/current/manual/config/items/history_and
_trends

Zabbix SIA 2001-2021h. 4 Zabbix overview. Accessed 30.11.2021.
https://www.zabbix.com/documentation/5.2/en/manual/introduction/overview

Zabbix LLC 2001-2021i. Explore Zabbix features. Accessed 30.11.2021.
https://www.zabbix.com/features#data_customization

