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1 Introduction

The word DevOps has generated a lot of buzz in the world of software development in re‐

cent times. DevOps is even seeping into other fields outside of IT, such as marketing (Vargo

2015). But the term DevOps is not without problems—there is a lack of consensus on how

the word is defined, and on what counts and doesn’t count as DevOps. Some sources state

that DevOps exists to enable continuous practices, while other sources state the reverse:

that continuous practices enable DevOps (Ståhl, Mårtensson & Bosch 2017). Yet other

sources deny the definition of DevOps as a set of concrete tools and practices altogether,

instead defining it as simply a culture of cooperation between organizations—that is, if

you can cooperate, you can do DevOps (Vargo 2015). In this thesis, we shall use the term

DevOps in the holistic definition proposed by Ståhl et al. (2017): DevOps is a combination of

values, principles, methods, practices, and tools as pertains to software development (see

Figure 1).

Figure 1: DevOps according to Ståhl et al. (2017)

Given this definition, how can DevOps philosophies and DevOps methodology be applied to

improve the workflows in a real life software project? What effects does cultivating “DevOps

culture” in a project have? How would you even go about it? These questions are central

to this thesis project and we aim to first apply DevOps methodology (with the main focus

on DevOps practices and tools) in a real‐world software project, then seek to answer the

question of what effects—positive or negative—the changes had.

The client of the thesis project and the owner of the targeted software project is Bittium

Wireless Ltd. Bittium is a Finnish company of 673 employees (in 2020), which specializes in

the development of secure communications and connectivity. Bittium also provides health‐

care technology products and services in cardiology, neurology, rehabilitation, occupational

health and sports medicine. (Bittium 2021)
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2 Goals and methods

Bittium has a preexisting software project (described in more detail in chapter 4), which was

in need of workflow improvements. The goals of this thesis project were to:

• identify problems in the old workflow,
• address the problems with concrete workflow changes,
• and finally to evaluate the outcome of the workflow changes.

The workflow before the practical implementation phase of this thesis shall be referred to as

the “old workflow”, and the workflow after the improvements were implemented shall be

referred to as the “new workflow” in this thesis.

Chapter 3 lays out the theoretical basis of the software engineering practices that are used

in this thesis work and that are commonly associated with DevOps.

Chapter 4 describes the practical application of the aforementioned theoretical concepts in

a real‐world software project. The chapter starts by describing the old workflow, then moves

on to describing the implementation details of workflow changes and the reasoning behind

each change, and finishes by describing the completed new workflow.

In chapter 5, the efficacy of the workflow changes is evaluated quantitatively with an inter‐

view with project members, and qualitatively by examining build success rates.

The qualitative analysis consists of a semi‐structured interview was held for three project

members. The interviews were conducted after the workflow improvements had been im‐

plemented and the interviewees had had sufficient time to adjust to the new workflows.

The purpose of the interview was to collect impressions of both the old workflow and the

new workflow, and to compare the two from multiple different perspectives. The interview

structure was kept very loose in order to promote free discussion and maximize novel in‐

sights from the participants.

Table 1: Profile of the interviewees

P# Role Experience

P1 Architect 20+ years
P2 Developer 15 years
P3 Tester 5 years

The interview was structured chronologically:

• Introduction. Purpose of the interview. How the data will be handled and used.
• Exploring the old workflow. Exploration of how the interviewees remember the old

workflows. What comes to mind first? Specific anecdotes? Finding both good and
bad impressions without leading questions. Specific topics to bring up if necessary:
building, releasing, testing.
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• Exploring the new workflow. What comes to mind first when thinking of the new
workflow? What is it like to work with the new practices in place? Specific anecdotes.
Specific topics to bring up if necessary: code review, build automation, continuous
integration, test automation, documentation generation, static analysis, build scripts.

• Future work. What would be your vision of the “perfect” workflow? How could we
change the new workflow to get closer to that vision? Free discussion.

The interviews were conducted remotely by means of Microsoft Teams and they lasted be‐

tween 30 minutes and 60 minutes. The interviews were recorded and then transcribed. The

data from the interviews is handled anonymously in this thesis, and the recordings were

deleted after transcription.

3 DevOps practices

In this chapter, we will examine the theoretical basis for this thesis project. As mentioned

in the introduction, DevOps is a collection of values, principles, and methods. We will es‐

pecially focus on DevOps practices and methods that can be directly applied in practice to

improve workflows in a software project. The main practices that will form the backbone of

the new workflow are code review, continuous integration, code analysis, and containeriza‐

tion. Each practice will be explained in more detail in their respective sections.

3.1 Code review

Code review is the practice of inspecting program code for problems such as logic errors

and problems with design. Reviewing code does not necessarily require any tools, as you

can simply open the source code in the medium of your choice and start reading it. Modern

code review, however, is commonly associated with tools and techniques that aim to make

reviewing code more convenient, and to embed code review as a necessary step before new

code is accepted into the mainline. (Bacchelli & Bird 2013)

Modern tools for code review implement convenient features such as blocking patches until

they have been approved by a reviewer, discussing the patch in threaded discussions, and

leaving inlined review comments directly to specific lines of source code. The typical code

review consists of a developer first submitting a patch for review, then other developers

inspecting the patch and either leaving comments and questions or simply approving the

commit if it has no problems. The patch submitter looks through the comments and ques‐

tions and makes the necessary fixes to the patch. This submit–comment–fix sequence is

repeated until every reviewer has approved the patch, and only then it can be merged to the

mainline.

Many potential benefits are attributed to code review (Bacchelli & Bird 2013):
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• Improved software quality. Many pairs of eyes looking at the code see more than just
one pair, which helps to catch bugs earlier. However, a case study at Google described
bug finding as “welcome but not the main focus” (Sadowski, Söderberg, Church, Sipko
& Bacchelli 2018).

• Design problems are caught earlier. Problems with code structure and code design
could have far‐reaching impacts on code maintainability. Other developers reading
the code at an early stage is a direct way to gauge how readable the source code is.
Bad readability, or a wrong abstraction or clumsy design could cause problems far
down the line.

• Lateral transfer of skills. Developers viewing and discussing each others’ code regu‐
larly is an opportunity for transfer of skill.

• Reduced siloing. Other developers viewing new code before it is merged is a good
way to transfer knowledge about that code (Bacchelli & Bird 2013). The scenario is
avoided where a solo developer submits patch after patch directly to the mainline,
with no other developer knowing how their code works or how to maintain it.

3.2 Continuous integration

The term continuous integration (CI) is similarly vaguely defined as the word DevOps (Ståhl

& Bosch 2014), but in this thesis we take it to mean the practice of integrating new chances

into the mainline as often as possible, preferably with automated builds. Ideally, every new

commit should be built and tested immediately as it is merged to the mainline. Compared

to a model where changes are accumulated over a long time and integrated as a separate

integration phase, the practice of CI comes with multiple benefits (Fowler & Foemmel 2006;

Duvall, Matyas, S. & Glover, A. 2007; Miller 2008):

• Reduces integration pains later down the line. Integrating infrequently comes with
significant risk, as the longer development continues in a separate branch, the harder
and more unpredictable integration becomes.

• Increases visibility into the state of the build. Because the newest state of the main‐
line is built automatically, the state of the build is constantly known and transparent.
The mainline won’t be broken without anyone knowing about it.

• Consistent build environments. The “works on my machine” problem is avoided–
i.e. when a change works on a developer’s machine but doesn’t work on another
machine. CI always builds the project in a known and consistent environment and
reports if the build fails.

• Developers get immediate feedback when submitting new changes. If a developer
breaks the build, the CI system will notify them. The CI system will also indicate which
commit it was that broke the build, so that either fixing the commit or reverting it is
easier.

• Increases visibility into the state of the project for managers, product owners, and
other stakeholders.

• Reduces repetitive manual processes by automating them.
• Improves software quality. Miller’s case study at Microsoft (2008) estimates that the

cost of reaching the same level of quality by manual processes would be at least 40%
higher than with CI.

• A working build of the latest mainline is always available for testing and demos.

There are various way to trigger CI builds. The CI system could be polling the source code
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repository for change and initiate a new build when new changes are detected. Builds can

also be scheduled, for example scheduling longer builds for every night. Some version con‐

trol software also support triggering the build from the version control when a new commit

is merged. For CI, either polling or triggered builds should be used. (Duvall et al. 2007)

The process of CI can be explained with an example. Let’s say a developer has just finished

implementing a new change. Without CI, they would simply push the new change directly

into the shared version control system. If they make any mistakes, or if their own develop‐

ment machine has some configuration that makes the build work for them but not for oth‐

ers, then their new change might break the mainline. With CI, however, when the build is

pushed to version control, a CI build is immediately started. When the build finishes, the

build status is reported to the developer and the rest of the team. If the mainline was bro‐

ken, now the development team knows about it and they can avoid checking out the break‐

ing changes until the problem has been addressed.

3.3 Code analysis

The documentation for LLVM’s Clang Static Analyzer defines static analysis as “a collection of

algorithms and techniques used to analyze source code in order to automatically find bugs”

(Clang Static Analyzer 2021). It is a means to automate parts of code inspection, style checks,

and error finding.

Some benefits of static analysis are (Clang Static Analyzer 2021):

• Catch potential bugs earlier. Some bugs that might have otherwise escaped detection
until the software is in production are found before the faulty code is committed to
the mainline.

• Better visibility into code quality through indicators and metrics.

Static analysis also comes with potential problems (Clang Static Analyzer 2021):

• Static analysis takes time, so builds take longer.
• False positives. If there are too many false positives, finding the actual problems hid‐

ing among them is no longer cost‐effective.

Code analysis can be combined with continuous integration, such that each CI build includes
a static analysis step. This way the code quality of the mainline can be traced at all times.
Developers, architects and tech leads, project managers, and other stakeholders always have
access to up‐to‐date code analysis information that can be used to make informed decisions
about how the project should allocate its resources. (Duvall et al. 2007)

3.4 Containerization

Containerization (also known as OS‐level virtualization) is a technology that allows bundling

applications and their dependencies into one package, and then running the packaged ap‐

plication in an isolated environment (also called a “sandbox”). These packages are called



9

“containers”. Containerization is distinct from virtualization, as containers share the host

system’s kernel and use its capabilities to isolate themselves. (Hogg 2014)

Packaging dependencies inside the container enables running the application in a consis‐

tent environment across different machines. The host machine is kept clean, as there is no

need to install dependencies directly on the host machine. Deployment is also simplified,

as dependencies come with the application instead of having to be installed manually. Con‐

tainerized applications can be made modular, so that it is possible to further combine these

containers into larger multi‐container applications. Some examples of containerization tech‐

nologies are Docker, LXC, Solaris containers. (Hogg 2014)

4 Implementation

4.1 Project description

The targeted project is a desktop application that is used for aftermarket service and diag‐

nostics of Bittium devices (henceforth referred to as “the AMS tool” or “the application” in

this thesis). The application detects when a Bittium device is connected to the computer

and allows the user to perform various actions on the connected device, such as factory re‐

set, software update, diagnostics, and so on (see Figure 2). The application supports mul‐

tiple protocols for connecting to devices, such as TCP/IP, I2C, and so on. Which protocol is

chosen depends on the type of the connected device. The application also connects to a

web service for a number of purposes, such as authentication, device data, and service logs.

Figure 2: The AMS tool connects to Bittium devices

The AMS tool is a native desktop application written in C++ and Qt. The application targets

multiple platforms, the main targets being Ubuntu 16.04, Debian 10, and Debian 11. The

application also has multiple variants that are all built from the same codebase. Each variant

has different feature sets that are enabled or disabled based on compilation options. Table 2
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shows a list of all supported variant and platform combinations.

Table 2: AMS tool variants and platforms

Debian 10 Debian 11 Ubuntu 16.04

Helpdesk variant ✓
Internal variant ✓
Commissioning variant ✓ ✓

4.2 Old workflow

The old workflow for developing the AMS tool relied heavily on manual processes (see Fig‐

ure 3). All development, building, testing, integration, and even releasing was performed

manually by developers on their personal development machines. Development and run‐

ning tests were done using Qt Creator (an IDE for C++ / Qt development), and each devel‐

oper used their personal choice of tools for managing their local git repository.

Code was shared among developers by using a shared remote git repository (called the

“mainline”), which had a web front‐end called Gitorious that was used for access control and

browsing the source code through a web interface. Gitorious also supports merge requests

and code reviews, but neither feature was leveraged in the old workflow.

Figure 3: The old development workflow

In the old workflow, testers received latest builds of the application directly from developers,

who built it on their personal machines (see Figure 4). The artifacts were transferred typi‐

cally on USB flash drives and there was no automatic tracking of what exact build and con‐

tent was delivered to testing. Versioning and content tracking were left up to the developers

and testers to keep track of manually, a process that was prone to errors and confusion.
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Figure 4: The old testing workflow

In our estimation, the old workflow had three major problems: too much reliance on man‐

ual processes, inconsistent mainline, and lack of information. Each of these three problems

also brought with them a host of secondary problems, which we will elaborate further in

this chapter.

Problem 1: Reliance on manual processes

Manual processes are tedious and leave a lot of room for human errors and inaccuracies. In

the old workflow, release builds were made manually by developers and delivered to testers

on USB flash memory. If a mistake was made during the build—such as building the wrong

revision, building the wrong content, accidentally making the wrong kind of build, forgetting

to regenerate localization files, etc.—it wasted a lot of developer time. And the longer the

problem went unnoticed, the more time was wasted.

Tracking releases was also done manually. The USB flash memory, which was used for de‐

livering software to testers, quickly became cluttered with different variations of the same

files, and it was up to the developers and testers to manually tag them so that it was possi‐

ble to keep track of which files belonged to which release. This meant that testers had to

track manually what versions and what content they were testing—insofar as it was even

possible to know with certainty what content was being tested, due to the build itself being

the result of an error‐prone manual process.

Inconsistent build environment were yet another pain point. Each developer developed on

their personal machines, and each developer had customized their system to fit their per‐

sonal preferences. The version of Qt was decided at the project level, but everything else on

the system (OS library versions, compiler versions, etc.) was potentially different. This was a

cause for a lot of mysterious problems when using builds from different developers.

Due to heavy emphasis on manual processes, integration also became very difficult and

time‐consuming. Big features could spend weeks or even months in separate branches be‐

fore they were integrated to the mainline. Testing of new features would be delayed until

they were merged. This often meant a long and arduous integration phase, where develop‐

ers and testers would spend weeks or more hunting bugs and trying to get all the features to

work together. From a tester’s point of view, this could mean a long period of inactivity dur‐

ing which there was barely anything to test, and then a sudden surge of overactivity when a

feature was merged.
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Problem 2: Inconsistent mainline

In the old workflow, commits were pushed from the developers machine directly to the

mainline with no quality gating. There were no quality or style checks that would block a

bad commit from being merged or, at the very least, inform the team of the bad commit.

Design problems and architectural problems, as well as obvious logic errors and code that

wouldn’t even compile, regularly made their way into the mainline without hindrance.

Other than design problems or bugs, quality problems can also arise from simple human er‐

rors. Even the best developer makes mistakes, such as failing to include all the local changes

in the commit, or including too much. Such mistakes could mean that even though the

project seems to work on your personal machine, pushing the incomplete commit to the

mainline would break it. The mistake would be noticed only when the next developer pulls

the changes and tries to compile them.

Another common human error was accidentally including temporary files or debug code

in a commit. In one case, a developer unintentionally committed a 200 megabyte ZIP‐file,

which caused a clean‐up operation that forced everyone on the team to update their local

repositories (rewriting the history on the mainline means that everyone has to update their

local repositories to match the amended mainline).

Whether it was a human errors or tool errors, or any other category of error, the lack of

quality gating made blocking and detecting them much harder, which lead to losing time to

debugging sudden build problems, and a an overall reduction in code quality and software

quality.

Problem 3: Lack of information

The old workflow lacked transparency into the state of the mainline (also relates to Prob‐

lem 1 and Problem 2). At any given point in time, the mainline might not pass all the tests

(if it even compiled) and no one would know about it. This was far from cost‐effective, as

it meant that developers had to spend time troubleshooting the build itself, often unsure

what broke it. The lack of automatic static analysis meant that there were no code quality

metrics easily available either, so the team was unable to make informed decisions about

what should be prioritized.

The lack of a formalized code‐review process was also a problem: because no one got the

opportunity to see new code before it was pushed to the mainline, there was noticable silo‐

ing of knowledge within the team. Over‐the‐shoulder code reviews were sometimes per‐

formed, but they were an exception rather than a rule. Each team member had their own

components that they developed, and they rarely ventured outside their own territory to

see what was going on elsewhere in the codebase. This not only caused developers to have

less knowledge about the codebase than they could, but it also missed a crucial opportunity

to share general programming knowledge among the team.
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4.3 Setting up the new toolchain

In order to address the problems in the workflow, we constructed a toolchain. Each of the

tools that we selected mitigates at least one of the primary problems that we identified in

chapter 4.2. The focus was especially on automating manual workflows and bringing more

visibility into the status of the mainline.

The approach we took consisted of three parts, each of which directly addressed at least one

problem in the old workflow:

• Automationmitigates Problem 1: Reliance on manual processes
• Quality gatingmitigates Problem 2: Inconsistent mainline
• Improved visibilitymitigates Problem 3: Lack of information

Following this three‐point strategy, we used the practices introduced in chapter 3 to find

and implement concrete improvements. The practices were chosen based on their theoret‐

ical benefits, and each practice answered different needs (see Table 3)—code review and

static analysis to form the quality gate, and CI as the glue that ties everything together. In

the spirit of DevOps, every practice came with the promise of improved visibility through

automated feedback mechanisms.

Table 3: Mitigating problems in the old workflow

Automation Quality gating Improved visibility

Code review ✓ ✓
Continuous integration ✓ ✓ ✓
Static analysis ✓ ✓

The tools that we selected for implementing the practices in this project are:

• Gerrit for code review. Gerrit is a web‐based tool for conducting code reviews. It
allows teams to view and discuss incoming new code, and to accept or reject new
changes.

• Jenkins for continuous integration. Jenkins is a web‐based tool for automation of vari‐
ous tasks, such as building and testing software.

• SonarQube for static analysis and quality checks. SonarQube is a web‐based tool for
inspecting code quality and creating so called “quality gates”, i.e. automated checks
for source code that must be passed before the code can be merged.

The biggest factor in the tool selection was the level of familiarity at Bittium and especially

among project members. A small survey among the project members revealed that many

of them had already used or at least heard of Gerrit and Jenkins before. We also consid‐

ered GitLab, which supports both code review and continuous integration, but it was a less‐

known tool at Bittium at the time so we chose not to pioneer it in this project, instead going

with the more familiar option to minimize risk and to maximize value.
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To host the new tools, we provisioned four server machines server01, server02,
server03, and server04 (see Figure 5), one server for each primary tool, and one

dedicated machine for the Jenkins agent for running builds. A basic installation of the tools

was done using Salt (described in section 4.3.1), and the configuration for each tool is

described in their respective sections after that.

Figure 5: New toolchain servers

4.3.1 Installation

To install the primary tools for the new toolchain, we used a tool called Salt. Salt (also

known as SaltStack) is a tool for remote task execution and configuration management (Salt

(software) 2021).

Configuration management is a huge topic in its own right, and out of scope for this thesis,

so we will skip most of the details of installing Salt and creating Salt states, but we were able

to use Salt to automate the tedious parts of making a bare‐bones installation of the tools

needed in this project. Our utilization of Salt was limited to only installing the tools, and con‐

figuration and maintenance were left to be done manually.

Salt uses configuration files called “Salt states” for defining how each tool is installed. We

were able to source the Salt states for Gerrit, Jenkins and SonarQube from another project

within the company, so it was a natural choice to use them rather than spend time writing

our own state files.

The main Salt state file, which is named top.sls (called the “Top file” in Salt terminology),

is a YAML file that contains the information on what states to install on which server. For this

project, the Top file looks as follows:
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base:
'*':

- tools
'server01':

- gerrit
- apache.gerrit
- backup

'server02':
- jenkins
- apache.jenkins
- backup

'server03':
- docker
- docker.compose
- jenkins-agent

'server04':
- sonar
- apache.sonar

The YAML‐snippet installs the basic tools that are needed for server maintenance (such as

editors) on all the four servers (states for the wildcard '*' apply to all Salt minions). Then it

installs Gerrit on server01, Jenkins on server02, Jenkins agent on server03, and Sonar‐

Qube on server04. Additionally, an Apache reverse proxy is installed and configured on all

the servers that have outward facing services. The purpose of the reverse proxy is to provide

TLS termination for additional security. Servers that contain important data such as source

code and build artifacts (server01 and server02 respectively) also get a backup script,

which makes regular backups of important data such as source code and build artifacts.

The Jenkins build agent only requires a Docker installation and no other dependencies (for

reasons that are further elaborated in section 4.3.2, where we discuss the implementation

of the build scripts for CI).

With the completed Top file, next we only needed to apply the Salt states to all the machines

by running the following command from the Salt master:

$ salt '*' state.apply

After the command finished successfully, we now had working installations for Gerrit, Jenk‐

ins, and SonarQube, and we could begin configuring them.

4.3.2 Preparing for CI

Before configuring the new toolchain—especially CI—first we had to do some preparatory

work.

Firstly, the build system needed a way to run builds without an IDE. Developers used Qt Cre‐

ator to develop and build the application, but running a graphical tool from the CI system
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was not an option. A more appropriate solution was to develop a script that could be run

from the command line and which would be easier to integrate with a CI system.

Because the AMS tool targets multiple platforms, the build script needed to support build‐

ing for different target platforms, preferably from the same machine. We could have pro‐

visioned separate Jenkins agent machines (either virtual or bare metal) for each of the tar‐

geted platforms, but that would’ve precluded the possibility of building for all platforms

from the same machine (for example a developer’s machine) and would’ve been less cost‐

effective due to increased server costs.

Furthermore, the AMS tool had no version information. As such, if you were handed the

AMS tool without knowing what version it was, it would have been very difficult or impos‐

sible to find out which exact build it was. Versions had to be tracked manually, which was

both inconvenient and prone to error. We needed to device a way to embed version infor‐

mation directly into the application so that even if all you had was the binary file, it would

still be possible to trace it back to the exact commit and build number that it came from.

Build script for multiple target platforms

To be able to run builds from CI and to be able to target multiple platforms from one ma‐

chine, we developed a build script that utilizes containerization technology.

Options that we considered for building for different platforms (but the same architecture)

were chroot, virtual machines, and finally containers. All three were viable options, but we

chose containerization as it was deemed the least complicated way of the three to get run‐

ning. All of the aforementioned methods can be automated, but creating a chrooted build

environment would’ve be much more involved compared to simply spinning up a container.

Virtual machines would’ve be too heavy to spin up and down at will. Therefore for the speed

and convenience we chose containerization, and specifically Docker.

The build script that we developed supports building the project, running unit tests, running

static analysis, and various other functionalities. All supported functions are performed in‐

side Docker containers. Based on the theoretical examination of containerization in section

3.4, Dockerizing the build process comes with clear benefits:

• Dependencies for each target platform are now encapsulated inside Docker images
instead of being installed directly on the host machine. The host machine only needs
working installations of Docker and Bash to run builds. Bash is default shell on most
Linux distributions and therefore likely to be available by default, so only Docker
needs to be installed by the operator.

• All the installed dependencies can be tightly controlled, eliminating problems caused
by inconsistent build environments on different machines. New dependencies can
not creep in silently, because they are clearly and unambiguously defined and version
controlled in Docker configuration files. Build environments remain known and consis‐
tent, as changes to the host machine do not affect builds.
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We built a “master script” that starts a container and runs a build script inside it. The master

script—which we named the dev script—was built upon the following simple idea:

docker run \
--rm \
-v "$PWD:/workarea" \
-w "/workarea" \
"$BUILDENV_IMAGE" \
./build.sh $*

This command does several things for us. The most important part is that it starts a new

Docker container from the Docker image specified by the variable $BUILDENV_IMAGE,
which we call the “build environment”. The build environment could be for example

buildenv-ubuntu-xenial if we wanted to build for Ubuntu 16.04 (xenial), or

buildenv-debian-buster if we wanted to build for Debian 10 (buster), and so on. This

simple idea is very powerful, as it means that any build environment can be used by simply

changing the value of the $BUILDENV_IMAGE variable, as long as a docker image with the

given name exists.

The last line causes a call to another script called build.sh inside the container, which is

the main build script that itself doesn’t know about Docker or containers. It simply runs in

whatever environment the dev script places it in.

The option -v $PWD:/workareamounts the current directory inside the container in the

directory /workarea. If the command is run from the source code repository root, that

means that the source code becomes available at /workarea in the newly started con‐

tainer. -w /workarea sets the working directory inside the container to /workarea.

Lastly, --rm causes Docker to delete the container immediately upon exit. The containers

themselves do not contain any important data—everything import is in the /workarea
directory that resides on the host system’s filesystem—so instead of letting old containers

clutter the system, we can delete them after one use.

The dev script ended up growing much bigger than just the one docker run command,

but everything else that it does is simply ease‐of‐use and convenience features, with the gist

of the script always remaining the same: spin up a build environment and run build.sh
inside it.
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The finished implementation is a build script system that consists of three main components

(see Figure 6):

• dev, or the “master script”, is the front‐end bash script that developers call directly. It
starts up a containerized environment and runs build.sh inside it. The supported
environments are Ubuntu 16.04, Debian 10, and Debian 11. Any of the supported
build environments can be selected with a command line argument, or if no build
environment is provided, the default environment (Ubuntu 16.04) is used.

• build.sh is a bash script that contains the logic for building the application and
other build‐related tasks, which are divided into subcommands such as build, test,
clean, cppcheck, and so on. Developers do not call build.sh directly—instead,
it’s the dev script that calls it in one of the supported build environment containers.

• buildenvs/ contains the supported build environments in subdirectories. Each
build environment has their own Docker configuration, which contains information
about what build tools and dependencies are installed for the specific build environ‐
ment, and how they are installed. Adding a new build environment is as simple as
creating a new Docker configuration file inside the buildenvs/ directory.

Figure 6: The ./dev script runs build.sh inside a container

The finished build script can be used by both developers and the CI pipeline alike. The com‐

mand line interface for the dev script looks as follows:

USAGE: dev [OPTIONS] ARGS

Runs the build script (tools/scripts/build.sh) in a docker
container that has all the necessary tools and libraries for
building the project

OPTIONS:
-e Choose build platform (default 'ubuntu-xenial')
-l List available build platforms and exit

ARGS are passed to the build script as-is. See build script
help for more information on build script arguments.

An example usage would be:
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./dev -e buildenv-debian-buster build helpdesk release

Calling the command results in the following sequence:

1. dev starts up a container from a Docker image called buildenv-debian-buster
and mounts the source code directory inside the new container

2. build.sh build helpdesk release is called inside the newly created con‐
tainer, which starts a release build for the helpdesk variant.

3. After the build finishes, the container is deleted. If the build succeeded, a release
build for Debian 10 (buster) is placed on the disk.

The build.sh script itself is a normal bash script that supports various basic operations like

build for building the project, clean for removing temporary build files, test for running

unit tests, coverage for generating a test coverage result, and so on.

The build environments are defined in Dockerfiles, each of which set up the build environ‐

ment that is capable of building the targeted variants for that specific platform. An example

dockerfile for Debian 10 (buster) could be as simple as:

FROM debian:buster
RUN apt-get update && \

apt-get install -y \
build-essential \
git-core \
qt5-default \
qt5-qmake \
qt5-qmake-bin \
libqt5core5a \
ccache \
gcovr

The example Dockerfile creates a new Docker image that is based on a publicly available

debian:buster image, which, as the name implies, is a Debian 10 (buster) environment.

Then it installs the build dependencies with Debian’s default package manager apt. With

the Dockerfile create, the build environment image is built with the command:

docker build -t buildenv-debian-buster .

After the command finishes, the image should be visible in the system under the name

buildenv-debian-buster, and the newly created build environment is ready to be used

from the dev script with the -e buildenv-debian-buster option.

Versioning

To improve the traceability of application binaries to their respective releases, commits, and

build numbers, we deviced a versioning scheme for the AMS tool. The version number con‐

sists of multiple components. Figure 7 shows an example of a valid version number and lists
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its components, with detailed descriptions for each component in Table 4.

Figure 7: AMS tool version number scheme

Table 4: Breakdown of the AMS tool version number

Component Description

Major version Variant number. 2 for Helpdesk variant, 3 for Internal variant, and 5
for Commissioning variant.

Minor version Increases after implementing new features
Patch version Increases after implementing error fixes
Build number Build number in CI, 0 for non CI builds
Timestamp Build year and week number. Formatted as “YYwWW”, where YY is

the years as two numbers, followed by the letter ‘w’, and finally WW
is the week number. E.g. “17w31” would mean the year 2017, week
31.

Variant short
name

A short name for the variant: “helpdesk”, “internal” or
“commissioning”

Extra string An extra string that tells what kind of a build the binary came from.
“testing” for commit gate builds, “rd” for mainline builds, “release”
for release builds.

After implementing the versioning scheme, we now have the ability to check the binary ver‐

sion number and other relevant information from the binary file itself:

$ amstool --version
Internal 3.1.1.77-18w43-internal-testing
Build time: 2018-10-23T06:51:07
Commit: 0549797

4.3.3 Code Review: Gerrit

After installing Gerrit in chapter 4.3.1, we now had Gerrit running but it still needed to be

configured. We skip the details of domain integration here, but after it was completed, we

had administrator access to the Gerrit instance and were able to start configuring it.
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Gerrit‐Jira integration

We used the its-jira plugin for integrating Gerrit with Jira, which the project uses for

issue tracking. First we enabled the its-jira plugin by editing the Gerrit configuration file

etc/gerrit.config and inserting the following configuration:

[plugin "its-jira"]
enabled = true

Next we enabled Jira comment links from the its-jira plugin. The comment links feature

creates clickable links from commit message to Jira issues when they are mentioned (see Fig‐

ure 8). The feature was enabled by adding the following configuration to gerrit.config:

[commentLink "its-jira"]
match = ([A-Z0-9]+-[0-9]+)
html = <a href=\"https://example.com/jira/browse/$1\">$1</a>
association = SUGGESTED

The match option is a regular expression that causes anything of the form ABC-123 in com‐

mit messages to be interpreted as Jira issues. The association option defines whether all

commit messages must contain a link to a Jira issue or not. We chose the value SUGGESTED,
which does not enforce Jira issue mentions, but notifies if the commit message is missing

a Jira issue mention. This was mostly a project policy decision—while some projects prefer

that all changes reference a Jira issue for traceability reasons, the AMS tool project opted for

a softer landing by encouraging Jira issue references but not enforcing them.

Figure 8: Jira link to issue AMS‐899 in Gerrit commit message

We also implemented its-jira actions that cause Gerrit to automatically comment on

Jira issues about the status of changes that are linked to the issue through comment links

(see Figure 9). This is beneficial, as now Jira issues automatically contain a trail of related

commits and their statuses.

Figure 9: Gerrit reports status changes in Jira
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Additionally, we specified a Jira action that allows setting Jira issue statuses to “Imple‐

mented” directly from the commit message using special keywords. The Jira configuration

for the new actions is placed in a file named etc/its/actions.config within Gerrit’s

installation directory:

[rule "abandoned"]
its-name = its-jira
association = somewhere
event-type = change-abandoned
action = add-standard-comment

[rule "merged"]
its-name = its-jira
association = somewhere
event-type = change-merged
action = add-standard-comment

[rule "implemented"]
its-name = its-jira
association = footer-Implements-Issue
event-type = change-merged
action = Start Progress
action = Set Implemented

Finally, Gerrit was restart to enable the new options. All of the its-jira configuration put

together creates the following triggers in Gerrit (in order):

• Leave a Jira comment when an associated change is abandoned.
• Leave a Jira comment when an associated change is merged.
• Change the Jira issue status to Implemented when a commit is merged whose commit

message footer contains the text Implements-Issue: <issue ID>.

Adding a Jenkins user to Gerrit

In preparation for Continuous Integration, we added a user for Jenkins in Gerrit. Jenkins

needs an account on Gerrit for accessing repositories and reporting build results. We had

a previously generated SSH key pair for Jenkins, so we needed to register the public key for

the newly created user. We created the user and registered the public key in one command:

cat jenkins_ssh_id.pub | ssh -p 29418 server01.example.com \
gerrit create-account \

--group "Non-Interactive Users" \
--ssh-key - \
jenkins

The command created a user named “jenkins” on Gerrit, places the user in the “Non‐

Interactive Users” group, and registered the public key jenkins_ssh_id.pub for the new

user.
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Moving the repository to Gerrit

Moving the mainline repository from the old Gitorious server was simple. First we needed

to create a new project on Gerrit through the web user interface. Then we cloned the repos‐

itory from the old mainline, added the new Gerrit server as a new remote for the repository,

and pushed the repository to the newly specified remote. This had to be done with a user

account that had the ability to push changes directly to Gerrit without going through code

review, or the whole history would’ve had to be reviewed. We achieved the repository trans‐

fer by running the following set of commands with an administrator user:

git clone ssh://user@oldserver.example.com/amstool
cd amstool
git remote add gerrit \

ssh://admin@server01.example.com:29418/amstool
git push --all gerrit
git push --tags gerrit

Now that the code was successfully on Gerrit, developers were able to move from the old

mainline to the new mainline by either updating their old repositories to use the mainline or

by cloning the repository again from Gerrit.

Code review and build verification in Gerrit

In Gerrit, other developers have the opportunity to review new code before it is merged to

mainline. They can leave inlined comments (see Figure 10) and score it before it is merged

to mainline. The code can not be merged before it has passed review.

Figure 10: Inline comments in Gerrit

There are four possible scores that the reviewers can give to the change:

• ‐2 “This shall not be merged.” A score of ‐2 blocks merging the change completely,
even if other reviewers approve it. This block remains in effect until the score is re‐
moved. The reviewer who gave the ‐2 score (or a project lead in special cases) re‐
moves the blocking score after problems with the change have been addressed.
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• ‐1 “I would prefer this is not merged as is.” The reviewer has problems with the
change, but does not feel the problems are strong enough to block merging the
commit if other reviewers approve it. The change can be merged even if it has ‐1
scores, but usually even these smaller problems are addressed before merging.

• +1 “Looks good to me, but someone else must approve.” The change looks good to
the reviewer, but they want someone else to review it too before it can be submitted.

• +2 “Looks good to me, approved.” The change looks good and can be merged to the
mainline.

Additionally, commits have a second score “Verified”, which is automatically filled in by the

automatic build (called a “commit gate”) that is run by Jenkins (see section 4.3.4). The com‐

mit gate ensures that the new build works by building the project, running unit tests, and

running static analysis. The Verified label can be given one of two values:

• ‐1 “The build fails.” The project has build errors, unit tests fail or the new changes
don’t pass the quality gate. Merging is blocked.

• +1 “The build passes.” Merging is allowed if the commit passes review.

After other developers have approved the commit and the commit gate build has verified

the commit, the change can be merged (see Figure 12). If the commit didn’t pass review

or the commit gate failed, it can’t be submitted to mainline until the problems have been

resolved. Figure 11 shows examples of possible commits scores.

Figure 11: A rejected commit (left) and an accepted commit (right)

After the commit has been submitted to mainline, another automated build job is triggered.

This build job is built from the newest state of the mainline and produces the necessary arti‐

facts that are ready to be used in testing or as release candidates.

Figure 12: Submit button is enabled when all the gates pass
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4.3.4 CI: Jenkins

Salt created a basic Jenkins master installation running on server02 and a Jenkins agent

on server03 (see section 4.3.1). The Jenkins master was automatically connected to the

company domain by the Salt configuration and we were set up as the administrator user.

The Jenkins agent server was provisioned with the Jenkins agent software and a working

Docker installation. However, both installations were still otherwise unconfigured, so we

needed to configure them.

First we needed to connect the new Jenkins agent to the Jenkins master. We did it by

navigating to “Manage Nodes and Clouds” in the Jenkins control panel and selecting New

Node. We filled in the details like the name of the server, and set the Launch Method

to “Launch agents via SSH”, filling in the hostname and credentials (see Figure 13). After

clicking Save, Jenkins connected to the agent successfully and the agent showed up in the

list of connected nodes. Now the Jenkins master was ready to delegate jobs to the Jenkins

agent.

We also installed the Gerrit trigger plugin from Jenkins’ Plugin Manager. The Gerrit trigger

plugin allows the creation of jobs that are automatically started when certain events occur

on Gerrit, such as when a new patch is uploaded or when a change is merged.

Figure 13: Connecting a new agent to Jenkins
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Jenkins jobs

After connecting the Jenkins agent to the Jenkins master, and with the Gerrit trigger plugin

installed, the next step was to create the necessary jobs for running AMS tool builds. Jenk‐

ins jobs are automated tasks that are run by Jenkins. Triggering a job can be done based on

configurable criteria, such as timers (for example weekly builds), Gerrit events (for example

commit gates), or even manually.

In our case, we created two jobs:

• A commit gate job, which is run every time a new patch is uploaded to Gerrit. The
purpose of the commit gate is to test that the new commit builds successfully and
passes the quality requirements before it can be merged. A failing commit gate will
cause Jenkins to post a negative score to the related change on Gerrit, which will
block merging the commit to the mainline.

• A mainline build, which is triggered when a commit is merged to the mainline. The
purpose of the mainline build is to always build the newest state of the mainline so
that binaries and artifacts are available for testing. It also reveals if the mainline has
somehow broken despite the commit gate.

Both jobs are almost identical, only their triggers differ. The job definitions were placed in

the AMS tool source code repository in a file named Jenkinsfile, which is the canonical

place for Jenkins pipeline definitions. The job definition file is written in a scripting language

called Apache Groovy.

We wrote a Jenkinsfile to build all the variants for all their supported platforms

(see Table 2 for a list of supported variants and platforms). For this purpose, we used a

Jenkins pipeline feature called “Matrix builds”, which allows running the same build steps

multiple times, each time with different parameter values. We defined debian-buster,
debian-bullseye, and ubuntu-xenial as the supported platforms in the PLATFORM
variable, and Commissioning, Helpdesk, and Internal as the variants that we want

to build. Then we added exclusion rules for variant‐platform combinations that we did not

want to build.

In the Jenkinsfile, the part that deals with the matrix build looks like this (other parts

are omitted for clarity):
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matrix {
axes {
axis {
name 'PLATFORM'
values 'debian-buster', 'debian-bullseye', 'ubuntu-xenial'

}
axis { name 'VARIANT'

values 'Commissioning', 'Helpdesk', 'Internal' }
}
excludes {
exclude {
axis { name 'PLATFORM' values 'ubuntu-xenial' }
axis { name 'VARIANT' values 'Commissioning' }

}
/* more excludes... */

}
stages {
stage ('Build') {
util.build_variant(variant: "$VARIANT", platform: "$PLATFORM")

}
}

}

The pipeline code causes Jenkins to call a function named util.build_variant() with

all of the platform and variant combinations that are not excluded in the exclusion list as

parameters. util.build_variant() is a helper function that uses the dev script that is

described in section 4.3.2 to build the project, run tests, run code analysis, and archive the

build artifacts for successful builds.

Using the Jenkinsfile, we created the commit gate job on Jenkins. First we created a

new Pipeline job and set “Gerrit event” as the build trigger. We set “Patchset created” as

the trigger (i.e. the condition that causes the build to be run) and filled in the server and

branch information. Next we configured the pipeline definition to be fetched from the git

repository by choosing “Pipeline script from SCM”, setting the SCM field to value “Git”. With

these configurations, Jenkins fetches the Jenkinsfile from the AMS tool source code

repository and uses it to run the commit gate job. The configuration was tested by upload‐

ing test commits to Gerrit. A Jenkins plugin named Blue Ocean shows a visualization of the

matrix pipeline (see Figure 14).

If the commit gate build fails, the Blue Ocean view can be used to pinpoint exactly which

variant, platform and build step failed (see Figure 15). Additionally, when a build fails, Jenk‐

ins blocks the commit on Gerrit, stopping the commit from being merged into the mainline,

and leaves a comment that links to the build that failed.
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Figure 14: A successful Jenkins commit gate

Figure 15: A failed Jenkins commit gate

A second, almost identical job was created for the mainline build job. The main difference

was that we set the Gerrit trigger to “Change merged” instead of “Patchset created”, which

means that the job is triggered when a commit has already passed the commit gate and

code review, and is merged to the mainline. This job can be used to fetch the latest main‐

line artifacts for testing or releases, and to see the status of the mainline.

4.3.5 Quality Gate: SonarQube

The last component in the toolchain is SonarQube, which acts as the quality gate for each

new commit. The basic idea is that when a new build is triggered on Jenkins, one or more

steps in the build script uses SonarQube to check if code quality is up to standard. If the

quality criteria are not met, the build fails and merging the failed commit to the mainline

is blocked. We used the SonarQube C++ Community plugin (sonar‐cxx) for analyzing the

source code. The plugin works by analyzing reports from other code analysis tools, which

we also needed to set up.

We used the following code analysis tools for SonarQube:

• cppcheck, which is a static code analysis tool for C++,
• Clang Static Analyzer, also a C++ static analyzer, and
• gcovr, which is a tool for generating test coverage reports.
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Adding quality checks to the dev script

We implemented support for all of the quality check tools in the ./dev script, which allows

us to generate the reports from the command line. For example, to run cppcheck and to

generate the cppcheck report files for SonarQube, we implemented the command:

./dev cppcheck <variant> <buildmode>

For Clang Static analysis we implemented:

./dev scanbuild <variant> <buildmode>

And lastly, generating a test coverage report involves first making a debug build and then

running all the tests, which generates a bundle of gcovr‐files that SonarQube can use for test

coverage data.

Finally, we implemented an action for dev that allows us to send the analysis and coverage

reports to SonarQube for analysis.

Putting all of it together, a full SonarQube commit gate sequence consists of running cp‐

pcheck, running Clang static analyzer, building a debug build, running all tests to generate

test fail/pass data and test coverage data, and finally sending all the data to SonarQube for

analysis. The full sequence of commands for the Internal variant of the AMS tool looks as

follows:

./dev cppcheck internal debug

./dev scanbuild internal debug

./dev build internal debug

./dev test internal debug

./dev sonar internal debug

After running the set of commands, the build results become available on SonarQube.

SonarQube reports

After a project is set up in SonarQube and it has collected the first set of reports, the project

overview becomes available (see Figure 16). The overview shows statistics and information

about code quality, such as the number of potential bugs and vulnerabilities that were found

by static analysis. The overview also shows other information like the number of unit tests

and the test coverage percent, and even gives an estimate for how much work it would take

to fix all the issues (“technical debt”).

SonarQube shows potential problems inlined inside the source code (see Figure 17), which

makes it convenient to find problems and make decisions on what to do about them. Au‐

tomation finds and reports the potential issues, but the decision of how to handle them

is based on a human review. Individual issues can be flagged as “confirmed”, “false posi‐

tive”, or “won’t fix”. If an issue is marked confirmed, that indicates that the issue is thought
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to be a real problem that needs to be fixed. False positive means that the automatic tool‐

ing misidentified some piece of code as problematic, but a human check says otherwise. A

“won’t fix” status means that there might be a real problem, but for one reason or another it

will not be fixed.

Figure 16: Project overview in SonarQube

Figure 17: Code quality issue shown in SonarQube

4.4 Putting everything together: the new workflow

Combining all the tools that we installed in this chapter gives us the finalized, improved

workflow (see Figure 18). Similarly to the old workflow (Figure 3), the developer still does

the main part of their work on their own personal development machine, but instead of

pushing changes directly to the mainline, the developer pushes their changes to Gerrit,

where commits go through code review and build verification before they can be merged to

the mainline. The new toolchain also gives quick feedback to the developer of every stage,

so that the developer is able to make informed decisions.
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The flow of a typical use case would be:

1. The developer makes a new change on their machine
2. The developer pushes the change to Gerrit

• Human reviewers inspect the code, leave comments, and either give their ap‐
proval or rejection.

• Jenkins and SonarQube check that the commit still builds for all the variants and
target platforms, and that any new code passes quality checks.

3. If either Jenkins or human reviewers rejected the commit, the developer has to fix the
issues and upload an amended version of the commit for a new round of reviews and
verification (back to step 2).

4. When the commit passes both human review and Jenkin’s commit gate, it can be
merged to the mainline.

5. Merging the commit to the mainline triggers a new mainline build on Jenkins.

Figure 18: New development workflow

Where testers previously received builds directly from developers (see Figure 4), now testers

can download builds from Jenkins at their own convenience, without developer involvement.

The binaries produced by Jenkins always have a consistent build environment, and they sup‐

port version numbering so that all binaries are traceable back to the exact Jenkins build that

produced them.

The new workflow addresses all the issues that were identified in the old workflow. Manual

processes are fixed by automating them with Jenkins, the inconsistency of mainline builds

is mitigated by checking each commit before it can be merged, and the lack of visibility is

mitigated by generating quick feedback from multiple points within the workflow.
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5 Results

5.1 Quantitative analysis

Evaluating the old workflow through metrics was challenging. Data for it was not readily

available because manual processes do not yield themselves well to recording statistical

information meticulously. Jenkins and SonarQube generate metrics for the new workflow

automatically, but those metrics were not available for the old workflow. Therefore we de‐

viced a way to generate metrics for the old workflow after the fact. The approach we took

was to use the commit history of the source repository to automatically check out all past

changes and attempt to build them one by one.

For the build attempts, we used a slightly altered version of the dev script that we imple‐

mented in section 4.3.2. The main alteration consisted of adding a timeout for the build at‐

tempt, as some older builds were so badly broken that the build got stuck in an infinite loop

and would not finish naturally. We set the timeout to 10 minutes, which was ample time for

a successful build to finish.

After the dev script exited for each build, the success or failure of the build was determined

by searching the project tree for the main executable file that all builds are expected to pro‐

duce. If the executable file was found, the build was considered successful, and a failure

otherwise.

The script that we used to build each commit and to determine success or failure looked

roughly as follows:

git clone "ssh://server01.example.com/amstool" && cd amstool
git log --pretty="format:%H" --reverse > ../commitlist
while IFS= read -u 9 commithash; do

git clean -fxd
git checkout "$commithash"
rm -f dev
cp ../dev dev
./dev build "$variant" release
buildstatus="FAIL"
for artifact in "$(find . -type f -and -name 'amstool')"; do

if file "$artifact" | grep "LSB executable"; then
buildstatus="OK"

fi
done
echo "${commithash}:${buildstatus}" >> ../builddata

done 9< ../commitlist

The script was run separately for all three variants (helpdesk, internal, commissioning) by
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setting the variable $variant to the appropriate value. Finally the results for all variants

were collected into one file. The results were grouped by month, which was taken from the

commit date, and the monthly success rate for each variant was calculated by dividing the

number of successful builds in each month by the total number of commits in that month.

See Appendix 1 for the raw data for monthly success rates. Then we plotted the success

rates with respect to time for each variant (see Figure 19).

The first toolchain related commit was created on September 20 of 2018. The graphs were

plotted at one month resolution, so the start of the new workflow was marked on October

1st, which also was the first day of the first full month with the new workflow. Each of the

graphs in Figure 19 show a dotted vertical line to mark the date.

Before the new workflow adoption, the graphs show heavy fluctuation for the build success

rates. There are periods when the success rates for two or three variants were synchronized,

but most of the time they varied independently. The effect is clearest near the beginning of

2018, where the graph shows that as development of the new Commissioning variant be‐

gan, build success rates for other variants crashed. We speculate that this is because of the

reliance on manual processes—if a developer worked on one variant, there was a danger of

breaking other variants without knowing it because there was no mechanism to block bro‐

ken commits or inform developers of the breakage automatically.

Some of the instability during the year 2017 can be explained by the fact that the project

was still in its beginning phases when most of the development work was focused on imple‐

menting new features. Maturation didn’t begin until late 2017 and early 2018. While this

may be a factor, it alone is not enough to explain the drastic differences before and after CI

was introduced.

After the new workflow was taken into use, the success rates for all variants jumped to 100%

and stayed there permanently. The quantitative analysis demonstrates that builds were

very inconsistent with the old workflow (there were very few months where all the builds

passed), and very consistent with the new workflow.
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Figure 19: Build success rates



35

5.2 Interview results

To evaluate the success of the new workflow from different perspectives, we interviewed

three project members who had experienced both the old workflow and the new workflow.

All the interviewees had different roles in the project (as shown in Table 1): Person 1 was

an architect, Person 2 was a developer, and Person 3 was a tester. The interview was a semi‐

structured interview that was structured in chronological order. We started by asking the

interviewees about the old workflow and their experiences with it. Then we moved on to

the new workflow, asking about experiences and comparing it to the old workflow. The last

part of the interview discussed future improvements. The full interview structure and the

profiles of the interviewees are described in chapter 2.

The different perspectives rising from the interviewees’ different roles in the project proved

enlightening. Person 3 (tester) mostly brought up testing related issues. Person 2 (devel‐

oper) focused on development workflows. Person 1 (architect) had a more holistic view and

discussed both development and testing. Despite the different roles and perspectives, all

interviewees were familiar with the tools and workflows and made use of them regularly,

which gives an insight into why DevOps is often strongly connected to cooperation: it often

resides at the intersection of different competence areas and organizations.

When asked how interviewees remembered the old workflow, Person 1 (Architect) and Per‐

son 3 (tester) both brought up the inconsistent build status in the mainline. Person 1 (archi‐

tect) said that the mainline was almost never fully working, and that bringing the mainline

to an acceptable level of quality required temporarily stopping the development of new fea‐

tures and focusing on maturation. Person 3 (tester) commented that when an unreviewed

commit was uploaded, it might cause the mainline to not even compile, which would re‐

sult in wasted time. Person 2 (developer) also agreed that there was no was to know if the

mainline was working or not, but they also liked the ability to work fast and freely without

restrictions at the start of the project when new features were being implemented.

Making releases was remembered as chaotic in the old workflow. Person 1 (architect) said

that releases were built on specific developer’s machine and there was always trepidation

about whether the build would even work if made on someone else’s computer, due to the

inconsistent build environments. Person 2 (developer) said the process was very manual,

and files were transferred to testers on USB flash memory without much organization. Per‐

son 3 (tester) said that the the USB flash memory might have a dozen different versions with

inconsistent numbering and file name suffixes like “final” or similar. Person 3 (tester) also

stated that the build numbers for the binaries that were delivered to testing were not avail‐

able anywhere, so versioning was a matter of manual bookkeeping. Jenkins was seen as a

solution to the releasing problems. Especially person 3 (tester) was satisfied that they can

now get build artifacts directly from Jenkins, and that they are properly versioned.

When discussing code review and Gerrit, all the interviewees saw it as a positive factor. The
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common sentiment was that while code review seemingly slows down development, it is

worth the cost because it helps in avoiding problems that would arise without it. Person 1

(architect) commented that without code review, we would be back to the old bad situation

(referring to the old workflow). Person 2 (developer) saw code review as necessary, espe‐

cially close to release. Person 3 (tester) told a specific anecdote about accidentally including

a block of test code into a commit, and the problem being found in code review before the

commit was merged to mainline.

Jenkins was also seen very positively. Besides helping with releases, Person 2 (developer)

also said that they are happy that Jenkins verifies the build before it can merged, as doing all

the work of checking all the variants manually by developers would be tedious.

SonarQube was familiar to all of the interviewees, but it had seen less use. Person 1 (archi‐

tect) said that they like SonarQube, but hadn’t used it in several months. Person 2 (devel‐

oper) knew that the tool exists, but had not used it.

When asked directly how the interviewees would compare the new workflow to the old

workflow, the responses were positive. Person 1 (architect) brought up visibility into main‐

line status and the traceability of old builds that Jenkins offers. Person 2 (developer) stated

that the new workflow is the best way to do software development that they know of. Per‐

son 3 (tester) saw especially automation as a strong positive and something to aim for, and

stated that in that and other respects the current workflow is better than the old workflow.

6 Discussion

This thesis project has been long in the making. The first meeting with the client, where the

goals of the project were roughly outlined for the first time, was held almost four years ago

in early 2018. The implementation phase took place mostly over the fall and winter of the

same year.

The implementation phase was reasonably straightforward, but the broad scope of the as‐

signment proved a bigger difficulty than anticipated when writing this report. There was a

constant struggle over what aspects of DevOps to include in the report and what to leave

out. In the end, the core topics were whittled down to code review, continuous integration,

and code analysis. Leaving out many interesting topics was not an easy decision, but it was a

necessary one for this thesis to ever see the light of day.

In the years after its initial conception in 2018, the toolchain has gone through numerous

smaller improvements, fixes, and updates, but the core concepts have remained the same

and the system still works well. The times when pulling new changes from the mainline

might break the build or when you were able to push changes without code review are now

a distant memory, and the ability to make releases easily and to add and remove target plat‐

forms through the dockerized build system have proven invaluable over the years.
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The toolchain is still not perfect, however. The interviews revealed the low adoption rate

of SonarQube, which is perhaps the biggest shortcoming of this thesis project. The intervie‐

wees said that they like SonarQube in principle, but were unable to specify why they don’t

use it. We speculate that the reason (or at least a factor) for the low usage of SonarQube

is related to a failure in setting up the quality gate filters optimally. As it is currently, Sonar‐

Qube shows too many false positives and searching through the noise to find the signal is

too time‐consuming. SonarQube is a powerful tool, but making optimal use of it seems to

require continual attention to keeping the quality rule filters up to date so that the warnings

are always relevant and interesting.

Two of the three interviewees also brought up test automation as the item that needs the

most improvement. The project does have unit tests and integration tests, but at the time

of writing this thesis, system testing is still done manually. It would be possible to automate

large parts of system testing with tools such as Robot Framework—perhaps a topic for an‐

other thesis.

For the quantitative analysis section in the results chapter, gathering metrics that could

be used for gauging the success of the thesis project was problematic. Automation in the

new workflow naturally generates a lot of useful metrics, but those metrics are not avail‐

able for the old workflow and therefore could not be used for evaluating the success of the

new workflow itself. The approach that we took in this thesis—i.e. rewinding old commits

to check their build success rates—grew out of a necessity to find at least some ways to

measure the old workflows. An interesting future study would be finding other metrics to

measure besides build success rates—for example code quality indicators, test coverage

data, test pass and failure data, etc—and seeing how the metrics evolve during and after the

adoption of CI.

From the author’s perspective, the most striking result and the biggest success of the thesis

was the build success rate graph (Figure 19). It is easy to say “we will block broken commits

from the mainline”, but it’s another thing to see with your own eyes how the build success

rate jumps to 100% after the introduction of CI, and how unbudgingly it remains there. Such

a strong visualization drives home how valuable CI is, especially for a project like the AMS

tool, where multiple variants are built from the same codebase.

The author’s personal conclusion from working on this thesis, and from experiencing both

manual and automated workflows in various projects, is that no software project—even a

small one—should be without CI. There is an initial cost to setting up all the necessary tool‐

ing and workflows, but with all the pains and problems that it can save you from, the invest‐

ment should pay itself back manyfold over the life cycle of the project.
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Appendices

Appendix 1. Build success rate data

Date Commits Helpdesk Internal Commissioning
2017‐01 2 0.00 % 0.00 % 0.00 %
2017‐05 34 0.00 % 0.00 % 0.00 %
2017‐06 184 11.41 % 79.35 % 0.00 %
2017‐07 56 89.29 % 89.29 % 0.00 %
2017‐08 148 72.97 % 72.97 % 0.00 %
2017‐09 100 92.00 % 92.00 % 0.00 %
2017‐10 135 88.89 % 88.89 % 0.00 %
2017‐11 94 100.00 % 100.00 % 0.00 %
2017‐12 58 77.59 % 94.83 % 0.00 %
2018‐01 118 96.61 % 84.75 % 0.00 %
2018‐02 30 100.00 % 70.00 % 0.00 %
2018‐03 17 100.00 % 70.59 % 0.00 %
2018‐04 10 100.00 % 60.00 % 0.00 %
2018‐05 92 28.26 % 28.26 % 18.48 %
2018‐06 48 97.92 % 97.92 % 66.67 %
2018‐07 16 100.00 % 100.00 % 87.50 %
2018‐08 24 95.83 % 95.83 % 83.33 %
2018‐09 7 85.71 % 85.71 % 85.71 %
2018‐10 16 100.00 % 100.00 % 100.00 %
2018‐11 33 100.00 % 100.00 % 100.00 %
2018‐12 6 100.00 % 100.00 % 100.00 %
2019‐01 11 100.00 % 100.00 % 100.00 %
2019‐02 3 100.00 % 100.00 % 100.00 %
2019‐03 2 100.00 % 100.00 % 100.00 %
2019‐04 1 100.00 % 100.00 % 100.00 %
2019‐05 2 100.00 % 100.00 % 100.00 %
2019‐06 1 100.00 % 100.00 % 100.00 %
2019‐09 14 100.00 % 100.00 % 100.00 %
2019‐10 20 100.00 % 100.00 % 100.00 %
2019‐11 15 100.00 % 100.00 % 100.00 %
2019‐12 7 100.00 % 100.00 % 100.00 %
2020‐01 5 100.00 % 100.00 % 100.00 %
2020‐02 10 100.00 % 100.00 % 100.00 %
2020‐03 14 100.00 % 100.00 % 100.00 %
2020‐07 1 100.00 % 100.00 % 100.00 %
2020‐09 11 100.00 % 100.00 % 100.00 %
2020‐10 9 100.00 % 100.00 % 100.00 %
2020‐11 2 100.00 % 100.00 % 100.00 %
2020‐12 4 100.00 % 100.00 % 100.00 %
2021‐02 1 100.00 % 100.00 % 100.00 %
2021‐03 1 100.00 % 100.00 % 100.00 %
2021‐04 1 100.00 % 100.00 % 100.00 %
2021‐05 2 100.00 % 100.00 % 100.00 %
2021‐09 2 100.00 % 100.00 % 100.00 %
2021‐10 3 100.00 % 100.00 % 100.00 %
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