

Nhu Quynh Bui

E-commerce mobile application

Bachelor’s thesis

Information Technology

Bachelor of Engineering

2021

Author (authors) Degree title

Time

Nhu Quynh Bui Bachelor of
Engineering

August 2021

Thesis title

E-commerce mobile application

46 pages
0 pages of appendices

Commissioned by

Supervisor

Timo Hynninen
Abstract

The thesis goal is to create a mobile application that allows users to trade products online.
The application’s target user is everyone. The theoretical background was composed to
provide the study concepts and definition of React Native, Nodejs, MongoDB, REST API,
mobile application development, and software development lifecycle models. The
theoretical background provides a solid basis for the practical implementation.
The practical implementation part provides the planning for server-side implementation and
the deloping process of server-side and client-side. In this part, the application
development was demonstrated. This part also provides images of the application which
help demonstrate how to use the application.
The final result is the functional mobile application that allows users to trade products
online. The application was developed using methods and technologies that were
introduced in the theoretical background.
Keywords

mobile application development, React Native, Nodejs

CONTENTS

1 INTRODUCTION .. 4

2 THEORETICAL BACKGROUND .. 5

2.1 Mobile application development ... 6

2.2 Project requirements ... 6

2.3 React Native ... 7

2.4 Nodejs ... 8

2.5 MongoDB .. 8

2.6 REST API ... 9

2.7 Software development life cycle models .. 9

3 PRACTICAL IMPLEMENTATION ... 10

3.1 Application overview ... 10

3.2 Server-side implementation .. 11

3.2.1 API planning ... 11

3.2.2 Server implementation .. 13

3.3 Mobile application implementation ... 24

4 CONCLUSION .. 42

REFERENCES ... 44

4

1 INTRODUCTION

Nowadays, we have a trend called "mobile first", which means designing user

interface for mobile first before desktop applications and mobile applications.

Smartphones play a crucial role in our life. More and more mobile applications

are developed in order to improve our life. In software development, we have

various options, for example, desktop applications, web applications, mobile

applications and others. However, the reason why mobile is leading is that almost

everyone now owns a smartphone so it would be the easiest way for people to

approach an application.

E-commerce is a model that allow firms and individuals to trade things online. It

was first introduced in 1979 when Michael Aldrich invented electronic shopping

by connecting a customized TV to a transaction-processing computer through a

telephone line. The significant development of E-commerce happened in 1995

when Amazon and eBay were introduced to the market. Amazon was started by

Jeff Bezos, while Pierre Omidyar launched eBay. Due to the pandemic situation,

the demand for online shopping has increased rapidly because social distancing

is required. Moreover, convenience is one reason why online shopping demand

has developed quickly.

The application that I tend to do is an E-commerce mobile application. The app

includes two roles, which are admin and user. Users can view and buy the

products that are available in the application while admins are allowed to manage

those products. The main function of this application is that users can search,

view and select the products that they want to buy. An admin can manage

products by adding or deleting an item, as well as upload pictures and

descriptions for products.

The application target users are everyone who want to trade products online. The

application provides a platform for people who want to do ecommerce. E-

commerce is so popular that many online buying websites are developed.

However, the number of people that are using mobile are increasing day by day.

It is easier to carry a smart phone outside instead of a laptop so mobile

5

application would be a great choice to develop. It helps bussinesses to get in

touch with their customers easier. That is the reason why I decided to develop a

mobile application.

In order to achieve the goals, the thesis will be divided into different parts,

described as follows:

• Part 1 (Introduction) provides general information about the thesis topic
which includes the objectives of the thesis

• Part 2 (Theoretical Background) describes the definition of the method
that is used in the thesis to create the solution for the topic

• Part 3 (Implementation) explains the process of development and
implemantation to provide the final result.

• Part 4 (Conclusion) summarizes the outcome of the topic

During the development process, there were several issues and limitations. The

most significant problem is bug. I have met several bugs during the

implementation. To resolve these bugs, I have spent many times to investigate

and fix them. Moreover, the platform that I used to deploy the server is free to use

so it is quite slow. Also, there is a problem that still cannot find a solution for it is

some images that upload to the server are not display in the application. This

problem might be caused by the storage of images. However, I still cannot find a

solution to replace it.

2 THEORETICAL BACKGROUND

This section covers the study concepts of technologies that are used in the

project. It will provide both basic and detailed knowlegde of methods that are

used to develop the mobile application. Following that, the requirements for the

application and a brief introduction to mobile development are also described.

6

2.1 Mobile application development

Mobile applications can be divided into three types, which are native application,

hybrid application and cross-platform application. Native applications are

applications that are developed for a specific operating system. It can be Java or

Kotlin for Android and Objective-C for iOS (Sergey 2019). The most important

advantage that native applications have is that they are high performing

applications, which create an impressive user experience. However, it is

expensive to create a native application because it requires a different code base

for different operating systems. One more way which we can approach mobile

application development is hybrid application. Hybrid application can be

described as a webview object that is deployed in a native container. Developing

a hybrid application is simple and take less time, however, a hybrid application

doesn’t provide a brilliant user experience. Another approach is cross-platform

application. Cross-platform application is closest to a native application. The code

base is written in JavaScript and connects to native components using bridges

(Sergey 2019). It allows sharing code between different platforms, therefore, with

one code base we can develop applications for both Android and iOS. Some

cross-platform tools which allow creating cross-platform applications are Xamarin

and React Native. The application in this project is considered as an cross-

platform application.

2.2 Project requirements

As a result, the application should be working with the provided features. The

application will have two roles, which are users and admins. For users, they can

use all the features as follows:

• Sign in and sign out

• Register

• Search and select products

• Checkout process: Fill in shipping form, choose payment method, confirm

order

There is one tab for admin to manage the products. Admins are allowd to do

these actions as follows:

7

• Add and update products

• Delete products

• Upload products’ image

• Update orders’ status

• Add categories

However, the payment is not implemented in the application. Therefore, the

application flow is stopped when user confirm their orders

2.3 React Native

React Native is a platform that allows developers to create mobile applications for

both Android and iOS. It was first released in 2015 by Facebook. React Native

combines the best parts of native development with React and a best-in-class

JavaScript library for building user interfaces. (React Native 2021.) React Native

is built by JavaScript, and therefore both JavaScript and TypeScript can be used

in development. It will use native view instead of webview so the result

application will be an native application.

There are two important threads in React Native, which are Main Thread and JS

Thread. JS Thread is responsible for the application logic, which means the code

execution, API fetch and other processes. Main Thread is responsible for

rendering native views. JS Thread is also used to decide what will be displayed in

the screen and it will inform the Main Thread. However, Main Thread and JS

Thread will never communicate directly. These two threads will communicate by

using React Native bridge. This bridge allows two threads that are written in two

different languages to communicate, which makes “bridge” a core aspect of

React Native structure.

8

Figure 1. JS Thread communicates with Native Thread

2.4 Nodejs

Nodejs is a open-soure and cross-platform JavaScript runtime environment. It

was first introduced in 2009. Nodejs was built on Google Chrome’s V8 JavaScript

engine which ensures rapid code execution. Nodejs runs in a single process,

without creating a new thread for every request (OpenJS Foundation). It is an

asynchronous, event-driven and non-block I/O platform, which means it won’t

block the thread and waste CPU cycles. "Asynchronous" means Nodejs doesn’t

need to wait to execute all the statements in the right order, it can execute

different statement while waiting. As a result, these will help Nodejs improve its

performance. Nowadays, Nodejs is an popular option in the developer community

all over the world. Moreover, it is widely used by many large corporations.

Acording to Jignesh (2021), Nodejs is considered to be the most used tool in

early 2021. Besides, there is also Node Package Manager or NPM. NPM is now

the world’s largest software registry. NPM is use for installing packages of code

to your application, sharing code with npm users and so on. It helps ease the

development processes.

2.5 MongoDB

MongoDB is a document database which is free to use. MongoDB was first

released in 2009. It is scalable and flexible, which provides many capabilities.

MongoDB drivers are available in more than ten languages. With each language,

it provides an official document on its website which make mongoDB simple to

use. MongoDB is available in two options, which are cloud and server. MongoDB

9

cloud is known as MongoDB Atlas. MongoDb server is an application that we can

download and install it to use locally. Although MongoDB is available in two

options but both of them provides same features. MongoDB store data in a

JSON-like document, which means fields can vary from document to document

and data structure can be changed over time (MongoDB Inc 2021).

2.6 REST API

API or application programming interface is a set of rules define how application

can connect and communicate with each other (IBM Cloud Education, 2021).

REST API or RESTful API is an API that follow the REST principle. REST is

known as representational state transfer. It is an architectural style and was first

introduced in 2000. To develop REST APIs, any programming languages can be

used. However, to be considered a REST API, it must follow the REST principles

which are uniform interface, client-server decoupling, statelessness, cacheability,

layered system architecture, code on demand. REST APIs using HTTP requests

to perform function. It provides creating, reading, updating and deleting function

to manage records. GET request is used to read the record, which means we can

retrieve the data through GET request. POST request is to create record while

PUT and DELETE request are to update and delete records. REST API is a

flexible and lightweight solution to conform applications. It is now one of the most

common methods for connecting applications.

2.7 Software development life cycle models

Software development life cycle is a process to design and develop software.

Different project will have a different suitable model. There are more than 50

recognized software development life cycle models (SDLC) in use (Boris, S.

2019) . However, there are some models that are more popular compare to

others, for example, Waterfall, V-model, Incremental and Iterative model, Spiral

model, The Rational Unified Process and The Agile group. In this report, Agile

methodology will be introduced. Agile is one of the most popular methodology, it

is chosen and implemented in IT projetcs of about 70% of organization (Boris, S.

2019). In Agile, the development process will be divided into iterations. The team

10

will collaborate in planning, processing and evaluating each iteration to get the

best result. In the Agile group, it includes variable models, for example, Scrum,

Kanban, Extreme Programming and Adaptive Project Framework. Scrum model

is now one of the most popular model of Agile. Scrum seperate the development

process into small iteration call sprint. Each sprint usually lasts for two to four

weeks. Before each sprint starts, there will be a sprint planning meeting to decide

which issues should be handled in this sprint. At the end of each sprint, there will

be a retrospective meeting to clarify what the team has achieved and what should

be improve. Scrum model will help organize and speed up the development

process.

3 PRACTICAL IMPLEMENTATION

This section is divided into three parts, which are application overview, server

implementation ,and mobile application implementation. The first part is about

which features are included in the application. The second part will cover the

details about what is the plan for the server and how it was implemented. The last

part will be about the implementation of the mobile application.

To provide a clearer picture of the implementation process, I will use the following

typography in this section:

• API paths will be in bold

• Code snippets are color-coded

• Code quotes are in italic

The syntax makes it easier to follow the implementation part.

3.1 Application overview

The mobile application provides a platform that contains two roles which are user

and admin. For users, they can search, select and order products that they

demand. For admins, the application is used to manage all the available

products. Moreover, they can also add new products to the platform.

11

The following list will describe the features and funtions that are available in the

mobile application to make it simpler to understand how it works:

• Product list includes all the available products so that users can search for

products and view their details. They can search products by their name

using the search bar or by categories. Users can also add the wanted

items to their shopping cart.

• The shopping cart displays all the items that are selected by a user. Users

can do the checkout process in the cart. The checkout process will include

a form for shipping information, payment method ,and confirmation before

placing an order.

• User management allows users to sign in and sign out the application.

Moreover, users can also see their profile.

• Product management is only available for accounts that have admin rights.

The admin rights will include product management, category management

,and order management. Admins can add a new product with all the

required information. They can also manage orders by updating their

status.

In order to fulfill the requirements, a database and server are needed to

implement the mobile application. The database is used to store all the data that

is used in the mobile application. The server is used to serving the requests to

retrieve and manage data from the mobile side.

3.2 Server-side implementation

3.2.1 API planning

An application programming interface or API is used as a tool for communication

between a mobile application and a server. In order to understand how APIs

work, it is necessary to know their paths, inputs and funtionality. The description

of each API is in the table below.

Table 1. API paths
Path Method Input Description
/users/login POST email, password To sign in user

12

/users/register POST name, phone,

email, password

To register new

user

/users/getProfile/:id GET id To get user

profile by id

/products/getProductList GET - To get list of all

products

/products/getProduct/:id GET id To get product

details by its id

/products/searchProduct GET search (search text) To search

products by

keyword

/products/createProducts POST name, brand, price,

category,

countInStock,

description, image

To add new

product to

database

/products/updateProduct PUT name, brand, price,

category,

countInStock,

description, image

To update

existing

products’

information

/products/deleteProduct/:id DELETE id To delete

product by id

/categories/getListCategory GET - To get list of all

categories

/categories/addCategory POST name To add new

category

/orders/createOrder POST orderItems,

shippingAdress1,

city, totalPrice, zip,

country, phone

To create a

new order

/orders/getOrderList GET - To get a list of

all orders

/orders/updateStatus PUT Status To update an

order’s status

13

In the implementation, this table helps organize all the APIs that are used during

the development. All the APIs are created base on the mobile application

requirements.

3.2.2 Server implementation

Before implementing the server, a database is needed to store all the data. In this

development, I chose MongoDB as the database to implement. The database

includes five collections which are categories, orders, products, users, and

orderItems. These collections usage is listed below:

• Users collection is for storing all users’ data include username, password,

and profile information.

• Orders collection are used to store information about customers’ orders,

which includes the shipping information and order items.

• Orderitems collection stores the detail about the items that are included in

an order. From the products’ id, the products’ details can be retrieved.

• Categories collection has information about the existing categories

• Products collection include information on all products

Figure 2. Database collections

As mentioned above, there are two options for MongoDB which are cloud and

server. In this project, I chose to use the cloud version of MongoDB called Atlas.

For MongoDB, there are three ways that we can connect the database to the

14

server: connect with MongoDB Shell, connect your application, and connect

using MongoDB Compass. I chose to connect to my application which requires a

connection string that is provided by MongoDB. Figure 3 displays how to connect

to MongoDB in your application.

Figure 3. MongoDB connection

To create a collection, a schema must be defined first. Each schema maps to a

MongoDB collection and define the shape of documents within that collection

(Mongoose). Each field of a schema will be the collection property. Each field

also has different options to be defined, for example, type, default, required, etc.

. Figure 4 describes all the collections in the database and their fields.

15

Figure 4. Database collections

However, to use the schema in the collection, it must be converted into Model.

Figure 5 shows how to convert schema to model

Figure 5. Convert schema to model

In the database, there are five collections, each of them should have a model and

schema to shape the documents within the collection. After defining all the

models for each collection, I created a route or URL path for each request that

was described in Table 1. Each API path will be a route. To make it easier to

understand, I will divide the API paths into small groups of paths that have a

similar function. First, to create a route, I had to choose a method for each route.

Four methods were used in this project: GET, POST, PUT, and DELETE.

Second, based on each path description, I defined a prefix and a function for the

route.

16

Figure 6. API get list category

Figure 6 displays how to create a GET route to get a list of all categories.

router.get() was used to create a GET method. /getListCategory is the prefix for

this route. The description of this API path is to get all the categories that are

existing in the application so from the Category model, I used find() to retrieve all

the data that is available. If the path was able to get data from the collection, the

API path will return a response including data and a success status, which is true.

If there are any problems that prevent getting data, the route will send an error

message with a false success status. According to the API path description,

/products/getProductList, /categories/getListCategory, and

/orders/getOrderList have similar functions so all of them will have a similar

codebase but with different prefixes.

The next part explains how to create a GET route that requires input to get

sufficient data. These /users/getProfile/:id and /products/getProduct/:id. In

these two paths, there is :id after the prefixes. This means a parameter called id

is needed in this path. Based on the id, the route can get the exact information for

each product or user in the collections. In order to get the information, findById()

method is used to get data by id in these API paths. Figure 7 displays how to

create these routes.

17

Figure 7. API get product by id

In the mobile application, there is a feature that allows users to search for the

products. The /products/searchProduct path is used for this feature. This path

allows getting products whose names have the keyword that users are searching.

For this route, the search keyword is the required input. This route returns all the

products whose names have the keyword inside regardless of position and case

sensitive. This API path code is displayed in Figure 8.

Figure 8. API get product by keyword

Next path covers how to construct routes for /users/register,
/categories/addCategory, and /orders/createOrder. Each route requires

different inputs however, their functions are similar. The method used in these

routes is POST. These routes are used to collect data that is sent from the mobile

application and store it in the database. Each path input was defined in Table 1. I

will take the /users/register path as an example. If the function can save the

user to the collection, it will return the user information as a response. If it is

18

unable to save, the response will be an error message, which is “User cannot be

created”.

Figure 9. API register new user

To secure the application, a token is essential whenever a request is done. The

token is generating after the user login to the application. In this project, I used

JSON Web Token for authorization. The process of generating the token

happens in the /users/login route. After the route receives an email and

password from the mobile application, it finds a user that has the same email in

the collection. When the route can find a user with the provided email, it

compares the given password with the one that is stored in the collection. If the

password matches, it starts generating the token. If not, the route returns an error

message. If there are any problems with finding a user, it returns a “User not

found” message. jwt.sign() function combines the payloads, which are userId and

isAdmin fields, with the secret key to generate the token. The output is three

Base64-URL strings separated by dots that can be easily passed in HTML and

HTTP environments while being more compact when compared to XML-based

standards such as SAML (Auth0). After creating the token, the path returns the

19

user’s email and token in the response. Figure 10 displays how to implement

login API.

When creating a product, information about the name, brand, price, image, etc is

required. This API path also has quite a similar function with /users/register
path, however, the difference is that this path has a function to upload images. To

store images, I use multer library. The destination to store images is

/public/images folder. There is also the validation for file types. In this application,

I configured it to allow only jpg, png, and jpeg files. In case of the wrong type, the

route sends an error message. By using this library, I can upload images from the

mobile application to the server. Figure 10 shows to configure the storage for

images.

Figure 11. Login API Figure 9. Login API

20

Figure 10. Multer configuration

The /products/createProducts path configures the path for images that are

uploaded to the database. The image path will be used to render the image in the

mobile application. Except for the uploading function, this route saves the product

to the database. If the process is successful, it returns the updated products.

Otherwise, it returns an error message. The code for this path is described below.

router.post(`/createProducts`, upload.single("image"), async (req, res) => {
 const category = await Category.findById(req.body.category);
 if (!category) {
 return res.status(400).json({
 message: "Invalid category",
 success: false
 });
 }

 const file = req.file;
 if (!file) {
 return res.status(400).json({
 message: "Invalid image",
 success: false
 });
 }
 const fileName = req.file.filename;
 const imagePath = `${req.protocol}://${req.get("host")}/public/images/`;
 let product = new Product({

21

 name: req.body.name,
 description: req.body.description,
 richDescription: req.body.richDescription,
 image: `${imagePath}${fileName}`,
 brand: req.body.brand,
 price: req.body.price,
 category: req.body.category,
 countInStock: req.body.countInStock,
 rating: req.body.rating,
 numReviews: req.body.numReviews,
 isFeatured: req.body.isFeatured,
 });

 product = await product.save();
 if (!product) {
 return res.status(400).json({
 success: false,
 message: "Product cannot be created",
 });
 } else {
 return res.status(200).json({
 success: true,

 product
 });
 }
});

Besides adding new products, there is a feature to delete products. The API path

is /products/deleteProduct/:id. It uses the product id to retrieve that product and

to remove that from the collection.

22

Figure 11. API to delete a product

This part is to demonstrate how to product /products/updateProduct and

/orders/updateStatus path. To update the path, I used PUT method. The fields

that need to be updated are the inputs for these paths. It also requires the id to

find products or orders in the collections. The route uses findByIdAndUpdate()

method to update the fields. Each path has separate required inputs that were

defined in Table 1. Figure 12 illustrates the code base for /orders/updateStatus
path.

23

Figure 12. Update status API

To improve security for the application, the token is required in all the API paths.

However, there are some paths that do not need to apply the token. The token is

only generated after login. However, users are allowed to view the products,

place orders, and register a new account while not signed in. Figure 13 specifies

paths that do not need the token: login, register, all the GET requests for

products, GET requests for categories, GET requests for images, and POST

requests for orders.

24

Figure 13.Token exception

The server runs locally using localhost. To run the server globally, I need to

deploy the server to a deployment platform. I chose Heroku as the deployment

platform to deploy my server. To do the deployment, we can use the command

line to choose to deploy on Heroku website. In this project, I chose to deploy on

Heroku website by connecting to my repository on GitHub. On Heroku, I created

an application called nhu-eshop-server. After that, I selected GitHub as the

deployment method. From that, I can choose the branch that I want to deploy to

Heroku and deploy it.

Figure 14. Connect GitHub to Heroku

3.3 Mobile application implementation

This section covers the process of mobile application implementation. It includes

how to create the application and how the mobile application looks like. To create

this application, I chose React Native as the development platform. By using

React Native, I can create an application for both Android and iOS using only one

codebase. First to create a React Native project, setting up the development

environment is required. React Native provides a comprehensive document on

their website about how to set up a coding environment. By following the

instruction, the environment can be set up successfully. Next is to initialize a new

project, I used npx react-native init Eshop command to start a completely new

project. After creating the project, I organized it into various folders to make the

project easier to understand.

25

For every application, navigation plays a crucial role, therefore, I created the

navigation for the application first. To create the navigation, I used a react-

navigation library. For every library that was used in this application, they were

installed by using the npm install command. The main navigation is the bottom

tab navigation that includes four tabs, which are Home, Cart, User, and Admin.

Each tab will be a navigation stack. Each screen must be defined in its

navigation. Figure 15 displays the mobile application’s navigation.

Figure 15. Navigation

For tab navigation, each screen is a tab and a tab icon is required. In each tab,

the component must be defined. As mentioned above, each tab also contains a

navigation stack so that in Figure 16 the component for the Home tab is a stack

instead of a screen.

26

Figure 16. Bottom tab navigation

Another type of navigation in the mobile application is stack navigation. Stack

navigation works similarly to tab navigation. There are five navigation stacks in

the project which are Admin Navigation, Product Navigation, User Navigation,

and Cart Navigation. Screens inside the stack must be declared. In the

configuration, I also defined a custom header so every screen has the same

header. For Checkout Navigation, I also used tab navigation but it is a top tap

navigator. Figure 17 is an example of a navigation stack. Figure 18 displays the

configuration for top tab navigation.

27

Figure 17. Stack navigation

Figure 18. Top tab navigation

All the available screens are in the Screen folder. This would help organize the

project making it easier to find files. In this part, I will describe the screens by

their navigation stack. The first stack is the Product navigation stack. It includes

two screens, which are the Product screen and Product detail screen. In the

Product screen, a list of all products is shown and there is also a search bar for

28

users to search for any products. Moreover, users can also choose to filter

products by category. By clicking on the category name, only products that

belong to that category are shown. In the Product detail screen, users are

allowed to add products to the shopping cart. Figure 19 includes a picture of

product and product detail screens.

Figure 19. Product screens

The list of items is shown in a card item form. This card item is a custom

component. When users click on an item, it navigates to the product detail screen

to display more information about the product. To create the custom card item, I

use the Touchable Opacity component which allows users to click on it. To

render it as a list, I used the Flatlist component. Flatlist allows rendering a list of

data under a custom view. Figure 20 displays the implementation process.

29

Figure 20. Card item implementation

To have the product data, I can get it from the API path. The

/products/getProductList path is used to get the product list while

/products/getProduct/:id is to get product details. /products/searchProduct is

used when the search bar text changes to get products that their name includes

that keyword. To make the request, I used the axios library. It allows you to make

a request from the application to get data from the server.

30

Figure 21. Get list product request

When the users click Add button in the product detail screen, the product is

added to the cart. Users can add as many products as they want. When the Add

button is clicked, the product id is stored to use that id to get the product on the

cart screen. The product id is stored in reducer. When users click the button, it

dispatches the a predefined action to store data in reducer. Reducer can be used

everywhere in the project, therefore, storing data in reducer allows that data can

be accessed on different screens.

31

Figure 22. Actions and reducers.

To render the selected products, I used the selected ids that are stored in the

reducer and the /products/getProduct/:id path to get the product information. At

the bottom of the screen, there are Clear and Checkout buttons. The Clear button

is used to delete all items in the cart. The Checkout button navigates to the

checkout process. Users are also able to delete a single item by swiping left on

that item. The Clear and Delete buttons dispatch EMPTY_CART and

DELETE_FROM_CART actions that are shown in Figure 23.

32

Figure 23. Cart Screen

After clicking Checkout, the application navigates to the checkout process. This

process has three steps: shipping, payment, and confirmation. In this process, I

used a top tab bar that includes three screens: shipping, payment and confirm.

For the shipping tab, users are required to fill in all the shipping information. If any

information is missing, there is an error message under each missing input.

33

Figure 24.Shipping information screen

For showing the purpose of error message, I created a custom input called

TextField that displays a message when users click out of the input without filling

it. When the input is focused, the message is clear. By using refs, the application

can access the appropriate component and execute the code for that component.

This custom input is created based on the React Native TextInput component.

Figure 25 shows how to implement the TextField.

34

Figure 25. Custom input

The next step is to choose a payment method. There are three methods which

are cash on delivery, bank transfer, and card payment. However, in this

application, the payment gateway is not implemented yet. In the Confirm tab,

there is a summarization for shipping information and selected products,

therefore, users can check all information before placing an order. When users

press the Place order button, the order detail is sent to the server using

/orders/createOrder path. When an order is placed successfully, there is a pop-

up message to indicate that the order has been made and the cart is clear.

Figure 26. Place order function

35

Figure 27. Payment and Confirm screens

The next part was to implement the User tab. If users are not signed in, when

they press the User tab, it shows the login screen. On the login screen, the user

can log in with an existing account or register for a new account. The

/users/login path is used to login user and returns a token. A token is required

for making other requests. The token is stored in local storage called async

storage. The token value is stored in the storage until I removed it or the

application is uninstalled. Previously, when I implemented the server, I generated

the token that included the value of the isAdmin field, consequently, in the mobile

application, I can decode it to get the isAdmin value. This value is used to verify if

the login account is an admin or not. Moreover, when logging in successfully, the

user’s information is saved in a reducer similar to the cart process. From there,

the user’s information can be accessed on every other screen throughout the

application. The application uses the token to check whether the account has

admin rights or not. If the user is admin, in the bottom tab it will show the Admin

36

tab. Figure 28 shows the implementation of the login process and saving the

information to the reducer.

Figure 28. Login request

37

Figure 29. Login screen

If users do not have accounts, they can register for a new account. When

pressing the Register button, the application navigates to the Register screen.

There is a form to fill in personal information. The required information is name,

email, phone number, and password. After registering successfully, the

application displays login for users to log in. If users are signed in, when they

press on the User tab, it shows the Profile screen, which displays the user’s

personal information. Users can sign out in the Profile screen also. When users

press the Sign out button, all the information that is stored in store and async

storage will be removed.

38

Figure 30. Register and Profile screen

For admins, there is an Admin tab that allows admins to do management. Admins

can add new products and categories, update products and orders, and delete

products. When pressing the Admin tab, it shows the list of all existing products.

An admin can edit or delete the product by swiping left on that product. There are

two buttons, Edit and Delete. There is also a search bar for admins to search for

products. This search bar has a similar function to the one on the Product screen.

Name, brand, price, and category are shown on each card. At the top of the

screen, there are three buttons which are Orders, Product, and Category.

Pressing the Orders button, the application navigates to the Orders screen where

admins can manage all orders. The Product and Category buttons are used to

navigate the application to the Product and Category screens. In these two

screens, admins can add new products and categories.

39

40

Figure 31. Product List and Category screen

On the Orders screen, there is a list of orders that includes information about the

orders. In this screen, admins are allowed to update the orders’ status. When

admins press the Update button, it displays a bottom sheet that contains all

statuses. From there, admins can choose which one to update. After updating

success, it navigates to the Product List screen. To custom the bottom sheet, I

used the Modal component. To render the list of status, I used Flatlist and each

item is a button. When admins press one button, it shows the check icon to mark

the selected options. When touching outside the bottom sheet, it closes the

sheet. Figure 32 displays the Orders screen and the bottom sheet.

Figure 32. Orders screen

To add new products, admins need to fill in all the information for the product.

The information includes brand, name, price, count in stock, description,

category, and picture. Other fields use the custom TextField that was created to

use in the Register screen except for picture and category. For the category field,

it displays the bottom sheet similar to one in the Orders screen. There is a new

function in this screen which is adding an image. To add images, I used a library

41

called react-native-image-picker. This library does not require additional settings

for permission. By using this library, the application can access the device’s

photos. The result contains the name, type, URI, and so on. From that

information, I can render the image and also use it for sending the image to the

server.

Figure 33. Add product screen

Figure 34. Select image function

42

Unlike other requests, this request is made differently. Usually, the data sent to

the server is in JSON format. However, in this request, it is in FormData. I

created a new FormData and appended all the required fields to the FormData.

For the image, the different operating system has a different URI. Because of

that, in iOS, I had to change the image’s URI to make the request. After creating

a new product successfully, the application navigates to the Product List screen

and displays a success message.

Figure 34. Create new FormData

4 CONCLUSION

The goal of this thesis is to create an online shopping mobile application and to

do research to put it into action. The application is for everyone who wants to do

shopping online. The theoretical background section has covered the study

43

concepts and definitions of software development, methods and technologies to

implement the thesis. This section explains the concept of database and server,

the definition of different platforms and tools that are used in the implementation

section. This theoretical background part makes it straightforward to understand

the implementation section.

The practical implementation part describes the process of making the server and

mobile application. It also provides the planning on how to implement the

application. The pictures of all the screens in the application is displayed in this

section. By applying the methods and technologies, the application was

developed successfully. With the provided tools, the application fulfills the

predefined goals in the beginning. The application still needs to be developed

more in the future. More features should be included to provide the best user

experience. Possible further development ideas are sending an email

confirmation, changing email and password, adding comments and so on.

To ensure that the application is working, I have done some testing on the

application. I tested it based on my experience when using other applications. I

tried to ensure that there are no crashes in the application. The server side of this

thesis was deployed to Heroku so that the API can be used in public. However,

the application has not been deployed to any platforms. The requirement for

publishing the application to App Store ang Play Store is quite complex so I have

not done it in this thesis.

44

REFERENCES

Auth0. No date. Introduction to JSON Web Tokens. WWW document. Available

at: https://jwt.io/introduction [Accessed 2 Sep 2021]

Boris, S. 2019. 8 Software Development Models: Sliced, Diced and Organized in

Charts. WWW document. Available at: https://www.scnsoft.com/blog/software-

development-models [Accessed 30 August 2021]

Facebook Inc. 2021. React Native. WWW document. Available at:

https://reactnative.dev/ [Accessed 28 August 2021]

IBM Cloud Education. 2021. REST APIs. WWW document. Available at:

https://www.ibm.com/cloud/learn/rest-apis [Accessed 28 August 2021]

Jignesh, S. 2021. Comparing Nodejs vs Java: Your Backend Tech Stacks

Explained. WWW document. Available at: https://www.simform.com/blog/nodejs-

vs-java/ [Accessed 30 August 2021]

Louise, M. 2018. E-commerce: The Past, Present and Future. WWW document.
Available at: https://www.spiralytics.com/blog/past-present-future-ecommerce/
[Accessed 5 August 2021]

MongoDB, Inc. 2021. What is MongoDB ?. WWW document. Available at:

https://www.mongodb.com/what-is-mongodb [Accessed 28 August 2021]

Mongoose. No date. Schema. WWW document. Available at:

https://mongoosejs.com/docs/guide.html [Accessed 1 Sep 2021]

Npm. No date. About npm. WWW document. Available at:

https://docs.npmjs.com/about-npm [Accessed 30 August 2021]

45

OpenJS Foundation. No date. Introduction to Nodejs. WWW document. Available

at: https://nodejs.dev/learn [Accessed 28 August]

Saket, K. 2018. How React Native Works ?. WWW document. Available at:

https://www.codementor.io/@saketkumar95/how-react-native-works-mhjo4k6f3

[Accessed 28 August 2021]

Sergey, K. 2019. Mobile App Development Approaches Explained. WWW

document. Available at: https://railsware.com/blog/native-vs-hybrid-vs-cross-

platform/#Native_app_development [Accessed 28 August 2021]

Taha, S. 2021. What is Nodejs: A Comprehensive Guide. WWW document.

Available at: https://www.simplilearn.com/tutorials/nodejs-tutorial/what-is-nodejs

[Accessed 30 August 2021]

