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Increasing population and urbanization has led to widespread use of elevators in 
buildings. There is always a concern associated with the safe usage of elevators. 
Manual video monitoring is often slow and ineffective when responding to emergency 
situations inside the elevator cabin, which can lead to undesirable consequences. 
 
The objective of this thesis project was to develop a behaviour recognition prototype 
based on the Kinect depth sensor that could automatically recognize different 
behaviours in an elevator. Recognition results were recorded in the database and 
would be analysed by professionals to prevent emergency situations and to further 
improve safety and riding experience in an elevator.  
 
The prototype utilized human silhouettes for recognizing behaviours. Project work 
comprised of designing gesture database, developing behaviour recognition 
software, testing and research on camera placement. For gesture database design 
stage, videos of gestures were recorded and tagged. In the software development 
stage, the behaviour recognition functionality of the prototype was implemented. 
During the testing stage, underlying algorithm’s performance was evaluated. In the 
final stage, case studies of camera placement for standing and lying gestures were 
carried out. 
 
The developed prototype was able to detect defined behaviours with high accuracy. 
With further advancements, it would provide complete intelligent monitoring capability 
for elevators and further leverage their safety standards. 
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1 Introduction 

Behaviour recognition is an action of recognizing human behaviour based on non-

verbal communication signs: facial expressions, hand gestures, arm and leg 

movements. Nowadays, there already exists a number of automated monitoring 

solutions across industries, that perform behaviour recognition without human 

intervention. They observe people, classify their behaviours and provide 

recommendations to businesses or individuals. 

 

With increase in population and rising urbanization rate in cities, it is extremely 

hard to manually monitor all people’s behaviours to maintain social order. 

Automated monitoring systems would be able to assist authorities and companies 

to monitor densely populated areas. Rise of IoT ecosystems and smart cities 

create opportunities for implementing those systems. It is predicted that by year 

2030, there will be 25.4 billion IoT connected devices worldwide [1]. Data from 

those devices would be used in automated monitoring systems to recognize the 

activities of people. 

 

It is widely known that office buildings are excessively crowded during peak times 

and the flow of people is congested. This especially concerns the elevators and 

escalators, that are the main transportation means of customers and employees. 

It is nearly impossible to monitor all people in those locations during busy times, 

therefore a method for automatic behaviour recognition had to be proposed. 

 

The goal of the thesis project was to develop a prototype based on the Kinect 

depth sensor, that could automatically recognize human behaviours in an 

elevator. The prototype would be installed in an elevator and use human 

silhouettes to detect activities. The activities’ data would be logged in the local 

database and used by professionals to deal with emergency situations and 

improve safety and riding experience in elevators. 
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The implementation of the prototype was carried out in four stages. First stage 

comprised of recording the gestures and creating a gesture database. Second 

stage covered the behaviour recognition software design of the prototype. Third 

stage was testing of the prototype and evaluating its performance. In the fourth 

stage, studies about the potential prototype placements in an elevator were 

made. 

2 Theoretical Framework 

2.1 Human Body Language 

Human body language contains a great amount of information about person’s 

intentions and thoughts. Eyes and mouth express person’s attentiveness and 

mood while movements of hands and legs can determine one’s relationship with 

another person. Hand gestures can also hold different meanings, for instance, 

clenched fist means anger and holding thumb upright means affirmative action. 

Open or closed posture conveys whether a person is friendly or hostile. Lastly, 

a distance between people gives a hint on how they view each other. The better 

people know each other, the smaller is the distance between them. [2.] 

Understanding and inferring useful information from the body language is 

crucial in intelligent systems that complete tasks without human intervention. In 

this thesis project, posture, legs and hands movements were used to create a 

prototype that understands the behaviour of a person in an elevator. 

2.2 Human Activity Recognition Methods 

Human activity recognition has found vast applications in the modern society: 

from healthcare and commerce to security. Hospitals employ automated 

systems, which can monitor patients’ behaviours and notify staff in case of any 

emergencies. Businesses infer useful information from their customers’ buying 

activities to predict future trends for their products. Security companies use 

intelligent monitoring systems to monitor the behaviour of people and prevent 
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crimes. Utilizing systems that can understand human activities brings many 

opportunities to the society and individuals; therefore, extensive studies in 

human activity recognition area have been made in the recent years.  

Human activity recognition or HAR can be defined as capability of a system to 

recognize activities based on the sensor data. Different cutting-edge HAR 

methodologies have been proposed by researchers based on sensors and 

computer vision. [3.] 

2.2.1 Sensor Approach 

Sensor approach utilizes sensors for data gathering and machine learning 

techniques for analyzing data and recognizing behaviour. The common 

framework for sensor-based activity recognition can be described with a 

diagram shown in Figure 1 [3]: 

 

Figure 1. Framework for sensor approach [3] 

At the sensor selection and deployment stage, different kinds of sensors are 

selected and deployed based on the application. There are different criteria for 

choosing suitable sensors, some of them are accuracy, range of operation, 

resolution, sensitivity, signal to noise ratio, etc. [4]. They are then deployed on a 

human body, specific objects or in the environment based on the nature of the 

HAR project.  
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At the data collection stage, the raw input data is received from the sensors. 

Sensor fusion is widely used during this stage for the purpose of increasing the 

accuracy of the collected data.[3]. 

During the pre-processing step, the pre-processing techniques, such as data 

cleaning, transformation and reduction are utilized. The purpose of those 

techniques is to handle missing, noisy data, and to transform raw data into the 

useful form for further processing. Then, the feature selection techniques are 

applied to the data to select relevant features for the machine learning 

algorithm. [5.] 

Lastly, a machine learning algorithm recognizes activities based on the selected 

features. Different kinds of machine learning algorithms are used for 

classification of data and inferring the activities. The criteria for choosing the 

suitable machine learning algorithm are for instance the accuracy, the training 

time and the number of features used [6]. 

Various sensors have been used for data gathering in sensor based HAR 

projects. Due to their low cost, small size and low energy consumption, they are 

widely used in various industrial, and research projects. Figure 2 presents 

accelerometer, magnetometer, motion sensor and proximity sensor from left to 

right. 

 

 

Figure 2. Sensors used in activity recognition [3] 
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Accelerometer is a device, which can measure acceleration in different 

directions. It contains sensors for measuring acceleration in each X, Y and Z 

directions. It is used in gesture recognition, behaviour recognition, where it 

measures acceleration of user’s body or body parts.  

Magnetometer detects changes in magnitude and direction of a magnetic field. 

It is commonly used in the field of gesture recognition, where magnetic changes 

caused by movements of hands are used for interaction with machine or 

computer.  

Motion sensor detects motion in the nearby area by measuring infrared 

radiation. People emit infrared radiation, and therefore their motion can be 

detected by a motion sensor. It is usually used for detection and tracking 

purposes.  

Proximity sensor detects presence of objects located in its detection range. It 

sends an electromagnetic radiation towards a target and measures changes in 

the return signal. It is often used in gesture recognition applications, where the 

detection of hands movements is required.  

Sensor-based solutions can be divided into three categories: wearable, object-

tagged and dense sensing. The categorization is based on where the sensors 

are deployed: human body, specific objects, or environment respectively. [3]. 

Wearable solutions require a user to wear sensors on the body. Sensors collect 

data from a user, for example, heart rate, GPS information or acceleration. This 

data is then used for recognizing human activity using machine learning 

techniques. Wearable approach is popular in various fields, however not 

feasible at times. Some users forget to wear sensors or have disabilities, which 

prevent them from properly wearing the devices. [3]. 

In object-tagged (or device-bound) solutions, sensors (or tags) are attached to 

the objects. These objects detect activities based on the user’s interactions with 

them. However, this approach has a disadvantage similar to the wearable 
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approach, as data gathering is bound to the specific objects, which the user has 

to use. [3]. 

Dense sensing (or device-free) approach deploys sensors into the environment, 

where a user performs daily activities. Data is gathered whenever the user 

performs the activity, which is then used for further activity recognition. This 

approach is the most practical among the three sensor approaches due to the 

fact that the user does not have to wear or interact with any specific devices. 

The major downside of this approach is that data gathered from the sensors is 

prone to noise from the surroundings. [3]. 

It is important to note that hybrid solutions exist, which utilize several of the 

above-mentioned approaches. The main idea is to capitalize on the advantages 

of the multiple approaches, which in turn creates a more accurate and less 

noisy dataset. [3]. 

Sensors have been used in posture recognition to identify simple postures such 

as sitting, standing and lying. C.A.Ronao et al. [7] suggested a posture 

recognition method using a gyroscope and an accelerometer installed in 

smartphones. The angular velocity and acceleration data collected from those 

sensors were fed into the deep neural network for posture classification. [3]. 

2.2.2 Wi-Fi-based Approach 

Wi-Fi based recognition techniques have been widely used in HAR activity 

recognition to recognize human activity both indoors and outdoors. This is due 

to the widespread usage of Wi-Fi technology and availability of the Wi-Fi access 

points.  

The main idea for the WiFi-based activity recognition is that WiFi signals are 

diffracted, reflected and scattered during the transmission through a human 

body. The information held by those signals is extracted to recognize human 

activity. The commonly used indicators for activity detection are: Received 
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signal strength indicator (RSSI), Channel state information(CSI) and Doppler 

shift. RSSI measures the power in the received radio signal. CSI describes 

properties of the communication link, mainly the amplitude and phase of each 

subcarrier signal. [8.] 

Static transmission model uses the direct and reflected radio signals for activity 

recognition. The Friis equation can be used to describe a radio transmission: 

 𝑃𝑟 =
𝑃𝑡𝐺𝑡𝐺𝑟𝜆2

(4𝜋)2𝑑2   (1) 

In the formula (1)[8]:  

• 𝑃𝑡 is the power at the transmitting antenna input terminals 

• 𝑃𝑟 is the power at the receiving antenna output terminals 

• 𝑑 is the distance between the antennas 

• 𝐺𝑡 is the transmitting antenna gain 

• 𝐺𝑟 is the receiving antenna gain 

• 𝜆 is the wavelength of the transmission 

 

Taking into the account the reflected signal, the Friis equation takes the 

following form: 

 𝑃𝑟 =
𝑃𝑡𝐺𝑡𝐺𝑟𝜆2

(4𝜋)2(𝑑+4ℎ)2 (2) 

In formula (2)[8] ℎ is the distance between the reflection points and the direct 

path. 

When a human shows up the transmission path changes, resulting in the 

equation: 

 𝑃𝑟 =
𝑃𝑡𝐺𝑡𝐺𝑟𝜆2

(4𝜋)2(𝑑+4ℎ+𝛥)2 (3) 
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In formula (3)[8] 𝛥 is a path difference caused by a human body.  

Variable 𝛥 depends on the position and orientation of the human body, 

therefore 𝑃𝑟 is also dependent on the state of the human body. Consequentially, 

𝑃𝑟 gives the information about the human activity. However, the static 

transmission model describes activities, assuming that a person stays at the 

same place. [8.] 

Dynamic transmission model also takes a human motion into account and uses 

the Doppler shift to recognize activities: 

 ∆𝑓 =
2𝑣𝑐𝑜𝑠𝜃

𝑐
𝑓 (4) 

In the formula (4)[8]: 

• ∆𝑓 is Doppler shift value 

• 𝑣 is the velocity of the human motion 

• 𝑐 is the speed of light 

• 𝑓 is the transmission frequency 

• 𝜃 is the angle between the transmitted signal and the velocity 

 

By calculating Doppler shift of the receiving signal, a pattern of the human 

motion can be understood. This formula recognizes activities while considering 

human movements. [8.] 

2.2.3 RFID Approach 

RFID technology has been very popular in activity recognition field in the recent 

years due to its high efficiency, low cost, compactness, and low power 

consumption. RFID system works according to the following principle [3]: 

• A reader’s antenna sends radio waves to the tags.  
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• RFID tags modulate the received radio waves using their 
identification numbers. 

• RFID reader antenna picks up the modulated waves, which are 
scattered back by tags’ transponders and extracts the identification 
information from the tag.  

One of the applications of RFID in activity recognition is recognizing the 

shopping behaviour of clients. Han. et al [9] suggested a system, which utilizes 

RFID tags, attached on the products to recognize customer’s behaviour. 

Whenever a customer picks up a product, the attached RFID tag sends the 

signal to the system’s reader. The phase shift and Doppler’s shift information is 

extracted and analysed to infer the activity patterns. The proposed method was 

able to identify the most popular product in a shop and correlations between 

different products. [3.] 

2.2.4 Vision-based Approach 

Vision-based HAR approach utilizes computer vision techniques to analyze the 

video or images and infer human activity information. Vision-based approach is 

able to recognize more difficult activity patterns, compared to sensor-based 

approach, but is more complex in nature and requires more processing power. 

There are many challenges in building a good vision-based activity recognition 

system, namely [10]: 

• cluttered background, meaning the presence of noise and redundant 
objects in the background 

• partial occlusion, where parts of a human body are covered by 
objects 

• lighting, which affects a person’s appearance on a video  

• viewpoint and scaling, that can distort how a person looks on videos 
or images 

• data labelling, which is time-consuming and is prone to bias  

• similarities between gestures, for example standing and walking, can 
lead to false positives 

To mitigate these issues, the following techniques are applied [10]: 
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• background subtraction, which removes static or non-moving objects 
from the frame. It allows to focus on the moving objects, which are 
of interest to the activity recognition system. 

• human tracking, in which the human movement is tracked with time. 
This method allows to observe the specific person and decreases 
the chance of confusing performers of an activity. 

Vrigkas et al. [10] have proposed the categorization of vision based HAR 

methods based on the nature of applied sensors and the modelling of a human 

activity. The classification can be seen in the Figure 3 [10].  

 

 

Figure 3. Classification of HAR methods [10] 

HAR methods are divided into two categories: unimodal and multimodal. 

Unimodal methods use one type of sensor data, while multimodal methods use 

different types. The unimodal and modal methods are further classified into 

different types based on how they represent a human activity. [10]. This section 

will give an overview on some of the vision-based methods. 

Space Time Methods 

Space-time methods represent a human activity as movement trajectories. 

Wang et.al [11] proposed a HAR method based on dense trajectories. Dense 

trajectories are applied on an image to capture the local motion features, which 

are then tracked using optical flow. Based on the features, feature descriptors 

are calculated and used for detecting the trajectory. [10]. 

Space time methods have several disadvantages, such as noise and partial 

occlusion. Due to the fact, that activities are represented as trajectories, which 

tend to overlap, these methods have problems recognizing activities for several 
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people. In addition, low recognition rate for complex activities and usage of one 

camera angle are further challenges for space-time methods. [10]. 

Stochastic Methods 

Stochastic methods view a human activity as a sequence of states, which can 

be predicted by the means of statistics.  Algorithms used in stochastic methods 

provide high recognition performance but are complex and require many 

computations. Stochastic methods are not suitable for real-time activity 

recognition, due to their high time complexity, i.e., the amount of time they 

require to run an algorithm. [10]. 

Shape-based Methods 

Shape-based methods use human silhouettes to recognize the activities. 

Silhouettes consist of human limbs connected to each other by joints and are 

represented by interconnected rectangles in 2D space or cylinders in 3D space.  

[10]. Kinect sensor’s gesture recognition is a famous application of a shape-

based method, as Kinect utilizes the user’s silhouette to infer the activity 

information.  

Shape-based methods provide highly accurate results for human activity 

recognition; however, they have few drawbacks. Localization and tracking of 

different joints are very challenging tasks, due to the consideration of multiple 

degrees of freedom of each body part. In addition, shape-based methods are 

sensitive to illuminations, different viewpoint of the camera and clothing’s color, 

as they affect how the human silhouettes appear in the videos. [10.] This thesis 

project utilized a shape-based method with a Kinect sensor to recognize 

behaviours in an elevator.  

2.3 Discrete and Continuous Gestures 

Discrete gestures have only two possible values: true or false, which 

correspond to them happening or not. There is also a confidence value, 
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associated with those gestures, which shows the probability of the gestures 

happening. [12.] Examples of the discrete gestures are sitting, standing and 

lying.  

Continuous gestures describe the progress of gestures and consist of several 

discrete ones. Their confidence value is between 0 and 1 and shows the current 

progress of the gesture. [12.] An example of the continuous gesture is the 

progress of raising up an arm. In that specific case, the state of the arm, when 

held down can correspond to 0% progress. The states of the arm held 

horizontally and up correspond to 50% and 100% respectively. By combining 

these 3 discrete gestures: arm held down, horizontally and up, the continuous 

gesture of raising up the arm can be formed.  

Discrete gestures are used for the gesture detection, while continuous gestures 

are utilized for the gesture’s progress evaluation. These concepts are important 

when defining and predicting gestures in Kinect applications. [12.] 

2.4 Heuristic and Machine Learning Gesture Recognition Approaches 

There are two main approaches to gesture recognition in Kinect: heuristic and 

machine learning. 

Heuristic approach is a programmatic approach to describing and comparing 

gestures. It uses the coordinates of the joint: colour, depth, space and rotation 

to compare with the coordinates of the other joints. This approach is simple to 

implement in code and is used to recognize simple gestures. One example of 

the heuristic approach is to determine if a hand is above a head. To implement 

this, the space coordinates of the hand joints should be larger than the space 

coordinates of the head. [12.] 

Machine learning approach uses machine learning methods to recognize 

gestures based on the learnt data. It extracts the relevant characteristics of the 

gesture and based on those, builds the model to recognize the gesture. This 
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approach is great for recognizing complex gestures, which are hard to describe 

programmatically. It also creates an insight to understanding the gesture and 

can find good features for heuristic approach. [12.] 

2.5 Machine learning algorithms used in the prototype 

Machine learning algorithms applied in the prototype are of supervised learning 

type. Supervised learning determines the relationship function between an input 

and an output, based on a labelled data. The labelled data is annotated with 

correct answers, desired for the machine learning algorithm by humans. [13.] 

Supervised learning algorithms solve regression and classification problems. 

Regression problem tries to predict the numerical value based on previous 

observations, while a classification problem estimates the category or class 

based on the given data. [13.] This section gives an overview of machine 

learning algorithms implemented in behaviour recognition prototype.  

2.5.1 Decision Tree  

A decision tree is a supervised machine learning model, which is applied in 

regression and classification tasks. The general structure of the decision tree 

can be seen in the Figure 4. 
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Figure 4. Decision tree’s structure 

The decision tree consists of root, intermediate and leaf nodes. Root node is the 

starting point of the decision tree, intermediate nodes evaluate data features 

against a threshold to split the tree into branches and the leaf nodes contain 

tree’s prediction values. The terms of parent node and child are used in the 

terminology of the decision tree. Parent node is a node, which is divided into 

sub nodes, which are called child nodes. For example, root node is a parent 

node for intermediate node, and intermediate node is its child node. [14.] 

To understand the usage of the decision tree in classification problems, an 

example is given for the Iris dataset. In the Iris dataset, there are 150 iris 

samples with features: sepal length, sepal width, petal length, petal width. The 

aim is to classify irises into classes: Iris Setosa, Iris Versicolour, Iris Virginica. 

The Decision tree for this problem can be seen in Figure 5 [15]. 
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Figure 5. Decision tree for Iris dataset [15] 

Building process of the decision tree starts by calculating Gini index for each 

feature to determine the feature, which best splits the dataset. Gini index 

describes the probability of wrongly classifying a data point taken randomly from 

a dataset and can be calculated using formula (5)[16]. 

 𝐺𝑖𝑛𝑖 = 1 − ∑ 𝑝𝑖
2𝑘

𝑖=1  (5) 

The feature with lowest Gini gain is picked for the data split. [16.] In this case 

petal length is chosen for splitting at root node. Root node is divided by petal 

length into two nodes. Left node contains 50 samples of setosa class, and right 

node has 50 samples each of versicolor and virginica. Node’s class is the one 

that contains the most samples in it, i.e. the mode of the node’s dataset. 

Therefore, for left node, the class is setosa. The class for the left node is 

determined and requires no further splitting, while the right node requires further 

splitting. 
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The same procedure is repeated for the right node: it is divided by petal width 

with lowest Gini gain into two new nodes. Resulting left node contains most 

versicolor samples, therefore its class is versicolor, while resulting right node 

has most virginica samples and its class is virginica. Now the decision tree is 

able to classify the iris samples into three classes based on their features.  

Prediction on a new test sample is made by feeding it into the tree and 

evaluating its features to determine its path down the tree. For example, a class 

can be predicted for an iris with features: petal length 3.0, petal width 1.5. This 

iris’s prediction path is shown in Figure 6 [15], denoted by red arrows: 

 

Figure 6. Classification of a new iris sample [15] 

From the Figure 6, it can be determined that this iris belongs to class versicolor. 

Aside from Gini gain, entropy and information gain are used for finding the best 

splitting feature. Entropy describes the uncertainty in the dataset and is 

calculated using the formula (6)[17]: 
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 𝐸 = − ∑ 𝑝𝑖𝑙𝑜𝑔2𝑝𝑖
𝑁
𝑖=1  (6) 

where 𝑝𝑖 is the probability of randomly choosing the observation of class i and N 

is the number of classes in the dataset.  

Information gain measures the quantity of the useful information provided by the 

feature. Information gain is calculated by formula (7)[17]. 

 𝐺𝑎𝑖𝑛 = 𝐸𝑝𝑎𝑟𝑒𝑛𝑡 − 𝐸𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛 (7) 

In the formula (7), 𝐸𝑝𝑎𝑟𝑒𝑛𝑡 is the entropy at the parent node and 𝐸𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛 is the 

average entropy at the children’s nodes. When these metrics are used to split 

samples in the node, the feature with highest information gain is chosen for the 

split. In Kinect’s tracking algorithm entropy and information gain are used 

instead of Gini gain. 

Decision tree is also applied in regression problems. A regression example is 

given for the Boston house price dataset, where the objective is to predict the 

price of the house (in thousands dollars) based on its features. The decision 

tree for Boston house price dataset is shown in Figure 7 [14].  
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Figure 7. Decision tree for the Boston house price dataset [14] 

The tree is built in the same way, as described above. However, the split for 

each node is determined by the feature with least mean squared error. Mean 

squared error describes how much the actual value is different from the planned 

value. It can be computed by a formula (8)[18]. 

 𝑀𝑆𝐸 =
1

𝑁
∑ (𝑦𝑖−𝑦̂𝑖)2𝑁

𝑖=1  (8) 

In the formula (8) 𝑦𝑖 is the actual value, 𝑦̂𝑖 is the predicted value and N is the 

number of data points. 

The value for each node is not a class, but a continuous value - the price of the 

house. This is understandable as regression problems try to predict a 

continuous value, based on previous observations.  

Prediction on a new test sample is made the same way as in classification case. 

For instance, the aim is to predict the price of a house with features: %lower 

status of population (LSTAT)=7.2, average number of rooms per dwelling (RM) 
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=10. Path for this house sample is shown in Figure 8 [14], marked by red 

arrows.  

 

Figure 8. Price prediction for a new house sample [14] 

From Figure 8, it is evident that the price prediction for that house would be 

35.497 thousand dollars. 

It is possible to further divide leaf nodes and grow deeper decision trees to 

further improve the classification and regression predictions’ accuracy. 

However, growing too deep trees might lead to the problem of overfitting: when 

the model becomes too dependent on its training data, that it performs poorly 

on testing samples. Therefore, decision trees usually have specified maximum 

depth to prevent overfitting, but in turn this diminishes trees’ prediction 

accuracy. Thus, decision tree is a weak learner, that makes low accuracy 

predictions and has potential of overfitting. [14.] 

To overcome the problems of overfitting and low prediction accuracy trees are 

combined in ensemble models. Two ensemble models: Random forest and 

Adaptive boosting will be introduced in the next sections.  
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2.5.2 Random Forest 

Bias and variance are the error metrics of machine learning model and are used 

to assess its prediction accuracy. Bias is the error associated with assumptions 

of the model. High bias models have simple assumptions about the data, 

resulting in high training error and not accurate predictions. Variance is the error 

connected with the flexibility of the model towards unseen data. High variance 

models fit too well on specific data and make imprecise predictions on unseen 

data. This also means that high variance models are prone to overfitting. 

Decision trees have medium bias and high variance; therefore their predictions 

have low accuracy and not flexible to all kinds of data. [19.] 

Random forests combine several decision trees to lower their variance. As a 

result, their predictions generalise better on different types of data. [19.] An 

example of the regression random forest is given below. 

Assuming that a decision tree used for predicting the house prices for Boston 

house price dataset was not accurate enough. A random forest will be used for 

estimating the prices. 

A building process for the random forest starts by creating bootstrapped 

datasets for each tree in a forest. The bootstrapped dataset is a random 

dataset, created by sampling the initial dataset with replacement. The Figure 9 

shows the bootstrapped datasets created for each tree: 
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Figure 9. Bootstrapped datasets 

As can be seen from Figure 9, a variety of bootstrapped datasets are created 

for each tree by sampling with replacement the initial dataset. 

Then each decision tree is built based on its bootstrapped dataset. The building 

process is illustrated in Figure 10.  
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Figure 10. Building a decision tree in a Random Forest 

In Figure 10, following house features are present: Per capita crime rate by 

town (CRIM), Proportion of non-retail business acres per town (INDUS), 

Average number of rooms per dwelling (RM), Proportion of owner occupied 

units built prior to 1940 (AGE), %lower status of the population (LSAT).  

A bootstrapped dataset is inputted into decision tree and a random subset of 

features is assigned to each node. The assignment of a feature subset to a 

node is indicated by red lines in Figure 10. Feature with the lowest mean 

squared error from a subset will be chosen for splitting at a node. In a root 

node, the splitting feature is AGE, while in intermediate nodes, those features 

are CRIM and LSTAT. Same process is repeated hundreds of times to create a 

large forest with different decision trees.  

After the forest is built, it is possible to make predictions on new test samples. 

The prediction process is shown in Figure 11. 
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Figure 11. Predicting with a Random forest 

Each tree makes a house price prediction based on a new house sample. 

Prediction made by the forest is a mean of all tree’s predictions. Mathematically 

it can be written as formula (9)[19]: 

 𝑆𝐿(. ) =
1

𝐿
∑ 𝑤𝑙

𝐿
𝑙=1 (. ) (9) 

where 𝑆𝐿 is the random forest’s output and 𝑤𝑙 is the decision tree’s output. 

Finally, the house price predicted by the random forest is 205.12 thousand 

dollars. 

By randomizing datasets and features for each tree, random forest is not closely 

associated with any training samples.  This allows a forest to avoid overfitting 

and decrease the overall variance. Therefore, predictions made by the random 

forest will be more accurate towards test data compared to a decision tree. In a 

case with Boston house price dataset, random forest makes more accurate 

predictions for a new house’s price than a decision tree. [20.] 

2.5.3 Adaptive Boosting 

Adaptive boosting combines decision trees to lower their bias. This way it 

makes more accurate predictions compared to an individual decision tree. An 

example usage of adaptive boosted model in a classification task is given 

below. [19.] 
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Presuming that a decision tree used for classifying irises in Iris dataset did not 

have enough prediction accuracy. Adaptive boosting model can be used to 

estimate classes of the irises. 

The building process of the adaptive boosting model starts by creating tree 

stumps - decision trees containing only one feature. Tree stump for the Iris 

dataset is shown in Figure 12 [15]. 

 

Figure 12. Tree stump for Iris dataset [15] 

Then, these stumps are used in building an adaptive boosting model. The 

building process is illustrated in Figure 13. 

 

Figure 13. Building process of an Adaptive boosting model 
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First tree stump is trained on iris samples. It gets a weight according to its 

training performance and it is added to the boosting model according to the 

following formula: 

 𝑆𝑙(. ) = 𝑆𝑙−1(. ) + 𝑐𝑙 × 𝑤𝑙(. ) (10) 

where 𝑆𝑙(. ) is a current boosting model, 𝑆𝑙−1(. ) is a previous boosting model,𝑐𝑙 

is stump’s weight and 𝑤𝑙(. ) is an added tree stump.  

Weights of samples misclassified by the current boosting model are increased, 

so that next tree stump would focus more on them during training. Samples with 

increased weights are indicated by large grey circles in Figure 13. The same 

process repeats for the subsequent tree stumps until the specified number of 

them is reached. The result is a boosting model with large amount of tree 

stumps. 

After the adaptive boosting model is built, it is possible to predict classes for 

new iris samples. The prediction process is shown in Figure 14. 

 

Figure 14. Predicting with Adaptive Boosting model 

Each tree stump makes a class prediction based on a new iris sample. 

Prediction made by the boosting model is a weighted sum of all stumps’ 

predictions. Mathematically it can be written as: 

 𝑆𝐿(. ) = ∑ 𝑐𝑙 × 𝑤𝑙
𝐿
𝑙=1 (. ) (11) 
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In formula (11)[20], 𝑐𝑙 are the weight coefficients of the tree stumps, 𝑤𝑙 are the 

tree stumps in the adaptive boosting and 𝑆𝐿 is the boosting model. Adaptive 

boosting model classifies a new iris as setosa, as it has the highest coefficient 

of 2.5. 

At each model’s building step, an added tree stump was concentrating on the 

samples, misclassified by previous boosting model. As a result, the final 

boosting model was able to accurately predict all kinds of samples and 

decrease the overall bias. Thus, an adaptive boosting model can make more 

accurate predictions on new test samples, compared to an individual decision 

tree. In the case of the Iris dataset, the adaptive boosting model classifies the 

new iris sample with higher accuracy compared to the decision tree. [19.] 

2.6 Infrared Sensor 

An infrared sensor uses infrared radiation for detection of the surrounding 

objects. According to Planck’s radiation law, all objects which have temperature 

above 0 Kelvin emit radiation in the infrared spectrum of 700 nm to 1mm. 

Therefore, the infrared sensor can detect the radiation from the surrounding 

objects based on their temperature and movement. [21]. 

Active IR sensor include both transmitter and receiver. Transmitter emits the IR 

radiation, which is reflected from the objects and detected by receiver. Infrared 

lasers and LEDs usually act as transmitters, while Phototransistors and Photo 

diodes as receivers. [21]. 

Typical infrared sensor consists of five parts: infrared transmitter, infrared 

receiver, transmission medium, optical component and signal processing unit. 

Transmission medium for IR radiation is usually vacuum, air or optical fiber. 

Optical component is used to focus the light emitted from the transmitter. The 

signal processing unit extracts the useful information from the light detected by 

the receiver. [21]. The IR sensor circuit can be seen in Figure 15 [21]. 
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Figure 15. Typical IR sensor circuit [21] 

In this circuit, the IR LED emits the infrared radiation, which is reflected by the 

object and partly received by the photodiode. Whenever, the radiation is 

detected at the receiver, the inverted input of the amplifier comparator becomes 

lower than reference voltage at the non-inverted input. The amplifier’s output 

signal will be HIGH and the LED glows up. The variable resistors are used to 

adjust the reference voltage and the amplifier’s output voltage. [21.] 

2.7 RGB Camera 

The RGB camera records an image by mixing the colours of red, green and 

blue. It has an array of cavities, which collects the light photons from the 

surroundings. [22.] The photon collection process can be seen in Figure 16[22]. 

 

Figure 16. Photon collection in camera’s cavities [22] 

When a picture is taken by the RGB camera the number of photons in each 

cavity is quantified and translated into electrical signal. The electrical signals are 
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approximated into digital data with a specific precision and the grayscale image 

is created. [22.] 

To create the colour image, the Bayer filter and demosaicing algorithm are 

applied on the cavities. The Bayer filter leaves only one of the RGB colours in 

each cavity to create the RGB mosaic image. Then, the demosaicing algorithm 

calculates means of adjacent image pixels to convert the mosaic into the colour 

image. [23.] The described principle is implemented by Kinect’s RGB camera 

for taking colour images. 

2.8 Depth Sensor 

A depth sensor is a sensor which measures the distance to the object. There 

are different types of depth sensors: structured light, stereo depth and time of 

flight. 

The structured light depth sensor projects the laser pattern on the object and 

measures the distance based on the distortion of the pattern by the object. The 

stereo depth sensor uses the infrared light from the emitter and the 

surroundings to measure the distance to the object. It uses the depth 

information from its two cameras to calculate the distance to the object. [24.] 

TOF sensor emits infrared light to the object and measures the time it takes to 

come back to the sensor. The distance to the object is calculated using formula 

(12)[25]: 

 𝑑 =
𝑐𝑡

2
 (12) 

where c is the speed of light and t is the time of flight. 

Alternatively, the distance can be calculated with the phase difference between 

the transmitted and the reflected waves using the formula (13)[26]: 
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 𝑑 =
𝑐𝛥𝜑

2×2𝜋𝑓
 (13) 

where c is the speed of light, 𝛥𝜑 is the phase difference and f is the frequency 

of the infrared light’s power modulation. Kinect’s depth sensor utilizes phase 

difference equation in calculating depth. [26.] 

3 Requirements 

The objective of this thesis project was to develop a prototype that can 

recognize behaviours of visitors in an elevator. The behaviours of interest were 

specified and created by means of video recording and data labelling. After 

recognizing the behaviours, the information about them is logged into the 

database. The database data would be analysed by the personnel to deal with 

emergency situations or to further improve the visitors’ experience in the 

elevator. 

The requirements of the prototype were: 

• Ability to recognize behaviours 

• Custom gestures specification 

• Logging of the data for further analysis 

• Fast performance  

• Optimal placement in an elevator 

4 Hardware Components 

Mainly Kinect sensor and computer were used for building the prototype. This 

section contains the functionality descriptions of the devices and their 

requirements. 
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4.1 Kinect Sensor 

Kinect v2 sensor is used in this study for gesture recording and prediction. The 

structure of the Kinect sensor is shown in Figure 17 [27]. 

 

Figure 17. Kinect v2 structure [27] 

An RGB camera is used for capturing 2D RGB images, IR emitters for emitting 

the infrared light and the depth sensor for retrieving the depth images. Part of 

the infrared light produced by the emitters is reflected from the objects and 

returns to the depth camera. Distance to the objects is calculated using the 

phase shift method to create a depth image.  A microphone array records the 

sounds and stores information about their directions. The power light indicates 

whether the sensor is turned on or off.The specifications of the Kinect sensor 

are listed in the Table 1 [28]: 

Table 1. Kinect v2 specifications [28] 

Kinect v2 specifications  

Depth sensor type Time of flight 

RGB camera resolution 1920x1080 
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RGB camera frame rate 30 fps 

RGB camera field of 
view 

84.1° x 53.8° 

Depth camera resolution 512x424 

Depth camera frame rate 30 fps 

Depth camera field of 
view 

70° x 60° 

Operating range 0.5 m -4.5 m 

Skeleton joints defined 25 joints 

Maximum skeletons 
tracked 

6 

USB standard 3.0 

 

4.2 Computer  

A computer is connected to the Kinect sensor and is used for building the 

behaviour recognition software. The requirements for the computer are listed in 

the Table 2 [29]. 

Table 2. Computer specifications [29] 

Computer specifications  

Processor  64 bit (x64) 

Memory 4 GB RAM or more 

Intel processor I7 3.1 GHz (or higher) 

USB host controller Built-in USB 3.0 host 
controller  

 

Graphics card DX11 capable graphics 
adapter 

Operating system Windows 8, 8.1,10 
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5 Software components 

A multitude of software programs were used during each step of this thesis 

project. This section lists the used programs with their descriptions. 

5.1 Kinect Studio 

Kinect Studio is a software tool that can record a video using the Kinect sensor 

and playback it [30]. It was used to record the user’s gestures in this thesis 

project. 

5.2 Visual Gesture Builder 

Visual Gesture Builder lets the user to tag the specific gestures in the recorded 

clips and create the gesture database [31]. The gesture database was used in 

real-time gesture detection. 

5.3 Microsoft Visual Studio 2017 

Microsoft Visual Studio 2017 is an IDE used for writing computer programs. The 

behaviour recognition software was written in this program. 

5.4 NtKinect Library 

NtKinect is an open-source library that enables the user to program Kinect 

using C++ and OpenCV [32]. This library was utilized in writing the behaviour 

recognition software. 
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6 Prototype Design 

6.1 Behaviour Recognition Process 

A block diagram in Figure 18 represents the behaviour recognition process. 

 

Figure 18. Behaviour recognition process 

Kinect was used to record the videos of a person performing the gestures, and 

with the help of Kinect studio the videos were replayed for errors and saved. The 

recorded videos were transferred to visual gesture builder to create a gesture 

database containing the specified gestures. The gesture database was used in 

behaviour recognition software to recognize the behaviours of the person in the 

live video. The behaviours with their detection times were saved in a local 

database for further analysis by specialists. 

 

Based on the above-described workflow, the project work was divided into three 

parts: gesture database design, building the behaviour recognition software and 

prototype testing. The gesture database design comprises of recording the 

videos of gesture performances, tagging the videos and compiling the gesture 

database. Building the behaviour recognition software includes writing the 

computer software to detect the behaviours and logging them in the database. 

Prototype testing is carried out at the end of the project to ensure that the 

prototype works as intended without errors. 
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6.2 Kinect Skeletal Tracking 

The feature of the Kinect sensor that distinguishes it from other depth sensors is 

the ability to track joints of a person. The joints are connected to create a tracked 

skeleton, that repeats the movements of a person standing in front of the Kinect. 

These skeletons were used for behaviour recognition in the thesis project, and it 

is important to understand how they were generated. Joint positions are proposed 

according to the process that can be seen in Figure 19 [33]. 

 

 

Figure 19. Kinect's joint proposal process [33] 

As can be seen from Figure 19, body parts are inferred from a depth image and 

are used to create 3D joint predictions. The explanation below will describe in 

detail each step of this process. 

 

Microsoft team created an extensive database of synthetic depth images 

containing different human postures with variations in human height, body shape, 

hairstyle, etc. Different postures were created by combining computer graphics 

models and motion capture data. [33.] 
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The images were used to train the random forest algorithm, which learned to 

classify a pixel according to the body part it belongs to. The learning algorithm for 

a decision tree in a forest was as follows [33]: 

 

1. A set of random images were chosen for training a decision tree and 
for each image 2000 pixels were picked randomly. This number of pixels 
was chosen, so that the distributions across body parts would be roughly 
equal. Pixels served as the input to a decision tree. 

 

2. Set of features 𝜃 and thresholds 𝜏 were randomly chosen for a root 
node. The features 𝜃 were calculated according to the formula (14) [33]: 

𝑓𝜃(𝐼, 𝑥) = 𝑑𝐼 (𝑥 +
𝒖

𝑑𝐼(𝑥)
) − 𝑑𝐼 (𝑥 +

𝒗

𝑑𝐼(𝑥)
)            (14) 

where 𝑑𝐼(𝑥) is the depth at pixel x in image I and 𝒖, 𝒗 are offsets from 
the pixel x. 
 
3. Pixels at the root node 𝑄 = {(𝐼, 𝑋)} were divided into right and left 
branches by each feature and its corresponding threshold. Division is 
represented by formulas (15) [33]. 

𝑄𝑙(𝜑)={(𝐼,𝑥)|𝑓𝜃(𝐼,𝑥)<𝜏}

𝑄𝑟(𝜑)=𝑄\𝑄1(𝜑)
 (15) 

 
where 𝑄𝑙(𝜑)is set of pixels in the left branch, 𝑄𝑟(𝜑) are pixels in the right 

branch and 𝜑 = (𝜃, 𝜏) represents the set of features 𝜃 and thresholds 𝜏. 
 
4. The information gain was calculated for each pair 𝜑 = (𝜃, 𝜏)  to find the 
best splitting feature: 

𝐺(𝜑) = 𝐻(𝑄) − ∑
|𝑄𝑠(𝜑)|

|𝑄|
𝐻(𝑄𝑠(𝜑))𝑠𝜖{𝑙,𝑟}           (16) 

In formula (16) [33] 𝐻(𝑄) is an entropy calculated over body part labels 

for all pixels (𝐼, 𝑥)𝜖 𝑄.  The second term is the weighted sum of entropies 
on left and right branches. This formula says that gain is equal to the 
difference of entropies on parent and child nodes. Then, the feature 𝜃 
with largest information gain gave the best split and was chosen as a 
splitting feature at the node. 
 
5. If the gain had an acceptable value and the tree didn’t reach its 
maximum depth, the steps 2-4 are repeated for the branches.  
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At the end of the tree’s training process, each leaf node contained the probability 

distribution of the pixel over the body part labels 𝑃(𝑐|𝐼, 𝑥). Output of the random 

forest was a mean of the leaves’ distributions and it is shown in formula (17)[33]: 

𝑃(𝑐|𝐼, 𝑥) =
1

𝑇
∑ 𝑃𝑡(𝑐|(𝐼, 𝑥)𝑇

𝑡=1  (17) 

where T is the number of trees in the forest. [33.] 

Random forest uses formula (17) to classify the pixel according to the body part. 

In Figure 19, each body part is the group of numerous pixels with the same body 

part label. [33.] 

 

The position proposals for the joints were made based on pixels’ probability 

distributions. The probability density function for a body part was estimated using 

formula (18)[33]: 

                          𝑓𝑐(𝑥̂) ∝ ∑ 𝑃(𝑐|𝐼, 𝑥𝑖) ∗ 𝑑𝐼(𝑥𝑖)2𝑁
𝑖=1 ∗ exp (− ‖

𝑥−𝑥𝑖̂

𝑏𝑐
‖

2
) (18) 

where 𝑁 is the number of image pixels, 𝑥̂ is a coordinate in 3D world space, 𝑥𝑖̂ is 

the reprojection of image pixel 𝑥𝑖 in world space and 𝑏𝑐 is a Gaussian kernel 

bandwidth. [33.] 

 

Joint position predictions for a body part are the modes of this density function, 

shifted by the set offset. The joint prediction with the highest confidence value 

and above a fixed threshold was displayed on the Kinect skeleton. Final joint 

predictions are shown in Figure 19. [33.] 

6.3 Gesture Database Design 

6.3.1 Data Gathering and Cleaning 

The first step in designing the gesture database was gathering videos of a 

person performing the gestures. In total, two behaviours were specified for the 
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project: ’needing assistance’ and ‘vandalizing’. ‘Needing assistance’ behaviour 

comprised of the person lying on the floor for some time, while the ‘vandalizing’ 

behaviour included the person jumping on the elevator floor. For the purpose of 

detecting those behaviours, two gestures of lying and jumping were recorded on 

the videos. Due to the inaccessibility to the company’s elevators at the time of 

the project work, the rectangular small room was chosen as a venue for 

recording the videos instead of an elevator cabin.  

 

After calibrating the Kinect camera with the room’s floor, the recording of the 

gestures proceeded, resulting in 51 videos for both gestures. Each video 

contained a few instances of the person jumping or lying, as well as other 

unintended gestures [12]. Unintended gestures were included in the clips, so that 

machine learning algorithm would be able to better differentiate better between 

wanted and unwanted gestures. The person in the video was overlayed with 

Kinect tracked skeleton, which was later used in the thesis for gesture detection. 

 

It should be emphasized that Kinect has problems tracking a person in a lying 

position, as lying position was not included in its synthetic training dataset [34]. 

To overcome this problem, the recorded person was slightly lifting the hands 

above the floor, so that the tracking did not disappear. 

 

The videos were replayed in the Kinect Studio with the purpose of detecting errors 

with skeletal tracking. The videos that contained errors were removed (or 

‘cleaned of’) and the videos without errors were grouped for subsequent gesture 

tagging.  

6.3.2 Tagging and Building Gesture Database 

 

The next step was to tag the selected recorded videos for the lying and jumping 

gestures. This was done using the Visual Gesture Builder software, where the 
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user can move the cursor through video frames and mark those frames where 

the gesture is occurring. 

 

The Visual Gesture Builder has a specific hierarchy of files. The files that describe 

gestures are called projects, and the projects are grouped into solutions, which 

contain all types of gestures. 

 

In total 5 gesture projects were created: 1 for lying and 4 for jumping. Jumping 

was viewed as a continuous gesture and was broken into 3 discrete gestures, 

corresponding to each jumping phase: kneeling down, jumping and kneeling up. 

The hierarchy can be seen in the Figure 20. 

 

 

Figure 20. Hierarchy of gesture projects 

In the Figure 20, ‘jump_progress’ is a continuous gesture, meaning the progress 

of the jumping action, while ‘jump’ is a discrete gesture indicating the position of 

the person in mid-air. 

Each project was specified with the parameters for gestures. The specified 

parameters were: 

 

• gesture name 
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• discrete or continuous gesture 

• body side: left or right or both 

• body parts that are not considered for the gesture, i.e., hands, legs, 
arms 

 

Then, the recorded videos were added to the gesture project for tagging. For 

each gesture 3 videos were added to the training folder and 2 to the validation 

folder, in total 25 videos for all gestures. Training folder’s videos were used for 

training the gesture recognition machine learning algorithm, and validation videos 

were used to test that algorithm. Tags for a discrete lying gesture from one of the 

videos can be seen in the Figure 21. 

 

Figure 21. Tags for the discrete lying gesture 

The person’s movements on the infrared image and the skeleton’s position in the 

3D view are used for reference when tagging. The blue line is applied manually 

to indicate in which frames the gesture is happening. The areas or frames, where 

there is no blue line mean that the gesture is not happening there. The same 

process was repeated for discrete jump, kneel up and kneel down gestures. 

 

The continuous ‘jump_progress’ gesture was tagged automatically by specifying 

the limits for each of its discrete gesture. Values from 0 to 0.5 correspond to 

kneeling up, constant value of 0.5 corresponds to jumping and values 0.5 to 1 

match kneeling down. The video tagged for continuous ‘jump_progress’ can be 

seen in Figure 22. 

 

 

Figure 22. Tags for the continuous ‘jump_progress’ gesture 
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A wave in Figure 22 logically interprets the jumping process: at the start of the 

jump a person kneels down, then kneels up and performs the jump, afterwards 

lands on his feet kneeling down and recovers by kneeling up. Two waves in the 

Figure 22 indicate that two continuous jumps were performed. 

 

After all the gestures were tagged, the gesture database was built for a solution. 

Figure 23 shows the output window containing build information for discrete 

gesture ‘jump’. 

 

Figure 23. Gesture database's build information 

From the Figure 23, it can be understood that labeled images were created based 

on the tagged videos. Those images were either labeled as containing specific 

gesture or not. In this case, they either were labeled as having ‘jump’ gesture or 

not. Then, tree stumps would be created based on the labelled images and the 

skeletal features. Some of the skeletal features shown in the Figure 23 are: 

position difference, angle, speed, velocity, angular velocity, angular acceleration, 

muscle force, muscle torque and muscle power. These tree stumps would be 

combined in adaptive boosting model as shown in Figure 24. 
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Figure 24. Building Adaptive boosting model 

Overall, four adaptive boosting models were created for discrete gestures ‘jump’, 

‘kneeling down’, ‘kneeling up’ and ‘lying’. For a continuous gesture ‘jump 

progress’, a random forest model was created by grouping decision trees with 

skeletal features. To summarize, a gesture database contains adaptive boosting 

or random forest model for each gesture. 

6.3.3 Database Testing 

The gesture database was tested using the ‘Live Preview’ feature in Visual 

gesture builder to ensure that the gestures could be correctly detected. ‘Live 

preview’ uses Kinect’s camera stream for testing. The Figure 25 shows the live 

preview window for lying gesture. 

 

 

Figure 25. Live preview for lying gesture 

In Figure 25 the output window contains a graph, which shows gesture’s detection 

probabilities over time. In this case, the probabilities are high most of the time 

meaning that the gesture is correctly recognized using a database. The same 
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testing process was carried out with other gestures. In case the detection rate for 

any gesture was low, the videos for that gesture were recorded and tagged again 

until its performance was acceptable. 

6.4 Behaviour Recognition Software 

Behaviour recognition software was written in C++ programming language. 

Its structure can be seen in Figure 26. 

 

 

Figure 26. Behaviour recognition software structure 

As can be seen from Figure 26 the program was divided into three parts, namely: 

setup, main function definition and the main program. The first part of the software 

consisted of setting up the libraries, including NtKinect. In addition, the specific 

constants were included to enable the gesture recognition functions of NtKinect 

library. 
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In the second part, the behaviour recognition function was defined. The function 

started with Kinect initialization, where object of class Kinect was defined. This 

Kinect object was used to access the onboard sensors and different 

functionalities of Kinect sensor. Next, the gesture database, created in Visual 

gesture builder application, was included. It would be used for behaviour 

recognition part in the program.  

 

Then, the RGB image was obtained, and the skeletal data was retrieved. The 

skeletal data contains information about tracked skeletons of multiple people 

standing in front of Kinect. Therefore, the data was looped through to access the 

skeleton information of each person. In turn, the skeleton information was a 

vector, which contained the information about all tracked joints of the person. 

 

Each joint is defined as a C++ data structure and contains information about joint 

type, position and tracking state. In total, there are 25 joints in a tracked skeleton, 

and they can be seen in Figure 27 [35]. 

 

 

Figure 27. Joints tracked by Kinect sensor [35] 
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Figure 27 shows the position of Kinect joints in relation to Leonardo da Vinci’s 

Vitruvian Man. The Kinect joints cover the main joints of the human body, which 

enables Kinect to accurately track people’s silhouettes. 

 

Kinect camera utilizes three types of coordinate systems for joints: color, depth 

and camera. The colour coordinates represent the position of the joint on the 

colour image captured by the RGB camera. They are values in the range of 0-1, 

which are percentages of the RGB camera resolution. The resolution of Kinect’s 

RGB camera is 1920x1080. For example, the pair of colour coordinate values 

(0.25, 0.6) means the position of the joint (1920x0.25, 1080x0.6) = (480,648) on 

the colour image. [36.] 

 

Depth coordinates represent the position of the joint on the image created by 

depth sensor. They are also represented by pair of values 0-1, which are the 

percentages of the depth camera resolution. The resolution of the depth camera 

is 512x424. For instance, depth coordinates (0.5, 0.8) points to the joint’s position 

(512x0.5, 424x0.8) = (256, 339.2) on the depth image. [36.] 

 

The camera coordinates represent the positioning of the joints in the 3D space 

relative to the Kinect’s infrared sensor. The origin is at the centre of the IR-sensor. 

The x axis is along the Kinect sensor and increases to the left, the y-axis points 

along the height of the sensor and increases upwards, while z-axis is 

perpendicular to the face of the sensor and increases outwards from its face. The 

position of the joint in the skeletal data is expressed as camera coordinates. [36.] 

 

Each joint in the person’s skeletal data was accessed and checked for the 

tracking state. If the joint was tracked, its camera coordinates were converted into 

color coordinates and the joint was drawn on the RGB image using the new 

coordinates. As a result, the whole skeleton was rendered on the RGB image. 

 

Then, using the gesture database the gestures of lying and jumping were 

detected. Specifically, the discrete gestures of lying and jumping were detected 

by database’s Adaptive Boosting models. Continuous jumping’s progress was 
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determined by Random Forest Regression model. Based on the detected 

gestures, their duration and confidence value, the behaviours ‘needing 

assistance’ and ‘vandalizing’ were recognized. The recognition times were 

obtained by C++ time functions and were logged into the database along with 

behaviours’ names. This data would be later used by professionals to deal with 

emergency situations and improve user experience in an elevator. 

 

Finally, the RGB image was displayed on the computer screen. The image 

showed the person standing in front of the Kinect camera with the overlayed 

tracked skeleton. The sequence of these images formed a video, which was used 

to interact with the prototype. The video also displayed names of the detected 

discrete and continuous gestures with their confidence or progress value. 

 

The third part of the software runs a behaviour recognition function in a main 

program and checks for possible exceptions. If exception was detected, its name 

was displayed on the screen. 

6.5 Software Testing 

The behaviour recognition software was tested, and the recognized behaviours 

were saved in a database. The logged behaviours with their recognition times 

can be seen in Figure 28: 
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Figure 28. Behaviours logged in a database 

Classification results from the database were evaluated using a confusion matrix. 

Confusion matrix gauges performance of a classification model by comparing the 

predicted values with actual values [37]. The confusion matrix for the prototype 

can be seen in the Table 3. 

Table 3. Confusion matrix 

 Needing assistance Vandalizing 

Needing assistance 9 (TP) 2 (FP) 

Vandalizing 2 (FN) 11 (TN) 

 

In Table 3, predictions made by a prototype are represented by rows of a matrix 

and actual values are represented by columns. Based on this data, the 

classification metrics of accuracy, precision and recall were calculated. They 

were used to assess the prediction accuracy for each class. 
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Notions of true positive (TP), false positive (FP), true negative (TN) and false 

negative (FN) are used in these metrics. True positive is a prediction that matches 

the actual value and is positive, true negative is a prediction that matches the 

actual negative value. False positive is a false prediction about a positive value, 

while false negative is a false prediction about a negative value. [37.] In the 

confusion matrix in Table 3, these notions were marked assuming that ‘needing 

assistance’ is a positive class. 

. 

Accuracy is a fraction of correct predictions to all predictions. It was calculated 

with formula (19)[37]. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 (19) 

Precision specifies how many of the correct positive predictions are made. It was 

quantified using formula (20)[37]. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (20) 

Recall computes the number of positive predictions out of positive predictions, 

that could possibly be made. Its value is given by formula (21)[37]. 

 𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (21) 

F1-score combines the features of both precision and recall. It was calculated 

according to the formula (22)[37]: 

                                              𝐹1 𝑠𝑐𝑜𝑟𝑒 =
2

1

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
+

1

𝑅𝑒𝑐𝑎𝑙𝑙

 (22) 

The described metrics were calculated for each behaviour class, while 

considering that class as positive. The results were summarized in a Table 4.  
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Table 4. Results for behaviour classes 

Class Precision, % Recall, % F1 Score, % Accuracy, % 

Needing 
assistance 

81.82 81.82 81.82 

83.33 
Vandalizing 84.62 84.62 84.62 

Macro average 83.22 83.22 83.22 

 

According to the results in Table 4, the prototype had a classification accuracy of 

83.33%. This was an acceptable result considering that a small quantity of videos 

was used for training lying and jumping gestures. To further increase the 

accuracy, more videos with more instances of the gestures should be recorded 

and used for algorithm’s training. 

 

When evaluating prototype’s recognition performance for each behaviour, recall 

was considered more important than precision, as false negatives were of more 

interest than false positives. Missing the emergency behaviours was more critical 

compared to false alarms. 

 

Recall of the ‘needing assistance’ class was lower compared to ‘vandalizing’ 

meaning that it was less accurately classified. To solve this issue, more videos 

with instances of lying should be recorded and used for training the gesture. Also, 

recalls for both behaviours can be increased by reducing the number of false 

negatives. This can be achieved by including both lying and jumping gestures in 

the recording videos and tagging one gesture as happening and other as not 

happening. Thus, the classifier will be able to distinct the gestures better 

compared to when they were recorded separately. 

6.6 Possible Placement of the Prototype in an Elevator 

Studies were carried out to find the optimal position of the Kinect camera in an 

elevator. They also covered the cases for the specific family of KONE elevators. 
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Kinect’s placement analysis for capturing standing gestures can be seen in Figure 

29. 

 

 

Figure 29. Prototype’s placement analysis for standing gestures 

Figure 29 shows a cross sectional view of an elevator cabin. Kinect camera is 

denoted as black dot and a person as a grey figure. Red checked lines represent 

the field of view of depth sensor and green line represents its direction. Here it 

was assumed that the person is standing in the center of the elevator.  

 

A requirement for this situation was that field of view of the camera had to cover 

the top of the head and feet of the person. The problem was to find the angle 

∠𝐵𝐴𝐷 based on the known elevator dimensions. 

 

Let l be the length of the elevator, and h be the height. The height of the person 

is assumed x meters to cover possible cases of height variations.   

 

Then from the triangle 𝛥𝐴𝐵𝐶, ∠𝐵𝐴𝐶 = tan−1 (
𝐵𝐶

𝐴𝐵
) = tan−1(

𝑙

2

ℎ−𝑥
) = tan−1(

𝑙

2∗(ℎ−𝑥)
)   

. ∠𝐷𝐴𝐶 = 30° as it is a half of vertical field of view. Finally, the angle ∠𝐵𝐴𝐷 is 

calculated according to formula (23): 
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∠𝐵𝐴𝐷 = tan−1(
𝑙

2∗(ℎ−𝑥)
) − 30° (23) 

The camera’s placement analysis for capturing lying gestures is shown in Figure 

30. 

 

Figure 30. Prototype’s placement analysis for lying gestures 

In this situation, the main assumption was that the person is lying in the center of 

the elevator. It was required that the field of view of Kinect had to cover the whole 

body. The metric of interest was Kinect’s vertical placement angle. 

 

Let l be the length of the elevator and h be the height. From triangle 𝛥𝐴𝐵𝐷: 

∠𝐵𝐴𝐷 = tan−1(
𝐵𝐷

𝐴𝐵
) = tan−1(

𝑙

2

ℎ
). Hence, the angle ∠𝐵𝐴𝐷 can be calculated with 

formula (24): 

∠𝐵𝐴𝐷 = tan−1(
𝑙

2ℎ
) (24) 

The camera’s angle formulas were applied to a family of KONE elevators to find 

the best placement in them. The results are not mentioned due to non-disclosure 

agreement. 
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7 Conclusion 

The goal of the thesis project was to develop a prototype that could recognize 

human behaviours in an elevator. The prototype was specified to be able to 

recognize different behaviours, log their information in the database and have 

fast performance. 

 

The thesis project was executed in four stages. During the first stage, the videos 

of the gestures were recorded and tagged. Based on those tagged videos, the 

gesture database was created and subsequently tested. In the second stage, the 

behaviour recognition software was written in C++. It provided the prototype’s 

functionality of behaviour detection and database logging. In the third stage, 

results from the database were analyzed to assess the recognition algorithm’s 

performance. Last stage covered the studies of positioning the prototype in the 

elevator for the best behaviour recognition performance. 

 

The project’s result was the prototype that could accurately predict different 

behaviours in an elevator. It achieved fast performance and could log information 

about recognized behaviours in a local database. This data would be later 

analyzed by professionals to handle emergencies and improve safety and riding 

experience in the elevator. 

 

A future improvement for the prototype would be creating a more extensive 

database of different gestures with variations in viewpoint, lighting, and people. 

A sizeable and more varied gesture database would further increase the 

prototype’s behaviour recognition rate and make it suitable for commercial 

purposes. A team of people would have to be involved in recording and tagging 

the gestures, as this process is excessively time-consuming for one person. In 

addition, a larger testing dataset would be created for algorithm’s evaluation. This 

would provide a more accurate overview of the algorithm’s performance and 

provide more insights into the sources of false negatives. 
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