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Battery powered portable embedded devices that are limited in memory, size, and price, have 
been facing a significant gap between processing power and battery capacity. To diminish this 
gap, rigorous hardware and software power saving techniques must be implemented. The 
purpose of this thesis was to optimize the hardware design of a product under development by 
finding and repairing design flaws that caused excess power consumption. Additionally, this work 
aimed to implement and customize the power management framework provided by the real time 
operating system used in this product which is Zephyr. With this framework implementation, 
power management is completely carried out by the operating system, in other words, application 
developers who are known not to be fully cognizant of hardware design, schematics, and 
component data sheets, are not obliged to perform power management in their applications.  

Initially, design flaws were repaired and all chips on the device under test were turned off by the 
software. The remaining excess current consumption was then approached by desoldering 
components from the board. The experimental results suggest a drastic decrease in power 
consumption in which the expected battery runtime increased from 30 minutes up to 
approximately one month of running a motion detection application. 
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LIST OF ABBREVIATIONS 

 

API Application Programming Interface 

BGA  Ball Grid Array Package 

BLE  Bluetooth Low Energy 

CPU  Central Processor Unit 

DMM  Digital Multimeter 

DUT  Device under test 

DVSF  Dynamic Voltage and Frequency Scaling 

ECU  Engine Control Unit 

GPIO  General Purpose Input/Output 

GPOS  General Purpose Operating System (among others, 

Windows, Mac OS, Linux, Embedded Linux, IOS, and 

Android). 

GPU Graphics Processing Unit 

HAL  Hardware Abstraction Layer 

IC  Integrated Circuit 

IoT  Internet of things 

LDO  Low-dropout regulator 

LPS   Low Power State 

MCU  Microcontroller unit 

MIPS  Million Instructions per Second  

NFC  Near-Field Communication 



OS  Operating System 

PCB  Printed Circuit Board 

PM  Power Management 

QFN Quad-Flatpack No-Leads is a small size and relatively low-   

profile plastic package used to encapsulate some integrated 

circuits (ICs). The size range is currently between 1x1 mm2 to 

12x12 mm2 (NXP, 2021). 

QFP Quad Flat Package 

RISC Reduced Instruction Set Computer 

RTOS Real Time Operating System 

SCL  System Clock Line 

SDA  Serial Data Signal 

SoC   System on Chip 

SOP  Small Outline Package 
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1 INTRODUCTION 

The emergence of Inexpensive, low power, and fast Microcontroller Units (MCUs) paved 

the way for small multi-purpose embedded systems. Notable among these systems are 

the increasingly demanded battery driven portable electronics, including healthcare 

monitoring devices and consumer hand-held gadgets. These devices are currently 

packed with a variety of different features; yet they are required to have long charge or 

battery change intervals. Unfortunately, improvements in battery technologies are very 

slow (Remler, et al., 2020). Consequently, these small electronics, as in all devices 

powered by batteries, are required to be power efficient. Additionally, small devices are 

usually also memory constrained and are mostly designed to serve real time 

applications. Therefore, General Purpose Operating Systems (GPOSs) that provide 

numerous power management standers including Linux (Vaddagiri, 2004), are no longer 

an option for such devices. On the other hand, Real Time Operating Systems (RTOSs) 

that are suitable for power and memory constrained embedded systems lack an easy-

to-use power management scheme; in fact, most RTOSs do not support low power 

states at all (Simonović & Saranovac, 2013, p. 199). 

While putting a device into low power states dynamically requires a good understanding 

of board design, hardware schematics, and item datasheets, in general, software 

developers are often unfamiliar with hardware components. Moreover, Hardware Design 

Documents (HDD) are mostly kept confidential, in other words, programmers outside the 

company might not necessarily have access to such information (Dubois, 2018). 

The aim of this thesis is to explore possible methods that help reduce the power 

consumption of a device under development that runs an open source RTOS called 

Zephyr. The objectives of this thesis are first, to reduce the current consumed by the 

device, which is forced into a deep sleep state (all peripherals shutdown) by software. 

Second, to implement and customize the power management framework natively 

provided by Zephyr. 

Numerous studies have been published on power management for resource constrained 

embedded devices that run an RTOS; some of which focused solely on creating the 

whole firmware from scratch such as in, “Low Power Firmware Design in Embedded 

Systems” (Mishin, 2017). Whereas the focus of other publications was on developing a 

power management framework in a rudimentary RTOS, as in “Power Management in 
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ARM Cortex M0+ with Real Time Operating System” (Liljasto, 2019). Additionally, some 

recent theses were found to make use of advanced RTOSs, including, “Narrowband-IoT 

Power Saving Modes” (Gabelle, 2021), in which Zephyr RTOS was utilized on an 

nRF9160 development kit, a board with flawless hardware design, in order to carry out 

the measurements. However, the main focus of this thesis is on a device that consists of 

multiple different sensors and supports an array of smart features, for which reason an 

advanced RTOS, that inherently provides such functionalities, was found to be the best 

choice for this project. Furthermore, the device under development is vitiated by many 

design flaws, therefore, hardware optimizations are of paramount importance for this 

work. 

 

This thesis is structured as follows: 

Chapter 1 introduces the power management challenge for small embedded systems 

and outlines the aim as well as the objectives of this thesis.  

Chapter 2 provides the reader with a brief theoretical background about embedded 

systems and battery technologies. 

Chapter 3 presents the major components of Zephyr RTOS. 

Chapter 4 describes the tools and methods used in this work. 

Chapter 5 presents the results achieved form different power states. 

Chapter 6 discusses the work carried out and highlights some limitations as well as 

possible improvements. 

Chapter 7 summarizes this thesis. 
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2 THEORETICAL BACKGROUND 

In order to properly understand how to reduce power consumption in compact embedded 

systems, it might be useful to go through the basic concepts of power management in 

embedded systems, as well as the most common battery technologies used to power 

devices that lack a direct connection to a constant power source. 

2.1 Power management in embedded systems 

Embedded systems are electronic devices with an embedded software, designed to 

perform specific tasks. However, according to Tammy Noergaard “The definition of 

embedded system is fluid and difficult to pin down” (Noergaard, 2005, p. 5). 

Despite the numerous possible definitions of embedded systems, all electronics require 

a power management subsystem either to decrease the power consumption in devices 

that run off batteries, or to reduce the possibility of overheating that is a well-known 

contributor to component failure in all electronics. Nevertheless, power management 

requirements in different embedded systems might vary substantially. For instance, non-

portable embedded devices that are constantly connected to the power grid or other 

available power supplies might also have a separate cooling system connected to the 

same power source, therefore simple power management subsystem designs might be 

adequate. These devices include embedded systems in home appliances and car 

Engine Control Units (ECUs). Likewise, non-portable embedded systems that lack a 

direct connection to the mains electricity such as, IoT devices deployed in hard-to-reach 

areas, and industrial IoT devices, are usually configured to collect data or perform certain 

tasks at defined intervals, for which reason a complex power management framework 

for such devices might not be required (Tronicszone, 2020; Malewski, et al., 2018). 

In addition to non-portable embedded systems, there are portable embedded systems, 

which are further divided into two categories. The first category includes devices that are 

relatively large such as, laptops, tablets, and cell phones. These devices are large 

enough to carry batteries of considerable sizes and enough memory to run a GPOS such 

as, Windows, iOS, or Android. These operating systems are able to run sophisticated 

power management algorithms, in which application and OS level power management 

schemes are implemented (Abdelmotalib & Wu, 2012). 
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The second category consists of portable devices that are smaller than the devices from 

the first category and are usually memory constrained. As a result, a GPOS is not an 

option for devices in this category. Moreover, nearly all such devices have strict time 

requirements. Therefore, a Real Time Operating System (RTOS) might be needed. 

Unfortunately, unlike GPOS, most RTOSs available today must be configured in order 

to run properly and save power at the same time. These configurations include device 

drivers and task priorities, among others. As a result, software developers are required 

to possess hardware skills that enable them to implement low power modes in the driver 

for some chips that support it, understand which chip must be powered on first, and in 

which order chips are to be turned off in order to save power without dead locks, along 

with other settings. In other words, a simple dynamic low power application might be time 

consuming to implement for application developers (Elvstam & Nordahl, 2016).  

2.2 Hardware components of embedded systems  

A basic model that describes embedded systems at higher levels of abstraction is the 

embedded system model illustrated in Figure 1. This model suggests that the most 

important layer of an embedded system is the hardware layer, in which all electronic 

components are installed (Noergaard, 2005, p. 12). 

 

 

Figure 1. Embedded system model (Noergaard, 2005, p. 12). 
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Electronic components are divided into passive components, active components, or a 

combination of both (Noergaard, 2005, p. 86). These components react differently to 

power thus, impose energy efficiency limits in embedded systems (Tooley, 2006).  

In order to understand some of the design flaw repairs carried out in this work it might be 

useful to go through some of these components. 

2.2.1 Resistors  

Resistors are passive electronic components that are made of conductive materials with 

different ratios of impurities. These impurities resist electric power by transforming it into 

heat. The dissipated heat leads to an increase in power consumption; accordingly, 

energy efficiency must be considered at earlier stages of the device design (Tooley, 

2006).  

Electronic circuits usually consist of many resistors that are used as pull-up or pull-down 

resistors, voltage dividers, signal conditioners, along with other uses (Braza, 2020; 

Sinha, 2008). Both pull-up and pull-down resistors are generally used to prevent digital 

inputs from obtaining undefined logic states (Braza, 2020). 

 The use and value of a resistor might have a great impact on power consumption in 

electronic circuits. For instance, the power consumed by each resistor in a simple voltage 

divider configuration is given by: 

𝑃 =  (
𝑉𝑖𝑛

𝑅1 + 𝑅2
)

2

. 𝑅𝑥 

Equation 1. Power consumption of each resistor in a voltage divider network (Tooley, 
2006). 

Where “P” is the power dissipated by each resister in a voltage divider network, 

measured in watts. “Vin” is the maximum input voltage. “R1” and “R2” are the resistors 

used to divide the input voltage. “Rx” represents the resistor for which the power 

consumption is calculated (“R1” or “R2”). 
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It is clear from Equation 1 that the amount of power consumed by each resistor is directly 

proportional to both the input voltage and to the resistor under measurement. Thus, high 

values of Rx results in high power consumption. 

2.2.2 Integrated circuits 

Electronic circuits are commonly made up of electronic components that are ideally 

soldered on Printed Circuit Boards (PCBs). These PCBs usually carry immensely large 

numbers of passive components such as, resistors, capacitors, and inductor, as well as 

active components including, amplifiers and transistors. It is prominent that the size of a 

PCB determines the minimum possible size of the end product. As a result, electronic 

circuit designers of size constrained embedded devices, utilize sets of monolithic 

integrated circuits that are packed with an airtight semiconductor material forming what 

is commonly known as an integrated (IC) or a chip (Shepherd, 2002, p. 21). This 

hermetically sealed chip often contains transistors, resistors, and capacitors and are 

formed into a variety of different shapes and sizes (Shepherd, 2002, p. 203). Some 

common chip packages include Small Outline Package (SOP), Quad Flat Package 

(QFP), Quad Flat Non-leaded Package (QFN), and Ball Grid Array Package (BGA) as 

shown in Picture 1 (Pinsheng Electronics, 2021). It is clear from Picture 1 that the QFN 

and BGA packages cannot be directly probed with an oscilloscope. Applications of ICs 

include IO expanders, sensors, processors, audio codecs, multiplexer, and LED drivers. 

 

Picture 1. IC packages (Pinsheng Electronics, 2021). 

It may be prudent for embedded software developers to understand how ICs work and 

how to read data sheets as well as schematics for several reasons. Firstly, most chips 

implement internal pull-up and pull-down resistors that are required to be either pulled 

up or down by the software before the chip is powered in order for the chip to function 
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properly. Secondly, IO expanders for example, provide many General-Purpose 

Input/Output (GPIO) peripherals, all of which must be initialized to achieve low power 

consumption. Thirdly, some chips provide low power states that are disabled by default, 

to implement these states a software developer must follow a certain cycle given by the 

data sheet of that chip (Analog Devices, 2015, p. 43). Finally, different chips have 

different read and write pattern requirements, it is important to implement these 

procedures correctly to avoid undefined outputs. Figure 2 shows an example of the write 

cycle that must be followed to write temperature information to an LED driver. 

 

 

Figure 2. Write pattern required to write temperature data to register 40h for an LP55231 
LED driver (Texas Instruments , 2013, p. 19). 

 

In Figure 2 the first 8 bits represent the address of the IC. This address is used to 

communicate with the chip through the device driver. The address for this chip is 32 bits 

in hexadecimal format which is calculated by the conversion of the binary representation 

of the Serial Data Signal (SDA), where a logic low is zero bits and a logic high is 1 bit at 

each rising edge of the System Clock Line (SCL), in this case the first 8 bits of the SDA 

line are 00110010. The next three bits after the first 8 bits are the write or read denoted 

as “w” or “r” respectively, and the “ack” which is the acknowledgment received from the 

slave. Additionally, Figure 2 shows the address of the chip to which the data is to be 

written to. The read cycle on the other hand, requires a proceeding write function as 

shown in Figure 3 (Texas Instruments , 2013, p. 19). 
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Figure 3. Read pattern that reads temperature data from register 3Fh (Texas Instruments 
, 2013, p. 19). 

After an “ack” is received from the slave followed by a repeated start “rs” the read 

procedure may be started. Such patterns are not just useful to enable certain power 

states or manipulate some chip features but are also of great importance for software 

debugging as well. For example, a write attempt might fail due to a wrong address 

caused by a software bug that in most cases requires hours if not days to fix, whereas 

an oscilloscope can be used to probe the SCL and SDA lines from the chip and compare 

the obtained pattern and values with the data sheet as shown in Figure 4, in which the 

address 20h shown from the oscilloscope is the wrong address for this write attempt. 

The correct address according to the data sheet is 30h. 

 

Figure 4. Oscilloscope measurement that shows a write attempt to the wrong address of 
an LP5036 LED driver. 
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2.2.3 Processors 

Processors utilize transistors to perform complex tasks. Consequently, the speed and 

complexity of a processor depends on the number of transistors it contains. Fortunately, 

the transistor count in a chip followed Moore’s law by doubling roughly every 18 months 

for at least four decades (Roser & Ritchie , 2020; Wolf, 2006). As a result, the number of 

transistors of an Intel CPU in the early seventies, that were only about 2300 transistors 

in that chip, capable of processing 0.07 Million Instructions per Second (MIPS) (Gruener 

& Miconi, 2018), has approached a total of 54 billion transistors in a single 7nm Graphics 

Processing Unit (GPU) (Walton, 2020). However, this massive growth brings two main 

drawbacks. Firstly, the increase of transistors in a chip lead to an increase in cost and 

on chip circuit complexity (Shepherd, 2002). Secondly, the power consumed by a chip 

increase as the number of transistors in it increases with respect to the number and 

complexity of the instructions executed per chip clock as shown in Figure 5 (Grochowski 

& Annavaram , 2006; Shalf, 2020). 

 

Figure 5. An increase in power consumption due to an increase in the number of active 
transistors and clock frequency within one clock cycle (Shalf, 2020, p.3). 

It is evident from Figure 5 that transistor count, clock frequency, and power consumption 

are positively correlated. The consumed power is caused by three main effects, firstly, 

transistors, like all other electronic components, leak a certain amount of current in 

standby mode (Noergaard, 2005). Secondly, the instantaneous short to ground at the 

time the transistors switch on and off (Saxena & Akashe, 2015). Thirdly, the dynamic 
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power dissipation due to the charge and discharge of the transistors that are required to 

execute a single instruction set within one clock cycle, in other words, these transistors 

act as capacitors and thus the energy stored in them is given by the following formula: 

W =
1

2
𝐶𝑉2 

Equation 2. “Energy stored in a capacitor” (Tooley, 2006, p. 13). 

Where: “W” is the energy stored in a capacitor in Joules (J). “C” is the capacitance. “V” 

is the voltage. Power is then obtained by dividing energy by time: 

    

P =
𝑊

𝑡
 

Equation 3. Power calculated from energy (Tooley, 2006, p. 8) 

Where “P” is the power in Watts and “t” is the time in seconds. However, the number of 

times transistors charge and discharge in a processor is given by cycles per second 

rather than time. Cycles per second or frequency is the inverse of time (Tooley, 2006, p. 

70): 

t =
1

𝑓
 

Equation 4. Frequency is the inverse of time (Tooley, 2006, p. 70). 

 

 

 

 

Where “f” is frequency in Hertz. The dynamic switching power is therefore the product of 

energy and frequency and may be formulated as:   

 

P =
1

2
𝐶𝑉2𝑓 



17 
 

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS |  Yasir Al-Ameri 
 

Equation 5. dynamic switching power in a processor (Grochowski & Annavaram , 2006). 

 

It is clear from Equation 5 that the dynamic switching power in a CPU depends on the 

capacitance, which is caused by the charge and discharge of transistors per cycle, the 

voltage, and the number of cycles per second. Therefore, a reduction in any of these 

three variables should lead to a considerable drop in the overall power consumption of 

the processor. However, a discrete adjustment to voltage or frequency might not be an 

ideal solution for most applications, firstly, because some applications require higher 

voltages than others. Secondly, the runtime of complex instruction sets in a CPU with 

very slow frequencies increases, which might result in the same or even higher power 

consumption when compared to normal clock rates. As a result, a Dynamic Voltage and 

Frequency Scaling (DVFS) technique is needed in order to address different application 

voltage and frequency requirements. On the other hand, this DVFS power saving 

technique adds more complexity to the chip, which in turn increases cost. In light of these 

issues, chip designers in the early eighties advocated a Reduced Instruction Set 

Computer (RISC) architecture. The main goal of a RISC architecture was to eliminate 

specific seldomly used instruction sets and execute only simple instructions within one 

clock cycle (IBM, 2012). With this architecture it was possible to reduce the number of 

transistors in a processor as well as design complexity which would ultimately reduce 

power consumption in a CPU, as shown in Table 1 (Chen, et al., 2000). 

Table 1. Remarkable improvements in CPU performance and transistor count within 40 
years (WikiChip, 2021; Shirriff, 2015; Angelini & Wallossek, 2014; ARMLtd, 2019). 

Processor Architecture Frequency Power Transistor 

count 

Year 

Intel 4004 CISC 740 KHz 1mW 2300 1971 

Intel 8080 CISC 2 MHz - 6000 1974 

Intel 8051 CISC - - 50 000 1980 

ARM1 RISC 33 MHz >0.1W 25 000 1985 

ARM6 RISC 33 MHz 54mW 36 000 1992 
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Pentium CISC 315 MHz – 

1GHz 

17 W 31 000 000 1994 

ARM10 RISC 300 MHz 1W 250 000 1999 

Core 2 Duo CISC 3 GHZ 65 W 230 000 000 2008 

Core i7 

Haswell-E 

CISC 3.5 GHz – 4 

GHz 

18W – 

124 W 

2 600 000 

000 

2014 

 

 

2.2.4 System on Chips 

Small embedded systems with low power requirements typically make use of the new 8- 

and 32-bit Microcontroller Units (MCUs). An MCU is an IC that contains, among others, 

one or more Central Processor Unit (CPU), memory, and input/output peripherals. For 

more complex applications such as in advanced healthcare monitoring devices, an MCU 

combined with other chips and sensors packed into one chip which forms a System on 

Chip (SoC), is usually used instead of an MCU.  

The encapsulation of a system in a small Quad-Flatpack No-Leads (QFN) package 

comes with many advantages. Firstly, some QNF packages might include two MCUs, a 

Bluetooth Low Energy (BLE), ZigBee and NFC, all within 7x7 mm of space (Nordic 

Semiconductor, 2021). Secondly, the short travel between components on the chip 

greatly contributes to the increase of speed and decrease in power consumption 

(Mujtahid, et al., 2018). On the other hand, if one component in the package fails the 

entire chip must be replaced. Furthermore, due to the complex designs of SoCs, 

extremely complicated power management frameworks are required (Lima, 2009; 

Malewski, et al., 2018).  

2.2.5 Battery technologies  

Over the last two decades great leaps in battery technologies allowed for the existence 

of powerful smart portable devices, such as laptops and mobile cell phones (Zhai, 2018). 

However, the advancement in batteries is still not fast enough to match the rapid 
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development of microcontroller units (Remler, et al., 2020). As a result, there is a huge 

gap between processor power demands and battery capacity as shown in Figure 6. 

 

Figure 6. Improvements in battery technologies compared to CPU performance (Klasson 
& Hecktor, 2010). 

Battery capacity is the total amount of chemical energy stored in the active material of a 

battery cell measured in amp-hours (Ah) (Remler, et al., 2020; Zhai, 2018). This active 

material is large, because it requires ions, electrolytes, cathodes, and anodes in order to 

transfer electric charge. So, without a significant breakthrough in material technologies 

the slow improvement in battery capacity might not change (Schlachter, 2013). With this 

faltering growth of battery capacity, knowledge of device runtime on a single battery 

charge becomes a necessity. For example, a device that operates on 3.7 V and draws 

50 mA of current, would deplete a 3.7 V battery with a capacity of 200 mAh within: 

   𝑡 ≈
𝐶 

𝐼 
 

Equation 6. Battery runtime estimation (Farahani, 2008). 

 

Where “C” is the capacity of the battery measured in amp-hours, “I” is the current in 

amps, and “t” is the runtime in hours. 

Thus: 



20 
 

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS |  Yasir Al-Ameri 
 

      
200𝑚𝐴𝐻

50𝑚𝐴
= 4 ℎ𝑜𝑢𝑟𝑠 𝑜𝑛𝑙𝑦        

 

A battery with a capacity of 2000 mAh will increase the previously calculated runtime to 

40 hours, but the price and size of the device will increase as well. Likewise, a reduction 

in the current consumed by the device to 5 mA will increase the runtime by 10 but might 

affect the overall performance of the device if not reduced properly (Malewski, et al., 

2018).  

 

 

2.3 Embedded Software  

The Embedded System Model discussed in subchapter 2.2 suggested three main layers, 

a hardware layer at which all hardware components reside, and two software layers. The 

first software layer is the system software layer which acts as a mediator between the 

hardware components and the applications. This layer includes device drivers, operating 

systems, and middleware. The second software layer is the application layer which 

specifies the purpose and main tasks of the embedded device (Noergaard, 2005).  

 

Figure 7 shows the Embedded System Model extended with three possible system 

software layers. 
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Figure 7. The Embedded System Model with possible system software layers 
(Noergaard, 2005, p. 383). 

 

At its bare minimum, the system software layer must possess a device driver layer to 

interface the hardware components that exist on an embedded system. A device driver 

is a software, mostly written in C, that contains macro definitions, libraries, and functions 

responsible for device initialization and control (Noergaard, 2005). Since size, memory, 

and power constrained embedded systems that make use of SoCs require extremely 

complex power management frameworks, these frameworks are mostly implemented in 

the operating system layer (Ceolin, 2021). The OS usually used in such constrained 

devices is RTOS as discussed earlier in subchapter 2.1. Table 2 lists some of the most 

commonly used OSes for embedded devices. 

Table 2. A comparison of the most popular embedded OSes (Clarysse, 2019; Pelaez, 
2021; Noergaard, 2005). 

OS OS 

Type 

License Source 

model 

Platform Features 

Embedded 

Linux 

GPOS GPL open source At least Cortex-A 

MCU (or 

equivalent) 

Full stack 
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FreeRTOS RTOS MIT open source A broad range of 

MCUs and SoCs 

Bare metal 

      

Mbed RTOS Apache 2.0 open source Cortex-M, 

Cortex-R, 

Cortex-A 

Limited to 

ARM 

processors 

      

Mynewt RTOS Apache 2.0 open source Limited BSP Full stack 

      

VxWorks RTOS Proprietary  closed A broad range of 

MCUs and SoCs 

Full stack  

      

Zephyr RTOS Apache 2.0 open source A broad range of 

MCUs and SoCs 

Full stack  

 

Embedded Linux is a great option for IoT devices that can afford a powerful processor 

with a Memory Management Unit MMU. Likewise, Mbed and Mynewt are limited to 

certain platforms. FreeRTOS on the other hand supports a wide range of platforms but 

is bare metal, that is to say it provides no drivers, file systems, connectivity, security 

modules, nor a bootloader. Zephyr RTOS is therefore possibly the best choice for low 

power applications from the list, for two reasons, firstly, because it supports a variety of 

different platforms. Secondly, it includes a secure bootloader, network stack, file system, 

device drivers for an array of commonly used chips, and middleware (Clarysse, 2019). 
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3 ZEPHYR RTOS   

Zephyr is an open-source Real Time Operating System (RTOS) that has gained 

prominence in resource constrained IoT devices. It aims to encompass all the essential 

software components in order to control a wide variety of hardware architectures which 

aids build low power applications (Clarysse, 2019; Linux Foundation, 2020). The focus 

of this chapter is to explore the power management framework provided by Zephyr as 

well as the components that interact with it. 

3.1 The kernel of Zephyr RTOS 

The kernel of Zephyr RTOS is an essential component of the operating system. It 

provides all other components of the system with services such as, Threads, a 

Schedular, Semaphores, Interrupts, and Mutexes. Additionally, the kernel is responsible 

for processes, memory, and I/O management. Basically, the kernel manages tasks 

according to a priority-based schedular in which threads with higher priorities (low 

numbers) are executed first. The thread with the lowest priority is the idle thread, which 

will always be scheduled when no other threads are available as shown in Figure 8 

(Noergaard, 2005; Linux Foundation, 2020). 

 

Figure 8. Zephyr kernel priority-based schedular (Ceolin, 2021, p. 10). 

The thread execution flow shown in Figure 8 may be interrupted by Interrupt service 

Routines (ISRs) if these ISRs are not masked, or other APIs exposed by the kernel 

(Ceolin, 2021). 
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3.2 Device drivers 

In Zephyr the kernel, binary linked libraries and applications are executed in one address 

space. The device driver model is therefore based on a shared data structure that is pre-

allocated with struct devices at build time and configured with two domain-specific 

languages, YAML and device tree source (DTS). The YAML language is used to provide 

a description of the device tree overlay as shown in Picture 2, whereas the DTS language 

is used to define the configuration of each device instance as shown in Picture 3. This 

approach reduces overhead and makes the driver architecture independent (Bolivar, 

2021). 

 

Picture 2. A sample .yaml file for an HMC5883L sensor that describes the device tree 
overlay components (Bigot & Helm, 2021). 

 

Picture 3. Device tree overlay for the HMC58831 sensor (Bigot & Helm, 2021). 

The description of the device tree overlay shown in Picture 2 must match the DTS file 

illustrated in Picture 3. For example, the “dt_compt_enabled” and the “depends on” fields 
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indicate the name of the device and that it should be defined under I2C. “reg” is the 

hardware address of the device in hexadecimal, and the “int-gpios” is the GPIO physical 

pin that represents the power source to the device, which is usually pre-set either to 

active high, active low, disconnected, or inactive (Intel Corporation & Wind River 

Systems, 2021).  

The third tool that is used to configure the device driver at build time is Kconfig, which is 

different from the DTS overlay file in that the former is used to describe the software 

features to be added to the final binary file, whereas the latter is used to specify the 

hardware components needed for device initialization, such as, the address, GPIO pins, 

and the required peripheral (Intel Corporation & Wind River Systems, 2021). The 

functions used to initialize the device, define the priority of the device, bind it to its DTS 

node, and implement the features it supports, are placed in a “.C” file (Linux Foundation, 

2020).  

3.3 Power management framework 

The basic idea behind the power management framework in Zephyr is to reduce power 

consumption when possible. This means that the framework must turn off power to 

peripherals and devices that are not in use. In order to achieve this, Zephyr provides two 

main infrastructures which can be used in conjunction or separately (Ceolin, 2021). 

3.3.1 System power management 

The first infrastructure is system power management that makes use of power saving 

features in SoCs. In this method the system is in an active state until the schedular 

schedules the idle thread, then checks for power state constraints set by any component 

in the system, if no constraints where set, the kernel will call the policy manager which 

is an algorithm that places the system into a state that will save the most power based 

on certain conditions. The selected state will remain the current sate unless an external 

interrupt happens or a program times out, because the policy manager locks out all other 

interrupts in order to prevent preemptive threads from running (Ceolin, 2021). 
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The system power management method exposes several APIs to the application layer 

which can be used by the application to change the system state or to inhibit the system 

from entering certain states (Ceolin, 2021; Linux Foundation, 2020).  

Figure 9 highlights the main steps that take place inside the idle thread when system 

power management is enabled. 

 

Figure 9. System power management scheme inside the idle thread (Ceolin, 2021). 

When the system starts the idle thread, all interrupt requests are locked, then the system 

checks whether the system power management is enabled in the prj.conf file 

(CONFIG_PM=y), otherwise k_cpu_idle is scheduled and the power management 

subsystem shown in Figure 9 will not run (Ceolin, 2021). 

3.3.2 Device power management 

The second infrastructure that Zephyr provides to reduce power is device power 

management. This infrastructure consists of two possible methods, the first method is 

Central device power management, in which the system is prevented from entering a 

deep sleep state before the states of all devices are checked, if all devices are in an idle 

state and have been idling for a certain amount of time, then this method will check for 

the next scheduled event and compare it to the latency time defined in the DTS file. 
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Provided that all of these conditions are satisfied the system will then be allowed to enter 

deep sleep. The second method is Runtime device power management which relies 

solely on components that are power aware. These components must have the ability to 

put the devices used by them into a suitable power state safely. As a result, the system 

will enter a deep sleep state rapidly as soon as this decision is made, because it does 

not need to undergo all the steps required in the Central method (Linux Foundation, 

2020). 

For example, a system with three devices A, B, and C, where both devices A and C 

depend on device B as shown in Figure 10. When a program in the application layer 

needs to interact with device A, the device driver of device A will activate device B. 

Likewise, device C will require the activation of device B, at this point device B is used 

by two devices, in order to power it off safely device B must keep track of the devices 

using it, which is accomplished by the use of counters and two APIs, pm_device_get and 

pm_device_put. Where the “get” API will report that device B is in use and will increase 

the usage counter by one, whereas the “put” API will decrease the counter by one. 

Consequently, whenever the system makes the decision to enter a deep sleep state it 

only needs to check the usage count of all devices rather than undergoing all the steps 

executed by the Central method (Ceolin, 2021). 

 

 

Figure 10. An example of device Runtime power management with three devices (Ceolin, 
2021). 
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In Figure 10 device B receives two “get” calls, one from Device A and the other from 

device C. However, only device A makes a “put” call, therefore the usage count of device 

B is one and a deep sleep state is not possible. 

3.3.3 Power states and constraints 

The power management framework in Zephyr supports seven power states, which are 

given as enumerated data types, where lower numbers correspond to higher power 

consumption, as follows: 

 

1. PM_STATE_ACTIVE: All peripherals are on for which reason this state 

consumes the most power (Linux Foundation, 2020). 

2.  PM_STATE_RUNTIME_IDLE: all devices retain their power states while the 

system enters a suitable idle state (Linux Foundation, 2020). 

3. PM_STATE_SUSPEND_TO_IDLE: this state is the same as the previous state 

but saves more power because some peripherals are put into low power state, 

based on complex algorithms (Linux Foundation, 2020; Ceolin, 2021). 

4. PM_STATE_STANDBY: CPUs that are not in use are turned off and peripherals 

are also allowed to be in low power state. This state is different from suspend to 

idle only in systems with multiprocessors (Linux Foundation, 2020).  

5. PM_STATE_SUSPEND_TO_RAM: the power saved in this state is remarkable, 

because most of the system is completely powered down while the content is 

saved to memory which makes the wakeup latency low (Linux Foundation, 2020). 

6. PM_STATE_SUSPEND_TO_DISK: the system saves all the content to a non-

volatile storage and turns of the memory in addition to the power saving 

techniques conducted in the previous state, therefore the system will also resume 

with the least latency (Linux Foundation, 2020). 

7. PM_STATE_SOFT_OFF: this state saved the most amount of power from all 

other states, however, it has the greatest wakeup latency, because all content is 

lost, so the system must reinitialize all devices as well as other boot requirements. 

The system might be prevented from entering any of the above listed power states by 

constraints set at the Application layer or through any component in the System software 
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layer. The power management framework in Zephyr provides three APIs to set, get, or 

release constraints as follows (Linux Foundation, 2020): 

• bool pm_constraint_get (enum pm_state state): This function checks the given 

power state and returns false if it is disable (Linux Foundation, 2020). 

 

• void pm_constraint_set (enum pm_state state): This function prevents the power 

management framework from selecting the specified power state as the next 

state (Linux Foundation, 2020).  

 

• void pm_constraint_release (enum pm_state state): When this function is called 

the given power state will be selected by the framework. This function must be 

called whenever the system is ready to enter a low power state, if a constraint 

has been set for this power state (Linux Foundation, 2020). 
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4 HARDWARE AND SOFTWARE POWER 

MANAGEMENT METHODS 

The power management techniques were carried out on a product in its early phases of 

development. This product consists of two boards (PCBs) connected together via a flex 

cable. This product provides a variety of different functionalities that require the use of 

several different sensors. Some off these sensors are integrated into one chip and 

require a fairly complicated layout in order for it to function properly. It is not uncommon 

for such complex designs to have many design flaws, especially at early stages of 

development. These design mistakes usually require ample amount of time to find and 

special tools for debugging and repairing. This chapter will explore the tools used to 

conduct this work and most of the techniques used to reduce the power consumption in 

this product.  

4.1 Apparatus and Development Kits 

In order to implement the power management techniques on the given product, several 

measurement tools were needed, such as, an oscilloscope, at least two digital 

multimeters (DMMs), and a Power Profile Kit (PPK). Additionally, an SMD and BGA 

rework station as well as other tools and equipment were required for testing and design 

flaw repairs as shown in. Finally, a debugger was needed for cross compiling, debugging, 

and programing the device. The chosen debugger for this product was the nrf5340 

development kit (DK). This debugger has an onboard SEGGER J-LINK which enables 

full programming and debugging of external targets via the Joint test Action Group 

(JTAG) protocol. In addition to these features the nrf5340 may be extended with the PPK 

for precise current measurements (Nordic Semiconductor, 2021).  

 

Picture 4. Workshop tools and equipment, with the DUT connected to a DMM in series 
with a power supply. 
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4.2 Design flaw repairs for low power consumption 

The device under test (DUT) consists of an nrf5340 SoC along with hundreds of passive 

and active components. Ideally, this device should consume no more than 0.09 mA with 

the SoC in an idle state where regulators are in a Low-dropout regulator (LDO) state, 

and all peripherals powered down. This is because the SoC is advertised to consume 

3.3µA in this state (Nordic Semiconductor, 2021). By adding possible leakage current 

from all components on the DUT along with other possible hidden design flaws, 0.09 mA 

was found to be a rough estimate. However, the initial measurements should be taken 

with the SoC completely erased, to rule out any possible software bugs, this means that 

peripherals are not set to power off devices. While some ICs on the DUT are connected 

directly to the power source, these chips are usually active by default. Therefore, the 

current consumed by these chips should be added to the previously estimated 0.09 mA. 

On average such chips consume about 3.5 mA in their active state. With five chips active, 

the expected current consumption would then be 17.59 mA. The initial measurement 

obtained from the DUT was approximately 300 mA. This is almost 17 times more than 

the expected value. For such high current consumption, a thermal camera was able to 

easily spot the errors which were found to be a manufacturing mistake in which two chips 

were placed to the wrong direction. Similarly, several other design flaws were found, 

some of which had a pull-down resistor that should have been a pull-up, while others 

were board layout issues. 

After solving the flaws that were detectable by a thermal camera, the current 

consumption dropped from 300 mA down to 24 mA. With all peripherals on, the expected 

excess current is hence around:  

24 mA – 17.59 mA = 6.41 mA 

At this point it is prudent to turn all peripherals off, as an attempt to power down all active 

devices. This was achieved by creating an application in Zephyr that will set all GPIO 

pins to a suitable state. The priority of the application source code file should be lower 

than all active device drivers in the system, this is because it is not possible to turn a 

device off without initializing it first. This application is defined as shown in Picture 5 

below. 



32 
 

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS |  Yasir Al-Ameri 
 

 

Picture 5. Defining a device. 

The DEVICE_DEFINE macro requires nine parameters, the first two, represent the name 

of the device, the third parameter, is the address to the initialization function that should 

run when this device is scheduled by the kernels schedular. The fourth parameter is a 

pointer to the power control function if power management is implemented and is NULL 

otherwise. The fifth and sixth parameters are possible data and configuration settings 

respectively, these were not needed for this simple application and therefore set to NULL 

as well. The seventh parameter is the initialization level, which is set to post kernel. The 

eighth parameter is the priority that should be set to run after all other threads. The last 

parameter is a pointer to a possible API, this parameter is also set to NULL, because 

this application is only intended for testing (Linux Foundation, 2020). An excerpt of the 

initialization function is shown in Picture 6 below. 

 

Picture 6. GPIO pin configuration for low power consumption. 

By configuring the GPIO pins to a suitable logic level, it was possible to turn off chips, 

that were active, from their own driver or from this same application by exposing APIs 

from the driver. With this configuration the current consumption was reduced drastically 

to 3.4 mA. With this obtained value, the predictable excessive current consumption is: 

3.4 mA – 0.09 mA = 3.31 mA 
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Any component on the DUT may be the cause of the extra 3.31 mA current consumption. 

One way to tackle this endless list of possible components, is to desolder components 

from the DUT that have a direct path to the 3.3v power supply. This approach is mostly 

moot and requires access to schematics, board layouts, as well as the proper skills to 

carry out the process effectively. Fortunately, the author had full access to such 

documents together with the required skills. Since the product consists of two PCBs 

connected by a replaceable flex cable, it was possible to isolate the board that was 

causing the problem, by cutting the power line on the flex cable and placing a DMM in 

series with it as illustrated in Picture 7, which indeed suggested that one of the boards 

alone was consuming all the extra current. 

 

Picture 7. The DUT with a flex cable in which the board-to-board power line was exposed 
and cut to allow probing it with a DMM. 

Before the removal of any component that has a device driver, it is important to disable 

the driver in the prj.conf file in order to prevent the application from attempting to initialize 

a device that does not exist, which would cause the application to crash and thus fail to 

configure other GPIO pins in the system. In addition to components with device drivers, 

some ICs offer the option to change the slave address to allow the use of more than one 

IC on the same communication bus. This can be achieved by connecting the slave 

address pin on the PCB to the power source or to ground, usually through a pull-up/down 

resistor (ST-Microelectronics, 2021). Disconnecting this resistor will cause the slave 

address to change. As a result, the driver will not be able to bind the chip from the DTS 

file. Consequently, the initialization of the chip fails, forcing the application to crash, which 

causes an increase in current consumption.  

The process of desoldering components from the PCB and applying suitable repairs for 

both software and hardware, resulted in a decrease in the current consumed from 3.4 

mA to 0.178 mA. This is still approximately double that of the expected value. 

Nevertheless, with this value the DUT should idle for at least: 
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300𝑚𝐴𝐻

0.178𝑚𝐴
=  1685,4 ℎ𝑜𝑢𝑟𝑠 𝑟𝑜𝑢𝑔ℎ𝑙𝑦 70 𝑑𝑎𝑦𝑠 

 

4.3 Power management framework implementation 

At the time of writing this document, the latest Zephyr release is 2.6.99. Unfortunately, 

the power management framework in this release is still under development (Ceolin, 

2021). Moreover, the SoC used in the DUT does not currently support certain power 

states provided by this framework and were therefore bypassed in this implementation.  

System power management implementation  

The power management subsystem in Zephyr is disabled by default, in order to enable 

it, the supported power states must be declared first in the device tree as show in Picture 

8. 

 

Picture 8. Power state declarations in the device tree. 

Each power state must possess a name and a minimum residency time. This time is 

given in microseconds and represents the minimum amount of residency time in a state 
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added to the time it takes to exit the state before the next scheduled event takes place, 

which is implemented in the residency policy as shown in Picture 9. The system power 

management can then be enabled by setting CONFIG_PM=y in the prj.conf.  

 

 

Picture 9. The minimum residency time required to enter a state. 

 

Device power management implementation  

The prototype comprises of many sensors that rely on other devices in the system such 

as, drivers, multiplexers, and I/O expanders. To save the most amount of power all 

devices, power source lines and peripherals that are not in use should be turned off 

dynamically during runtime. However, a device cannot simply turn off the power supply 

it depends on and then turn itself off. Furthermore, the power supply of one device might 

be in use by another device, powering it down might cause a possible transaction on the 

other device to fail. Therefore, such devices must be controlled by a separate component 

that keeps track of all devices and is responsible for turning the power source of a device 

off only when no other device in the system is using it. Basically, this component is a 

program that was added to the power management subsystem as a runtime policy 

manager in this implementation. It holds a list of dependencies associated with each 

power line used by devices. Device drivers define the power source they rely on, so that 

“pm_device_get” is used to notify the runtime policy manager that this power line is in 

use, whereas “pm_device_put” will release the power supply from this particular driver. 

Device drivers may leverage runtime power management only if they implement a power 

control function that is pointed to in the DEVICE_DEFINE’s fourth aforementioned 
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parameter. The core functionality of the power control function is to return a suitable 

device state according to the request made by the application that is calling this function. 

For example, if an application needs to use a specific sensor on the prototype, without 

power management this sensor should have been fully initialized during boot time and 

never turned off. However, if power management is implemented, then this sensor might 

have been powered down by the runtime policy manager. As a result, the power control 

function must first check the current state of the sensor. If the state is off, 

“pm_device_get” is called to increment the usage counter of the serial communication 

bus that this sensor depends on. After this the sensor can be reinitialized and used by 

the application as shown in Picture 10.  

 

A disadvantage of dynamic power control is the time it takes to reinitialize a device. This 

latency was considered both in the device tree and the runtime policy manager. 

 

 

Picture 10. Switching a sensor on in the power control function, where rst is active low. 

In addition to dynamic power management, micro delays were added to some 

functionalities of certain device drives, in order to imperceptibly reduce device runtime. 

For instance, the DUT incorporates a number of RGB LEDs which are programed to 

flash on and off in a certain pattern. With a slight increase in the off state as well as 

decrease in the time the RGBs are on, resulted in great power savings. 
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5 RESULTS 

The ultimate goals of this research were firstly, to reduce the power consumed by the 

DUT from 300 mA to 0.09 mA at most. Secondly, to reduce run time power consumption 

by the addition of custom power states to the power management framework provided 

by Zephyr. This chapter presents the results obtained from different experimental stages.  

5.1 Bare metal test 

The bare metal test here refers to a stage at which the power management framework 

was not implemented. Basically, this test was carried out before and after hardware 

repairs took place, the measurement tool used to obtain these results was a DMM as 

shown in Table 3. It is worth noting that the author was responsible for conducting all of 

the repairs. 

Table 3. Results obtained by repairing design flaws. 

Current 

consumption 

(mA) 

 

Hardware cause 

 

Repair 

Current 

consumption 

after the 

repair (mA) 

300 Two chips soldered 

to the wrong 

direction. 

(Manufacture error) 

Chips resoldered to the correct 

direction.  

57 

    

57 Layout mismatch. 

(Design flaw) 

The pins on the board were isolated 

with Kapton tape, and copper wires 

were used to reconnect the chip. 

24 

    

24 All peripherals on. An application created in Zephyr to 

configure GPIO pins for low power 

consumption 

3.4 
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3.4 Wrong pull up/down 

resistors  

The resistors were removed or 

replaced with the correct value and 

logic level. 

0.178 

 

5.2 Device running without power management 

Device running without power management, in which power management was disabled 

from the prj.conf file. The DUT was measured by the PPK. The first measurement shown 

in Figure 11 was obtained from the DUT with the power completely switch off. 

 

Figure 11. A screen capture from the PPK that illustrates a leakage current from the DUT 
even with the power switched off. 

The average current that will leak from the device with the main power switched off, is 

shown to be 0.21 µA in Figure 11. This is a drastic reduction when compared to the initial 

current consumption before the design flaws were repaired. 
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The second test took place with an application loaded on the DUT that requires the use 

of the BNO08x sensor. The current consumption is shown in Figure 12 below. 

 

Figure 12. A screen capture from the PKK that shows the current consumed by the DUT 
with an application that needs to use the BNO08x sensor on the DUT in motion detection 
mode (this mode is rated to consume 150µA). 

The average current consumption was found to be 27.07 mA. This means that a 300 

mAH battery can run for only: 

      
300𝑚𝐴𝐻

27.07𝑚𝐴
=  11,08 ℎ𝑜𝑢𝑟𝑠  

The third measurement was carried out on the DUT with a capacitive touch sensor on, 

and presumably all other devices on the DUT turned off as shown in Figure 13. 

 

Figure 13. A screen capture from the PPK that illustrates the current consumed by the 
DUT with a capacitive touch sensor active and no power management implementation. 
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It can be seen from Figure 13 that the device is continuously turning on and off, in which 

the maximum current consumption is 37.19 mA. The expected maximum spike should 

not exceed 7 mA for this sensor. 

 

The fourth measurement was conducted with all RGB LEDs flashing while other devices 

assumed to be off, as illustrated in Figure 14. 

 

Figure 14. A screen capture of the PPK, that shows the current consumption of the DUT 
with all chips active and the RGB LEDs flashing without any power management 
enabled. 

 

According to Figure 14, the DUT will be able to flash the LEDs for:  

300𝑚𝐴𝐻

57.13𝑚𝐴
=  5,25 ℎ𝑜𝑢𝑟𝑠 
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5.3  Device running with power management enabled 

The results presented in this subsection were obtained from the DUT after the power 

management subsystem provided by Zephyr was enabled and customized for three 

devices in the system. 

The first experiment was performed on the DUT with a BNO08x sensor in motion 

detection mode. The results are shown in Figure 15.  

 

 

Figure 15. A screen capture from the PKK that shows a significant decrease in the current 
consumption of the DUT with the power management framework enabled and 
customized to manage a BNO08x sensor in motion detection mode (this mode is rated 
to consume 150µA). 

 

Figure 15 shows an average current consumption of 481.96 mA, where the device is 

repeatedly turning on and off. The second experiment in this subsection was carried out 

on the DUT in which the power management framework was enabled and customized to 

control the capacitive touch sensor with all its dependencies. The obtained results are 

shown in Figure 16. 
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Figure 16. A screen capture from the PPK that illustrates the current consumed by the 
DUT with a capacitive touch sensor in a full power mode, with a custom power 
management implementation (the sensor is rated to consume 0.9 mA in this mode). 

The final experiment in this subsection took place on the RGB LEDs. The results are 

shown in Figure 17. In this experiment the intensity of the RGBs was slightly reduced by 

configuring the device driver. Additionally, micro delays were added 

 

 

Figure 17. Figure 14. A screen capture of the PPK, that shows the current consumption 
of the DUT with all chips active and the RGB LEDs flashing with power management 
enabled. 

. 
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6 DISCUSSION 

The findings from this work prove that the hardware and software methods presented in 

this document effectively reduced the current consumed by the device under test from a 

short circuit drawing 300 mA down to 0.178 mA with the device in a deep sleep state, 

and from an average of 27 mA, with the device running an application that requires the 

use of a motion detection sensor on the device, down to an average of 0.481 mA. Indeed, 

these results will help increase the charging intervals from less than a half an hour up to 

more than 26 days. Although this is a significant increase in battery life, the expected 

runtime for this device was much longer.  

Results show that the power management framework saves the most amount of power 

when enabled on the capacitive touch sensor but fails to achieve the same efficiency 

with the BNO0x sensor. By debugging the code, it was noticed that the system fails to 

write to the I2C serial communication peripheral when the SoC is placed into a low power 

state yet succeeds to write to the same peripheral when the system is in an active state 

as shown in Picture 11. Additionally, the system successfully writes to the SPI peripheral 

in both states. Since the BNO0x sensor requires the I2C bus in this design and the 

capacitive touch sensor makes use of the SPI bus, it was clearly the cause of the access 

current consumption in the former sensor and not the case for the latter. 

 

Picture 11. A screen capture of VS code that shows an I2C write function fails and returns 
a -5. 

The job of the I2C write function shown in Picture 11 is to turn off the power line of 

channel zero, which is the power line for the BNO0x sensor when the sensor completes 
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an execution and is ready to enter a low power state. This explains the continuous spikes 

shown in Figure 15 in subsection 5.3. 

An I2C write might fail due to several different reasons including, the attempt to write to 

the wrong address or to write the wrong data. One way to find out the cause for this 

failure to write is to prob the I2C SDA and SCL lines with an oscilloscope. For this 

particular write, the expected write sequence, which was also the result obtained from 

the write function before the system enters a low power state, is shown in  Picture 12. 

Surprisingly, when the system enters a low power state, both the address and data were 

found to be completely corrupted as shown in Picture 13. 

 

 

Picture 12. A screen capture from the Pico oscilloscope that illustrates the correct I2C 
write sequence obtained before the system enters a low power state. Where 0x40 is the 
address of the multiplexer and the data is zero. 

 

Picture 13. A screen capture from the Pico oscilloscope that shows only two rising edges 
of the clock and corrupted data. 
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The corrupted data shown in Picture 13 is possibly caused by a software bug in Zephyr’s 

power management framework or in the SoC’s main driver. Alternatively, this could be 

caused by a hardware bug in the SoC, for which reason it was reported to the SoC 

manufacturer. The SoC manufacturer team were able to replicate the error and confirm 

that it is indeed a bug. However, no fix nor efficient workaround to this problem was found 

at the time this thesis was written. Further work is therefore needed to unravel this issue 

as well as other possible undiscovered design flaws. Additionally, in this work only three 

devices were configured to implement dynamic power management. Therefore, all 

device drivers in the system must be configured and added to the device runtime policy 

manager in order to achieve ultra-low power consumption with a variety of different 

applications. 
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7 CONCLUSION 

This thesis explored hardware and software methods that helped enhance energy 

efficiency in a resource constrained embedded device. This device is under development 

and runs a real time operating system called Zephyr. The experimental results obtained 

from this work showed a dramatic drop in power consumption, with which the device can 

preserve battery charge for several months in a standby state, and up to roughly one 

moth of running a motion detection application. 

This work was mainly focused on rectifying hardware design flaws as well as customizing 

device drivers with extended power management schemes. Such work requires a deep 

understanding of board layouts, circuit schematics, and component data sheets. To this 

end, only three device drivers were customized, and thus future work is needed to 

customize all other device drivers in the system. Additionally, possible hardware or 

software bugs might still exist and must be examined to achieve optimal power savings. 
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