
Cryptocurrency Technical Analysis

Tools & BOTs Development

Bachelor thesis

Degree Programme in Computer Applications
Hämeenlinna University Centre

fall, 2021

Alessandro Zanni

Degree Programme in Business Information Technology Abstract

Hämeenlinna University Centre

Author Alessandro Zanni Year 2021

Subject Cryptocurrency Technical Analysis: Tools & BOTs Development

Supervisors Esa Huiskonen

ABSTRACT

The purpose of this thesis is to create a web application hosted in AWS and a BOT which

automatically trades cryptocurrencies based on technical analysis indicators. Investing in

cryptocurrencies is very risky and many times sentimental investing makes the investor buy and

sell crypto at the wrong moment. Thanks to the implementation of these tools investors can utilize

technical analysis and thus mathematics to understand when it is a good moment to buy or sell a

specific coin. The web app enables the user to study an investing strategy and the BOT uses the

strategy found to trade cryptocurrencies automatically.

In order to achieve the development of these tools a good knowledge of Python and Nodejs and

React is needed as well as a good understanding of React. The creation of the web app and the

BOT is possible thanks to the creation of an algorithm that uses specific libraries dedicated to

technical indicator calculations. This thesis is mostly practical, since the amount of code needed to

develop all the services is rather massive. However, everything that is going to be developed is

firstly introduced in the theoretical part, especially everything regarding the main subjects, which

are cryptocurrencies and technical analysis.

The conclusion of the paper is that a developer can create a web app hosted in AWS without

having high costs. Moreover, the creation of an investing BOT without having a deep knowledge of

the subject thanks to the use of libraries is achievable.

Keywords development, technical analysis, BOT, cryptocurrency

Pages 52

Glossary

HTML HyperText Markup Language for web pages

DNS Domain Name System

HTTP Hypertext Transfer Protocol

HTTPS Hypertext Transfer Protocol Secure

CLI Command Line Interface

API Application Programming Interface

POS Prof of Stake

POW Prof of Work

SCSI Small Computer System Interface

CIFS Common Internet File System

NFS Network File System

SSL Secure Socket Layer

Contents

1 Introduction .. 6

2 Cryptocurrencies and technical analysis a general overview 7

2.1 Introduction to the crypto world .. 8

2.2 Crypto exchange platforms ... 9

2.3 Technical analysis .. 10

2.3.1 Technical indicators ... 11

2.3.2 MACD & RSI ... 11

2.3.3 BOT & technical analysis ... 13

3 AWS .. 15

3.1 AWS storage and application delivery .. 15

3.2 AWS routing .. 15

3.3 AWS cloud computing ... 16

4 Web app ... 17

4.1 Architecture .. 17

4.1.1 S3 ... 18

4.1.2 Route 53 .. 20

4.1.3 Cloudfront implementation ... 21

4.1.4 EC2 and algorithm deployment ... 22

4.1.5 API Gateway setup .. 23

4.2 Web app frontend ... 25

4.2.1 The home page .. 27

4.2.2 Tools implementation ... 28

4.2.3 Additional pages .. 33

4.2.4 Google Analytics .. 34

5 Automated BOT .. 36

5.1 BOT infrastructure ... 36

5.1.1 Fetching historic data .. 36

5.1.2 Algorithm and signals generator ... 38

5.1.3 Exchanging in Binance ... 38

5.1.4 Telegram notifications ... 39

5.2 Running the BOT ... 41

6 Results .. 43

6.1 Products analysis ... 43

6.2 Tools results and profit ... 44

6.3 Comparing BOT and holding strategy ... 45

6.4 Possible negative impact ... 46

6.5 A better future impact for cryptocurrencies ... 47

7 Summary .. 48

Figures, program codes, commands and tables

Figure 1 - MACD plot taken at 22:12 on the 1sth of October 2021 12

Figure 2 -RSI plot taken at 22:43 on the 1sth of October 2021 13

Figure 3 – Web app plot generated at 23:00 on the 27th of September 2021 14

Figure 4 – Web app architecture .. 17

Figure 5 – S3 Buckets view ... 18

Figure 6 – S3 Buckets access ... 19

Code 1 – S3 Buckets policy ... 19

Figure 7 – S3 Bucket hosting settings ... 20

Figure 8 – Route 53 console view ... 20

Figure 9 – Cloudfront console view .. 21

Figure 10 – SSL certificate ... 22

Figure 11 – EC2 instance view .. 22

Figure 12 – Logged into EC2 instance ... 23

Figure 13 – API Gateway methods and resources .. 24

Figure 14 – API Gateway CORS settings .. 25

Code 2 - React Router implementation .. 26

Code 3 - Helmet example ... 26

Code 4 – Home page .. 27

Code 5 - Styled Components containers .. 28

Code 6 - Styled Components titles ... 28

Code 7 – React Hooks ... 29

Code 8 - Setting a variable .. 29

Code 9 - Plot Generator implementation ... 29

Code 10 - Plot Generator price fetcher .. 31

Code 11 - Plot Generator showing the image .. 31

Code 12 – Plot Generator Youtube video implementation .. 32

Code 13 - Plot Generator API request towards API Gateway ... 32

Code 14 - Profit Calculator implementation ... 33

Code 15 – Privacy Policy ... 34

Code 16 - Google Analytics implementation .. 34

Figure 15 – Google Analytics .. 35

Figure 16 – BOT architecture ... 36

Code 17 - Fetching historic data ... 37

Code 18 - Cron job .. 37

Code 19 - Binance buy method .. 38

Code 20 - Binance sell method ... 39

Code 21 – Telegram notification .. 40

Figure 17 - Telegram message .. 41

Figure 18 - Running BOT ... 42

Annexes

Annex 1 Material management plan

1 Introduction

2020 was the year of the beginning of cryptocurrency mass adoption. Since Decentralized finance

awareness has been spreading widely around the globe, big companies, such as Tesla, have

acquired Bitcoins and one of the richest men on the planet, Elon Musk, has publicly supported the

cryptocurrencies world. One of the biggest American stock exchange Nasdaq and many others are

comparing the rising of crypto to the rising of the Internet in the 90s, stating that Bitcoin has

already outpaced the Internet growth. This opened enormous opportunities for investors and

entrepreneurs. The latter category of people needs a good idea in order to be successful and this

thesis presents my personal idea and every detail about its realization. (Nalawade, 2021)

This paper explains the creation of a never seen before web application, which enables users to

develop crypto trading strategies by using technical analysis indicators. The web app includes a

profit calculator that gives to the user the possibility to test their strategies and a plot generator,

which enables the user to visually analyze the trend of their decisions.

Moreover, the tools and algorithms created for the web app are utilized to create a BOT, which

automatically manages a Binance Account (crypto exchange platform) Portfolio. The BOT

exchanges the assets between USDT (stable cryptocurrency) and ADA (the coin of the Cardano

blockchain) automatically basing its decision on buy and sell signals calculated using an algorithm

coded in Python.

This thesis reports the path of realizing these tools from scratch, the thinking behind the idea and

technologies selection, the software architecture, cost management, implementation of Google

analytics, utilization of source control through GitHub, cloud development, and, of course, a lot of

code.

The research questions which this thesis answers are as follows:

- How to create a working algorithm that gives trustable outcomes?

- How to deploy a fully working web-app in the cloud?

- How does BOT automation work and what technologies to use for development?

2 Cryptocurrencies and technical analysis a general overview

This thesis mainly focuses on the development of the tools and BOT. Most of the code used for the

development is going to be shared, with the exception of the Python algorithm. There are three

main subjects that are going to be discussed:

- The basics of cryptocurrencies

- The basics of technical analysis

- Software development methods (including cloud, frontend, backend, software

architecture)

The basics of cryptocurrencies and technical analysis are an overall introduction to the topics, but

they are not studied deeply, since the scope of this document is the development process and the

creation of the web app and BOT. However, to fully understand the tools, it is essential to have a

general understanding of the subjects.

Up until the period during which this document has been written, no similar web apps are publicly

available on the net. Instead, there is a different situation for the BOT. Currently there are many

BOTs circulating, but the one developed in this case is going to be different, since the users are

going to be able to decide the technical indicators to utilize after checking the profitability of the

web app. This is because the users do not have the power of deciding the technical indicators to

utilize.

If this is not making much sense yet, it is related to what was reported at the beginning of the

chapter. Without a general understanding of the subject it is challenging to create any application

or even follow a paper.

2.1 Introduction to the crypto world

Cryptocurrency is a digital currency, which is secured by cryptography. This means that a

cryptocurrency does not exist as a material asset, it is not possible to have a material Bitcoin in the

wallet. Most of the cryptocurrencies are decentralized and they are based on blockchain

technology, which is a network of computers which work as a distributed ledger. The main

characteristic of cryptocurrencies is that they are not controlled by a central authority, such as

banks and thus they are not controllable by governments. (Brown, 2020, pp. 32-35)

There are different types of blockchains. The Bitcoin blockchain, for example, is different from the

Ethereum and from the Cardano blockchains for example. One of the main differences for

example between the Bitcoin Blockchain and Cardano is that the first has a proof of work model,

where the second one has a proof of stake one. These terms are part of a higher concept, the

‘consensus mechanism’ which is a mechanism that is utilized in computers and blockchain to have

an agreement on a single piece of data or state of the network between the distributed process or

multi-agent ones, exactly like cryptocurrencies. The main information hidden in the above

definition is that this mechanism is very useful for record-keeping. In simple words the consensus

mechanism in blockchain system is how the crypto transaction is ensured, since there is no central

entity doing it as for example banks do in centralized finance. (Frankenfield, 2021a)

Before going to the definitions and differences between the two different models, there is an

additional concept that requires to be introduced: mining. The work of the miners is to confirm

transactions by solving cryptographic mathematical problems, also called hashes. Once a hash is

solved by a miner, which is done in a “block” from which the name blockchain, the following block

is going to have a new cryptographic signature and it is going to be visible by everyone. In fact, in

the decentralized finance it is possible to see every single transaction that happened, but it is not

possible to know the parties involved in the transaction. (Brown, 2020, pp. 27)

In different consensus mechanisms, the miner work changes. However, the final goal of the miner

is always the same. The difference is the “how to” process, and this identifies the main differences

between blockchains. The Proof of Work (PoW) requires nodes on a network to provide evidence

that they have expended computational power (i.e. work) in order to achieve consensus in a

decentralized manner and to prevent bad actors from overtaking the network. An example of a

blockchain that uses PoW is the Bitcoin Blockchain or the Ethereum one. Cardano blockchain uses

a PoS model instead. (Frankenfield, 2021b)

The Proof of Stake (PoS) concept states that a person can mine or validate block transactions

according to how many coins they hold. This means that the more coins owned by a miner, the

more mining power they have. (Frankenfield, 2021c)

2.2 Crypto exchange platforms

As cryptocurrencies are decentralized and totally detached from the FIAT currencies (Fiat money is

government-issued currency that is not backed by a physical commodity), there is the need of

crypto exchange platforms to play the role of exchanges between the two.

An exchange platform is where people can exchange cryptocurrencies with FIAT and viceversa.

Following a list of the most famous platforms, based on a research done by CoinMarketCap

(CoinMarketCap, 2021)

- Binance (https://www.binance.com/en)

- Coinbase (https://www.coinbase.com/)

- Huobi Global (https://www.huobi.com/en-us/)

- FTX (https://ftx.com/)

- KuCoin (https://www.kucoin.com/)

- Kraken (https://www.kraken.com/)

- Binance.US (https://www.binance.us/en/home)

- Bitfinex (https://www.bitfinex.com/)

- Bithumb (https://en.bithumb.com/)

- Gate.io (https://www.gate.io/)

The BOT created utilizes the Binance Exchange platform and the APIs directly provided by them. I

personally selected Binance as my main choice for two main reasons. The first one is that I already

have an account and I am familiar with the interface of the application as well as the

functionalities. Moreover, the APIs provided by Binance are clearly documented and thus easy to

use.

Binance is one of the most trusted exchange available in the market. The company was launched

in July 2017 by Changpeng Zhao (CZ). The platform not only gives the opportunity to exchange

FIAT currencies with Crypto, but it also provides tools for analysis as well as an NFTs (Non-fungible

tokens) marketplace. In this paper we are not going to cover NFTs.

The BOT as well as the web-app utilize the APIs to retrieve information about the markets and

thus the crypto prices in real time. Moreover, the BOT uses the APIs to make real asset movement

in the Binance account. APIs are the best way for the tools developed to automate the BOT and to

get information about the market in real time.

2.3 Technical analysis

The term “technical analysis” has been used many times in this thesis. Therefore, it is time to give

a definition to this term. Technical analysis is the process of identifying trend changes, which

indicates a good moment to buy or sell a certain asset. Technical analysis methods can be used for

example for stocks and cryptocurrencies and this latter one is the topic that interest us the most.

In other words, technical analysis uses technical indicators, for example RSI or MACD to determine

if it is a good moment to buy, sell or do nothing. (Pring, 2014, pp. 3)

One of the main aspects of technical analysis is the subjectivity. When an analyst analyze the data

there are three main activities that can be observed: the identification of the price and indicator

patterns, the data interpretation and the potential future price behavior. Analyzing this kind of

data is subjective because different behavioral traits and filters are unique to each analyst or

observer. As a result, every analyst can have a different perception of the market. (Lim, 2016, pp.

16)

2.3.1 Technical indicators

Technical indicators are used to illustrate the characteristics of a market. They represent different

mathematical models and studies the goal of which is to describe what the current status of the

market is. However, it is the task of the analyst to gather the information given by these indicators

in order to understand what the indicators are telling in a specific moment in time. (Pring, 2014,

pp. xii)

More indicators shall be used together in order to have an extensive view and understanding of

the situation. This does not mean that any indicator can be associated to any other. In fact, there

are specific indicators, which identify specific characteristics of a market trend. The BOT developed

during the creation of this thesis uses mainly two indicators, of which two are consider oscillators,

the moving-average convergence divergence (MACD) and the relative strength indicator (RSI).

(Pring, 2014, pp. 244)

2.3.2 MACD & RSI

My profession is software developer and not investor. Therefore, even if I developed a certain

curiosity in the investing field, I would never address myself as a knowledgeable person in the field

of investing money and using technical analysis at its best. However, developers can create a-well-

working-application thanks to libraries created by experts in the field. This enables people, such as

me, to materialize ideas and products without the need of having a deep knowledge of the specific

subject. The realization of the algorithm I developed and overall, the products that work around it,

are an example of how much open-source libraries can elevate a developer in reaching a goal. The

algorithm created is slightly analyzed later in this paper. However, it is important to focus on the

utilization of the technical indicators and how they can perform. Before introducing the

indicators, it is essential to learn the concept of candlestick chart. A single candle represents the

high, low, open and close prices for a specific period of time for, in our case, a crypto asset.

(Hayes, 2020)

For instance, MACD and RSI are momentum indicators and even if they are part of the same

category, they differ from each other. The MACD is mostly used to measure the strength of the

price movement. This is done by gauging the divergence between two exponential moving

averages (EMAs). Usually, the period selected when calculating the MACD is the 12 and 26 period

EMAs. This indicator is very simple to understand when it is plotted as Figure 1 demonstrates:

Figure 1 - MACD plot taken at 22:12 on the 1sth of October 2021

The upper part of the picture represents the price trend of the Bitcoin up to the 1st of October

2021. Each candlestick represent one day. In the second half of the pictures, it is represented the

MACD value for each single candle (ergo day). The indicator is composed by three main elements.

The first one is the 12 months period EMA represented by the purple line. The second one is the

26 months EMA, which is represented with the blue line. Finally, the signal length, which looks like

a candle, but it shows the indicator sentiment in that specific moment in time. Comparing the

candlesticks of the Bitcoin price and the indicator line strength it is possible to notice that the two

are correlated. When the MACD value changes from negative to positive, thus whenever the color

of the MACD value changes from red to green in the graph, the indicator tells that it is a good

moment to buy Bitcoin. Vice versa, whenever the value changes to negative, thus the color of the

line strength of the MACD changes from green to red color and it is translated as a good moment

for selling.

The green circle is the moment in which the indicator suggests buying and with red when it

suggests to sell. It is noticeable that not always the indicator would have suggested to buy low and

sell high. Therefore, more indicators shall be used when using technical analysis, since only using

the MACD for example would not give excellent results.

The other indicator utilized is the RSI, which tells if a market is overbought or oversold. The scale

of the measurements range from 0 to 100. When the RSI is over 70, it means that the market is

overbought and thus the price supposedly will go down, thus it is time to sell. If the RSI index is

below 30, it means that the market is oversold and thus it indicates that the price might start to go

up, in other words it is a good moment to buy.

Figure 2 -RSI plot taken at 22:43 on the 1sth of October 2021

The Figure 2 it is reported the graph about the Bitcoin price in the same way as in the MACD

picture. However, in this picture the RSI value is represented. The blue line on the bottom part of

the picture shows the RSI which at that specific moment had around a value of 68, which means

that the price of the Bitcoin was just about to reach the value of 70 and be considered overbought.

As for the MACD the RSI indicator taken alone would have not given us the best buy and sell

indicators. In fact, the buy and sell signals given in that period, represented respectively by the

green and red circles, would have not provided a profit (Maverick, 2021).

2.3.3 BOT & technical analysis

The decision of using these two indicators when running the BOT is based on their simplicity.

Testing the Python algorithm and the signals generated using this instrument showed that paring

these two indicators gave rather good results. The following plot has been generated using as buy

signal an RSI < 30 and as sell signal an RSI > 70 & MACD > 0 (positive). The crypto selected in this

case is Bitcoin and the price history data is based on 1-minute candlesticks, but this is not yet the

moment to focus on the details. The takeaway from Figure 3 is that by paring those two indicators,

acceptable buy and sell signals were received:

Figure 3 – Web app plot generated at 23:00 on the 27th of September 2021

As the legenda says the red dots are the buy signals and the black dots are the sell indicators.

What matters the most now is that the sell signals are higher than the buy signals. This means that

there is space for profit. If the BOT I developed would have followed these indicators during this

range of time, it surely would have ended up with a decent profit.

This is to demonstrate that even if I am not an analyst it was enough to learn about few indicators

in order to understand how the algorithm was supposed to be built and what outcome I should

expect once the coding was done.

3 AWS

Back In 2006, Amazon Web Services (AWS) started to offer IT infrastructure services to businesses

in the form of web services. Nowadays, these services are called cloud computing. The advantages

of cloud computing is the opportunity to save infrastructure expenses, in fact thanks to the scaling

possibilities that the cloud offers, customers can pay only for what they need and use. (Baron,

2017, pp.)

The infrastructure used in the web app is going to use only a small part of the services provided by

AWS. In the following chapter, these services are analyzed to have a clear understanding of why

they were my main choice for the deployment of the web application.

3.1 AWS storage and application delivery

Amazon S3 is cloud considered an object storage. Amazon S3 storage is accessed over the

Internet, but it is not associated to a server. In fact, S3 data is managed through API and not using

the most typical protocols SCSI, CIFS, or NFS.

The most important feature of s3 that is in contrast with typical file systems is that when

we GET an object or PUT an object, it operates on the whole object at once. One of the main goals

of s3 is to be highly scalable and durable. (Kuppusamy & Vyas, 2014 pp. 36)

Another AWS service used when delivering the web app is Cloudfront, which is a fast content

delivery network. It is perfect for delivering data, videos applications and APIs to users all over the

world. Another great feature are the security capabilities and since I want to deliver the

application securely through https, Cloudfront is exactly what I need to achieve this. (Amazon Web

Services inc., 2021a, pp. 10)

3.2 AWS routing

Amazon Route 53 is a highly available and scalable cloud DNS web service designed with the

purpose of giving to developers a trustable and cheap way to route end users to Internet

applications.

Amazon Route 53 functions can be summarized in domain registration, since it enables the user to

register domains. Also, it provides DNS services, thus it translates IP addresses to domain names.

Finally Route 53 can be used for health checking. In fact, it can send automatic requests to

application over the Internet to make sure they are up and running. (Amazon Web Services inc.,

2021b, pp. 10)

3.3 AWS cloud computing

Amazon API Gateway is utilized to manage, monitor and secure APIs. It is used as the entrance for

application to access the data provided by the backend services. There are two different types of

APIs that can be created, Websocket APIs and REST APIs. REST APIs are the ones that are used by

our web application and BOT, thus it is necessary to give a short introduction to them.

API stands for Application Programming Interface and it is a set of definitions and protocols for

building and integrating applications. A REST API is an application programming interface that

conforms to the constraints of REST architectural style and allows for interaction with RESTful web

services. REST stands for representational state transfer. (Amazon Web Services inc., 2021c, pp. 8)

Amazon Elastic Compute Cloud (EC2) provides a resizable compute capacity, and it utilizes it

comes with an easy-to-use interface. It allows complete control over the computing resources. The

main focus of EC2 is to be able to scale easily, reliable, highly secure and easy to use. This service is

very important in the matter of the web application since it contains the algorithm with which the

frontend communicates. (Kuppusamy & Vyas, 2014 pp. 50)

4 Web app

The goal of the web app is to use the Python algorithm to enable the user to see what signals

technical indicators when certain values are provided. For example it was previous stated that the

RSI would theoretically would give a good sell signal once it reaches the value of > 70. However,

someone could argue this statement and it could also be argued that RSI sell value should vary

based on which other indicators we want to query the results. Another goal expected by the web

app is to have a profit calculator, which would compare how trading using technical analysis over a

certain period of time would result in a comparison between just buying and holding the coin for

the same amount of time.

4.1 Architecture

I decided to opt for the cloud solution for the hosting and development of the web app. The cloud

selected is Amazon Web Services since I have personal knowledge about the service and because

it provides, if used correctly, one year of free hosting (with the exception of the domain costs). The

final architecture of my solution is represented in Figure 4:

Figure 4 – Web app architecture

The static files of the web applications are going to be served through an s3 bucket, the delivery is

done through Cloudfront which enforces the https usage as well. This is important to ensure

secure connections to the users. Concerning the actual usage of the services provided by the web

app, API Gateway is used as a gateway of the API requests made by the user when generating the

plot or calculating the profit. These requests are routed towards the EC2 instance in which the

algorithm is running. If the request is successful, the response runs through the same services and

it will result in the user viewing either the plot requested, or the profit calculated.

4.1.1 S3

After creating a root account and logging as a user afterwards in AWS, I started to focus on the

web app hosting in s3. However, it is necessary to have something to host at first.

The frontend of the application is going to be coded in React, thus before moving anything into the

cloud, I started by creating a simple React application in my local machine by running the

command npx create-react-app NAME_OF_THE_APP. After double checking that everything was

working properly by moving to the created folder using cd NAME_OF_THE_APP and running npm

start, which enabled me to see the application running in localhost, I was ready to deploy the

dummy application to the bucket.

In s3 two different buckets are created. One is the public bucket, which is named using the

complete URL of the web app and thus using the www naming convention. The other one is

private and it contains the exact same files, but the name of it omits the www part of the URL. The

domain name used for the web app is “verticaltradingbot”.

Figure 5 – S3 Buckets view

Once the bucket was created, I uploaded the static files into it and started to set the www bucket

to be accessible by everyone. This process is obtained by turning off all the public access blocks,

which are enabled as default for safety reasons by AWS.

Figure 6 – S3 Buckets access

Next configuration step is to create a bucket policy, which allows public access to the public. The

policy code is shown in Code 1:

Code 1 – S3 Buckets policy

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "AllowPublicReadAccess",
 "Effect": "Allow",
 "Principal": "*",
 "Action": "s3:GetObject",
 "Resource": "arn:aws:s3:::www.verticaltradingbot.com/*"
 }
]
}

The last step for the moment is to move to the properties tab and edit the “static website hosting”

options. The important steps are to enable the static website hosting, set it as static hosting and

finally indicate the index document, which in this case is “index.html”.

Figure 7 – S3 Bucket hosting settings

4.1.2 Route 53

There are two main steps to be taken in Route 53, the domain registration and the DNS

management. Luckily the domain verticaltradingbot.com was not taken by anyone, thus I was able

to purchase it until June 2022, but thanks to the auto-renewal option, no one will be able to use it

unless I decide to give up on it.

After purchasing the domain, I started setting up the routing. For security reasons the exact

routing process is not shown, but it is important to say that the setting up of the routing is done at

the same time while deploying other services, such as the EC2 instance and especially Cloudfront,

which will be introduced in the next chapter. The result of the work is a working routing for our

web application.

Figure 8 – Route 53 console view

4.1.3 Cloudfront implementation

There are two main things to accomplish in Cloudfront, one is to create a distribution where we

are able to create a default Cloudfront domain, which is routed to the purchased domain

verticaltradingbot.com. The other accomplishment is to secure the connection using an SSL

certificate. Thanks to this the web app is going to be accessible through HTTPS and thus be

considered secured by more famous browsers such as Chrome.

More precisely, there are two different distributions that are going to be created, since the goal is

to have people redirected to the web application in both of the cases, when a user tries to access

the website through www.verticaltradingbot.com and when they insert in the URL search bar only

verticaltradingbot.com.

Figure 9 – Cloudfront console view

It is noticeable that the Domain name provided by Cloudfront is not professional for a website

therefore purchasing a domain name is needed. However, having the new domain being the main

one, it does not mean that the Cloudfront domain is disabled. In fact, if we try to access

https://d2ypzjdx2nw9jq.cloudfront.net/, we are still able to open the web application without any

issue.

The second step to be done is to create a certificate in order to have a secure HTTPS connection.

AWS is very helpful in this sense, since it guides the user to create the certificate and it stores it in

the certificate manager.

Figure 10 – SSL certificate

After setting up domain and certificate in Cloudfront console web app is served to public internet.

It is possible to access the web app by using a secure HTTPS connection and the custom domain

name https://www.verticaltradingbot.com/.

4.1.4 EC2 and algorithm deployment

The Python algorithm is deployed in a micro EC2 instance, since I am not expecting high traffic for

the web application, for the moment micro was the best and cheaper option for the deployment.

The first thing to do after heading to the EC2 instance page is to press on launch instances and go

through the options that AWS console offers. There are plenty of different options available.

However, for our case there is no need to add any additional service. Therefore, starting the

instance is a matter of a minute. When creating the instance, it takes a moment before it is

actually possible to log into it.

Figure 11 – EC2 instance view

Once the instance has been turned up, it is enough to press connect and a new CLI interface open.

The next steps are setting up the instance with the algorithm and open the correct ports in order

to make the instance accessible from outside. For security reasons this process is not shown. Next

step is to upload the algorithm to the instance. The easiest way is to have the code in a Github

repository, so that it is enough to clone it directly into the instance with the command git clone

NAME_OF_REPO. The final result is that the instance is running the algorithm using Gunicorn which

is a Python WSGI HTTP Server for UNIX.

Figure 12 – Logged into EC2 instance

The algorithm running in the instance is now able to communicate with the outer word by

accepting incoming requests and sending responses. The main work of the algorithm is to receive

API calls from the frontend including historic data of a specific crypto, elaborate the data based on

technical analysis libraries and send the response back to the frontend.

There is one last service that needs to be configured before moving to coding the frontend of our

project. API gateway, which works between the EC2 instance and the frontend acting as the

middleman between the two.

4.1.5 API Gateway setup

Thanks to API Gateway we are able to make the frontend communicate with the EC2 instance in a

simple and more secure way. The goal is to set up two different endpoints that are going to be the

core of the plot generator and profit calculator of the web app. In fact, these two tools are able to

work thanks to the communication with the backend code running in the EC2 instance.

The creation of the service and the two endpoints is very straightforward and since we do not

want to expose the IP address of the EC2 instance, I changed the gateway re-routed the calls

received from the domain to the IP address. This way the IP address of the EC2 instance is behind

the gateway itself and is not publicly visible. The endpoints created are the two following POST

requests

- https://k67g3ukds3.execute-api.eu-central-1.amazonaws.com/test/ , which is used for the

plot generator

- https://k67g3ukds3.execute-api.eu-central-1.amazonaws.com/test/signals , which is used

for the profit calculator

Now that the Method and resources have been set up, the AWS console for this specific service is

reported in Figure 13:

Figure 13 – API Gateway methods and resources

There is still another important matter to solve. CORS, Cross-Origin Resource Sharing can be very

troublesome, but thanks to the interface of API Gateway enabling the CORS is a matter of a click.

This is done by adding the Access-Control-Allow-Headers, Access-Control-Allow-Methods and

Access-Control-Allow-Origin values directly into the method integration response.

Figure 14 – API Gateway CORS settings

Everything is now set up in the cloud. It was rather easy to create the hosting environment for the

web application. AWS provides simple and cheap ways to host any kind of website in the net. Only

few of the, almost 200 services have been utilized to host the web app. The only thing missing for

completing the web application is the frontend development, which is going to be explained in the

next chapter.

4.2 Web app frontend

The frontend of the web app is going to be coded using React. At the beginning of the AWS

implementation a new application has been created in order to start uploading something to S3

while setting up the cloud environment.

However, it is now time to write some code. The main idea is to have a main page where the tools

available are introduced as well as the available cryptocurrencies put available for the technical

analysis calculations. At the top of this page there is going to be a menu with links to the tools and

an about section.

Some information about tools and methods that are not going to be covered in the following

chapters. The routing of the application has been achieved using React Router Dom, this enabled

us to route to different URLS when rendering a new page. A small part of the code used for the

routing is reported in Code 2. Another important tool used in the development has been Helmet

which enables to enhance SEO related matters, such as page descriptions and tags. Helmet

implementation is shown in Code 3.

Code 2 - React Router implementation

<Router>
 <LogoContainer>
 <Link style={{ textDecoration: 'none', color: '#fff' }} to="/">
 <VerticalSVG />
 </Link>
 </LogoContainer>
 <BodyContainer>
 <CenterTabs>
 <AppBarStyled>
 <LinkMarginDivFirst>
 <Link style={{ textDecoration: 'none', color: '#fff' }}
to="/">
 HOME
 </Link>
 </LinkMarginDivFirst>
 <LinkMarginDiv>
 <Link style={{ textDecoration: 'none', color: '#fff' }}
to="/plot">
 PLOT GENERATOR
 </Link>
 </LinkMarginDiv>

………
<Switch>
 <Route path="/privacy-policy">
 <PrivacyPolicy />
 </Route>
 <Route path="/plot">
 <Plots />
 </Route>

………
</Switch>
………
</Router>

Code 3 - Helmet example

 <Helmet>
 <title>Plot generator</title>
 <meta
 name="description"
 content="Use technical analysis indicators and generate a plot
that shows your crypto strategy results. Vertical Trading enables the user
to visually understand if the investing strategy chosen can bring profits.

There are many crypto available as well as tens of technical analysis
indicators."
 />
 </Helmet>

The last important thing to mention is that all of the code written below has been uploaded to the

S3 bucket, which has been set up in chapter 4.1.1. In order to do so it is enough to drag and drop

the public static files of the code in the bucket. AWS S3 will then recognize that the files in the

bucket have changed and thus will start serving the new ones The files and thus the web app is

now accessible from the domain: https://www.verticaltradingbot.com/ .

4.2.1 The home page

The design of the home page is going to be fine and simple. When a user opens the web

application a 100vh view opens showing only the menu and the name of the website. This is to

give a strong first impression. The code for this page is straight forward since most of the content

is written text or logos.

Code 4 – Home page

<Helmet>
 <title>Home</title>
 <meta
 name="description"
 content="Invest in crypto using technical analysis and avoid any
sentimental investment mistakes"
 />
 </Helmet>
 <TitleContainer>
 <TitleContainerSubtitle>
 <H1Title>Vertical Trading</H1Title>
 <SubtitleMainP>Your Crypto Trading Strategy</SubtitleMainP>
 <CryptoTradeGraphSVG />
 </TitleContainerSubtitle>
 </TitleContainer>
 <BoxContainer>

It is noticeable that the components used in Code 4 are not default components. This is because I

am using React styled component library. This is a great library to style React application and

create styles for components that can be utilized multiple times. After installing it using: npm

install --save styled-components I started styling the Home page components. For

example the Code 5 is the code used for styling the BoxContainer. Another simple example is the

code written to style the H2 elements as shown in Code 6. This is the Styled H2 which is applied to

all the H2 in the entire project.

Code 5 - Styled Components containers

export const BoxContainer = styled.div`
 display: flex;
 justify-content: space-evenly;
 flex-wrap: wrap;
 margin-top: 7rem;
`

Code 6 - Styled Components titles

export const H2Titles = styled(H2)`
 place-self: center;
 font-size: 1.25rem;
 font-weight: 100;
 letter-spacing: 0.5vw;
 background-color: transparent;
 border: 2px solid #0371b9;

 @media (max-width: 768px) {
 font-size: 1.25rem;
 letter-spacing: 0.5vw;
 }
`

In Code 6 I have included also the media, which is used to make the website responsive and thus

readable on any device. As previously mentioned, the home page did not require much logic since

most of the content is explanatory text. The result is a good looking, responsive and clear

introductive page.

4.2.2 Tools implementation

The heart of the application is the implementation of the plot generator and the profit calculator.

The first challenge is to make these tools clear for the user, since the concept of technical analysis

is not known by many people.

The implementation of the plot generator consists in fetching data from Binance APIs about the

historic prices of the selected crypto, enriching this information with the wanted technical analysis

indicator and values and send them to the algorithm through a REST API. The first step to

implement is the form in which the user will insert the crypto of interest, the candlestick time

period and the technical indicators and values. The form includes a lot of selectable values, but the

just part of the code can give the main idea of how the form is created. I utilized React Hooks,

which are considered a newer way to develop in React. The main concept is to have variables at

the beginning of the file and set their value in the code and since React is used to develop single

page application, we use to re-render the page with the updated information every time that the

values of these variables is updated.

In Code 7 it is shown how React hooks are declared. These information are going to be updated

once their wanted value is ready, in this case when the plot has been sent from the algorithm. In

Code 8 it is shown how React hooks values are set.

Code 7 – React Hooks

 const [isImageLoading, setImageLoading] = useState(false)
 const [pic, setPic] = useState()

Code 8 - Setting a variable

 .then((data) => {
 setImageLoading(false)
 setPic(data.data)})

Now it is the moment to create the form with which the user will provide the wanted technical

analysis indicators and values. In Code 9 it is reported a big part of the code utilized for the

implementation. Moreover, I left useful comments in the code in order to explain more in details

what is happening in specific lines of the implementation. The comments can be identified, since

they have an "#” at the beginning of the line.

Code 9 - Plot Generator implementation

 <MainContainer>
 <FormContainer>
 <form onSubmit={handleSubmit(onSubmit)}>
 <InitialForm>
 <FormTitles>Crypto</FormTitles>

#This is the code for the crypto coin selectors

 <Selector {...register('coinSelected', { required: true })}>
 <OptionStyle>BTC</OptionStyle>
 ………
 </Selector>
 <FormTitles>Candlestick time range</FormTitles>

#Here there is the creation of the candlestick time period input value

 <SelectTime {...register('selectedTime', { required: true
})}>
 <option>1m</option>
 ………
 </SelectTime>
 </InitialForm>
 <FormDivided>
 <SingleFormColumn>
 <FormTitles>Buy indicators</FormTitles>
 <InputContainerSelector>
 <Label>Indicator</Label>

#At this point there is the creation of the selector of the technical
indicator

 <SelectIndicator
{...register('selectedIndicatorFirstBuy', { required: true })}>
 <option disabled>MOMENTUM INDICATOR FUNCTIONS</option>
 <option value="buyRSI">RSI</option>
 ………

 </SelectIndicator>

#The following code enables the user to select the value and the “greater”
or “less than” information

 <Label>Greater / Lower</Label>
 <SelectIndicatorGreater
{...register('selectedSymbolSecondBuy', { required: true })}>
 <option value="<">{'<'}</option>
 <option value=">">{'>'}</option>
 </SelectIndicatorGreater>
 </SelectIndicatorGreater>
 <Label>input value</Label>
 <InputStyle id="thirdValueSell"
{...register('thirdValueSell', { required: false })} />

#The following lines of code are for error handling

 <ErrorMessage
 errors={errors}
 name="thirdValueSell"
 render={({ message }) =>
<RequiredStyle>{message}</RequiredStyle>}
 />
 </InputContainerSelector>
 </SingleFormColumn>
 </FormDivided>

#Here there is the creation of the submit button

 <SubmitButton type="submit" onClick={() =>
setImageLoading(true)}>
 Create Plot
 </SubmitButton>
 </form>
 </FormContainer>
 <div>

#This last part of the code is where we set the image that we received back
after submitting the request

 {pic && !isImageLoading && <DynamicPlot src={pic} />}
 {isImageLoading && (
 <LoadingSpinnerContainer>
 <LoadingSpinnerAnimation>Generating
Plot...</LoadingSpinnerAnimation>
 </LoadingSpinnerContainer>
)}
 </div>
 </MainContainer>

There are other important parts for the plot generator logic. For instance, once the form is

submitted the following logic is followed. Firstly, based on the candlestick time period and the

crypto selected by the user, the Binance API is invoked:

Code 10 - Plot Generator price fetcher

 const singlePrices = async (coin) => {
 return await axios.get(

`https://api.binance.com/api/v3/klines?limit=10000&interval=${coin.selected
Time}&symbol=${coin.name}USDT`
)
 }

In order to do this I utilized Axios, which is a great tool for making API requests. All I needed to do

in order to use it was to first npm install axios and then import axios from ‘axios’.

The second step is to transform the data and make a REST API request towards the API Gateway,

which will then forward the request to the algorithm running in the EC2 instance. The content sent

towards the algorithm contains the Binance API response (after some transformation) and the

values of the technical indicators that the user provided when submitting the form. It is important

to say that the technical indicators values provided are queried using an “AND”, this means that if

one indicator would give a buy signal in a specific moment in time and another indicator would not

give the signal, the result would be that the plot will not have the signal at all.

The generation of the plot is done directly in the backend. This means, that the plot is received

back from the backend and the only thing needed in the frontend, once the successful response is

received is to display the plot.

Code 11 - Plot Generator showing the image

 <div>
 {pic && !isImageLoading && <DynamicPlot src={pic} />}
 {isImageLoading && (
 <LoadingSpinnerContainer>

 <LoadingSpinnerAnimation>Generating
Plot...</LoadingSpinnerAnimation>
 </LoadingSpinnerContainer>
)}
 </div>

Now that the plot generator tool is completed, I can implement the introductory video in the

page, where I show how to utilize the tool. This is simply done by installing ReactPlayer with npm

install react-player. Since I want to style the video, I import the library into the styled

component file and I give to the video container some details:

Code 12 – Plot Generator Youtube video implementation

export const VideoYoutube = styled(ReactPlayer)`
 margin: auto;
 @media (max-width: 768px) {
 width: 100%;
 }
`

Code 12 is than utilized in the tool file:

<VideoYoutube width="80vw" height="40vw"
url="https://www.youtube.com/watch?v=TPt6VTeUV4A" />

Finally, I added some text to introduce the tool is added at the beginning of the file and the plot

generator is now working properly. The functionality implemented can be found at:

https://www.verticaltradingbot.com/plot

Concerning the other tool, there are not many differences coding wise. The concept is the same,

the user provides the technical analysis information and values, after submission the Binance API

is called in the same way as the plot generator, finally the data are enriched and the other

endpoint available in API gateway is invoked as follow:

Code 13 - Plot Generator API request towards API Gateway

 return await axios.post('https://k67g3ukds3.execute-api.eu-central-
1.amazonaws.com/test/signals', payload)

The main difference with the plot generator is the way the data is enriched and the type of

response given by the endpoint. The interesting point is how the profit is calculated, this is done in

the frontend. Basically, based on the buy and sell signals that the algorithm provided after the user

submission the Code 14 is invoked:

Code 14 - Profit Calculator implementation

data.data.forEach((element) => {
 if (element.buy === 1 && action === 'sell') {
 money = money / element.close
 action = 'buy'
 if (actionCount === 0 && !hodlBuy) {
 hodlBuy = money
 }
 actionCount++
 } else if (element.sell === 1 && action === 'buy') {
 money = money * element.close
 action = 'sell'
 actionCount++
 }
 actualValue = element.close
 })
 setHodlProfit(hodlBuy * actualValue)
 if (action === 'sell') {
 setCurrencySelected('USDT')
 } else if (action === 'buy') {
 setCurrencyCurrentValueConverted(money * currentValue)
 }
 setCalculationReady(false)
 setProfit(money)

The idea is that by starting at the beginning of the time period given by the user with 1000 USDT

and the buy and sell signal received during that time length, the function calculates if the user

would have had a profit or loss money. USTD is selected because it is a stable coin which floats

around the price of the dollar. Moreover, it compares the results with people that would have just

bought at the first buy signal and then never sold during the same time frame.

This tool can be a bit difficult to understand as well, thus I created an instructor Youtube video for

this as for the plot generator. The tool can be found at:

https://www.verticaltradingbot.com/calculator

4.2.3 Additional pages

The core of the application has already been covered. However, there are still two main pages to

create. One is the About us page, for which I do not report the code for this specific page, since it

is only informative text about the website. However, the other page is very interesting, the privacy

policy. European legislation is quite strict with the personal data and it is dictated by law that

when personal data are collected the user must be informed and most importantly accept to give

this information. This is done through the acceptance of cookies. A very useful React library

enables the developer to easily create a pop-up to handle cookies, it is named React Cookie

Consent. After installing it with the usual npm command. I was able to implement the code in a

very short period of time thanks to the CookieConsent component available in the library:

Code 15 – Privacy Policy

 <CookieConsent
 style={{ background: '#11181c', borderTop: '1px solid #fff' }}
 buttonStyle={{ background: '#0371b9', fontSize: '13px', color: '#fff'
}}
 debug={false}
 buttonText="Accept"
 declineButtonText="Reject"
 enableDeclineButton
 >

Finally, I created a page with the information requested by the legislation and thus everything that

is collected when accessing the website. The privacy policy can be visited at

https://www.verticaltradingbot.com/privacy-policy

4.2.4 Google Analytics

The final step of the web application is to enable Google analytics and monitor the statistics. After

creating an account, it has been enough to insert in my index.html, which can be found in the

React public folder Code 16:

Code 16 - Google Analytics implementation

 <script
 data-ad-client="KEY"
 async
 src="PROVIDED_URL"
 ></script>

Now it is possible to monitor the web application traffic by using the Google analytics website or

application:

Figure 15 – Google Analytics

5 Automated BOT

The creation of the BOT is a great opportunity to safely invest in Crypto using technical analysis

and avoid investment based on feelings. The BOT should automatically exchange money using

technical analysis indicators. This can happen thanks to the Binance APIs, which enable the user to

move cryptocurrencies using REST API calls.

5.1 BOT infrastructure

The creation of the BOT can be separated in three main parts. The first part is the code which

fetches the historic price of the specified crypto and it creates the payload to be sent to the

algorithm, which is the second element of the BOT. The algorithm receives the historic data of the

desired crypto, it elaborates the results and it sends the technical analysis results to the third main

part of the BOT. The last part of the BOT receives the technical analysis indicator and based on this

information it either buy, sell or do nothing.

Figure 16 – BOT architecture

5.1.1 Fetching historic data

The first part of the implementation consists in fetching the data of the specified cryptocurrency.

The tool that executes this is work is developed in Node.js and the fetching of the historic data is

done using the Binance API endpoint:

https://api.binance.com/api/v3/klines?limit=10000&interval=15m&symbol=ADAUSDT

In order to utilize this REST API call an API key is not needed, because these information are

available to everyone, since they are not related to my personal portfolio. The specific request

reported above is requesting the historic data based on candlesticks of 15 minutes of the Cardano

blockchain currency called ADA. If you click on the link, it will open your browser and show you the

result in a web page. Code 17 is the one utilized to fetch the data using Axios:

Code 17 - Fetching historic data

const config = {
 method: "get",
 url:
`https://api.binance.com/api/v3/klines?limit=10000&interval=15m&symbol=ADAUSDT`,
 headers: {
 "Content-Type": "application/json",
 "Cache-Control": "no-cache",
 timestamp: date.toTimeString(),
 Pragma: "no-cache",
 Expires: "0",
 },
};
//Fetching the data about BTC
const singlePrices = () => {
 const dataPromise = axios(config).then((response) => response.data);
 return dataPromise;
};

Once the response is successful the data is cleaned and sent using a json file to the algorithm.

However, the BOT needs to do this automatically without the need of any human pressing a

button every 15 minutes. Therefore, I decided to utilize Cron, which can be seen as an execution

timer. This means that the application is going to be stored in a Cron batch job that triggers the

run command every 15 minutes. The Cron implementation is represented in Code 18, where n the

second part of the code the algorithm is triggered and potential error messages are reported.

Code 18 - Cron job

cron.schedule("*/15 * * * *", async () => {
 await sleep(10000);
 //Writing to the input folder of the price-analysis folder
 mappedPrices().then((mappedPricesObject) => {
 mappedPricesObject.pop();
 console.log("wrote file to input folder in price-analysis");
 fs.writeFile(
 "../price-analysis/input/BTCValues.json",
 JSON.stringify(mappedPricesObject),

 function (err) {
 if (err) return console.log(err);
 }
);
 exec("sh runPython.sh", (error, stdout, stderr) => {
 if (error) {
 console.log(`error: ${error.message}`);
 return;
 }
 if (stderr) {
 console.log(`stderr: ${stderr}`);
 return;
 }
 console.log(`stdout: ${stdout}`);
 });
 });
});

5.1.2 Algorithm and signals generator

As mentioned at the beginning of this thesis the code of the algorithm is not going to be shown.

However, the functionality is what matter the most in this case. The data are now stored in a json

file and they can be read and analyzed by the algorithm. Once the data is analyzed the algorithm

returns three possible outcomes, a buy signal, which means that it is time to acquire the ADA, a

sell signal which means that it is the moment to sell ADA and finally a “do nothing” signal which

means either to keep ADA or to not buy ADA. In a perfectly working BOT the buy signals are given

when the price is going to spike, a sell signal is going to be given is the price of ADA is about to

drop and a “do nothing” signal is sent when the price is stable.

5.1.3 Exchanging in Binance

Now that the algorithm generated the signal, the final part of the program needs to act based on

the type of signal received. This can be done by using the Binance APIs which require an API key in

order to authenticate the user. In case the signal is a buy then Code 19 is triggered:

Code 19 - Binance buy method

 binance
 .marketBuy(
 "ADAUSDT",
 Math.floor(
 balances.USDT.available /

 response.data[response.data.length - 1][4]
)
)

Since the BOT is programmed to buy and sell the full amount every time a signal comes, it is

important to select the full amount of available FIAT money when buying ADA. This is done inside

the Math.floor method. In case the sell signal is received the following code is triggered:

Code 20 - Binance sell method

 binance
 .marketSell(
 "ADAUSDT",
 Math.floor((balances.ADA.available * 1000000) / 1000000)
)
 .then((res) => {
 console.log(res);
 previousAction = "sell";
 priceBought = 0;
 telegramText(
 `BREAKING ${sellMessage.text} \n ********************** \n\n
date: ${getDate} \n\n close price: ${fetchedResult.close} \n\n
********************** \n\n real-price: ${realPrice} \n\n quantity:
${balances.ADA.available}`
);
 })

The principle is the same of the buy, but there is an exception. In order to prevent errors and big

loss of money I have added a “break” function, which can be seen as a security exit. In case the

price of ADA drops more than 7% then all the ADA are going to be sold. However, this does not

stop the BOT, after selling everything if a buy signal is received the BOT will still buy.

In order to instruct the BOT to know what the previous move was and thus understand if now in

the portfolio we have either ADA or FIAT a global variable is used, which can be seen in the

previous code snippets as: previousAction. If the previousAction variable is sell then it means

that only buy signals are going to be listened by the BOT and vice versa.

5.1.4 Telegram notifications

Since the BOT works in automatic on a local machine, I needed a system to know what the status

of the BOT is and what are the action taken by it. Therefore, I decided to implement a Telegram

notification channel, every 15 minutes the BOT run and takes a decision, once the decision is

taken, other than moving the assets in the portfolio it also send the signal received and a graphical

visualization of the coin value.

The visualization is going to be the exact same plot that can be generated using the web

application. Indeed, the plot sent through notification uses the same code that the web app

utilizes, in fact the plot is generated and stored in a folder by the algorithm itself. In Code 21 it is

visible that the plot itself is read from the "../price-analysis/output/signals_plot.png".

Code 21 – Telegram notification

const TelegramBot = require("node-telegram-bot-api");
const { telegramToken } = require("./secrets");
// replace the value below with the Telegram token you receive from @BotFather
const token = telegramToken;

// Create a bot that uses 'polling' to fetch new updates
const bot = new TelegramBot(token, { polling: true });

const telegramText = (actionMessage) =>
 bot.sendMessage(HIDDEN, actionMessage);

const telegramPic = () =>
 bot.sendPhoto(HIDDEN, "../price-analysis/output/signals_plot.png");

module.exports = { telegramText, telegramPic };

Code 21 is the method utilized in the main file to send the notification every 15 minutes to the

Telegram channel. In Figure 17 it is represented a notification when the price of ADA was dropping

more than 7% and thus the safety selling happened. The Plot in the message is the one generated

by the algorithm with the buy and sell signals. It is noticeable that in this specific case the plot did

not have a sell signals. In fact, no black dots are present. However, since the price was starting to

fall sharply the BOT identified the drop and decided to sell. This is an additional feature added to

the algorithm, which prevents big losses of money. In the second part of the message a resume of

the current situation of the coin is reported, showing the real-price and the quantity of coins

exchanged in Binance.

Figure 17 - Telegram message

As you may notice the notification includes the plot and the information about the quantity of sold

coins as well as the price for single coin. This is very useful since in this case I was able to login in

my Binance Portfolio and check the overall crypto market situation

5.2 Running the BOT

The implementation is now finished, the only thing left is to run the code and let the BOT do its

job. Every 15 minutes an action is taken and a notification is sent to Telegram. The technical

indicators and value are manually set into the algorithm. However, the web application comes

very handy since it can be used to decide what indicators to use for a specific cryptocurrency.

Figure 18 - Running BOT

In Figure 18, it is shown phase one and phase three running, since the algorithm is activated

automatically by the Node code in phase one. As shown in the CLI above, phase one processed the

inputs and sent the outcome to the algorithm which sends the signal to phase three. In phase

three a selling signal is received, so the code uses the Binance API to sell ADA and buy FIAT

currency. At this point both phases enter in sleeping mode for 15 minutes after which the same

process starts all over again.

6 Results

After few months both the BOT and the web app have been properly working. Thanks to Google

Analytics I was able to see that people from all around the world have visited the web application.

The marketing of the web app can be improved, but it was not in the scope of this paper. The

algorithm has been working properly and has given correct buy and sell signals to both the web

application and the BOT.

The BOT itself was able to produce a profit, but a real result must be measured in a longer period

of time. The technical indicators should be regulated time to time, but this does not take much

effort, since the web app can be used to calibrate new values for the indicators.

Personally, I consider the result of this thesis a success, since I was able to accomplish the

development of something new, innovative and everything was self-made, from the idea to the

implementation of the tools.

6.1 Products analysis

The web application is unique, the market did not have anything like this existing. We could

consider it a blue ocean without competitors. The challenge is the complexity of the tools.

Cryptocurrency is already a quite difficult theme and technical analysis is not any easier. This is

going to influence the usage of the tool. Many people are not interest in investing in crypto and

many prefer other type of market analysis than technical analysis. Therefore, it is going to be

challenging to create an environment around the website. Cryptocurrency even if expanding, is

still at its early stages. This means that there is a huge pool of people that could flow in the market

and get interested in the subject. The future opportunities are great and being first in the market

is rather a great advantage.

In case many people would start using this tool, sentimental investing will be erased. Therefore,

less people will fall for the trap of buying high and selling low. Thanks to this investor could make

their investment more profitable and thus increase the positive perception of the market. In case

this would happen, it could create a chain and help the market to grow even wider. At the

moment, Google analytics reported that the web app is used visited in average 7 times per week,

which is a very low result, but it needs to be considered that the marketing of the website is

minimal and browser such as Google tend to not promote financial websites, thus the easiest way

to find the web app is to actually find a link to it. Now, the only marketing tool is Twitter. There is

much to improve in the advertisement of the website, but every success has its starting points.

Obviously, this would happen just once or maximum two times at the macro level of years.

Because people would realize that the technical indicators they were using are not working

anymore and consequently they would stop using them. However, it does not mean that this

“avalanche effect” would not happen again. After, few years an alignment of usage of the same

indicators could happen again and cause the same market crash.

Concerning the BOT, it has been running during the worse period for cryptocurrencies in 2021,

thus during the period between April and July. The results were great, by the end of July the value

of the asset invested was even to the one with which the BOT was started. This means that the

profit was 0%, but this is not at all a bad result, since Cardano had a drop of over 50% during May

and it did not recover until the end of August. Therefore, the BOT and technical indicators used

have outperformed the holding strategy.

6.2 Tools results and profit

After launching the web application and starting to use the BOT, the most important thing was to

register the profit and identify what are the best strategies that can be used when developing.

Personally, I noticed that in average every week any strategy needs to be re-calibrated. Meaning

that the price behavior changes and thus the technical indicators and values that worked for a

while will eventually stop working.

Assuming that the starting investment is 1000 USDT in the period between May and October 2021

and that the coin bought was ADA. A simple strategy such as the one described in this paper,

which utilizes MACD and RSI would give approximately a profit of around 5% for the first days.

However, in around a week the profit per day would decrease to an average of around 2%. After

two weeks the profit average decreases between 0 and 1 percent, which indicates that a good

moment to calibrate again the tool is every time after one week. It is important to clarify that

these percentages are averages of many months of testing. It can happen that a strategy that is

working well while creating it, it might stop working the day after. Constant supervision of the BOT

results is a must in order to protect the user assets.

The result of the above strategy would bring a profit of around 19% monthly. Therefore, in just

one month the profit in average would be of 215 USDT with a final amount of 1215 USDT (when

starting with 1000 USDT). However, the outcome of this strategy depends on the time and the

selected coin. This means that in one week everything could change and the strategy used in our

case would not work anymore. The data used to reach these results comes from the pattern of my

personal profits during a period of around 6 months. These data are store in my personal Binance

account and the 1000 USDT example does not mirror my profit, this amount is just an example,

but the percentages are based on real results.

The above results are not to be considered as given. Every strategy can give different outcomes as

well as the same strategy in different moments in time. The volatility of the market is highly

difficult to predict, also more and more laws aimed to regulate the market are incoming and thus

the instability of the market can be high. Many technical indicators are based on averages and

unpredictable movement are not considered in these calculations, thus if there is a sudden drop of

the market, surely the profit would be far away from +5%.

A solution to this problem should be to have a deep understanding of many other indicators so

that it would be possible to query average based indicators with others, for example based on

volume. However, as anticipated in this thesis, I personally do not have much experience in the

investing side. Therefore, I could not test more complicated type of strategies.

6.3 Comparing BOT and holding strategy

A holding strategy consists in simply buy one coin and then keep it without selling it. Many

investors consider this to be the best strategy. Therefore, I considered important to compare the

profit that the BOT made along the 6 months period with the ones that a holder would have

made.

At the beginning of May 2021 ADA price was 1.35 USDT and the closing price for the Month of

October 2021 was 1.96 USDT. This means that an investor that started with 1000 USDT investment

would have earned 450 USDT and thus a total of +45%. The final amount in USDT would be 1450

USDT.

Starting with the same amount of money, the result of the BOT would be a net profit of 1839

USDT, which means a +184% with a final amount of 2839 USDT. This is an amazing result that

shows how simple technical analysis applied in a constant and repetitive manner can outperform

the hold strategy by a lot.

It is important to clarify that in this case the market sentiment was very positive within the 6

months of testing. It will be interesting to see the performance of the BOT during a worse period

of the market, where all the prices drop and they stay in the same range for a longer period of

time.

6.4 Possible negative impact

An important concept is the mass adoption of the tools. Technical analysis works because it is able

to predict the decision of people in the specific market. Therefore, in case more and more people

would start utilizing technical analysis they all would receive similar outcomes and thus they

would start buy and selling at the same time. This means that the first people that would start

using the web app tools could make a very big profit. However, this would not apply to the

newcomers. If everyone buys at the same moment this means that the prices will increase, which

will result in receiving sell signals. When people will start receiving sell signals, they all will start

selling, which will cause the price to decrease drastically. Drastically is the correct word, because

when people see their gains disappearing, they start to fear that the market would crash even

more, which bring them to sell more and cause a sort of “avalanche effect”.

The issues identified for the web applications are reflected to the BOT as well. Since the BOT

mimic human behavior, buy and sell signals would be align and cause the same type of issues

reported above.

This does not mean that the mass adoption of these tools would surely cause such problems. The

technical indicators provided are plenty and with the possibility to query these indicators together,

the outcome are millions. Therefore, I personally consider unlikely that the mass adaption would

bring people to develop the same strategies.

6.5 A better future impact for cryptocurrencies

My point of view sees the mass adoption of these tools to bring more awareness in the investing

field for everyone that approaches the cryptocurrency world. More and more people will trust the

indicators and not be afraid of a sudden drop. Nevertheless, other tools will be created and more

websites will be available on the market, where people could create any sort of investing strategy.

This would differentiate so much the investing mentality that the “avalanche effect” would be

impossible.

In the future, I see the cryptocurrency investing getting closer and closer to the stock market.

Where people invest based on the expectation of the company itself and its outcome, more than

simply watching the micro-trend of the price. If I am bullish towards Tesla stocks in the next years,

it is based on the performance that such a company is having. If I expect the stock to increase, it is

because I like the way that Tesla is acting in the market and I believe it would continue to follow

this trend. The same will apply to cryptocurrencies, more people will start looking more into the

behavior of the company behind the project and the coin itself. Discovering developers spending

hours in trying to create something new and revolutionary. Something that will change the world

and thus something that they would be willing to invest into.

7 Summary

The result of this paper is the creation of two tools, which can be very useful for someone that

wants to invest safely in cryptocurrencies. The algorithm created gives trustable outcome,

showing that a developer with not too deep knowledge in the technical analysis field is still able to

create a very well working algorithm that gives trustable outcomes.

Moreover, the web application deployment went smoothly and the web app has been running for

quite a long time now without having any downtime. The costs of AWS have been minimal and

since the application is not yet used by many people it did not need any scaling up bringing the

monthly cost to around a dollar.

Another achievement reached was the deployment of a working BOT on my local machine, which

successfully exchanges cryptocurrencies in my Binance account.

This paper also demonstrates the power that we, developers, have. It does not matter if we do not

have a deep knowledge of the subject, frameworks and libraries solve the knowledge gap for us.

All we need is consistency and perseverance in creating something new, innovative and useful.

A final word goes to the cryptocurrency world, which I personally believe is still in an early stage

compared to what it will be in the future. More blockchain applications will be created and new

unique ideas will be invented, the blockchain is here to stay and year by year more people will

start understanding the potential of such an incredible technology.

References

Amazon Web Services Inc. (2021a). Amazon Cloudfront Developer Guide. Amazon Web Services

Inc., from

https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/AmazonCloudFront_De

vGuide.pdf#Introduction

Amazon Web Services Inc. (2021b). Amazon Route 53 Developer Guide. Amazon Web Services Inc.,

from https://docs.aws.amazon.com/Route53/latest/DeveloperGuide/route53-dg.pdf#Welcome

Amazon Web Services Inc. (2021c). Amazon API Gateway Developer Guide. Amazon Web Services

Inc., from https://docs.aws.amazon.com/apigateway/latest/developerguide/apigateway-

dg.pdf#welcome

Brown G., & Whittle, R. (2020). Algorithms, Blockchain & Cryptocurrency. Emerald Publishing.

CoinMarketCap, (2021). Top Cryptocurrency Spot Exchanges. Retrieved September 24, 2021, from

https://coinmarketcap.com/rankings/exchanges/

Frankenfield, J. (2021a). Consensus Mechanism (Cryptocurrency). Retrieved September 24, 2021,

from https://www.investopedia.com/terms/c/consensus-mechanism-cryptocurrency.asp

Frankenfield, J. (2021b). Proof of Work (PoW). Retrieved September 24, 2021, from

https://www.investopedia.com/terms/p/proof-work.asp

Frankenfield, J. (2021c). Proof of Stake (PoS). Retrieved September 24, 2021, from

https://www.investopedia.com/terms/p/proof-stake-pos.asp

Hayes, A. (2020). Candlestick Definition. Retrieved October 2, 2021, from

https://www.investopedia.com/terms/c/candlestick.asp

Prabhakaran K. & Uchit V. (2014). AWS Development Essentials. Packt Publishing.

Maverick, J. B. (2021). How do the MACD and RSI indicators differ?. Retrieved September 26, 2021,

from https://www.investopedia.com/ask/answers/122214/what-are-main-differences-between-

moving-average-convergence-divergence-macd-relative-strength-index.asp

Lim, M. A. (2016). The Handbook of Technical Analysis. Wiley.

Nalawade, A. (2021). Bitcoin Has Already Won, Soon The Price Will Reflect That. Retrieved

September 24, 2021, from https://www.nasdaq.com/articles/bitcoin-has-already-won-soon-the-

price-will-reflect-that-2021-09-20

Pring, M. (2014). Technical Analysis Explained. Mc Graw Hill Education.

Annex 1 / 1

Annex 1: Material management plan

During the development of this paper many backups of this same document have been created in

my private OneDrive account. Every time a major change or addition to the thesis happened a new

version has been backed up in both format, PDF and docx. In case a minor change was introduced

the version of the thesis did not change and the previous version was simply overwritten.

Development project:

Concerning the development Git has been used for source control. The code has been stored in

Github in a private repository. Whenever a big feature needed implementation, I did not code

directly in master, a separate Git branch was created and only when the full feature

implementation was done I finally merged it to master.

After the completion of this thesis all the code will remain in Github and in the Cloud. Concerning

the thesis, all the older versions are going to be destroyed.

Research work:

All the research work used in the thesis has been done either by using books or open-source

documentation. All the reverences have been reported. There is not documentation to be

destroyed at exception of the Binance API key which was for a short period of time stored locally

in my machine. The secret has already been destroyed and transferred to Secret Manager in AWS.

