

Vili-Petteri Niemelä

WEBASSEMLY, FOURTH LANGUAGE IN THE WEB

WEBASSEMBLY, FOURTH LANGUAGE IN THE WEB

 Vili-Petteri Niemelä
 Bachelor’s Thesis
 Autumn 2021
 Information Technology
 Oulu University of Applied Sciences

3

ABSTRACT

Oulu University of Applied Sciences
Information Technology, Software Development

Author: Vili-Petteri Niemelä
Title of the bachelor’s thesis: WebAssembly, Fourth Language in the Web
Supervisor: Eino Niemi
Term and year of completion: Autumn 2021 Number of pages: 28 + 2

appendices

JavaScript has been shown to have significant lacks in performance regarding
heavier web applications. WebAssembly is a new compilation target for many
programming languages that bring near native speeds to solve this problem.
WebAssembly binaries can be used in many platforms. Web browsers were the
main target in the beginning, but it has since found places in the server side as
microservices and even in embedded devices.

For this thesis general information about the subject was gathered from articles
and recordings of lectures in conventions. Any deeper study of the specification
of WebAssembly was left outside the scope of this thesis and the main focus
was on a general introduction to WebAssembly and its possibilities.

The applications and properties of WebAssembly were evaluated in the thesis
and it seems to have real potential to change the way people make web, and
other applications in the future. A survey into how people have adopted the new
technology and what they see in its future was referenced.
This thesis also explains how to make a simple Wasm module with the Rust
language that decodes QR code data from images.

Keywords: Programming Languages, Web Browser, Virtual Machine

4

PREFACE

This thesis was written during 2020 and 2021 as the Bachelor’s thesis for Oulu
University of Applied Sciences Information Technology degree. The idea for it
came from general interest of new technologies in the web and in that space
WebAssembly is a new feature that has the potential to change many parts of
how the web is used. This thesis was made as a general introduction to
WebAssembly and at what state it is in its development at this time.
Thanks to Eino Niemi, my supervising teacher for this thesis and Kaija Posio
who proofread the thesis. English is not my native language, so it was an
educational and great experience to be able to write this thesis in it.

Oulu, 30.11.2021
Vili-Petteri Niemelä

5

CONTENTS

PREFACE 4

1 INTRODUCTION 7

2 WEBASSEMBLY – WASM 8

2.1 Comparison to other languages in the Web 8

2.2 Compilation target for other languages 9

2.3 Security 10

3 APPLICATIONS OF WASM 12

3.1 Web applications 12

3.2 WASI 13

3.3 The IoT – the Internet of Things 14

4 EXAMPLE APPLICATION 15

4.1 Tools 15

4.2 Setup 15

4.3 First Part – Hello World 16

4.4 Second Part – QR reader 17

5 FUTURE OF WASM 21

5.1 State of WebAssembly -survey 21

5.2 Wide-spread use in web 22

5.3 Interface Types 22

5.4 Shift in third-party module safety 23

6 CONCLUSION 25

REFERENCES 26

APPENDICES 28

6

VOCABULARY

DoRIoT – Dynamic runtime for organically (dis-)aggregating IoT-processes. A

toolset for internet of things devices.

WAMR – WebAssembly Micro Runtime, Small interpreter for Wasm designed to

be used in embedded environments.

WASI – WebAssembly System Interface

Wasm – WebAssembly

7

1 INTRODUCTION

This thesis was written as an introduction to WebAssembly, later referred as

Wasm, a new language used in the Web. It was decided that giving a general

introduction and overview of Wasm was more relevant than any specific

implementation of Wasm, it being still in its early stages. Many of the tools for

Wasm are also new and many more are just starting to be developed. Many

have even matured quite a bit since this thesis was started.

First, the focus was on the history and development of Wasm and what

previous technologies existed, which had tried to solve same, or similar,

problems. Wasm differs fundamentally from them, so the focus was given to the

design principles of Wasm. A deeper look into internal workings of Wasm was

out of the scope of this thesis.

The focus was then shifted to applications of Wasm. In what environments it is

currently in use and what benefits it has compared to other, current, and

previous, technologies?

Then a simple hands-on example was made to demonstrate how one can

compile code written with the Rust language into a Wasm module that can be

used on a web page. After that the example application was expanded to have

real world application by making a module that decodes QR code with it.

The future of Wasm was then speculated on. A look was taken of a survey on

how people have been using Wasm and how they see it in the future. Finally,

the changes Wasm might bring to the Web and even outside of it were

speculated on.

8

2 WEBASSEMBLY – WASM

WebAssembly, or Wasm as it is abbreviated, started when two teams: the

PNaCl team from Google and the asm.js team from Mozilla, combined their

efforts to run bytecode in the browser (1). PNaCl or Portable Native Client is a

way to run bytecode on the browser, but it is mostly supported on the browsers

of Google. Asm.js is a JavaScript optimization project to increase the speed of

JavaScript code execution in the browser. The effort led to the first MVP of

WebAssembly in 2017 and acceptance into the web standard in 2019. (2, 3).

Now, the specification is maintained by the W3C (the World Wide Web

Consortium), and many organizations contribute to it, including all the major

browser developers: Mozilla, Google, Apple, and Microsoft. The Bytecode

Alliance, a group focussed on developing the Wasm specification further, was

formed from many of the groups that developed Wasm. It has also expanded to

include other organizations, such as Fastly, Intel, and Red Hat.

Wasm was created to make use of computers processing power more efficiently

and portably without giving up on the sandbox environment that browsers

provide. Wasm is at its core a specification of a virtual instruction set

architecture or ISA (4). It does not model any real computational unit but a

virtual one. The communication between a Wasm application and underlying

hardware is handled by some runtime that implements the instruction set for the

specific hardware targeted. In browsers this is usually the v8-JavaScript engine.

This allows same Wasm modules to be run in every platform that has

implementation of a runtime which is Wasm specification compliant.

2.1 Comparison to other languages in the Web

Wasm is the only precompiled, the World Wide Web consortium (W3C)

recommended, language that is used in the web environment. JavaScript is

compiled and optimized just before or just-in-time (JIT) running it. HTML is a

markup language, and CSS is mostly definitions of element styles and

sometimes animations. The web environment has had a lack of high-power

9

language that can calculate heavy operations efficiently. such as 3D graphics

and media stream conversions.

Many attempts of running binary code in the browser have been made over the

years but none of them have been cross-browser and/or easily portable to other

platforms. Microsoft had ActiveX and later Silverlight; Google has Google Native

Client (NaCl). Adobe Flash from Adobe, which was cross-browser, was slow

and full of security issues, reached its end-of-life December 31, 2020. Adobe

Flash had the widest range of compatibility but required the download of flash

plugin to work. In contrast, all the major browsers now support Wasm natively, if

not the most resent version, then at least the 1.0 version. (5)

2.2 Compilation target for other languages

Unlike JavaScript, which is compiled and runs on the fly, in many cases even

before it is completely downloaded, Wasm is precompiled. It is in a bytecode

format and does not need compilation. It is not recommended or intended to be

used as a programming language as itself but as a compilation target for a

expanding list of other languages, including Rust, C and C++. The code can be

compiled with tools, such as wasm-pack for programs made with Rust or

Emscripten for C. It is also possible to program Wasm modules with specifically

designed scripting languages that have been created to make it easier to code

for Wasm without needing to learn more hardware-oriented languages, e.g. C.

AssemblyScript is one of these, and by-far the most popular one. (6)

Being a compilation target for other languages Wasm opens many possibilities

in porting libraries from other languages to it. One could take, for example, a

well-established media manipulation tool ffmpeg and port it to Wasm and run it

in the browser like Jerome Wu has done (7). Wasm modules are cached in the

browser so only the initial download transfers data from the server and after that

the user has all the capabilities of the Wasm module even if the device of the

user loses the Internet connection. A new version of the module needs to be

downloaded only in the case of an update.

10

There is a text form representation of Wasm modules called WAT or

WebAssembly Text Format. As seen from the figure 1 below, it resembles

Assembly and is the human readable form of Wasm. One could also make

super compact Wasm applications by coding in WAT format directly and

compiling it into Wasm bytecode with a wat2wasm tool from the WABT

toolchain. Ben Smith showcased this in his presentation in the WebAssembly

Summit 2021 by creating a match-three game during his presentation. (8)

FIGURE 1. Same code written in Rust and in WAT format (Niemelä V-P, 2021)

2.3 Security

In addition to speed, security is one of the most prominent benefits Wasm can

provide. By default, Wasm modules have no access beyond their own linear

memory and they need to be explicitly given the permission to access resources

outside it. This way of structuring runtime eliminates whole categories of

security vulnerabilities. How can an application have vulnerabilities regarding

filesystem if it cannot even access any part of the filesystem? This type of

structuring a system by limiting the capabilities of it as default is called

capability-based security.

11

Although Wasm modules live in predefined linear memory, and it is impossible

to overflow out of, there are still risks. It is not as easy to discern what a Wasm

module does on a web page since it is not in plain text and needs to be

disassembled before it is even close to being human readable. Hiding

obfuscated malicious code in these binaries, which get executed after

JavaScript glue code calls the module, might be problematic. For example,

many of the malicious Wasm modules found in the web are running crypto

currency miners. These are stealing calculation power from the computer that is

currently visiting the site. Luckily, these are not persistent threats to the visitor

and are stopped from running simply by navigating away from the site.

12

3 APPLICATIONS OF WASM

3.1 Web applications

Wasm brings more capabilities to the web. While JavaScript could do the same

tasks as any other programming language, its focus was not on a heavy-duty

application, such as 3D graphics or optimized hash calculations. Libraries in

other programming languages already exist which have been highly optimized

for these tasks and with Wasm these could be ported to the web with a minimal

effort compared to developing and optimizing same capabilities in JavaScript.

While cloud services have been able to bring higher performance applications

to the web, they need the server-side CPU and GPU usage which costs money

to the maintainer and these kinds of services are usually not free. Also, the

latency they have in the communication between the user and the server is a

problem. Wasm modules on the other hand are run on the machine of the users

so there is no need for powerful servers for the developers and no latency in

most actions in application for the user. The Wasm application can be

downloaded by the user and their computer does the heavy lifting. This kind of a

web application does not even need to use the Internet if the browser has a

cached version of the Wasm modules it needs to work.

One example of a Wasm application is photo editing software called Photopea.

(9) It is currently free to use and has many of the features that traditional image

editors, e.g. Photoshop, have. It runs in the browser, and it feels as fast as any

native photo-/image editing software, such as Gimp or Photoshop. Because it

runs in the browser, one could also run it on a smartphone or, for a better

experience, on a tablet. A screenshot of the UI is seen in the figure 2, on the

next page, with an example project that has a couple of layers.

13

FIGURE 2. UI of Photopea in the browser (9)

3.2 WASI

While Wasm was first targeted for use in the sandbox of the web browser, it is

designed in such a way that it can run on any platform if an implementation of

Wasm runtime exists. In browsers Wasm runs in the JavaScript engine and in

the sandbox of the browser but to run Wasm modules outside of them, an

interface with the underlining system is needed. Here WASI (the WebAssembly

System Interface) comes into play.

WASI refers to all the different interpreters of Wasm code outside the browser.

The Bytecode Alliance has a couple of Wasm runtimes of their own: Wasmtime

and WAMR (WebAssembly Micro Runtime). WASI promotes guidelines of how

a proper Wasm interpreter should be made so it keeps the sandboxed safety

features that it has within browsers by default. Wasmtime is a just-in-time type

runtime for Wasm code and WAMR is a Wasm interpreter designed for

embedded devices. WAMR has both JIT and AOT, or ahead of time,

interpreters. (10)

14

3.3 The IoT – the Internet of Things

WAMR or WebAssembly Micro Runtime is a runtime developed to run Wasm in

embedded systems. Running Wasm in embedded context might sound a little

strange but having one module that works in any hardware, provided it runs

WAMR or any other Wasm runtime, has huge benefits to software development.

Compared to other virtualization technologies, Wasm has a much smaller

footprint and overhead. That also lets the programmers to use a language they

are used to or a language has the best properties for the project at hand. After

compiling to Wasm, the module can be run in any Wasm runtime.

Lecture notes by Karl Fessel, André Dietrich and Sebastian Zug mapped the

use of Wasm in the IoT environment. In the notes they consider the benefits of

using a multi-language compatible compilation target VM as a platform for IoT

devices. They mention that most constrained environments must be

programmed with C, C++, Java, Python or JavaScript. C and C++ being the

most common ones. Java is the only one before Wasm with platform

independent modules that run a Java virtual machine inside the embedded

device. Fessel et al used Wasm to make it possible to write code for embedded

devices with any language that compiles into Wasm, by augmenting DoRIoT

project’s tooling stack with WAMR from the Bytecode Alliance. This, they said

made it possible to choose the programming language most suitable for tasks in

hand, and most importantly it would not limit the programmers when choosing

tools. (11)

15

4 EXAMPLE APPLICATION

Next a sample application was made. It was made following a basic tutorial

made by Mozilla on how to compile Rust code into a WebAssembly module and

use it on a pure HTML page or on a page served with NodeJS. Rust was

chosen as the language to use for this example program. This was because

Rust was among the first languages with supported compilation to Wasm and

Mozilla (current developers of Rust) which were in the group that started the

specification process for Wasm. The example was made from two parts. The

first part is based on the guide by Mozilla and is a Wasm version of a “hello

world” project. The second one was made for this thesis. The functionality of the

app was expanded in the second part with Rust crates rqrr and image. The

libraries in the Rust language are called crates. The resulting Wasm module

was a basic QR code reader application. (12)

4.1 Tools

As Rust was chosen, the basic Rust SDK, or the Software Development Kit,

was needed. A browser, Mozilla Firefox was chosen, because it came with

Ubuntu, to run the example and the crate of Wasm tools called wasm-pack for

Rust. These were installed on a clean install of Ubuntu 20.04 virtual machine.

4.2 Setup

First it was made sure that build tools were installed in the system so that the

installation of the Rust language development kit could be continued with. Then

the Rust SDK build tools were installed via an install script called rustup found

in the home page of Rust. A basic installation was chosen from the installation

options.

The next step was to install wasm-pack, the Wasm toolchain of Rust, with the

library management tool of Rust called Cargo. With wasm-pack the Rust Wasm

16

projects could now be initialized, and Rust source files could be compiled into

Wasm bytecode files and JavaScript clue-code. It has different build targets for

different target environments depending on if the user wants to target pure

browser compatibility or if the user going to serve the module with NodeJS.

4.3 First Part – Hello World

The project was initialized by invoking cargo with the option “new” and with a

name for the project. This generates the project directory with initial files. Then

the Rust source file was modified to include the wasm_bindgen library. The

library comes with wasm-pack and is needed to expose functions for JavaScript

to use. JavaScript functions could also be imported to the Rust code with the

extern keyword.

The default project was modified to use JavaScript´s alert function in its own

public wasm_bindgen exposed function that takes a string as a parameter and

adds it to a “hello” message before using the newly concatenated string in an

alert call. After modifying the Rust file, the project’s Cargo.toml file, which

defines the package for compilation, needed to be configured. This includes e.g.

a list of dependencies, version number.

Now the project was ready to be built into a Wasm file and associated glue

code. A Wasm-pack tool was used to compile the project and a web was

chosen as the target. This created an independent Wasm file and the clue code

JavaScript that could now be added as a module into any web page. The

module was imported with script tags with a module as the type. The “import”

keyword was used to bring the Wasm module’s glue code and chosen functions

into the browser’s scope. The automatically generated clue code function called

“init”, which was used to instantiate the Wasm file, and the “hello” function were

imported.

To use the imported Wasm function, which was made in Rust, the initialization

function had to be called. Also, an asynchronous “then” handler had to be

chained to trigger after the Wasm module had been instantiated. After the

17

Wasm module had been instantiated, the functions defined in the module were

ready to be called.

FIGURE 3. Simplistic example of how Wasm is used in the Web (Niemelä V-P,

2021)

The figure 3 above visualizes the relations with a browser, Rust and JavaScript

in a basic form. The compilation of Rust code into Wasm and JavaScript code is

done outside the browser and after that the browser calls Wasm module’s APIs

with JavaScript.

4.4 Second Part – QR reader

The aim of the second part was to make a Wasm module that would take in

image data and return the possible QR code data contained within. To handle

image data Rust crate called Image (13) was used and to read QR data from

image objects a crate called rqrr (14) was used. These were added to the toml

file of the project under dependencies list.

At first the sample program was made with an internal buffer for the pixel data

of the image, a function to return a pointer to the beginning of the buffer and a

function to scan the image data for a QR code. The QR code, if found, was

returned with a call to the alert-function of JavaScript that was imported into the

context of Rust with the wasm_bindgen library. (15)

18

This design had many problems. One was that the image size was an invariable

number of pixels. So, all images had to be scaled down, up, or cropped to fit in

the array. Another was that Rust does not support global buffers and the calls

that accessed it had to be wrapped within the “unsafe” block of Rust. This is by

design because in applications that use multiprosessing, this might cause a

collision in data access. The final problem was that the module did not return

the data found from the QR code but passed it instead to a JavaScript function

that showed it in a pop-up in the browser. This sort of data return type has very

limited usability in practice.

Luckily, wasm_bindgen had many compatibility wrappers that support more

datatypes than Wasm does. Wasm only has four basic datatypes: 32-bit integer,

64-bit integer, 32-bit float, and 64bit integer. Wasm-pack has automatic clue

code generation for conversion between many of the types from Rust to

JavaScript. This was taken advance of, and the code was refactored. Instead of

the global buffer, the QR code check function was changed to take an unsigned

8-bit integer array pointer, width, and height as parameters and give a string as

the return value. This way the module was no longer limited to images of one

size and the buffer was no longer needed. Also, a function that has a return

value is more useful in the real world than one that calls a set function like alert.

(Appendix 1)

19

FIGURE 4. Description of Wasm QR-code reader module relations (Niemelä V-

P, 2021)

The figure 4 above visualizes roughly the relation between the Rust libraries,

the browser, and user input data, in this example QR code reading application.

The Rust libraries are included to this project that is compiled into clue code and

a Wasm file. After this the browser, the user, and the application handle the

application.

The Wasm module was used on a test web page where one could upload an

image and JavaScript would extract the byte array from it and use it, width, and

height of the image to call the function of the initialized Wasm module that

extracts data from the QR code the image might contain. The result is returned

as a string to JavaScript. Then the result was printed to an alert box if a non-

empty string was received. (Appendix 2)

20

The speed of the module compared to a one written in JavaScript was then

tested. After running the Wasm read function for one image in a loop for 1,000

times, the average time for one iteration was around 125ms and the same test

for a JavaScript QR code decoder library called jsqrcode (16) was around

30ms. So, in this case the Wasm module was a lot slower. This was mostly due

the non-existent optimization of the Rust code and probably too complicated

way to call the rqrr library. This could be optimized further, and at least

comparable or faster speeds could be achieved with a smaller module size.

21

5 FUTURE OF WASM

5.1 State of WebAssembly -survey

In June of 2021, the creator of WebAssembly Weekly newsletter Colin

Eberhardt made the first State of WebAssembly survey. These kinds of surveys

have been made for other languages for years, but this was the first for Wasm.

In the survey Eberhardt surveyed which programming languages people were

using to make Wasm modules, what were they using Wasm for, and what

features programmers were looking for in the future of Wasm. The survey was

answered by 250 people. (17)

In the survey the most used language was Rust followed by C++. This makes

sense since these were the first to compile into Wasm. The third most used

language was AssemblyScript, which is a TypeScript like language that was

designed to be compiled into Wasm. This trend continued when the most

wanted language support was asked. The most wanted was Rust, but the

second and third places were swapped between C++ and AssemblyScript. (17)

Next the survey asked what people use Wasm for, and on what area they

imagine it will have the most impact. The survey found out that people were

mostly using Wasm for web development. The second and third place use

cases were gaming and serverless applications. This mirrors also in the areas

people were predicting to be impacted. The first was web development and the

second and third places were swapped, like in the previous question pair. The

fourth in both of these pairs was containerisation. Eberhardt also quotes a tweet

by the co-founder of Docker, Solomon Hykes, in which Hykes implies that if

Wasm and WASI existed in 2008, they would not have had to develop Docker.

This is an example of the potential of Wasm in the server-side of web. (17)

The next pair of questions was about the future features of Wasm and what

features people wish that Wasm had. The most expected features were

threads, WASI, and Interface Types. The most wished features were

debugging, better APIs, and tooling. Lastly the survey mapped the demographic

of the surveyed people and how long they had been aware of Wasm. In the

22

mapping people were asked about their familiarity with JavaScript, back-end

programming, and Wasm. Most had at least medium familiarity with all the

categories. As for familiarity with Wasm, it was mostly new to them; the most

common answer was under one year. (17)

5.2 Wide-spread use in web

The whole reason Wasm was initially developed was to have more effective

computation on the Web. Many applications in the web are going to implement

Wasm modules to make their services more fluent. Especially the heavier

functions of JavaScript that could be run more efficiently with Wasm. Also, the

calculations that have been too heavy for JavaScript and traditionally ran in the

server-side, could be brought to the browser of the user, thus reducing latency

of the application, and saving bandwidth. This applies also to the server side

where functions as a service type instance of applications, or serverless as they

are called, are being replaced with ones made with Wasm. Container type of

instances could be replaced with orders of magnitudes lighter versions of

applications made with Wasm, enabling to run more services with the same

number of resources and leading to an improved efficiency and a lower energy

usage.

Whole new types of applications, which were previously impossible to run in the

web browser, are to be seen, and the current running applications are going to

be more and more fluent.

5.3 Interface Types

While Wasm modules can be programmed in many languages and compiled

into Wasm bytecode that can be understood by the runtime it lives in,

communication between modules written in different languages is not as simple.

This is where a future feature proposal of interface types come in. A

standardized layer of code on top of Wasm core spec that handles the type

23

conversions of different types of data Wasm modules could communicate with.

(18)

5.4 Shift in third-party module safety

JavaScript third-party modules have a history of security concerns. A common

vulnerability of JavaScript libraries has been that every library has the same

access rights as its parents or grandparents. This gives a filesystem or a

secrets storage access to libraries that have nothing to do with either of them.

This is illustrated in the figure 5 by Lin Clark.

Even if a library in JavaScript is safe now it may become hostile later when for

example the maintainer changes or a malicious commit manages to sneak into

the repository. Even benign code, which has bugs in it can be turned into an

access point for malicious deeds because of this inherited rights design.

FIGURE 5. Traditional inheritance of right of modules, by Lin Clark (19)

24

Long term aim of Wasm has been suggested to change the paradigm of

programming for modules towards a safer direction. Modules are to

communicate via specified interfaces that allow only specified communications

between modules to prevent a malicious behaviour. A huge benefit of

WebAssembly is that each module only has access to its own linear memory

and needs implicit access to outside resources.

With WebAssembly it does not matter if a module tries to be malicious if the

context where it is used does not allow it to access new resources. The

modules are given only the rights they need and no more. This isolation, which

has been given the term nanoprocess, is illustrated below in figure 6. (19)

FIGURE 6, Nanoprocess model of rights, by Lin Clark (19)

25

6 CONCLUSION

Wasm seems to have a great potential to be the driving engine of the future

Web applications and perhaps even as a backbone of computer services in

general through WASI implementations. After the Wasm tools have matured,

users or even developers probably will not need to know much about Wasm as

it is going to be behind the scenes as a platform, compilation target or in other

framework roles.

Wasm, its tools, and supported languages have developed a lot during the

making off this thesis and the speed of development does not seem to be

slowing down. Many new tools have emerged, and some have either been

deprecated or fused into other projects. Based on the survey, programmers who

use Wasm seem to have strong ideas where it is headed and what they would

like to see in the future from the language.

Even if Wasm was originally targeted as a speedup for the web environment, it

seems to have found its place also outside of the web browser with

implementations, such as Wasm runtimes like Wasmtime or WAMR. Though

many of the implementations are still juvenile, they have made big changes to

services and have even bigger possibilities in the future.

The aim of this thesis was to investigate Wasm as a new and upcoming

technology. This was succeeded in many ways, but only as a shallow

examination. Currently Wasm is trying to find foothold in many different areas of

computing and there is so much experimentation that it is impossible to cover

them all in a single text. The first part of the sample program was easy to

implement due to the excellent guide by Mozilla. The second part had some

trouble, caused by the lack of experience in Rust by the author and the lack of

solidified best practices of implementing shared memory, for example, between

Rust code and JavaScript.

26

REFERENCES

1. arsTECHNICA. The Web is getting its bytecode: WebAssembly. 2015.

Date of retrieval 19.9.2021 https://arstechnica.com/information-

technology/2015/06/the-web-is-getting-its-bytecode-webassembly/

2. Couriol, B. InfoQ, WebAssembly 1.0 Becomes a W3C Recommendation

and the Fourth Language to Run Natively in Browsers. 2019. Date of

retrieval 25.3.2021 https://www.infoq.com/news/2019/12/webassembly-

w3c-recommendation/

3. WEBASSEMBLY. Date of retrieval 25.11.2020 https://webassembly.org/

4. Rossberg, A. 2019. WebAssembly Core Specifications. Date of retrieval

6.5.2021 https://www.w3.org/TR/wasm-core-1/

5. Adobe. 2021. Adobe Flash Player EOL General Information Page. Date

of retrieval 25.10.2021

https://www.adobe.com/fi/products/flashplayer/end-of-life.html

6. AssemblyScript. 2021. A TypeScript-like language for WebAssembly.

Date of retrieval 25.10.2021 https://www.assemblyscript.org/

7. FFMPEG.WASM. Date of retrieval 25.10.2021

https://ffmpegwasm.netlify.app/

8. YouTube. 2021. Ben Smith — Raw Wasm: Hand-crafted WebAssembly

Demos. Date of retrieval 25.10.2021 https://youtu.be/qEq3F9Z8z6w

9. Photopea. 2021. Date of retrieval 8.11.2021 https://www.photopea.com/

10. Wasmtime. A small and efficient runtime for WebAssembly & WASI. Date

of retrieval 25.10.2021 https://wasmtime.dev/

11. Fessel, K. et al. Informatik 2020. Lecture Notes, Programming IoT

applications across paradigms based on WebAssembly. Date of retrieval

https://arstechnica.com/information-technology/2015/06/the-web-is-getting-its-bytecode-webassembly/
https://arstechnica.com/information-technology/2015/06/the-web-is-getting-its-bytecode-webassembly/
https://www.infoq.com/news/2019/12/webassembly-w3c-recommendation/
https://www.infoq.com/news/2019/12/webassembly-w3c-recommendation/
https://webassembly.org/
https://www.w3.org/TR/wasm-core-1/
https://www.adobe.com/fi/products/flashplayer/end-of-life.html
https://www.assemblyscript.org/
https://ffmpegwasm.netlify.app/
https://youtu.be/qEq3F9Z8z6w
https://www.photopea.com/
https://wasmtime.dev/

27

31.10.2021 https://dl.gi.de/bitstream/handle/20.500.12116/34705/C25-

7.pdf

12. MDN Web Docs. 2021. Compiling from Rust to WebAssembly. Date of

retrieval 25.10.2021 https://developer.mozilla.org/en-

US/docs/WebAssembly/Rust_to_wasm

13. GitHub, image-rs/image. Date of retrieval 25.10.2021

https://github.com/image-rs/image

14. GitHub, WanzenBug/rqrr. Date of retrieval 25.10.2021

https://github.com/WanzenBug/rqrr

15. GitHub, rustwasm/wasm-bindgen. Date of retrieval 25.10.2021

https://github.com/rustwasm/wasm-bindgen

16. GitHub, LazarSoft/jsqrcode. Date of retrieval 25.10.2021

https://github.com/LazarSoft/jsqrcode

17. Logic, S. & Eberhardt, C. 2021. The State of WebAssembly 2021. Date

of retrieval 25.10.2021 https://blog.scottlogic.com/2021/06/21/state-of-

wasm.html

18. GitHub, WebAssembly, Interface Types Proposal, Date of retrieval

25.10.2021 https://github.com/WebAssembly/interface-

types/blob/main/proposals/interface-types/Explainer.md

19. Clark, L. 2019. Announcing the Bytecode Alliance: Building a secure by

default, composable future for WebAssembly. Date of retrieval

25.10.2021 https://hacks.mozilla.org/2019/11/announcing-the-bytecode-

alliance/

https://dl.gi.de/bitstream/handle/20.500.12116/34705/C25-7.pdf
https://dl.gi.de/bitstream/handle/20.500.12116/34705/C25-7.pdf
https://developer.mozilla.org/en-US/docs/WebAssembly/Rust_to_wasm
https://developer.mozilla.org/en-US/docs/WebAssembly/Rust_to_wasm
https://github.com/image-rs/image
https://github.com/WanzenBug/rqrr
https://github.com/rustwasm/wasm-bindgen
https://github.com/LazarSoft/jsqrcode
https://blog.scottlogic.com/2021/06/21/state-of-wasm.html
https://blog.scottlogic.com/2021/06/21/state-of-wasm.html
https://github.com/WebAssembly/interface-types/blob/main/proposals/interface-types/Explainer.md
https://github.com/WebAssembly/interface-types/blob/main/proposals/interface-types/Explainer.md
https://hacks.mozilla.org/2019/11/announcing-the-bytecode-alliance/
https://hacks.mozilla.org/2019/11/announcing-the-bytecode-alliance/

28

APPENDICES

Appendix 1 Code Example 1: Rust Code

Appendix 2 Code Example 2: Use of Rust Module in JavaScript

APPENDIX 1

CODE EXAMPLE 1: RUST CODE

Repository: https://github.com/Wilssoni/qr-wasm

At commit 03b7e0d0b0653a6bffe5e28ca718d4e2de4e77ef level

use wasm_bindgen::prelude::*;

use image;

use rqrr;

#[wasm_bindgen]

pub fn read_qr(buff:&mut [u8], height: usize, width: usize) -> String

{

 let mut returnstring: String = "".to_string();

 let mut imgbuf = image::RgbaImage::new(width as u32,height as

u32);

 for y in 0..(height as u32) {

 for x in 0..(width as u32) {

 let i: usize = (width * (y as usize) + (x as usize)) * 4;

 //console::log(&format!("{}", i));

 let r: u8 = buff[i];

 let g: u8 = buff[i+1];

 let b: u8 = buff[i+2];

 let a: u8 = 255;

 imgbuf.put_pixel(x,y, image::Rgba([r, g, b, a]));

 }

 }

 let img2 = image::DynamicImage::ImageRgba8(imgbuf);

 let mut img3 = rqrr::PreparedImage::prepare(img2.to_luma8());

 let grids = img3.detect_grids();

 if grids.len() > 0 {

 let (_meta, content) = grids[0].decode().unwrap();

 returnstring = content;

 }

 return returnstring;

}

https://github.com/Wilssoni/qr-wasm

APPENDIX 2

CODE EXAMPLE 2: USE OF RUST MODULE IN JAVASCRIPT

Repository: https://github.com/Wilssoni/qr-wasm

At commit 03b7e0d0b0653a6bffe5e28ca718d4e2de4e77ef level

 <script type="module">

 import init, {read_qr} from "./pkg/qr_wasm.js";

 init().then((instance) => {

 var canvas = document.getElementById("canvas1");

 var img = new Image();

 img.src = "src/images/qrcode.png";

 var context = canvas.getContext('2d');

 img.onload = function() {

 context.clearRect(0, 0, canvas.width, canvas.height);

 context.drawImage(img, 0, 0, canvas.width, canvas.height);

 var imageBytes = context.getImageData(0, 0, canvas.width,

canvas.height).data;

 var qrstring = read_qr(imageBytes, canvas.width, canvas.height);

 if (qrstring != "") {

 alert(qrstring);

 }

 }

 var file = document.getElementById("fileselector");

 file.onchange = function() {

 img.src = URL.createObjectURL(this.files[0]);

 };

 });

 </script>

https://github.com/Wilssoni/qr-wasm

