

Metropolia University of Applied Sciences

Master of Engineering

Information Technology

Master’s Thesis

22 Sep 2021

Wael Awad

Game Testing Automation Guidance

PREFACE

Thanks to all Kuuasema Oy (1) personnel for supportive inputs to surveys and

interviews of data collection. Special thanks to Ville Jääskeläinen as my instruc-

tor for this thesis and special thanks to my family and specially my wife for cre-

ating the atmosphere that enabled me to do this study.

Special thanks to the interviewed Kuuasema personal, Panu Alku, Olli Pek-

karainen, Johannes Heinonen, Tom-Johan Björklund, Pauli, Jani Hämäläinen,

Niko Rintala, Oona Saloranta and from our customer side Alejandro Olmos

Pardo and Dmytro Naida. Big thanks also to Tuomas Luohelainen for support

with the game code and test code, as well Jimi Willing and Johannes Heinonen

again for closer support with the implementation section.

Espoo, 22.09.2021

Wael Awad

 Abstract

Author

Title

Number of Pages

Date

Wael Awad

Game Testing Automation Guidance

38 pages + 14 appendices

22 September 2021
Degree Master of Engineering

Degree Programme Information Technology

Instructor(s)

Ville Jääskeläinen, Head of Information Technology Master’s

program

This thesis is a typical industrial case study, and the Kuuasema environment was used to

execute the idea behind the study. The target was to automate tests in gaming applications

and get a clear guide on how the company could proceed in this field.

The problem addressed in the study was that the local market is lacking a simple guidance

to do test automation in the game industry. Thus, it was important to conduct this study and

provide this type of guidance especially for newcomers in the game industry, saving a lot of

time when setting up the work environment. The study also shows some real, simple code

examples to the Quality Assurance (QA) engineers to proceed and see things in a simple

way.

The study was straightforward starting from definitions and the selection of the required SW

until starting to use and combine everything with code samples to see actual results.

The test application frameworks are something that have existed for long and many new SW

applications are being created rapidly to support more and more application types. New

frameworks, new execution environments, new programming languages, more user-friendly

interfaces are coming to market all the time. To this point, it is hard to focus on all of them.

This thesis selected the game industry for the scope and just focused on driving and guiding

the user as to how to proceed in setting up an environment and getting ready to produce a

simple game to be tested. Each company has its market needs to focus on, but the case

company focuses on iOS and Android devices and taps.

The thesis also discusses the best practices a QA person could benefit from.

 Abstract

Keywords Test frameworks, Unity testing, testing guidance, Game test-
ing, Game test automation

Contents

1 Introduction 1

1.1 State of Art 3

1.2 Problem Statement and Objective 4

1.3 Thesis Structure 4

2 Kuuasema Company State Analysis 6

2.1 Automation Relevancy Survey Results 6

2.1.1 Kuuasema Survey Chart Results Regarding Game TAF 6

2.1.2 Kuuasema Free Text-based Survey Results for Game TAF 11

2.2 Interviews Summary by Functions 14

3 Automated Testing 19

3.1 Why Automation 19

3.2 Types of Test Automation Frameworks 21

3.3 Test Automation Frameworks Selection 23

3.3.1 AltUnity Tools from Altom 23

3.3.2 AltRunner Tool from Altom 25

3.3.3 AltWalker Tool from Altom 25

3.3.4 AltTap Tool from Altom 26

3.3.5 TurnTable Tool from Altom 27

4 Implementation and Testing 29

4.1 Environment Setting/Integrating Framework 30

4.2 Diego Clash Game Code 33

4.3 TAF Code Sample or/and Chart Logic 33

4.4 GitHub Setup 34

4.5 Running Codes Samples Using Jenkins 34

4.6 TAF Report Generation 35

5 Results and Analysis 37

5.1 Analysing Code Reports 37

5.2 Gained Values Analysis 37

5.3 Future View Based on Analysis 39

6 Discussions and Conclusions 40

List of Abbreviations

AAT Automated Acceptance Tests

Android Google's open-source mobile operating system Term definitions:

BDDF Behavior Driven Development Framework

CD Continuous Delivery

CI Continuous Integration

DDTF Data Driven Testing Framework

F2P Free 2 Play

IAP the in-app purchase

IDE Integrated Development Environment

iOS iPhone Operating System (apple)

IoT Internet Of Things

JDK Java Development Kit

JRE Java Runtime Environment

JVM Java Virtual Machine

MT Manual Testing

OS Operating System

PC Personal Computer

QA Quality Assurance

SW Software

TA Test Automation

TAF Test Automation Framework

UI User Interface

UX User Experience

Term Definitions:

Android A modern smart mobile/tablets operating system developed by google.

Simple free open-source product based on Linux operating system. This is

a very common platform for games and widely used. Developing games is

an Android huge application industry.

iOS A modern smart mobile/pads operating system owned by Apple. Apple is a

well know brand of smart mobiles and pads. As well they have monitors tv

and yet more. iOS is an important platform for game industry with its various

phone and pad types.

Game A mobile game is an entertaining graphical UI that is usually used by play-

ers to interact with them either offline or online using an internet connection.

Games can be either free to play or one-time payment or containing con-

tinuous purchases within the game itself. Games consist of many catego-

ries to mainly set out the player out of the real world and enjoy his mobile

capabilities to run them and enjoy time.

Jenkins It is an open-source cost free Continuous Integration (CI) tool for the pur-

pose of building and testing of the produced Software (SW). For the mo-

ment, the Jenkin acts as a Change Delivery (CD) tool, this means that the

whole SW is coupled for fast delivery purposes. Notice that Unity is de-

ployed in Jenkins as a plug-in. Test automation framework integrates with

Jenkins to be in access to the whole package while running the scripts.

GitHub It is an open-source version control and mainly used to control the code

from anywhere in the world within a particular project member. It integrates

with Jenkins and the builds can be triggered to run after each code commit

if needed.

Unity Unity is mainly for games, and it has own Integrated Development Environ-

ment (IDE) and it is developed by a company called unity technologies.

Unity supports a powerful Unity3D user friendly that supports people of dif-

ferent level of knowledge building games of different purposes to the play-

ers. Those games can be either smart mobile games of Android or iOS or

even web games or console type of games. At the same time there is a

concept of Unity1D and Unity2D for flat type of games that does not require

a powerful device to run. They also can run on powerful devices, and they

have a nice market size. Unity supports the programming language C# - C

sharp, as the Unity supports mainly those Object-Oriented scripted pro-

gramming languages.

Altom Is test automation framework offering a lot of tools to add values of testing

games on Android or iOS devices and integrates with latest technologies

in the market. They also offer integration with Unity and game object to

make automating them test wise possible. Yet offers extra services with

some physical tools like an Arm to simulate human movement or devices

to simulate tapping of button in some complicated sequence operations.

More at Altom.com (2)

Customer In the gaming industry the gaming company can do a game and promote it

for players and gain the benefits. Sometimes customers also inquire some

of those gaming companies to build for them such games. Our games like

Dirt Bike Unchained, Bike2 Unchained, in the market already was inquired

by a customer. The games are made by using Unity.

Test types 1. Functional testing for finding out the problems with the product function-

ality for a higher detection of faults, this grows with the game growing with

more features all the time.

2. Then the Smoke testing, regression testing, or Sanity checks are also

important in the term of testing, and they are mainly used to be performed

on the build before releasing it to the market by running a specific set of

tests to make sure the build is not broken.

3. Performance and Load testing of which is important when a lot of players

are playing the game and interacting with its user interfaces.

4. Usability testing of which to detect those hidden problematic faults during

the player journey within the game.

5. Accessibility testing to test the game compliance with those industry

standards.

6. Compatibility testing when running those games on different platforms

and detecting what can break them.

7. Security testing and make sure that hackers can not break into the

games to load free assets, so simply discover vulnerability.

DevOps DevOps stands for development and operations. It is an amalgamation of

practices and paraphernalia intended in design to maximize and corporate

ability of delivering a set of applications to serve the SW coding to faster

expansion.

C# It is called C sharp. The C sharp is a Microsoft own programming language.

And the C# is one of the most advanced programming languages in the

market. It is highly used with professional SW developers. The language

can be used for client side and for backend server side as well. It only de-

pends on the supported imported libraries. It is a very popular computer

programming language for the reason of an easy-to-read syntax and the

variety of programming areas such as, web applications, mobile applica-

tions, developing games and providing a lot of business-related applica-

tions and yet much more. For an experienced programmer, learning C# can

be very fast as it does not require more knowledge than the basics, but

being fluent requires a while. C# is a great future programming language,

and its existence is never disappearing according to the market future

needs. NET is free those days to be used by all people globally, hence the

C# is part of a thing called .NET, of which allows many programming lan-

guages with a collection of libraries, mobile related, games and Internet of

Things and yet more. So simple the .NET is a framework that provides the

optimal guiding on how to create a big variety of different application using

many different programming languages such as C#. C# is a widely sup-

ported language with test automation frameworks.

Java/JDK Java is a programming language that can be used to create simple appli-

cation to run on your machine or even being distributed around the network

servers. Java is more of a backend development programming language,

and it is of the best languages that handles the big data and android related

development as well. It is great with mobile application, games, and other

types of applications as well. Java can run on many OS platforms such as

windows, UNIX machines, Linux, and Macintosh. Java syntax is simple to

understand for a programmer and have some familiarity with object ori-

ented. Java programming language is also supported widely by test appli-

cation frameworks in the market.

Java Development Kit (JDK) is the java development environment. It is

used to build the java applications and all other components by using Java

as a programming language. JDK contains the Java Virtual Machine (JVM)

mainly executing the java code and it also provides the environment re-

quired for that. To press on this a little, the JVM depends on the used plat-

form. For example, windows JVM is different from the Mackintosh JVM etc.

Though Java is an independent computer programming language from any

platform. JDK also contains Java Runtime Environment (JRE), and it

mainly combines Java code by using the JDK required libraries for running

it on the JVM in which result the functional program done.

Python Is one of the greatest computer programming languages for its wide area

usage in a very many fields such as programming of the web or mobile

applications or gaming applications. Additionally, Python is used for Artifi-

cial Intelligence programming and machine learning. It can be yet further

used to program operating systems. Python is not like C# or Java for an

easy to learn programming language to learn. Python requires time to learn

and master and this for sure easier for an experienced programmer, but

not an easy task for a beginner and to the end all depends on what was

planned to get out of it. At the same time, the syntax of python is clear and

can be read and interpreted nicely. Python is widely supported by the test

automation frameworks, and this makes its library one of the biggest librar-

ies of the market bundle. Great language, but no simple.

1 (52)

1 Introduction

Software testing has existed for a long time, and its purpose was always to verify that

the software is functional according to the customer quality perspectives. Usually, Quality

Assurance (QA) designers and QA engineers do the testing decisions on how the testing

could be performed. Testing can be either manual, meaning that no code or step sce-

narios are involved while testing, or automated by creating a set of set of test cases that

can run automatically, then produce results and reports in a systematic way.

In theory, automated testing is based on a set of automated test cases that resides in a

Test Automation Framework (TAF) to replace as much manual testing as possible. For

example, the testing of the assets handling is important, the In-App Purchase (IAP) pur-

chases, pressing of buttons, state transitions, etc. Those could be automated to some

extend to reduce their massive testing repeatedly. It is more accurate to automate the

calculated values or currencies using TA, because a human might need a calculator to

do that.

The importance of this topic grows as the games within the company grow specially in

size over the years. Maintenance work could also increase by time and catching possible

bugs in advance is of the targets. Running a set of automated tests is very pleasant and

provides nice reports of what has failed/passed. However, automated testing cannot be

used in all game testing scenarios because games are visual, and they must be observed

on how they look and react to the QA personnel eye.

The focus of the present study is more on mobile games of Android and iOS devices and

only one game is used as a reference game, i.e. Diego Clash of which there is a game

built by Unity for the scope of this thesis. Figure 1 illustrates the thesis flowchart.

2 (52)

Figure 1 Thesis Flowchart

3 (52)

Gaming market is huge, and it contains games of strategy, sports, location based, ar-
cade, card games, casino, lifestyle, puzzle, racing, RPG, shooter, and simulation.
Puzzle and strategy games are the most famous these days, but each game type has
its audience.

Games usually require a lot of visual testing, and this is a very hard part for a machine
to perform. The human eye only can spot such errors. Machines could spot some er-
rors, but this might be a very expensive operation and may not be worth the invest-
ment.

A summary based on the Newzoo Global Games Market Report 2021 (3) is given be-
low:

Growth in game market is continuous and will be reaching 218.7 billion in 2024. The
mobile device games are dominating, and it is reasonable since all have it in hand.
With around 60% of the players are playing using mobile gaming. Console games and
PC games players are kind of declining. It may worth mentioning the COVID-19 (co-
rona virus disease 2019) may have affected a huge jump of gaming as people were
forced to be more at home.

Sites such as Appannie (4) are talking a lot of the market of gaming and much of details

on how it provides the analytics of the games. This helps mainly project managers and

stake holders to study market and find the needs and fix the required needs to monetize

in a much better way.

1.1 State of Art

Many gaming businesses lack a robust game automation solution. In the game sector it

is quite impossible at the same time to get rid of manual testing because of the visual

related features. Games must be observed by a human, and they must look pleasant to

the eye and playing them requires quite a lot of a manual focus. At Kuuasema, many

games are developed yearly and when it comes to the testing part, the manual testing is

the only method used today. At the same time, there are a lot of areas that can be utilized

and being automated to cover more testing boundaries and the reduction of manual test-

ing.

Taking into consideration the existence of Test Automation Framework (TAF) will help

solve testing of the game parts that can be scripted. TAF product usually offers some

tools, various programming language support, configuration mechanisms to do integra-

tion, settings and running of the created tests end to end until the point of generating

results and reports that are easy to interpret and read by different people at the company

for further processing and concerns.

4 (52)

No direct guidance to combine those technologies together benefitting junior QA people

were available. Such guidance could also benefit more experienced QA engineers as

well.

1.2 Problem Statement and Objective

The aim of the study was to provide an effective way for automated testing guidance of

mobile games. QA personnel require a way to start automating game testing with the co-

existence of manual testing. The business requires time and cost savings in the form of

good game automation testing.

The objective was to propose a way to guide QA personnel in the game industry business

toward effective business cost and effort saving. The target was also to guide the QA

users to execute and find a balance between manual and automated testing. Guidance

is provided to do test automation in the game industry, helping in saving time, effort,

maintenance, and money required by the testing to the company and game industry in

general.

1.3 Thesis Structure

The thesis is divided into six chapters and the content of each chapter is as follows:

• The first Chapter contains the Introduction and introduces the topic lightly to the

reader as to the meaning of the topic and the state of the art as a theory part, the

problem statement and objective and the author contribution.

• The second chapter goes through the company results of the survey and the prepre-

pared interview questions asked from several persons from the company and also

the customer side. The results are listed and discussed and explained further.

• The third chapter starts to tell why TA/TAF is needed and what kind of benefits was

gained out of it over the traditional manual testing used with games now. All the dif-

ferent types of automation common methods are discussed in addition to a study on

which TAF was selected for the present study.

• The fourth chapter provides a solution mechanism to some current problems and

how they have been automated (e.g., code pieces, either C#, Python or JavaScript).

Additionally, Chapter 4 discusses the settings and configuration of the TAF within the

company process, i.e., the integration of the TAF within the Jenkins CD tools

5 (52)

• The fifth chapter provides report examples as an outcome and discusses them fur-

ther, this chapter also provides some calculations to the gained values of introducing

TAF to the company based on several factors such as cost, efforts, maintenance,

etc. Chapter 5 also discusses further theoretical considerations of the TAF usage at

the company and what kind of benefit was obtained.

• The sixth chapter contains the discussion and conclusions based.

6 (52)

2 Kuuasema Company State Analysis

Kuuasema is a gaming company founded in 2004, providing enhanced game develop-

ment with highly professional development teams. The company provides also support

and maintenance for the Free to play games (F2P). Over the years, Kuuasema has made

a great trust with F2P games with a proven record of advancing all time. By providing

games for mobile, pc, console, Kuuasema has a great set of games made and brands

that are well recognized.

Over the years, Kuuasema has provided over a hundred games with different platforms

such as Android, iOS. Games such as Angry Birds, Donald Duck, NBA, Bike2 unchained

and Dirt Bike Unchained games and way more. The company provides game design,

client, and backend programming, UI/UX, Art, Live Ops capabilities to produce and de-

liver games to the market. With many trusted partners over the years and the co-opera-

tion has been always high and successful.

The QA at Kuuasema is performing well, but the testing part of game development is

hundred percent manual. The need of a mixture of manual and automated testing would

add a big value to the company way of doing the testing. This paper intends to improve

on this part by introducing the automated testing and how it can be integrated to function

along with manual testing.

2.1 Automation Relevancy Survey Results

Kuuasema personnel were asked to answer seven questions. Some of the questions

were yes or no questions and some were checkboxes. The last one was a free text based

question to give freedom to the people to tell what they felt about the topic. Altogether

26 people answered to the survey.

2.1.1 Kuuasema Survey Chart Results Regarding Game TAF

Eleven people seemed to just have heard of TAF, nine people seemed to know TAF,

and six people seemed not to even have heard of it. Figure 2 illustrates the answers

given to the first question.

7 (52)

The second question was whether Kuuasema developers thought the company could

benefit from TAF. According to the answers given eight people said yes (blue), and ten

people found it probable (orange), seven people were not able to answer (green) and

one person did not see this possibility. See Figure 3 below.

Figure 2 TAF familiarity at the company

Figure 3 what could be utilized from current unit test automation at the company.

8 (52)

Next, the developers were asked as to what percentage they believed TAF usage could

bring added value. The answers are shown in Figure 4 below.

Figure 4 is further analysed in Table 1 below.

Table 1 Result analysis of Added Value for TAF to the company

Added value Results/persons Analysis

0% 0 Natura, all people agree on

the value

25% 7 -

50% 2 -

75% 1 -

100% 2 -

Cannot answer 14 Natural, because not all

people are familiar of TAF,

and this requires prove of

this in the scope of this the-

sis

The following calculation formula shows the average added value result of TAF introduc-

tion to the company by those twelve people who stated values from 25%-100%.

Figure 4 Company personal view on quality improvement and cost saving

9 (52)

Formula used: (people count * (1/total count who gave answers other than 0) * Add Value

percentage).

All of those are calculated to each Added value percentage and summed to each other

as the following.

 (7 * (1/12) * 0.25) + (2 * (1/12) * 0.50) + (1 * (1/2) *0.75) + (2 * (1/12) * 1.0) = 0.46

The result of 46% is a very high for the added value by the people who have some idea

of TAF. The final value can be calculated later by sending a final survey to the company

personnel after some result sharing.

The fifth question was about what programming languages the developers were familiar

with, see Figure 5.

Eleven people were not familiar with programming, and this could be since many peo-

ple’s job at the company does not involve programming. This leaves 15 people who are

familiar with one or several programming languages. As Figure 5 shows, 10 people are

familiar with C#, 9 people with Python and 8 people with JavaScript, those three lan-

guages being the best known. In the TAF world, those are the exact three ideal lan-

guages widely used.

Question number five addressed the features desired from automated game testing. See

Figure 6 below:

Figure 5 Computer programming languages familiarity at company

10 (52)

The Figure states that 22 people out of 26 believed automated testing would generate

less development and testing costs. This is a clear indicator that the company people

are willing to see this in action. Fifteen people believed automated game testing would

prove beneficial to user friendliness. Less maintenance and expandability are around the

third place which indicates people believe in cost savings and reducing the trouble that

comes out of the long process of maintenance. Language independency is correct, be-

cause not every language is fit to be used by TAF, mainly C#, Python and JavaScript

languages are the most common ones.

Question six inquired the personnel’s willingness to give TAF a chance if it were almost

cost free. See Figure 7.

Figure 6 Features company personal believe the TAF would bring us.

Figure 7 Could the cost be a factor to introduce the TAF to the company.

11 (52)

It is very clear from the above results that the saving of the cost is an additional factor

toward adapting the TAF to the company. Some people of not much of knowledge stated

that they cannot answer. One person is of the opinion no. Based on the answers given,

the following interpretations as to the main factor to adapt such a framework could be

phrased:

1. Saving of company QA and developer efforts/time spent on doing the manual

tests.

2. Saving of company and customer effort on the long maintenance process.

3. Early discovery of failed tests that have passed earlier with nice reproducing

steps toward developers.

4. Automating functional tests and smoke tests/sanity checks is of a great value

over time with bigger projects.

5. Now come the cost factor. If the formula proved to be efficient from step 1 to step

4, then the cost saving is going to be successful.

The company could consider TAF adaptation into its process more closely based on the

findings of the present study.

2.1.2 Kuuasema Free Text-based Survey Results for Game TAF

Here are the results of the 26 people having answered to the following question: Kindly

give me your feedback on the games TA/TAF topic and what kind of benefits/problems

this may bring us to your opinion?

• Good for online functionality and some specific cases. Could be difficult to imple-

ment.

• Benefits are obvious. Kuuasema test team is relatively small, and this can help

them tremendously. Also, it would reduce somewhat both external testing and

manual testing. Anything that helps making testing easier and with less manual

labor is worth to try.

• Testing out new things is useful and a good practice. Make sure to have an idea

what the value is for us, test things as rapidly as possible and then measure the

value and decide if it should be implemented in our practices.

• Test automation can help the technical development and possibly find technical

problems in the UI implementations if more elaborate systems are in use. But

12 (52)

many problems are out of the test automations reach like problems with UI and

game design. But that of course is same with any systems developed for human

users.

• Benefits on using TA/TAF, as it might help to improve the games by testing in a

more dynamic way (onboardings, churn points, etc.).

• Could use some briefing on how this works, what it requires from me (artist) and

how to use this system to get maximum efficiency.

• It might make things faster, but still maybe not reliable, lacking the human touch.

• Pros: API design is more robust, backend-client interaction can be implemented

in sandbox before integrating it to the client. Cons: It will create some more over-

head. Over reliance might introduce UX issues

• In my experience, test driven development (or behavior driven development) nor-

malizes development speed. In test driven development, complex features re-

quire less work – since they are being developed from the user's perspective –

while simpler features require more work, as a trivial implementation still needs

high quality tests to be designed, written, and maintained. The overall result is a

more predictable development velocity, and of course higher software quality

which has many benefits which I'm sure people are familiar with. A general men-

tality among game programmers seems to be that programmers simply want to

see the thing work. Testing fits very poorly into this process because its benefits

are not immediately obvious when compared to simply writing the feature and

then exploratory testing the feature. This makes it hard to employ these tech-

niques in practice. But as our teams develop their process, and projects grow

more complex for various reasons, and the focus shifts from the artisan "game

making" in pre-production stages to data-driven live ops, they are slowly getting

familiar with the concept of software quality. As expected, being in favor of any

new technique that improves software quality. However now, feeling that the im-

pact cannot be easily analyzed because not all developers are familiar with any

kind of automated testing, and the inspiration for such a practice should rise from

within. With that in mind, some teams would be ready for it, and others... well, the

time will come.

• Believed it will have a great added value to our testing mechanisms.

• Optimally the testing toolset would enable QA testers to setup play mode testing

themselves - some current tools look like they may push more workload onto

programmers.

13 (52)

• Pros: reduced time of maintenance and pre-submission testing /QA (just adding

new auto-tests, instead of testing older functionality manually), easier hand-over

in case of the QA engineer change on the team, reduced number of human mis-

takes, improved documentation on each test assertion. Cons: increased time to

familiarize the automation QA/development on the team with the new piece of

technology (test framework, etc.), additional time is needed to write the auto-

mated tests.

• Sounds like a good option to investigate more.

• Creating and designing test cases and maintaining them takes time and effort.

Tests written usually pass but the game still has a lot of bugs. Maybe fewer than

without.

• Automating some UI flow testing could be beneficial.

• For the start the development speed would go down, but eventually it will speed

up. In my humble opinion, minor productions do not benefit anything from

TA/TAF, in other words, this is meant for the bigger games/projects.

• TAF would need to support Unity games.

• It should give us savings that improve the economy.

• Hopefully, automated testing will reduce bugs and regressions at release.

• Interesting topic and would like to know more out of it.

The answers are very positive from the company people. People would like to see TAF

taken into action, even if they are not familiar with it. They believe and trust it to bring

more added value to the company such as effort saving, maintenance cost saving, faster

service providing, and cost reductions for long run big game projects. Also, the thoughts

regarding this being started in a slower motion are valid because the start requires the

personnel to familiarize themselves with the tool and how it integrates to the system.

Figure 8 shows the courses offered by BBST.

The learning curve might be a big measure here to consider, because it is a new tool to

be deployed and to be used. A set of well selected courses from the site (5) is well sup-

ported by the selected TAF by this thesis. For example, Error! Reference source not

found.below lists a few important courses offered by BBTS.

14 (52)

Figure 8 Courses offered by the bbst, courses with certification and hands on

Familiarity with programming languages such as C#, Python and Java is also important,

learning those could be a challenge as well to those who do not know them.

TAF is not just about learning the framework, it is also about a way more to learn around

it. Once TAF and testing confidence, computer languages knowledge, Unity, Jenkins,

GitHub are familiar, the work starts to fly faster.

Finally, to say that people are on the positive side, and they also spoke of their fear of

cons. The cons as stated above all were about the start of TAF introduction to the com-

pany. It is natural for any new product at any company to fall into learning and harder

start. But once learned, this is the moment benefit are started to be gained out of it.

2.2 Interviews Summary by Functions

The interviews were done to the following functions at Kuuasema, the following list in-

cludes a light description of the various functions:

• Game design (designs the features offered to the player based on customer re-

quests)

• Game UI/UX design (defines the game layout and how it looks like to attract the

player of the game)

• Game Client Code Engineer (game frontend programmer to apply the design and

UI/UX related stuff to create the game by doing a code)

• Game Backend Engineer (backend that hides the request logic by the client side

for the player, such as storage and resources and requests handling, server type

of technology)

• Artist (the one person who does the graphics of the game)

• QA (the person who does the testing of the game)

• Management (any person from top level who deals with customers and see the

game as a player would do, but from Kuuasema perspective)

15 (52)

• Customer (the people who order the game from Kuuasema and make sure that

it monetizes with our assistance to gain either money or reputation in the market)

• Producer (in game industry a producer is the project manager of the game, mak-

ing sure that the feature is implemented and communicates with customers, also

make sure the correct practices are used and ensure agile and team communi-

cations are in place)

Ten questions were created for the sake of interviewing Kuuasema personnel

and the customers requesting the game. The interview was based on the game

Dirt Bike Unchained which this thesis uses a refence for the survey. But for the

proof of concept the game Diego Clash was used.

Table 2 combines all the functions answers. If the answer is related to a particular

area, it will be highlighted accordingly.

 Table 2 Survey interview questions to Kuuasema and customer

Question Personal Interview answer combination

1. What would you like to say

about game automated

testing? What do you un-

derstand of game auto-

mated testing?

Tests are to be seen runnable on de-

vices (android and iOS). The tests

could save game design early deci-

sions to increase customer engage-

ment and provide more reliable game.

Usage of game functions (libraries

could be integrated). Automation is of

common understanding by all functions

of the company and customer to auto-

mate and save some resources and

possible costs.

2. Does Kuuasema see a

place for Game Test Auto-

mation framework within its

current system setup?

All personal were in favor of game test

automation to be introduced to

Kuuasema. If it could be fit or not was

an open issue to be defined by this

Thesis scope.

3. Do you believe we should

automate tests to a specific

Each of the interviewed people were

interested about automating as much

16 (52)

area of the game? And

why?

as possible out of the game in ques-

tion. But specific areas where more

about buttons tapping and core game

play.

4. What areas to your opinion

requires to be test auto-

mated by TAF?

Each function area mainly cares of

seeing their stuff working. Hence Client

coders care the game functions as it

should form the vision of the player.

Backend cares that the returned data

is correctly validated. Producer and de-

signer and management cares more

about saving design mistakes and cus-

tomer satisfaction of monetizing the

game and players happiness about it.

UI and Art is the hardest to be auto-

mated because it requires a human in-

teraction to see and report of Art and

UI quality.

5. What do you think

Kuuasema could benefit the

most out of test automa-

tion?

Most of the people tend to say, we

could

6. Do you want to see test re-

sult reports? If yes, what

area reports interest you

the most? If no, why?

The answer yes was by all the inter-

viewed people. Each interviewed func-

tion stated an area which mainly re-

lated to his function. Art and UI/UX

people cared of the menu states and

button sequences. Client care that

game functions as design stated.

Backend of the care they returned val-

ues based on request are correctly

used and handled by client. Design

save time with customer before a new

proposed value to monetize the game

are tested (feeding those values to an

17 (52)

automated set of tests could save a lot

of trouble later). A producer care about

all what was listed above as he/she

see the overall picture of the project.

7. When analyzing those test

automation results (suc-

cess/fail), in which form you

would like to see those re-

sults? Any preferences of

presenting of the result for-

mat?

All people agree of seeing the results

in an easy way to read the reports.

Most people like to see Charts and

graphs. Many also like to see a combi-

nation of graphs and text explanation.

Developers care about seeing the ac-

tual fault reported by some of the mar-

ket bug reporting tools. But still a quick

list of failed tests is nice to see, espe-

cially those cases that have succeeded

in an earlier build of the game.

8. Do you believe we

could save money/ef-

fort(time)/maintenance be-

cause of TAF introduction?

Everyone answered yes. But sometime

this yes was in a concern. The reason

is do we really know that the TAF tool

cost compared to the used resources

from us worth it or not.

9. If the TAF studied in this

scope to be introduced is of

low cost. Do you recom-

mend its usage at

Kuuasema? Why?

This remains to be seen once this the-

sis do some calculation in chapter Re-

sults and Analysis and Discussions

and Conclusions. Any save of cost is

good for the company. Everyone rec-

ommends TAF usage. Some at the

level of being a bit careful. Customer

stated that if this proves time and cost

save, they can be willing to pay for the

cost of TAF based on contract negotia-

tions.

10. Who must be responsible

for the framework test

code/configuration? And

why?

Cleary everyone agrees and told that

QA is to be responsible. Additionally,

developers are supporting QA with

18 (52)

functions or libraries that could be uti-

lized by QA from the Unit tests to TAF.

Designers might have a say as helpers

as well.

A set of an extremely professional people were interviewed from the company level as

stated in the start of this section.

Everyone seems to see a chance and a great possibility that this is going to work but

requires a lot of effort to be used. As QA in the company will be clearly the responsible

for TAF and its integration to the process, the most effort will be consumed from them.

Developers, designers, and others will support by providing guidelines and advice related

to coding or execution chart definition. The company was being very helpful and offered

the possibility the reason being it saves QA’s and others’ work time and load as well.

19 (52)

3 Automated Testing

Manual Testing (MT) is mainly testing of the games manually step by step without any

automated steps. There are no scripting or tools used when executing manually. Manual

testing is slow and consumes time and once something fails, it might require a lot of effort

to find where it has happened.

This is reflected to the fact of manually trying to execute the suspected scenarios. In the

game industry there is no escape from the manual testing when it comes to the obser-

vation part. The reason is that the games are observed on how they look from the art

point of view and how the User Interface (UI) is seen by the players. Manual testing is

great when it comes to observation, and it could be more relaxing to the QA people not

to think of creating automated testing and being familiar with its tools, deployment or

integration to the system.

A mixture of MT and Test Automation TA is the best when it comes to the gaming indus-

try. The major reason is that not every possible testing scenario is achievable by either

of the cases.

3.1 Why Automation

TA is the way of practice to run a set of tests automatically to save time and effort and

produce a convenient set of results. This is mainly for improving the quality of the Soft-

ware (SW). QA is the major sector using this mechanics to detect faults fast enough and

report them adequately. By saving time, effort, and money, which is the main purpose of

the TA, it means the testing criteria must be well defined to be automated.

On the other hand, the design of the TA set must be able to run repeatedly. There must

be a clear design to not fail this part. TA must consider a lot of issues such as setting up

of an environment, then execution of the set of test cases in addition to clearing up the

data and resetting of the environment used.

There are many types of tests that can be automated. It is very important to know that

what can be automated must be clear enough. Automating feelings or given feedback,

etc., is not possible. This leads to the question of what can be automated.

20 (52)

When defining the tests to be performed, it must be clear what is to be automated. For

example, the unit testing can be automated, because they focus on one functionality of

the system to be tested. Unit Testing focus on testing of the code without much of exter-

nal dependencies. But when talking about the Integration Tests, dependencies must be

considered, and this is more complicated. The dependencies on the network availability

of some service might simply break the tests. Meanwhile Automated Acceptance Tests

(AAT) is also important when it comes to acceptance of a not yet released feature. AAT

require co-operation from QA and developers, and this is to make future regression test-

ing wiser and does the required. After that the regression testing can be planned as it

verifies that new code developed does not break the already existing functionality. Many

other types of testing can be automated such as performance testing in a way of loading

the system and putting pressure on it. At the end Smoke Testing is one efficient set of

test cases to verify that product is good to go, this is by ensuring service is up and running

with all the dependencies required.

When the game to be tested, the environment is set ready in place (this may require
special kind of settings, depending on the application). After that, the test suit defined
will be executed and triggered. After that, the test results and reports are generated and
ready to be evaluated by the QA, developers or who is interested. Chapter 4 ‘

21 (52)

Implementation and Testing’ tell more of this in more depth

The conclusion is that the TA is great and can be utilized for different sets of testing

types, but this does not mean manual testing is obsolete. Everything is not possible to

automate, especially in game sector, hence the manual testing plays a big part of it.

Automation frameworks existed to host code that will integrate with some service to pro-

duce test results and reports. This will also mean that it may offer the possibility to design

and create those set of tests. At some point it will be realized that the framework used is

a set of practices and tools together to help testing to proceed. Quality Assurance (QA)

Engineers are the most beneficial part of TAF.

The speed of the game loading and debugging is important. As far as going further this

will matter a lot to spot faults easier. Many computer-based languages can be used to

create and run automated tests. For example, C# or Java or Python and many more. It

depends at the end of the selected test framework and what kind of computer languages

it supports for scripting.

It would be great if TAF could integrate with some other frameworks in the market. Multi-

communication between different TAF is a great add and could be many reasons such

as some tests require another scripting language capabilities to unionize some tests that

cannot be easily achieved with the current one in hand. This is only mentioned when

talking about the value of this feature only.

One of the most important aspects when choosing a TAF is to consider that the reports

are generated in a very nice reading format. It is very important for others to understand

the reports without struggling. Reports that contain charts, figures, tables, screenshots

are of more value and could utilize more game user acquisition for the game.

3.2 Types of Test Automation Frameworks

TAF provides all the required benefits to the user when executing a set of tests efficiently

and reporting the results. Before selecting the correct framework, the different types are

briefly listed and explained.

1. Module Based Testing Framework (MBTF)

22 (52)

A module-based testing approach, which means that the modules can be of any 1 – N

numbers and a script will be representing them. The good thing of this is easy to maintain

and highly scalable. This would be a good type when it comes to maintenance part as

well. On the other hand, this type might be data specific and a change in data might

require dramatic changes.

2. Library Architecture Testing Framework

It could be said that the library architecture testing framework is based on the MBTF

framework, but this make sure common things are set together like a library. So common

steps are bundled together and whenever required it is called and used. This is cost-

efficient framework type, and the re-usability is a major benefit. This is also hard to main-

tain, and the libraries may make things more complicated.

3. Data Driven Testing Framework (DDTF)

The main idea of data driven testing framework is to separate the logic of the test suit

scripts created from the data to be used as an input. External data base is used, and

files can be of any format that could be read by the scripts. A particular mechanism can

be used to fetch the data and make a use of it. This type reduces the number of scripts

used and most important that data change will not affect the scripts. By this a more flex-

ible and maintainable script will be available. As a side effect, the data reading mechan-

ics and programming skills are highly required.

4. Keyword Driven Testing Framework

Keyword driven testing framework is driven from the DDTF type. This means that the

storage of the data to be tested and the keywords are stored in the same data base.

Based on the nature of the keyword the code will be executed. This type provides similar

cons as the DDTF, and additionally the scripting familiarity is not required, and this can

be used across a lot of test scripts.

5. Hybrid Testing Framework

23 (52)

Hybrid testing framework means that many of different types of frameworks can be used

and utilized together for bringing the most out benefit. This module will bring all the cons

and pros for all types. This requires a professional QA personal do it. It requires

knowledge of many deferent types and how to make the best out of them to reduce

money and increase efficiency and stability.

6. Behavior Driven Development Framework (BDDF)

Behavior driven development framework is more for members of QA personnel that does

not need to be a super programmer. This brings value to all parties from developers, QA,

Business personal, Management, etc. This depends on the used framework that will offer

different tools like cucumber, JBehave and so on.

DDTF would seem the best fit for the TA framework selection.

DDTF was selected in this study. The reason is that most of the games these days utilize

data that comes from the backend (called server sometimes). The backend serves the

client and provides it with all details it needs based on request. Backend also provides

some details as a result feed to the client, so the client acts based on the received data.

1. Backend is not critical for performance, because it is basically called when client

requires some data.

2. Backend hiding of data toward the client and communicates toward cloud to store

this data is a very nice thing.

3. Resources are handled by backend and given to Client based on request.

DDTF utilizes libraries (calls to those libraries will do the communication to the client)

provided by the client coders as they have coded the game. Those will be used and

utilized by QA personnel. QA creation of tests will require to deal with the backend as

well to gain some data that can be passed to the used libraries to obtain results to confirm

a pass/fail test case mechanism.

24 (52)

3.3 Test Automation Frameworks Selection

There are quite many available TAFs in the market. Many are either open-source (free

of charge) or costly ones. TAF can be used at the personnel level or at the company’s

level.

The TAF selected here was Altom.com, it supports functional testing, performance and

load testing, usability testing, compatibility testing, security testing, regression testing

and yet has a great number of tools supported to serve game development. They are

listed in the following sections in relevancy order. Altom is a DDTF framework.

AltUnity Tools are the most interesting tools for the scope of this thesis as they cover the

mobile game test automation. AltWalker, AltRunner and AltTap and TurnTable tools are

worth listing as well to show the variety of test scenario possibilities.

3.3.1 AltUnity Tools from Altom

Most important is the package that integrates to the Unity. They are called AltUnity Tools

(6).

There are 3 offerings of AltUnity tools:

1. AltUnity Tester package. This is most important for interacting with the unity ob-

jects and do the writing of the code of TAF. It is worth listing that the access to

Unity is required. The AltUnity Tester package support is free on discord chan-

nels, refer to Altom pages for adding yourself to the channel.

2. AltUnity Inspector package. This package gives some independence of the Unity

with the access to the game as a black box. But this require a line of code to be

added to build mechanism so it can be seen when testing it. Additionally, this also

offers interactions with the game during the testing by pressing tabs or doing a

move by a mouse, etc.

3. AltUnity Pro will be offering the AltUnity Inspector package in addition to more

features. There will be a rich reporting tools by Altom.com and not only those that

can be generated by Python or whatever. Greater support to the most popular

Cloud service providers with an extended support to the customers.

25 (52)

AltUnity Inspector and AltUnity Pro cost monthly or yearly fees. Those fees are per li-

cense. The additional AltUnity Tools that are free will be an add on the Unity Personal

that will be used for the purpose of the thesis prove of concept. Figure 9 below lists the

AltUnity packages.

Figure 9 AltUnity Package offering contents.

The AltUnity Tester package is independent of the Inspector and Pro package. So, it can

be downloaded for free and integrated with company Unity, by the Unity Personal pack.

Once those are set correctly, the packages can then be built with the AltUnity Tester and

the TAF scripts can start to run.

3.3.2 AltRunner Tool from Altom

AltRunner is one of Altom tools that uses Appium Test Framework, the following

statement explains it in more depth:

“If you do automated tests through Appium on mobile devices, you know how annoy-

ing it is to do the setup every time, for every device. AltRunner does this setup auto-

matically whenever you plug in a device. You can also run tests in parallel on multiple

devices. In its enhanced reporting module, you can investigate failed tests.” (7).

26 (52)

3.3.3 AltWalker Tool from Altom

AltWalker is a very useful tool from Altom to define the flow of the tests:

“An open-source model-based testing framework for automating test execution. You

design your tests as a directed graph and AltWalker creates the test flow and exe-

cutes them.”, (8). Figure 10 shows one AltWalker chart scenario example.

These days, most of the games use Unity engines that are free of charge at the

personal level to provide possibilities for game creation. Unity engines provide two

kinds of possible offerings:

1. 2D with lots of tutorials and assets to make doing of 2D games fun.

2. 3D with yet a lot of tutorials and assets and making great 3D games as the major

intention of the Unity is the 3D games.

Unity provides C# as its incipient scripting computer language, yet Unity offers a lot

of plugins to form an editor. This means some functionalities are possible to be drop-

pable.

As a result, there are no limitation as to how much testing could use out of Unity. The

main reason is that Unity offers many components/objects and those can interact

with each other by actions defined by the coder.

One benefit has been the possibility of a set of supporting libraries from the game

developers. So, once those components/methods/properties are being available, QA

Figure 10 AltWalker chart scenario example

27 (52)

could proceed to test creation. The test creation requires an interaction with the

loaded game on the device, so that the input of touches or Keypress can be detected.

Unity has the Pro and Plus variation, but Altom.com does not require them for the

usage of their tools. If they are already licensed, it is not a problem, but not a require-

ment.

3.3.4 AltTap Tool from Altom

AltTap is a mechanical tool for automating touchscreen related game stuff:

“AltTap’s special power is that of performing automated tests on any type of

touchscreen device, even where it’s not possible to interact programmatically with

the application. (9)

AltTap simulates a human tester by using a more complex stylus to perform click or

swipe actions on a touchscreen and push actions on physical buttons. The process

also uses an image-recognition algorithm for detecting elements or performing as-

serts.”

It is a power supplied device that capture images and record them with sounds and

store them for reports later. Altom offers this service to the companies requiring tap-

ping tests. This is not in the scope of this proof of concept but listing it here to show

that such physical device exists and Kuuasema can utilize it for some contracted test

requests. Figure 11 shows an AltTap robot.

28 (52)

3.3.5 TurnTable Tool from Altom

TurnTable is a mechanical tool to simulate hand move:

“A robotic arm that allows us to simulate a user’s hand and head movements in order

to automatically perform advanced and reliable tests on apps that require various

movements, such as games, VR apps or photo apps.”, (10)

The robotic arm and how it works is very interesting on utilizing the movements a

player of the game can do. Once the tests start, the sensors on the devices used will

start to run as a human would have been doing. Figure 12 shows a physical device

meant to simulate human arm for game testing.

Figure 12 shows a service provided by Altom.com to automate test scenarios based

on customer contracted request. This is listed in this document as it could be used

by the company, by not within the scope of the thesis.

Figure 12 Physical device to simulate human arm for testing games.

Figure 11 AltTap that perform touch mechanism when testing game UIs

29 (52)

30 (52)

4 Implementation and Testing

This chapter isbe about the process of downloading TAF and integrating it with the com-

pany setup, what it requires from the company and how much of effort it can be and how

complicated it is. Next, the chapter contains the game code to be tested and some ex-

planation around how it works. The created code of Diego Clash is only a simple guiding

game code example. Furthermore, the chapter contains three test code samples. The

samples run to FAIL one test case and PASS two test cases. This could be done with

three languages, C#, Python and Java, but C# was selected here.

This chapter also focuses on the storing of the generated code. Also, how it can utilize

the GitHub free source version control system. In this example, it is simple to handle, but

the bigger and more complicated the system is, the more this tool usage makes sense.

Next, the chapter focuses briefly on Jenkins and the required plugins to activate the

CI/CD of the Diego Clash game. The focus is also limited as that can be learned from

the net. Finally, the chapter focuses on the generation of the test result reports. The

reports are not Altom.com specific format because of Altom “AltUnity Pro” package is not

yet ready to offer this feature. The report is specific to the Programming language pack-

age offerings. This is clarified in Section 4.6 whether all languages can offer an easy-to-

read test result report.

This section utilizes the TAF code using three different languages: C#, Python and Java.

The three languages are supported by the TAF Altom.com. The code written was inter-

acting with the Unity function calls. Those functions are built mainly with C# as unity is

supporting this language.

31 (52)

The three languages interact with C# as Table 3 shows.

Table 3. Language mapping …

Table 3 Languages that can be used to do TAF code

TAF code language Unity code language Result

3 C# test code examples,
one to fail and 2 to suc-
ceed (selected for this the-
sis)

C# FAILED, PASSED,
PASSED

3 Python code examples,
one to fail and 2 to suc-
ceed

C# FAILED, PASSED,
PASSED

3 Java code examples,
one to fail and 2 to suc-
ceed

C# FAILED, PASSED,
PASSED

Table 3 is a simple tabkle to tell that the coding of TAF can be done with multiple lan-

guages. For this thesis scope the two passed and one failed cases are made using C#

code.

4.1 Environment Setting/Integrating Framework

The examples and environment setting are specific to Windows in this scope. For an-

other Operating System such as Apple Macintosh or other, then it is just about different

downloads and could be found and used in a similar fashion to the ones used in this

thesis scope. Otherwise, the steps are quite a lot the same.

This section explains the steps to be taken to utilize the TAF with the Kuuasema envi-

ronment. Based on the thesis writer experience in the gaming industry this is very close

to the case for all companies, because the companies try to save cost and utilize solu-

tions that work well as open-source products.

From the moment the SW is to be created with all the actions around that until it reaches

the market in a nicely automated fashion, it is all about Continuous integration/Continu-

ous Delivery process:

• CI is more like automating changes that is made to the code for one single kind

of SW project, and the GitHub version control can be also supplemented with

other tools.

32 (52)

• CD is a wider concept for developers. It allows to automate the testing in a wider

concept than just unit testing. This means that the deliverables can be verified

with more than one dimension before they get deployed to the customers. The

test types meant here could be testing reliability, security, performance, loading

times, regression, etc. CD offers those automated channels to reduce manual

errors or even terminate them yet provide a kind of standard feedback either pos-

itive or negative to the coders, also to give the possibility for faster products to

the market.

The market is full of products that support CI/CD. After full research “Jenkins” was se-

lected for several reasons of which some are listed below:

• Free open-source product. But it is important to know the hosting server for Jen-

kins is not free. It is also worth mentioning that it is my responsibility to maintain

and update it.

• It has over 1000 plugins available and supported. But not all the are essential.

The aim selected defines what plugins are required. Those plugins can be found

from manage Jenkins and Plugins.

• For example, GitHub is a plugin in Jenkins, Unity3D is a plugin in Jenkins, there

are C#, Python, Java plugins, Cloud, etc. The ones listed are those required by

this thesis domain. But Jenkins cover all what world may need of plugins.

• Jenkins is integrating very nicely with almost the whole DevOps tools.

After a little explanation of CI/CD and Jenkins selection, the following can be stated: CD

packages what CI has built and tested. CD offers the build and configuring it, packaging

its SW, and doing the deployment regulations. The deployment part will be the final step

towards the releasing of the product to the market.

The CD tool usually considers the cost and powerful automation of the product released.

And by this the old traditional ways of SW management do not make sense as this Jen-

kins CI/CD tool is about improving the speed of SW delivery to the market and saving

time to corporates and providing high rapidity.

The following products are required to be installed for the scope of the study (the required

plugins installation go through with the orchestration of Diego Clash game delivery

33 (52)

1. Unity Personal installation is to be done and performed. It is also recommended to

use a tutorial for learning the basics of Unity. Unity is the best way to create games

as it offers Unity with multiple variations as stated in section remember that Unity

Personal is free to use, but for bigger corporations pricing of the Unity will apply ac-

cording to their terms) – Unity Personal installation website (11). Windows installation

is in the scope of the study.

In this document domain, Unity is not fully explained, because it is a long topic of its

own. Doing a study by using a tutorial go through and select some game examples

to take the programmer with a complete tour on how to build and execute the game.

To learn Unity a reader must follow Unity learning guide website (12). This is a great

tour for starting the use of Unity. Also note that the link of learning the Unity also

leads doing the installation as one of the learning steps. The installation can also be

directly as listed above.

2. GitHub Desktop is a good tool for replicating code (a versioning system tool, ex-

plained in Terms section at the start of this Thesis) and the browsing of the code in

an easy way. For GitHub desktop installation, please follow-on guide of installation

website behind (13). Windows installation is in the scope of this thesis.

3. Once the game “Diego Clash” code is written (the code is in an appendix and is

referred to in Section 4.2). This game is then utilized to be tested by the TAF code

(More of this in Section 4.3). The code can be on a local machine or shared to some-

one for replication as step two above stated. Diego Clash can be added to GitHub

(More of GitHub in Section 4.4). If a particular Unity version to run the game is re-

quired a notification will po-pup guiding of what to be done (in case a particular ver-

sion is required to be downloaded to support running of own game). Unity Hub can

have very many different installs of unity versions and they can be added/removed

based on your needs. Please refer to Appendix 1 for the image reference.

4. The image shown in Appendix 1 shows the game in question “Diego Clash”. The

required Unity version for that was not available after the installation of Unity Per-

sonal. That has required another Unity version in which the tool instructed download-

ing it and it was indicated by warning triangle that was on top of “TAF-Diego-Clash”

project. Clicking on that, lead to install the required version “2019.4.28f1”. This may

take a long time as unity is a huge package. After that the installs can be observed

as in Appendix 2.

5. Install of the Altom.com TAF by following the website behind (14). After opening this

link there is a button “Open in Unity”, just click that and the rest is done automatically

34 (52)

(the installation of the package will integrate with Unity). Other packages are not ex-

plained in this thesis domain. Appendix 3 shows how does this view looks like.

4.2 Diego Clash Game Code

For this thesis purpose a new game called “Diego Clash” was created. The purpose of

the game was to experiment and act as prove of concept using the TAF code on it to fail

and pass some of the test cases. Diego Clash and its code belongs to the company in

question and was done for the reason of simplicity for the reader. Diego Clash code is

listed below with a light explanation only as the purpose and scope of this thesis is not

to teach code writing.

1. C# code for the Game Data. In the Diego Clash game that data handled is gold.

Please refer to Appendix 4 for the code sample of game data.

2. C# code for the Game Play Manager. This is the major file of the whole game of

which the buttons and the top bar manager and prize claiming are all handled. Those

files are coming next in this thesis context. A reader must be a little familiar with C#

code to read and interpret this code. Please refer to Appendix 5 for Game Play Man-

ager code (part one and part two).

3. C# code for the Main Menu Manager for starting of the game and quitting of the

game, Appendix 6 contains the code for starting and quitting of the game.

4. C# code for handling the buttons numbering and their names, images and what is to

be activated once clicked. Please refer to Appendix 7 for buttons handling code.

5. C# code for the Top Bar Manager, here the gold amount text and the gold amount

updates are happening. This code also has the mechanism to put the player back to

main menu based on clicking. Please refer to Appendix 8 for Top Bar Manager code.

4.3 TAF Code Sample or/and Chart Logic

35 (52)

This section shows to the reader the TAF code used to fail/pass some of the Diego Clash

game uses C# programming language. All TAF code samples will initiate the socket con-

nection opening and closing after the test is being executed.

1. C# code for failure in Claiming of some prizes. TAF code file is: testFail.cs will load

level 1 scene and then fails to claim the prize. Please refer to Appendix 9 for the test

fail code sample.

2. C# code to test Diego Clash game starts and can move from main menu level. TAF

code file is TestMainMenuToLevel1.cs will load the Main Menu sense and performs

taping of which starts the game successfully to pass the test. Please refer to Appen-

dix 10 for the code related to this pass test.

3. C# code to test playing of Diego Clash game at level 2. Test code file named: Test-

PlayLevel2.cs: Code will load sense 2, then tap all the buttons, then claim the prizes

and verify a successful tapping and prize collection. Please refer to Appendix 11 for

the code related to this passed test.

4.4 GitHub Setup

Within this project it was decided to use GitHub as a code versioning system. The fol-

lowing figures show “Diego Clash” code game file structure and TAF code that is testing

it. The meta file is created automatically by Jenkin CI/CD tool. This is required by admins

to make sure all projects contain this certain metadata.

1. Diego Clash GitHub structure as the following

Please refer to Appendix 12 for the code structure of Diego Clash code.

2. TAF code for doing some testing to Diego Clash code

Please refer to Appendix 13 for the code structure of Diego Clash TAF code.

Running Codes Samples Using JenkinsThis simple code does not require mainly Jen-

kins as it was possible to run and execute earlier using Unity. But trying to list a few of

the steps that could be of good help as this is not in the main scope of this thesis.

This following are what to be considered:

1. The installation of Jenkins described lightly

36 (52)

The installation of Jenkins for windows will happen by following the website (15), so fol-

low the instructions when installing the Jenkins carefully, also make sure before that to

have the recommended JDK and JRE installed. After the installation is being completed,

Jenkins will run locally on own machine http://localhost:8080/. Please refer to the Appen-

dix 14 on how Jenkins looks like after the installation. Exploring more those different

Jenkins UI elements and learn more by following the website (16).

2. Writing the required Windows batch file (.bat) that runs the tests (a bash script can

be used as well) and Running AltUnity from command line is also an important step

Example of the file:

Batch file example:

Note the variables are to be defined or otherwise a usage of hard coded paths is a

must (not recommended).

3. Setting up Jenkin to run the batch file

Please follow building of Jenkins job instructions website (17) for more details on how

to build the Jenkins job.

4.5 TAF Report Generation

From unity a simple report is received as Figure 13 illustrates:

Figure 13 TAF report

<UnityPath>/Unity -projectPath $PROJECT_DIR -executeMethod

AltUnityTestRunner.RunTestFromCommandLine -tests

MyFirstTest.TestStartGame -logFile logFile.log -batchmode -quit

http://localhost:8080/

37 (52)

This indicates that the tests performed were all successful. The three tests were de-

signed by two of them passing and one failing.

It is possible to use Allure Framework for more accurate reports if required. Please follow

the documentation of Allure Framework (18) on usage. A lot of different languages are

allowed to be used with this framework and it gives a nice reporting mechanism to the

QA people and management as well. Failed test cases and succeeded ones can be

obtained and being shown in many ways of wish. Please follow the Allure Framework for

further details on how to use.

38 (52)

5 Results and Analysis

This section discusses the code reports, the gained values by this guidance and future

considerations as well.

5.1 Analysing Code Reports

The code reports were not made very accurate as this thesis has used the reports from

Unity. Those reports are kind of simple and tell what was happening when running the

tests. As in Section 4.3, the three code samples were run to prove that TAF code is

functional and possible to run and give results. Refer to Section 4.3 for more about the

code samples used.

As further mentioned in Section 4.5, the Allure Framework could currently be used to

provide exact reports. Those could contain more details for QA or Project manag-

ers/Stake holders for further study the failures. Many different types of failures can be

obtained and not all concern the interest of all. It is recommended that a QA person with

the Project Manager would agree to whom they can be sent. For example, functional

faults are for engineers/coders, analytics related to stakes holders, faults caused by in-

correct design to designers of the game, etc.

The Diego Clash game was tested by Altom TAF code, and the reports are clearly suc-

cessful and proof that the game works as expected.

5.2 Gained Values Analysis

This thesis did not directly use the code of any of Kuuasema games. The idea was to

create a new game called “Diego Clash”. The testing code generated depends on how

to use the decided TAF.

It is recommended to always look at each of the frameworks selected to create the TAF

code and the provided documentation on how to use it. In this thesis scope Altom selec-

tion required looking at their documentation and learning how to start. Bit by bit, the

39 (52)

knowledge grows and more complicated TAF scripts can be written to perform the re-

quired tests.

Altom AltUnity Tester does not require a very highly paid Unity package and it works well

with the free version of it. The problem is if the company to apply it uses a professional

licence to the product, then the one using the Altom solution will also require a key to

use one of the licenced Unity products and this is too expensive. As an example, one

unity pro license cost $1800 as an annual fee and if two QA personal would need this,

then two seats would cost $3600 annually.

The efficiency of using the TAF code is making sense for long lasting projects of many

years. The reason is that the creation of the TAF code will be efficient to run over the

years for those parts that for example does not change that much in the core engine of

the game or similar. New code will always require new TAF tests.

Notice that the automated Smoke tests run many times monthly and could be the same

tests running on multiple platforms. Time effort wise this may save up to 5 hours/month

of time for one project that requires to run the tests on two different platforms twice a

month, not that Kuuasema one time smoke test run average has been around 75

minutes/ platform. Table 4 shows the calculations related to time saved.

Table 4 Calculation table of time saving/project smoke test run

Smoke test for 4 weeks of

time

Platform Time used in hours

2 Android runs Android – device 75 min x 2 = 2.5 hours

2 iOS runs iOS – device 75 min x 2 = 2.5 hours

 Total = 5 hours saving time

For more devices more time is saved as Table 4 would indicate.

Functional tests for a particular feature are good to run once the future gets new content.

A feature can be one of the game functionalities. For example, adding more buttons to

the game and making sure that the functionality did not break and then the TAF code

could be run again and if it passes then all good. But this usage is less active than the

40 (52)

smoke tests scenarios because changes to a particular feature do not necessarily hap-

pen that easily. It is also hard to know how much time or resources this could in effect

save.

Running the whole TAF code at once after introducing a new major feature could be a

very good idea. This could be because many features interacting with each other is a

major matter, especially in the game field of industry. Time saving cannot be measured

for this, but from the quality aspects, this is a great step.

Time is required from QA personnel to create the TAF code. This may require some

support from coders and designers assisting code and scenarios creations. Depending

on the test case it could take from 15 minutes up to an hour of time. This also depends

on the simplicity of the TAF selected and how well it is documented to be used.

5.3 Future View Based on Analysis

The usage of TAF consume a lot of time and require some education, for example pro-

gramming related and learning of TAF. Results bring more to the quality side but does

not seem to save the time resources that much.

There are always other choices to plan the tests within Kuuasema by QA personnel and

request another professional company to perform their automation.

41 (52)

6 Discussions and Conclusions

The aim of the study was to take the reader through by introducing the test automation

in principle, as well as to give an idea of what the possible frameworks are and what was

selected and why. Going through the selected TAF as well as building a small game and

testing it was all done for the convenience of the reader.

Calculations were made to prove that the TA is very good to the games business but

requires a lot of effort from the QA personnel to learn and have some tools to comply

with the SW used by the company.

The main test parts of games are visual and require very observable QA people as to

the look and feel parts and as to how the game looks like when playing it. Assets and

calculation and doing some requests are the parts that can be tested by automation. It

is worth knowing that Unit testing is made by developers of the game SW within Unity.

All in all, if the company wishes to utilize a growing functional testing suit to be executed

every now and then or each time a new feature arrives. It is also very handy with the

smoke tests that are executed periodically before releasing the game SW.

Whether the automation can save time or not depends on the company support and if

they wish to invest in purchasing licenses for example to Unity, Altom TF or any other.

TAFs also may ask for support, and this costs according to each framework selected.

After the cost, it is important to calculate the need for either courses required for the QA

personnel and if the time to create the TAF suits is feasible or not. As listed in this doc-

ument, it is being concluded that the TAF is best working with bigger games/systems

that grow with time because the test suits make sense to execute repeatedly once a new

major functional feature hit on.

42 (52)

References

1 Kuuasema | We create the best games for your audience [Internet]. Kuuasema.

2021 [cited 6 September 2021]. Available from: https://www.kuuasema.com/

2 Altom. 2021. Altom || Software Testing Services, Tools and Courses. [online]

Available at: https://altom.com/

3 Newzoo Global Games Market Report 2021 | Free Version | Newzoo [Internet].
Newzoo. 2021 [cited 15 September 2021]. Available from: https://newzoo.com/in-
sights/trend-reports/newzoo-global-games-market-report-2021-free-version/

4 App Annie | The App Analytics and App Data Industry Standard [Internet]. App
Annie. 2021 [cited 15 September 2021]. Available from: https://www.appan-
nie.com/en/

5 BBST® By Cem Kaner - Black Box Software Testing Courses Online [Internet].

BBST®. 2021 [cited 10 September 2021]. Available from:https://bbst.courses/

6 AltUnity Tools - Unity Test Automation - Altom [Internet]. Altom. 2021 [cited 10

September 2021]. Available from: https://altom.com/testing-tools/altunitytester/

7 AltRunner - Altom [Internet]. Altom. 2021 [cited 10 September 2021]. Available

from: https://altom.com/testing-tools/altrunner/

8 AltWalker - Model Based Testing Tool - Altom [Internet]. Altom. 2021 [cited 10

September 2021]. Available from: https://altom.com/testing-tools/altwalker/

9 AltTap - Altom [Internet]. Altom. 2021 [cited 10 September 2021]. Available from:

https://altom.com/testing-tools/alttap/

10 TurnTable - Altom [Internet]. Altom. 2021 [cited 10 September 2021]. Available
from: https://altom.com/testing-tools/turntable/

11 Technologies U. Download Unity [Internet]. Unity Store. 2021 [cited 10 Septem-
ber 2021]. Available from: https://store.unity.com/down-
load?_ga=2.177678629.1846901966.1623995212-
984039917.1623482624&_gl=1%2A237n9w%2A_ga%2AOTg0MDM5OTE3LjE2
MjM0ODI2MjQ.%2A_ga_1S78EFL1W5%2AMTYyNDAxMTQ0My40LjEuMTYyN-
DAxMTUxOS41MQ..&ref=personal

12 Start creating - Unity Learn [Internet]. Unity Learn. 2021 [cited 10 September
2021]. Available from: https://learn.unity.com/project/start-creating

13 11. GitHub Desktop [Internet]. GitHub Desktop. 2021 [cited 10 September 2021].

Available from: https://desktop.github.com/

14 12. [Internet]. 2021 [cited 10 September 2021]. Available from: https://as-

setstore.unity.com/packages/tools/utilities/altunity-tester-ui-test-automation-112101

15 Windows [Internet]. Windows. 2021 [cited 10 September 2021]. Available from:

https://www.jenkins.io/doc/book/installing/windows/

https://www.kuuasema.com/
https://altom.com/
https://newzoo.com/insights/trend-reports/newzoo-global-games-market-report-2021-free-version/
https://newzoo.com/insights/trend-reports/newzoo-global-games-market-report-2021-free-version/
https://bbst.courses/
https://altom.com/testing-tools/altunitytester/
https://altom.com/testing-tools/altrunner/
https://altom.com/testing-tools/altwalker/
https://altom.com/testing-tools/alttap/
https://altom.com/testing-tools/turntable/
https://store.unity.com/download?_ga=2.177678629.1846901966.1623995212-984039917.1623482624&_gl=1%2A237n9w%2A_ga%2AOTg0MDM5OTE3LjE2MjM0ODI2MjQ.%2A_ga_1S78EFL1W5%2AMTYyNDAxMTQ0My40LjEuMTYyNDAxMTUxOS41MQ..&ref=personal
https://store.unity.com/download?_ga=2.177678629.1846901966.1623995212-984039917.1623482624&_gl=1%2A237n9w%2A_ga%2AOTg0MDM5OTE3LjE2MjM0ODI2MjQ.%2A_ga_1S78EFL1W5%2AMTYyNDAxMTQ0My40LjEuMTYyNDAxMTUxOS41MQ..&ref=personal
https://store.unity.com/download?_ga=2.177678629.1846901966.1623995212-984039917.1623482624&_gl=1%2A237n9w%2A_ga%2AOTg0MDM5OTE3LjE2MjM0ODI2MjQ.%2A_ga_1S78EFL1W5%2AMTYyNDAxMTQ0My40LjEuMTYyNDAxMTUxOS41MQ..&ref=personal
https://store.unity.com/download?_ga=2.177678629.1846901966.1623995212-984039917.1623482624&_gl=1%2A237n9w%2A_ga%2AOTg0MDM5OTE3LjE2MjM0ODI2MjQ.%2A_ga_1S78EFL1W5%2AMTYyNDAxMTQ0My40LjEuMTYyNDAxMTUxOS41MQ..&ref=personal
https://store.unity.com/download?_ga=2.177678629.1846901966.1623995212-984039917.1623482624&_gl=1%2A237n9w%2A_ga%2AOTg0MDM5OTE3LjE2MjM0ODI2MjQ.%2A_ga_1S78EFL1W5%2AMTYyNDAxMTQ0My40LjEuMTYyNDAxMTUxOS41MQ..&ref=personal
https://learn.unity.com/project/start-creating
https://desktop.github.com/
https://assetstore.unity.com/packages/tools/utilities/altunity-tester-ui-test-automation-112101
https://assetstore.unity.com/packages/tools/utilities/altunity-tester-ui-test-automation-112101
https://www.jenkins.io/doc/book/installing/windows/

43 (52)

16 Tutorials overview [Internet]. Tutorials overview. 2021 [cited 10 September 2021].

Available from: https://www.jenkins.io/doc/tutorials/

17 Jenkins - Setup Build Jobs [Internet]. Tutorialspoint.com. 2021 [cited 22 Septem-
ber 2021]. Available from: https://www.tutorialspoint.com/jenkins/jen-
kins_setup_build_jobs.htm

18 Allure Framework [Internet]. Docs.qameta.io. 2021 [cited 16 September 2021].
Available from: https://docs.qameta.io/allure/

https://www.jenkins.io/doc/tutorials/
https://www.tutorialspoint.com/jenkins/jenkins_setup_build_jobs.htm
https://www.tutorialspoint.com/jenkins/jenkins_setup_build_jobs.htm
https://docs.qameta.io/allure/

44 (52)

Appendices

Appendix 1. Unity project main page

Appendix 2. The version suggested to be used by Unity

45 (52)

Appendix 3. The view when AltUnity Tester and AltUnity Inspector are installed

Appendix 4. Game data C# code

46 (52)

Appendix 5: Game play manager part 1 and part 2

Part 1:

47 (52)

Part 2:

48 (52)

Appendix 6: Code for starting and quitting of the game

 Appendix 7: Code for handling of buttons numbering and their names

49 (52)

Appendix 8: Code for handling of Top Bar Management

Appendix 9: Test fail code sample

50 (52)

Appendix 10: Test pass of Diego Clash game starts and can move from main menu
level

Appendix 11: Test pass of Diego Clash game playing of Diego Clash game at level 2

51 (52)

Appendix 12: Test pass of Diego Clash game playing of Diego Clash game at level 2

Appendix 13: Test pass of Diego Clash game playing of Diego Clash game at level 2

52 (52)

Appendix 14: Jenkins view after installation

