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1 Introduction 

Artificial Intelligence (AI) is a field in computer science that is developing at a fast rate, and 

it had become more accessible to the public. Its social and technological impact is growing 

exponentially. The big tech giants like Google, Facebook, Amazon, or Microsoft have been 

offering services and solutions based on AI. There have been apps of different kinds being 

developed with this technology, like videogames, financial services, or autonomous behav-

ior in machines. (Krittanawong, 2018.)  

One of the ways to explore the advancement of AI is to investigate the history of chess 

engines, and how they have evolved over the years. From when they beat the best chess 

human player for the time Garry Kasparov in 1997 to nowadays were Google DeepMind 

developed a neural network that played chess and in 4 hours of training beat the best chess 

engine known to date. Chess is a complicated game, and it is not solved as of today and it 

will probably not be solved soon. So developing an Artificial Intelligence that can understand 

and play the game at a good level is challenging.  (Kumar et al, 2021.) 

 

“The human mind isn’t a computer; it cannot progress in an orderly fashion 

down a list of candidate moves and rank them by a score down to the hun-

dredth of a pawn the way a chess machine does. Even the most disciplined 

human mind wanders in the heat of competition. This is both a weakness and 

a strength of human cognition. Sometimes these undisciplined wanderings 

only weaken your analysis. Other times they lead to inspiration, to beautiful or 

paradoxical moves that were not on your initial list of candidates.” 

― (Garry Kasparov, 2017) 

 

In this project, we will explore the different techniques used in chess programming and how 

each of them helps the machine develop a better understanding of chess. The differences 

between the conventional chess engine approach and the new neural network approach. 

After that, a chess engine has been developed with the goal of achieving a low-medium 

level of chess and examine how the different iterations of the evaluation function and search 

function affect the strength or response time of the chess engine.   



2 
 

2 Fundamentals of Artificial Intelligence 

2.1 Artificial Intelligence 

“The development of full artificial intelligence could spell the end of the human race…. 

It would take off on its own, and re-design itself at an ever-increasing rate. Humans, 

who are limited by slow biological evolution, couldn't compete, and would be super-

seded.”— (Stephen Hawking, 2014) 

Artificial Intelligence is the branch of computer science concerned about building smart ma-

chines to perform tasks that would normally require human intelligence. The birth of artificial 

intelligence conversation was started by Alan Turing, who is considered the “father of com-

puter science”. In 1950 he asked the question, “Can machines think?” (Turing, 1950). From 

there develops a test known as the “Turing Test”, where a human interrogator would try to 

distinguish between a computer and a human in a text response. Nowadays, this test is an 

important part of the history of Artificial Intelligence (AI) and is still used as a concept in the 

philosophy of developing this field. (IBM, 2021.)  

 

 

Figure 1. Turing Test. (Turing Test in AI - Javatpoint) 

 

With the rapid advancement of Big Data technologies like improved computing storage and 

fast data processing machines, there is high interest in AI and it is evolving very fast, some 
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of the product innovations are self-driving cars, chess or Go engines, face detection, recog-

nition, et cetera. (Duan, Edwards, & Dwivedi, 2019.) 

Stuart Russell and Peter Norvig differentiate between different types of AI.  

• Systems that think like humans. They try to emulate the human thought process, 

like the Artificial Neural Network (ANN) 

• Systems that act like humans. The study of how to get computers to perform tasks 

that, for the moment, humans do better than them, for example, robotics.  

• Systems that think rationally. They try to imitate, logically, the rational thought of the 

human being, for example, expert systems. The study of the calculations that make 

it possible to perceive, reason and act. 

• Systems that act rationally. ideally, they are those who try to imitate rational human 

behaviour, such as intelligent agents. 

(Russell & Norvig, 2002.) 

This is one of the many ways to classify the different types of AI.  Another way to classify 

them would be weak AI and strong AI. Where the weak AI is trained and focused to perform 

specific tasks, it is also known as Narrow AI. We are surrounded by this kind of AI since it 

is the most popular kind, the most known being Apple’s Siri and Amazon’s Alexa. On the 

other hand, we have “strong AI”, which is made up of Artificial General Intelligence (AGI) 

and Artificial Super Intelligence (ASI). AGI and ASI are theoretical forms of AI where the 

machine would have an intelligence equal or superior, respectively, to humans. There are 

no practical examples in use today, but it is still developing. Fujitsu-built K, one of the fastest 

supercomputers, is one attempt at achieving strong AI, but considering it took 40 minutes 

to simulate a single second of neural activity, it is difficult to determine whether strong AI 

will be achieved in our foreseeable future. As image and facial recognition technology ad-

vances, it is likely we will see an improvement in the ability of machines to learn and see. 

For now, the best examples of such technology will only be found in science fiction. (IBM, 

2021.)  
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Figure 2. Fujitsu-built K supercomputer. (Hornyak, 2013) 

2.2 Machine Learning & Deep Learning 

Both machine learning and Deep Learning are sub-field to artificial intelligence, but deep 

learning is also a sub-field of machine learning.  Machine learning is the application of Arti-

ficial Intelligence that provides systems to learn and improve from experience without being 

explicitly programmed. Machine learning focuses on developing computer programs that 

can have access to data and can use it and analyze it to learn for themselves. (Raschka & 

Mirjalili, 2017.) 

 

 

Figure 3. Artificial Intelligence Diagram(IBM, 2021) 
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 This process begins with observations of data and trying to look for patterns in the data 

and change the behaviour accordingly. The principal objective is to allow the computer to 

learn automatically without human intervention or assistance. Otherwise, we have deep 

learning which is comprised of artificial neural networks. The deep stands to refer to a neural 

network comprised of more than three layers. In Figure 4 there is the general representation 

of the deep neural network.  

 

 

Figure 4. Diagram of a deep neural network(IBM, 2021) 

To understand neural networks an example will be used. In this case, is the recognition of 

handwritten digits. For us humans, we have no trouble recognizing Figure 5 as 504192. It 

seems like a simple task for us, but how we arrive at the conclusion is not trivial. Humans 

have a visual cortex that consists of 140 million neurons with tens of billions of connections 

between them, not only that, but we have also more than one visual cortex doing very com-

plex image processing to understand what we are seeing. Recognizing handwritten digits 

is not easy, rather humans are extremely good at understanding what our eyes show us. 

(Nielsen, 2015.) 



6 
 

 

Figure 5. Handwritten numbers (Nielsen, 2015) 

 

 This problem arises when you try to write a computer program that tries to recognize the 

digits from Figure 5. What humans do effortlessly suddenly become very difficult. Some of 

the intuition that we may have like, an eight has 2 loops, one at the top and another one at 

the bottom, or a nine has one loop at the top and one stroke at the right, are not simple to 

express algorithmically. Making rules that precise will lead to a lot of exceptions, caveats, 

and special cases. Artificial Neural Networks approach this problem in a different way. The 

main focus is to have a large number of handwritten digits known as training examples. 

Then, making the system learn from these training examples. So basically, instead of pro-

gramming the different algorithms on what defines an 8 or what defines a 9, we will let the 

program infer its own rules. (Nielsen, 2015.) 

The neurons, on a computer science basis, are a node that contains a value between 0 and 

1. For this example, every number that we feed to the neural network will be on a 28x28 

grid of pixels, creating a total of 784 pixels. The number inside the neurons is called activa-

tion and will represent the gray-scale value of the corresponding pixel, ranging from zero 

for black pixels up to one for white pixels. The first layer of this network will be composed 

of 784 neurons each connected to a pixel in the input image. Eventually, the last layer of 

the neural network will be 10 neurons containing the 10 different outputs that we are looking 

for, from number 0 to number 9. The activation of the neuron on this output layer holds 

means how much does the system thinks the given image corresponds to a given digit. 

Then, we have the hidden layers in between the previous 2 layers. The number of hidden 

layers can be arbitrary, for this example we will use 2 hidden layers with 16 neurons each. 

This is represented in figure 6. (3Blue1Brown, 2017.) 

Essentially, the neural networks work with the activations on one layer determining the ac-

tivations of the next layer. How the connection between layers is achieved is the heart of 

the network and is meant to be similar to how some group biological neurons firing cause 

certain others to fire. 
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Figure 6. Neural network example (3Blue1Brown, 2017) 

 

The math behind how one layer influences the next is, each connection will have a weight 

assigned between the neuron from one layer to the next, these weights are just numbers. 

Then we will take all the activations from one layer and compute their weighted sum ac-

cording to these weights. This will give a any number, but the neurons can only store values 

from zero to one, so some function that squishes the value of the real number into the range 

between zero and one. There are several functions that do this kind of work, those being 

the sigmoid function or the Rectified Linear Unit (ReLU) function. One of the most popular 

nowadays is the ReLU. To add to this new function, we need to add some bias for inactivity. 

This will help when for example, you want the neuron to light up when the weighted sum is 

bigger than 10 instead of bigger than 0. This bias will be added before using the ReLU 

function. So, the weight will tell you what pixel pattern this neuron in the second layer is 

picking up on and the bias tell you how high the weighted sum needs to be before the 

neuron start getting meaningfully active. This is only one neuron every other neuron will be 

connected to all neurons form the previous layer and each of those connections will has its 

own weight associated with it, and each one has some bias. In the neural network presented 

in Figure 6 on the first hidden layer of 16 neurons that is a total of 784 times 16 weight and 

16 biases. This is only the connection from the first layer to the second. The connection 
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between other layers also has weights and biases associated with them. This network has 

13.002 total weights and biases. So, what the computer has to learn is, how to tweak all of 

these weights and biases to achieve the wanted result. (3Blue1Brown, 2017.) 
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3 Development of Computational Chess  

3.1 History 

In the early years of chess engines, the idea of having a computer that played chess at the 

same level as the best grandmasters was unimaginable. Since chess requires a lot of cre-

ativity and has millions of possibilities, the average number of legal different positions that 

you can find is around 10^40 and 10^50(Holcomb). Nevertheless, nowadays it has been 

proven that chess engines are far superior to the best grandmasters. 

The first instance of a chess engine defeating a world champion happened in 1997, where 

Deep Blue, an engine created by IBM, defeated Garry Kasparov. This happened over 20 

years ago and today the advances in Artificial Intelligence and computer hardware are 

huge. (“IBM100 - Deep Blue,” 2012.) 

 

 

Figure 7. Garry Kasparov playing vs Deep Blue 1997 (George Widman) 

 

It should be noted that chess engines and humans approach chess in a different way. Fun-

damentally they both analyze and calculate moves and search ahead to predict how the 

game would go if they followed that line. The major difference is, when the best chess player 

Kasparov can only analyze 3 to 5 positions per second, Deep Blue was analyzing at the 

time 200 million positions per second (IBM100 - Deep Blue, 2012). Even with this disparity, 

the games ended up even. Out of the 6 games played between them, Kasparov won 1 tied 

3 and lost 2. We can make the conclusion that humans are much more efficient at choosing 

the correct line to follow. (“IBM100 - Deep Blue,” 2012.) 
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The major fight of chess engines is knowing which lines are better to pursue, and it has 

proven that this is quite an arduous task. Having the computational capacity of an engine 

and the human intuition would be perfect, but how do humans get that game sense and 

how can we recreate it on a chess engine? Well, this concept is very abstract, the best 

chess players play, analyze and observe millions of games which gives them that game 

sense. As for today, this intuition has not yet been programmed fully. (Podlesak, 2019.) 

There have been different approaches to this, the main ones being Stockfish, which is the 

strongest traditional chess engine to date, having an ELO rating of ~3550, to put this in 

perspective the best chess player in the world Magnus Carlsen has an ELO of ~2862 and 

his best is 2882. (FIDE Ratings.) 

On the other hand, there has been a fresh approach to chess engines, one that tries to 

replicate the learning experience of humans to make it more efficient. This is achieved by 

using machine learning instead of hard coding what makes a good position as stockfish 

does. With machine learning, the computer only gets the game of chess and basic rules 

and learns by playing games against themselves. This has been a success and the most 

famous engine that uses this approach is AphaZero which is developed by DeepMind a 

business owned by Google that focuses on Artificial intelligence. (Podlesak, 2019.) 

 

 

Figure 8. AlphaZero vs Stockfish historical match (Pete, 2019) 
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Lastly, the stockfish team in 2020 joined the traditional chess engine with neural networks. 

They created what is today as Stockfish NNUE (Efficiently Updatable Neural Networks). On 

September 02, 2020, Stockfish 12 was released with a huge jump in playing strength due 

to the introduction of this technology. The architecture of Stockfish NNUE is extremely dif-

ferent from the neural networks AlphaZero uses. AlphaZero uses an extremely deep, con-

volutional neural network with as many as 40 layers. 

3.2 Traditional Chess engines 

Traditional chess engines use complex evaluation functions and intelligent search algo-

rithms to find the best possible move. Their power is also related to how much CPU pro-

cessing power the phone, computer, or server has. The more powerful and plentiful the 

CPUs, the stronger the engine becomes. (Team (CHESScom)) One of the modules of the 

engine is the movement generator, which is a basic part of a chess engine and its imple-

mentation depends heavily on the board representation. There are two types of move gen-

eration. In the pseudo-legal move generation, pieces will obey normal rules of movement, 

but the move is not checked beforehand to see if, for example, it will leave the king in check. 

The legal move generation will create only legal moves. This will make this process take 

longer since checking if the king is not going to be left in check after the move. When a 

piece is defending the king from another enemy piece and it cannot move is called a pin. 

Pins create the most difficulty for the legal move generator. (Schaeffer, Powell, & Jonkman, 

1983.) 

3.2.1 Evaluation function 

The evaluation function is the most important module, nowadays the main improvement in 

chess engines comes in changing the evaluation function. The input for this module is a 

chess position, and the output is a number. If this number gives us an evaluation of 0, it 

means the position is equal for both players. The higher the positive number more ad-

vantage for white, the lower the negative number, the more advantage for black. There is 

different data the algorithm looks to come out with an evaluation. This has been hardcoded 

to mimic a grand mastermind. This is fundamental for understanding chess and chess en-

gines. Stockfish uses the following methods to calculate the evaluation: (CPW-Evaluation.) 

• Material 

A value is assigned to each piece in chess, for example, a knight is worth 3 points and a 

queen 9. And the material will be the sum of all available pieces. Material value is what 

influences most of the evaluation. (Material - Chessprogramming Wiki.) 
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• Piece-Square Tables 

 

 

Figure 9. Piece-Square Table example (Hartikka, 2017) 

 

Each piece receives a bonus value depending on what square the piece is in. Each piece 

of each color has its own table. The value of a square for a certain piece can vary through 

the game and with this we can achieve different goals, like pawns advancing in the end-

game or knights and bishop developing in the opening stages of the game. To make a semi-

decent chess engine just with material and Piece-Square Tables are enough, but nowadays 

we will need much more to compete with top-level engines. (Piece-Square Tables - Chess-

programming Wiki.) 

• Pawn Structure 

This term is used to describe the position of the pawns on the board. This will ignore all the 

other pieces. To determine a good or bad pawn structure we can look if we have doubled 

pawns, which means, having 2 pawns on the same file or having a pawn with a clear path 

for promotion. This last situation is known as a passed pawn. There are more things to take 

into consideration for pawn structure like isolated pawns, pawn islands, etc. This will be all 
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hardcoded considering the benefits and inconveniences of each situation. (Pawn Structure 

- Chessprogramming Wiki.) 

• Evaluation of Pieces 

Every piece can have its evaluation changed depending on the board state, for example, if 

the rook is on an open file the value of the rook will go up significantly. On the other hand, 

if your black square bishop is trapped and cannot move because it is behind black squared 

pawns, the value of that bishop will go down. Each of the 6 different pieces will have some 

specific rule to either make its value better or worse. (Evaluation of Pieces - Chessprogram-

ming Wiki.) 

 

 

• Evaluation Patterns 

There are some positions that will require additional knowledge to make a correct evalua-

tion, one of the most famous examples will be when you fianchetto your bishop and its part 

of your king defensive formation it is undesirable to exchange it for a knight or bishop. (AK-

DEMIR.) 

 

Figure 10. Example of position showing undesirable bishop-knight exchange. 
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• Mobility 

This term refers to the number of legal moves the player has on the given position. Gener-

ally, the more moves you have, the better your position is. Since you have more piece ac-

tivity. (Chess Programming Part VI.) 

• Center Control 

Controlling the center squares in chess is a really good strategy that generates space and 

allows pieces to get to the desired spaces. Normally the center is controlled by pawns, but 

we have seen some modern chess openings where the center is controlled by pieces from 

far away. (Chess Programming Part VI.) 

• Connectivity 

It is important that every piece is well defended. So having defended pieces will make the 

evaluation go in your favour while having undefended pieces will work against the evalua-

tion function. (Levinson & Weber, 2001.) 

• King Safety 

For humans, king’s safety is the number one priority in chess. This task is very hard to put 

into code. There are a lot of factors that can go inside the calculation of king's safety, for 

example, how well structured is the pawn shield in front of the king, how many attacking 

pieces does the enemy have, are there files open near the king. (Tesauro, 2001.) 

• Tempo 

Tempo refers to the ability to make moves. The fewer moves you need to get a piece to a 

certain square you will gain a tempo. This is important in chess because if you always make 

a threat on every move, your opponent loses a tempo responding to it, but the moment you 

make a passive move, your opponent can take the initiative and gain tempo. (Tempo - 

Chessprogramming Wiki.) 

 

These are the variables that go into a chess evaluation function. It is to be noted that every 

single detail has been human conclusions and hardcoded. These concepts are a part of the 

experience of humans after centuries of chess games being played. Nevertheless, every 

time we discover new positions or different tactical approaches to different positions, this is 

what makes conventional chess engines flawed. It is impossible to make a truly objective 

evaluation function, this is the reason why the evaluation function keeps changing every 
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year to keep up with the new chess discoveries and cover up these little details.  (Chess 

Programming Part VI.) 

 

3.2.2 Search function 

This module will be the one in charge to calculate the different variants given a posi-

tion.  This is a very complex thing to do, and once again it tries to mimic humans. You may 

be able to make a move that improves your position but leads to forced mate in several 

moves from the opponent. Calculating the variables optimally and knowing which will be the 

best path to pursue is critical for winning at chess. There have been different algorithms 

that chess engines have used over the years. We can differentiate them into two types: 

brute-force search and selective search. In the earlier days, the selective search was fa-

voured. This type had a major risk since it had the possibility to oversee some tactics. Now-

adays, with the amount of computing power available, programs are closer to a brute-force 

search, but they still use some characteristics of the selective search. The most popular 

search algorithms used today are minimax and alpha-beta.  (Search - Chessprogramming 

Wiki.) 

• Minimax 

John von Neumann, in 1928 classified chess as a two-player zero-sum game with perfect 

information. And, as he stated, there will be an optimal solution to it. First, to understand 

this algorithm the concept of a zero-sum game needs to be clear. A zero-sum game is when 

one person’s gain is equivalent to another’s loss, so the net change in benefit is zero, for 

example, if in a game of chess player A has an advantage of 1 queen is because player B 

has an advantage of -1 queen. One player can only win what another player has lost. The 

previous example is a very simplified version of chess, but you can get a similar conclusion 

after analyzing a chess position.  

Now that the concept of a zero-sum game is understood, the minimax algorithm works with 

the idea that both players will go for the best possible move. This is achieved by doing the 

play that suits the opponent the less. So basically, you are minimizing the maximum 

loss. (Beal, 1982.) 
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Figure 11. Example of Minimax Algorithm with Tic-Tac-Toe(Game Tree for Tic-Tac-Toe 
Game Using MiniMax Algorithm.) 

 

 In the previous figure, we can see a minimax algorithm in action, it is working with a depth 

of 3. All of X’s moves will be calculated and then all of O’s possible answers till we reach 3 

moves for the starting position. Player X will choose the highest number and Player O will 

choose the lowest number. So, even if you choose the left or the middle path, you can still 

win as player X, if player O plays perfectly you will not win. In this example, we are just 

dealing with values of -1 or 1 in chess. The evaluation function will give you a higher range 

of numbers, but the same concept still applies. One player will be denominated max and he 

will choose the highest value and the other player will be min, and he will choose the smaller 

value. 
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Figure 12. Example of Minimax algorithm using numeric values. (“Alpha–Beta Pruning,” 
2021) 

 

In this new example, we have a depth of 4. On move 3, min chooses the lowest value from 

move 4. Min chooses 10 since 10 is smaller than infinite, it also chooses -7 since -7 is lower 

than -5. On the other hand, on move 2 the player max chooses the highest possible number 

from the 3rd row and this continues till we reach row 0. One important aspect that can be 

observable is the number of different states and positions are derived from the first, the 

growth is exponential. In the middle game of a chess game on average, you have 30 pos-

sible plays. This would mean that having a depth of 5 will lead to 30^5=24.300.000 posi-

tions. Even by today's standards of technology, it will be impossible to approach high 

depths. 

 

 

• Alpha-beta pruning 

Alpha-beta algorithm is an improvement of the minimax search algorithm that reduces the 

number on a large scale the number of nodes evaluated. Stockfish 12 is using, with addi-

tional improvements this algorithm. To illustrate this with a real-life example, suppose some-

body is playing chess, and it is their turn. Move "A" will improve the player's position. The player 

continues to look for moves to make sure a better one hasn't been missed. Move "B" is also a 

good move, but the player then realizes that it will allow the opponent to force checkmate in two 

moves. Thus, other outcomes from playing move B no longer need to be considered since the 

opponent can force a win. The maximum score that the opponent could force after move "B" is 
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negative infinity: a loss for the player. This is less than the minimum position that was previously 

found; move "A" does not result in a forced loss in two moves (Alpha–Beta Pruning, 2021). To 

further explain how it works we will use as an example the next tree:  

 

 

Figure 13. Alpha-beta pruning example (Alpha–Beta Pruning, 2021) 

 

In this example, we have the max player playing with the white pieces. It has calculated the 

next possible results with a depth of 4. First, starting at the bottom min chooses between 5 

and 6 and it chooses 5. Then min has to choose again between 7, 4, or 5, this time it stops 

evaluating positions at value 4 because the next move will be max turn to play and it will 

have to choose between 5 or 4, and since max is always going to pick 5 (the highest number 

possible), there is no need to keep exploring that branch since max will not pick it so we 

can discard it, or in the case of this algorithm, prune it. On the second main branch. We 

start from the bottom again. Min chooses 6 and then it has the option to choose between 6 

or 9, and pruning happens again. Since we have the same value in both children nodes and 

max will choose the highest it serves no purpose to continue exploring that branch, so we 

prune it. On the third main branch, we will start at depth 2 where min has to choose between 

5 or 8. When the value of 5 gets evaluated we immediately prune the rest of the tree since 

we now max will choose 6 or higher, there is no point to keep exploring the rest of the tree 

to get a number lower than 5. 

To translate this concept to programming we have two limits α and β, that will correspond 

to the most convenient evaluation at the moment. The initial value will be -∞ and +∞ and 
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will be updating when different variants will be evaluated. The pseudo-code a minimax al-

pha-beta pruning is as follows:  

 

 

function alphabeta(node, depth, α, β, maximizingPlayer) is 

    if depth = 0 or node is a terminal node then 

        return the heuristic value of node 

    if maximizingPlayer then 

        value := −∞ 

        for each child of node do 

            value := max(value, alphabeta(child, depth − 1, α, β, 

FALSE)) 

            α := max(α, value) 

            if α ≥ β then 

                break (* β cutoff *) 

        return value 

    else 

        value := +∞ 

        for each child of node do 

            value := min(value, alphabeta(child, depth − 1, α, β, 

TRUE)) 

            β := min(β, value) 

            if β ≤ α then 

                break (* α cutoff *) 

        return value 

(* Initial call *) 

alphabeta (origin, depth, −∞, +∞, TRUE) 

Figure 14. Pseudo-code of minimax with alpha-beta pruning (Alpha–Beta Pruning, 2021) 

 

As previously mentioned, this algorithm is very similar to minimax but with a well-written 

program, a standard minimax tree with x nodes can be reduced close to the square root of 

x nodes. This is heavily reliant on how well-ordered the tree is. If the best move is always 

explored first, you eliminate the most nodes, but always knowing what move will be the best 

in a given position is a complex task. Therefore, good move ordering is extremely important, 

and it is where a lot of the effort in writing a successful chess engine resides. To get this 

result the typical move ordering will be: 

1. Principal variation move (a move that was the previous iteration of an iterative deep-

ening framework for the leftmost path)  

2. Hash move from hash tables 

3. Winning captures/promotions 

https://en.wikipedia.org/wiki/Infinity
https://en.wikipedia.org/wiki/Infinity
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4. Equal captures/promotions 

5. Killer moves 

6. Non-captures sorted by history heuristic 

One of the problems that may arise is the Horizon effect. This effect is caused by the depth 

limitation of the search algorithm. This happens when a negative event is inevitable but 

postponable. The engine will only be able to analyze a partial part of the search tree, it will 

choose a move that will seem to avoid the threat, but this is not the case.  

 

 

Figure 15. Example of the horizon effect 

 

In the situation presented in figure 15, the black bishop is trapped. No matter what the black 

does white can always manoeuvrer the rook to a1 in two moves and capture the bishop in 

the third move. If we have a chess engine with a depth of 6, what could happen is that the 

best move for black suggested by the engine will be to push pawn e3, just to force the king 

to capture the pawn, then pushing the remaining pawns to force the king to keep capturing 

the pawns in an attempt to save the bishop, but that only will delay the capture of the bishop 
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since it’s trapped and will lose you 3 passed pawns. Probably the best line of play for black 

will be to exchange the bishop for a pawn and try to hold the game with connected pass 

pawns against a rook. (Scoones, 2007) To combat this effect, chess engines implement the 

quiescence search. The main goal of the quiescence search is to not have a fixed depth for 

the evaluation but to have the search module analyze the variants until a stable position is 

reached so it can be evaluated statically. This is achieved by forcing the engine to go deeper 

into volatile positions where there are more captures or moves that can destabilize the eval-

uation function than quiet positions. A quiet position will be one that has no captures or 

threats. The pseudocode for the quiescence search to illustrate the concept algorithmically: 

(Quiescence Search - Chessprogramming Wiki.)  

 

function quiescence_search(node, depth) is 

    if node appears quiet or node is a terminal node or depth = 0 

then 

        return estimated value of node 

    else 

        (recursively search node children with quiescence_search) 

        return estimated value of children 

 

function normal_search(node, depth) is 

    if node is a terminal node then 

        return estimated value of node 

    else if depth = 0 then 

        if node appears quiet then 

            return estimated value of node 

        else 

            return estimated value from quiescence_search(node, rea-

sonable_depth_value) 

    else 

        (recursively search node children with normal_search) 

        return estimated value of children 

Figure 16. Pseudocode of quiescence search(Quiescence Search, 2021).  

 

3.2.3 Chess databases 

Another important factor to consider is the use of game databases. There are millions of 

games stored in the different chess databases. During the first moves of the game these 

databases are very useful, we can look at how many times victory was achieved with certain 

openings. The best engines in the world still use opening books from the best chess 

Grandmasters. This eliminates the need for the engine to calculate the best lines during 

approximately the first ten moves of the game, where the positions are extremely open-

https://en.wikipedia.org/wiki/Evaluation_function
https://en.wikipedia.org/wiki/Recursion
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ended and therefore computationally expensive to evaluate. As a result, it places the com-

puter in a stronger position using considerably fewer resources than if it had to calculate the 

moves itself. (Opening Book - Chessprogramming Wiki.)  

On chess engines, the endgame is approached by Nalimov Tablebases. This is a database 

that stores all the positions with a small piece count. These positions are already determined 

as winning, losing, or drawing for the player that moves. Nowadays it is known the outcome 

of a chess position with at most 7 pieces on board since 2012. (Nalimov Tablebases - 

Chessprogramming Wiki.) 

 

 

Figure 17. Endgame database with 6 pieces on board. (Chess Endgame Database - Shred-

der Chess.) 
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3.3 Neural Network approach 

When AlphaZero won against Stockfish it revolutionized the world of computational chess, 

not only because it was proclaimed the best chess player in history, but also it did it in a 

new way, very different from how computer engines were previously programmed. Al-

phaZero uses neural networks to make extremely advanced evaluations of positions which 

negates the need to look for 70 million positions per second like Stockfish, it calculated 

around 80.000 positions per second. DeepMind, the company that develops AlphaZero, 

stated that AlphaZero reached the benchmarks to defeat Stockfish in a mere four hours. 

Instead of the usual alpha-beta search algorithm with domain-specific enhancements that 

other engines use. AlphaZero uses a general-purpose Monte Carlo tree search. (Silver et al., 

2018.)  

3.3.1 Monte Carlo tree search (MCTS) 

The Monte Carlo tree search is another way to tackle the problem with the search function 

in chess. Monte Carlo in a computing context means that something arbitrary happens. In 

chess, a module that uses pure MCTS will evaluate the position generating a different se-

quence of moves from the given position in an arbitrary manner and averaging the final 

results (win/draw/loss) that it generates. To select which node to keep exploring AlphaZero 

starts from the root node and uses the following function to calculate the upper confidence 

bound of the next node. (Simple Alpha Zero, 2017.) 

 

 

Figure 18.  The function that AlphaZero uses to calculate the upper confidence bound. 

 

This function will prioritize the nodes that form the moment, are considered the best for 

having led to better results. This selection process will continue recursively for all the nodes 

in the tree until a node that has not been expanded upon is reached. After this process, the 

node child nodes are calculated the engine will pick a random child node since the upper 

bound function will return a random result for every child node. After randomly selecting the 

child there will be a random simulation of the game where that move was played. This is 

why the algorithm gets the Monte Carlo name. Even though the game is not truly random, 
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there have been different heuristics that will take more time for the computer to process but 

will lead to better results. Finally, the algorithm enters the backpropagation where it updates 

the value of the previous nodes by having taken into account the result of the last simulation. 

(Cinnéide,) 

 

 

Figure 19. Example of 1 iteration of the Monte Carlo Search Tree (Monte Carlo Tree Search, 

2021) 

 

3.3.2 Benefits of using Neural Networks 

Using neural networks will bring different advantages over conventional chess engines is 

the use of Graphical Processing Units (GPUs). With the use of neural networks, AlphaZero 

can take advantage of the parallel computing power that the GPUs provide. On the other 

hand, engines like Stockfish were stuck with only using CPU power which is slower since 

the operations that the engine used were good on a sequence that is where CPUs excel. 

AlphaZero uses specialized GPUs called TPUs that are google designed hardware to opti-

mize the operation of neural networks. That means adding an additional dimension to the 

work being done. While GPUs are designed to essentially do huge amounts of parallel arith-

metic and trigonometry, TPUs are optimized to rapidly do huge amounts of Matrix multipli-

cation, the fundamental mathematical abstraction of what neurons do. Nowadays, with the 

latest advancements of Stockfish, they are using a hybrid between conventional chess en-

gines and neural networks so it can benefit from both. (Chess.com) 

One of the other benefits of neural networks is the adaptability that it has. The engine only 

knows the rules of chess and does not have hardcoded rules that humans have made up 

after years of analysis and experience, so, it becomes easy when you want the engine to 

learn different variants of chess. This can be useful to find new ways to make chess engag-

ing and learn the best way of playing. There was a paper published by DeepMind about 
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different chess variants, and how the different rules that they added to chess changed the 

value of certain pieces or how favored was white to win over black. This would be a harder 

task to accomplish with conventional chess engines since change a few rules of chess can 

dramatically change the optimal way of playing and all the years of analysis will become 

obsolete. (Tomašev et ai, 2020.) 
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4 Case: Chess engine development 

 

4.1 Introduction 

A chess engine is going to be developed with the goal of it having a low-medium level of 

chess. Like we have seen before there are several approaches on how to tackle this prob-

lem. The purpose of this project is not to build the best chess engine, it is to build a low-

medium level engine that people can enjoy and observe the changes of its behavior when 

new functionalities to the search and evaluation functions are added. For achieving this 

goal, we must take into account the speed of the engine and the computing power needed 

for it to work properly. Therefore, I have chosen to develop this chess engine using a tradi-

tional approach since using the neural network approach will need more computing power 

and will take longer to process the different moves.  

4.2 Programming 

For developing this chess engine, I used Python. This programming language is not the 

fastest one, but it has a lot of documentation and modules that made the development of 

this project much easier and smooth. Within python the python-chess library was used, this 

library already has the movement generator, board, and interface already implemented. For 

starters, I developed the scholar’s mate using the python chess library to learn the basics. 
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Figure 20. Implementation of scholar’s mate using python-chess. 

 

This is a basic implementation of scholar’s mate. For the board to be displayed on anything 

else than ASCII I made use of Jupyter Notebook, this will help with the visualization of the 

board. With the python chess library, it is possible to make an SVG board that Jupyter 

notebook can display successfully to enhance the visualization of this project.  

For starters, I programmed a player that made random moves on the chessboard, to test if 

the first iteration of the chess engine would beat it:  
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Figure 21. Random player implementation.  

 

After testing this random player was successfully working a function that made possible 

games between computers had to be implemented and the code in figure 21 was imple-

mented. This code makes will show the final board and the number of moves that the chess 

game took. It will display a message saying the result of the game and the number of moves 

it took, also it will display in SVG the final board and a PGN file with the moves played in 

the given game.  

 

 

Figure 22. Play and Who function. 
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Furthermore, the option to have a human play was also implemented, with the caveat that 

the human will have to enter the moves in UCI fashion and can’t drag the pieces from the 

chessboard. This can be something that can be explored in the future development of the 

project.  

After all of this, the first iteration of the chess engine was created. It was a simple engine 

that only counted material on the board. It did not take into account any other things, just 

what pieces were on the board and it has a value assigned to the different pieces. The 

values assigned in these engines are the ones Tomasz Michniewski proposes for a simple 

evaluation function, these values are: Pawn = 100 Knight = 320 Bishop = 330 Rook= 500 

Queen = 900, and the function will return -9999 or 9999 there is checkmate on the board. 

 

Figure 23. Code for the first evaluation function and search function.  

 

Now, the engine can look one move ahead and if it sees the possibility of capturing a piece 

it will do it. This iteration of the engine is still bad since it will not look further than just 1 

move and will capture pieces aimlessly, without considering if the piece we just capture 
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leaves creates any weaknesses in the position. Nevertheless, this engine still plays better 

than the random player implemented earlier. The games often end in draws since the en-

gine has no knowledge of endgames and when the enemy king is the only piece left, it just 

makes random moves since it does not have a piece to capture, often leading to draw by 

repetition or stalemates.  

 For these reasons, the next step of this engine is to integrate a minimax search so it can 

look deeper, spot potential traps, and see when you have mate in a given depth. This im-

plementation came with great improvements in play but, doing the minimax with a depth of 

3 was consuming too much time per move, I decided to add a timer that tells me how much 

time it takes for the minimax algorithm to come up with a move and, with a depth of 3, in 

the starting positions only took around 5-6 second to find a move. But, in the midgame 

where there are more pieces developed and more possibilities of moves it can take more 

than 1 minute per move.  
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Figure 24. Minimax implementation. 

 

As it was discussed earlier in “Search Function” the minimax algorithm takes really long to 

calculate this amount of data. Therefore, the next step I took to improve this engine is to 

add the alpha-beta pruning. In theory, this should massively reduce the time and computing 

cost for finding the best move. To implement the Alpha-beta pruning I chose the Negamax 

implementation. Also, the quiescence search is integrated to avoid cases where the horizon 

effect might happen. So now, the engine is using alpha-beta pruning and when it is on the 

max depth it further looks for possible captures to avoid the horizon effect.   

 

 

Figure 25. Implementation of Negamax and quiescence search.  
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Even with all of these new improvements, the engine is still weak. In the first stages of the 

game, it does not make good decisions since it can´t look very deep into the future, for this 

reason. I decided it was time to add piece square tables to the evaluation function so the 

engine will start seeing the benefits of developing pieces when there are no possible cap-

tures. This should help with the first stages of the game and help the engine get to the 

middle game, where it is the strongest. The piece -square tables that I added encourage 

pieces to perform different tasks.  

For pawns, the engine is rewarded by pushing them forward and it is discouraged to leave 

the central pawns unmoved. Knights get better scores when they move towards the center, 

bishops are incentivized to stay in long diagonals while rooks prefer to infiltrate to the sev-

enth rank while avoiding the a and h files. Queen also prefers to move to the center than 

stay on corners, since it will help it cover more squares. Right now these square-piece ta-

bles are static, they do not vary with the state of the game, so they are pretty general.  

 

 

Figure 26. Implementation of the piece-square tables in the evaluation function. 

 

The engine still struggles in the early game and tends to make the same moves every match 

since it cannot be executed at high depths and always follows the same piece-square ta-

bles. Therefore, the next step to improve this engine is to add an opening book that it can 

use to help with the early stages of the game. This opening book will be implemented using 

the Polyglot format because the python-chess has a function that can make use of this 

format without trouble. The opening book of choice will be one approved by Stockfish. For 

now, the engine will look for positions inside the book and if the position is found, the engine 

will make a random weighted choice between all the different moves. If the position reached 
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is not in the book, the engine will continue to perform as it did before with the old evaluation 

function and alpha-beta search tree. 

 

 

Figure 27. Implementation of the Opening Book in the chess engine. 

 

 

4.3 Analysis of games played. 

Now I will show and analyze Some test games between different engine strengths. With 

these different tests, we can see if the engine is responding as expected to the new im-

provements. Every game will include the player that played with each color, the result of the 

game, the moves that were played in PGN format so everyone can check how the game 

developed, for example, in websites like lichess.org, and a visual representation of the 

board when the game ended. 

4.3.1 Game 1 

[White "player1"] 

[Black "ran_player"] 

[Result "1/2-1/2"] 

1. Nh3 c6 2. Ng5 Qb6 3. Nxh7 Na6 4. Nxf8 Rb8 5. Nxd7 Rh3 6. Nxb6 e6 7. gxh3 g6 8. Nxc8 

g5 9. Nxa7 g4 10. Nxc6 Nh6 11. Nxb8 Kd8 12. Nxa6 f6 13. hxg4 Nxg4 14. Nb8 e5 15. Nd7 

Nh6 16. Nxf6 Kc7 17. Ng8 Nxg8 18. Rg1 Ne7 19. Rg8 Nd5 20. Rh8 Nc3 21. Nxc3 Kb6 22. 

Rg8 Ka5 23. Rh8 Kb6 24. Rg8 Ka7 25. Rf8 Ka6 26. Rg8 Ka5 27. Rf8 b6 28. Rh8 Ka6 29. 
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Rg8 Ka7 30. Rh8 e4 31. Nxe4 Kb7 32. Rg8 Kc7 33. Rh8 b5 34. Rg8 Kb7 35. Rh8 Kc6 36. 

Rg8 Kb7 37. Rh8 Ka7 38. Rf8 Kb6 39. Rh8 b4 40. Rg8 Kc7 41. Rh8 Kd7 42. Rg8 Ke6 43. 

Rh8 b3 44. cxb3 Ke7 45. Rg8 Kf7 46. Rh8 Kg6 47. Rg8+ Kh5 48. Rh8+ Kg4 49. Rg8+ Kf4 

50. Rh8 Kf5 51. Rg8 Ke6 52. Rh8 Kd5 53. Rg8 Kc6 54. Rh8 Kd5 55. Rg8 Ke6 1/2-1/2 

draw: claim 

 

 

Figure 28. Test game 1.  

 

From this game, we can observe how the first iteration of the engine is working as intended. 

Every time “player1” could capture a piece it will do it. While the random player just kept 

moving pieces aimlessly, it did not punish when white took a piece but left one of their own 

unprotected. In the endgame, “player 1” could not find a mating pattern since it only looks 

for possible captures, so the game ended in a draw with a 3-fold repetition.  

 

4.3.2 Game 2 

[White "player2"] (depth 3) 

[Black "ran_player"] 

[Result "1-0"] 
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1. Nh3 Nh6 2. Ng5 Nc6 3. Rg1 d5 4. Rh1 a6 5. Rg1 Nb4 6. Rh1 g6 7. Rg1 Ra7 8. Rh1 Be6 

9. c3 b6 10. cxb4 f5 11. Nxe6 Qa8 12. Rg1 Qc8 13. Qa4+ c6 14. Nxf8 Qd7 15. Nxd7 Rxd7 

16. Qxc6 Ng4 17. Qc8+ Kf7 18. Qxh8 Nxf2 19. Qxh7+ Ke8 20. Qg8# 1-0 

checkmate: White wins! 

 

 

Figure 29. Test game 2. 

 

This game displays interesting behavior.  We can see that the engine if it does not see an 

improvement in the next 4 moves, it will just pick the last move from the movement generator 

list that does not make the position worse, from moves 4-8 since black did not have any 

pieces developed and the algorithm cannot see really deep it only moved the rook aimlessly 

from h1 to g1, until black left the knight in b4 undefended. The engine saw it and attacked 

the knight on the next move. Also, with the white knight on g5, it could capture the bishop 

on e6 for a long time, but the white waited till black blundered and left the bishop unprotected 

to capture it. The engine was also able to win the game unlike the previous iteration, the 

mate was found by having a very good position and not by creating mating patterns.  
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4.3.3 Game 3 

[White "player2"] (depth 3) 

[Black "player1 "] 

[Result "1/2-1/2"] 

1.Nh3 Nh6 2. Ng5 Rg8 3. Nxh7 Rh8 4. Nxf8 Rxf8 5. Rg1 Rh8 6. Rh1 Rg8 7. Rg1 Rh8 8. 

Rh1 Rg8 9. Rg1 1/2-1/2 

draw: claim 

 

Figure 30. Test game 3.  

 

In this game, we can see one of the main problems with the current engines, when there is 

no improvement the engine will keep moving the piece over and over causing a 3-fold 

repetition. This happens because the engine can no see improvements in the position, to 

solve this problem I changed the evaluation function to add randomly a number between 0 

and 9 to the evaluation. This will make it less likely to repeat moves and just keep improving 

the position we will repeat this match on game 4 with the new improvements to have proper 

a proper testing environment.   
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4.3.4 Game 4 

[White "player2"] (depth 3) 

[Black "player1"] 

[Result "1-0"] 

1. Nh3 Nc6 2. Ng5 Nf6 3. h4 Ne4 4. Nxe4 Ne5 5. Nc5 f6 6. f4 Nc4 7. e3 Nxb2 8. Bxb2 b5 

9. Bxb5 a5 10. Ne6 Ra7 11. a3 Ba6 12. Qh5+ g6 13. Qc5 Bxb5 14. Nxd8 Kxd8 15. Qxa7 

Ba6 16. Qxa6 g5 17. Qa8# 1-0 

checkmate: White wins! 

 

Figure 31. Test game 4. 

 

In this game, we can see how both engines are now working as intended, after tweaking 

the evaluation function. We can see that white is vastly superior to player black since it can 

see 3 moves in advance. White never makes a 1-move blunder in this game while black 

makes several. White capitalizes on these mistakes easily getting into an advantageous 

position and winning the game with ease. 
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4.3.5 Game 5 

[White "player4"] (depth 3) 

[Black "player3"] (depth 3) 

[Result "1-0"] 

1. Nf3 e6 2. Nc3 Na6 3. e4 h6 4. Bxa6 bxa6 5. O-O Ke7 6. d4 d6 7. e5 dxe5 8. dxe5 Qxd1 

9. Rxd1 Bd7 10. Bf4 g5 11. Bg3 Rb8 12. Rab1 Rd8 13. Nd4 Ra8 14. Ne4 Re8 15. Nc5 Bb5 

16. Nxb5 Rd8 17. Nxc7 Rxd1+ 18. Rxd1 Bg7 19. N7xa6 Kf8 20. Rd7 h5 21. Rxa7 h4 22. 

Ra8+ Ke7 23. Ra7+ Kd8 24. Ra8+ Ke7 25. Ra7+ Kf8 26. Nd7+ Ke8 27. Bxh4 Rxh4 28. 

Nac5 Nh6 29. Nf6+ Kf8 30. Ra8+ Ke7 31. Re8# 1-0 

checkmate: White wins! 

 

 

Figure 32. Test game 5 

 

This game is a clear example of why the positioning of the chess pieces is important. The 

only difference between these engines is the implementation of the piece-square tables. In 

this game, once white get the king out of the center and all the white pieces start restricting 

black movement, even if the material is even, white is in a good positional advantage which 

leads to a clean victory. Another interesting event was when white, in move 27 decided to 
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sacrifice the bishop. This is a clear example that the quiescence search working as in-

tended, the engine recognized the piece was trapped, and instead of mindlessly giving 

checks to the enemy king to prolong the inevitable of losing the bishop for nothing, it decided 

to trade the bishop for the pawn. 

4.3.6 Game 6 

[White "player5"] (depth 3) 

[Black "player4"] (depth 3) 

[Result "1/2-1/2"] 

1. e4 Nf6 2. e5 Ne4 3. d3 Nc5 4. d4 Ne6 5. d5 Nc5 6. Nf3 d6 7. Nc3 dxe5 8. Nxe5 Nbd7 9. 

Bf4 Nxe5 10. Bxe5 e6 11. Bc4 exd5 12. Nxd5 Ne6 13. Qe2 c6 14. Nc3 Qb6 15. O-O-O Bd7 

16. Kb1 O-O-O 17. Ne4 Qa5 18. Bxe6 Bxe6 19. Rxd8+ Qxd8 20. a3 Qd5 21. Bf4 Qa2+ 22. 

Kc1 Qa1+ 23. Kd2 Qxh1 24. Qf3 Qf1 25. Bg3 c5 26. Be5 Qb5 27. Qc3 Rg8 28. Ke1 Qc6 

29. Qf3 Qd5 30. Qf4 c4 31. h3 Bc5 32. Nxc5 Qxc5 33. Kf1 g5 34. Qd4 Qxd4 35. Bxd4 Kb8 

36. Be5+ Ka8 37. Kg1 Bf5 38. b3 Re8 39. Bc3 cxb3 40. cxb3 Re2 41. b4 Kb8 42. b5 Bd3 

43. Bf6 Re1+ 44. Kh2 h6 45. Bg7 Re6 46. a4 Bc2 47. a5 Bd3 48. Bd4 Bxb5 49. Kg1 Re1+ 

50. Kh2 Bc6 51. Bc3 Re7 52. Bd4 Re1 53. Bg7 Re2 54. Bd4 1/2-1/2 

draw: claim 

 

 

Figure 33. Test game 6. 
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In this game, after evaluating it with stockfish, we can see that white got a great advantage 

at the start of the game. This was thanks to the initial book moves which led to a more 

favorable position. Even when in move 16 white has an advantage of +7.6, according to 

stockfish 13 with a search depth of 26, the white did not find the winning idea and made 

some positional blunders. Both engines have the same search and evaluation function after 

the first opening moves. Some moves in this game took very long to calculate, after further 

research, I discovered that the quiescence search was searching even more nodes than 

the normal alpha-beta function. So, I decided to add depth to the quiescence search so the 

engine does not lose time looking for stupid capturing sequences, from now on the depth 

of the quiescence search will be 3.  

4.3.7 Game 7 

[White "player5"] (depth 5) 

[Black "player5 "] (depth 4) 

[Result "1-0"] 

1.Nf3 Nf6 2. g3 d5 3. Bg2 c6 4. c4 g6 5. b3 Bg7 6. Bb2 O-O 7. O-O Qb6 8. Qc2 dxc4 9. 

Qxc4 Be6 10. Qh4 Nd5 11. Ng5 h6 12. Nxe6 fxe6 13. Bxg7 Kxg7 14. Nc3 Nxc3 15. dxc3 

Rf6 16. e3 Na6 17. Qd4 Qxd4 18. cxd4 Rd8 19. Rfd1 Rdf8 20. Rd2 Rd8 21. e4 Rff8 22. 

Rdd1 Kg8 23. e5 Nc7 24. Rac1 g5 25. Be4 Rfe8 26. Rc5 Nb5 27. Rc4 g4 28. a4 Na3 29. 

Rcc1 c5 30. Ra1 Nc2 31. Bxc2 cxd4 32. Bg6 Rf8 3. a5 Rd5 34. Be4 Rxe5 35. Rxd4 b5 36. 

Re1 Rg5 37. Bd3 e5 38. Rde4 b4 39. Bc4+ Kh7 40. Be6 Rd8 41. Rxb4 Rd6 42. Bxg4 Rdg6 

43. f3 Rg8 44. Rbe4 Rd8 45. h4 Rg7 46. Rxe5 Kg8 47. h5 Rb8 48. Rxe7 Rxe7 49. Rxe7 

Rxb3 50. Be6+ Kf8 51. Rf7+ Kg8 52. Rxa7+ Kf8 53. Bxb3 Ke8 54. Rh7 Kd8 55. a6 Ke8 56. 

a7 Kd8 57. a8=Q# 

checkmate: White wins! 
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Figure 34. Test game 7 

This game is between 2 identical engines but with different depths. The game was equal 

until move 28 where black had to move the knight from b5. It is very interesting to see that 

black, with only a depth of 4 makes a blunder since it cannot calculate that moving the 

knight to a3 will trap it and get captured in the next 5 moves. On the other hand, white, as 

soon as black trapped the knight it started doing the 5-move sequence that will lead to the 

knight being capture. After losing the knight black just kept losing pawns and pieces until it 

got checkmated.  

4.3.8 Game 8 

[White "player5"] (depth 4) 

[Black "human_player"] (Roberto Marrero Rodrígez) 

[Result "1-0"] 

1.e4 e5 2. Nf3 Nf6 3. d4 exd4 4. Qxd4 Nc6 5. Qd3 Bc5 6. Bg5 O-O 7. Nc3 h6 8. Bh4 g5 9. 

Bg3 Nb4 10. Qd2 Re8 11. Bb5 Nxe4 12. Nxe4 Rxe4+ 13. Kd1 d5 14. a3 Nc6 15. Bxc6 bxc6 

16. Qc3 Bd6 17. Qxc6 g4 18. Bxd6 gxf3 19. Qxa8 fxg2 20. Kd2 gxh1=Q 21. Rxh1 Qxd6 22. 

Qxc8+ Kh7 23. Qf5+ Qg6 24. Qxd5 Qg2 25. Qxf7+ Kh8 26. Qf8+ Kh7 27. Qf7+ Qg7 28. 

Qf5+ Qg6 29. Qxg6+ Kxg6 30. Re1 Rxe1 31. Kxe1 Kh5 32. Kf1 Kg4 33. Kg2 h5 34. Kf1 h4 

35. Kg2 h3+ 36. Kf1 Kf3 37. Kg1 c5 38. a4 a5 39. Kf1 c4 40. Kg1 Ke2 41. f4 Kd2 42. b3 

Kxc2 43. bxc4 Kc3 44. c5 Kc4 45. c6 Kc5 46. c7 Kb4 47. c8=Q Kxa4 48. Qxh3 Kb4 49. f5 

a4 50. f6 a3 51. f7 a2 52. f8=Q+ Ka4 53. Qa8+ Kb4 54. Qxa2 Kb5 55. Qhe6 Kb4 56. Qec4# 
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checkmate: White wins! 

 

 

Figure 35. Test game 8 

 

This game I played as black versus the final iteration of the engine in a depth of 4. The 

human_player function works as intended. The game was interesting. Black managed to 

get a good advantage in moves 12 to 15. This is due to my quickly castling my king and 

punishing the opponent for taking his queen out early. Even with an advantage of 7.7 points 

according to stockfish 13 at move 21, I did not find the winning move. After not finding the 

correct sequence of moves that kept me in the lead the engine started to make better plays 

than me and slowly took all my pawns until it eventually checkmated me.  

 

4.4 Conclusion 

The engine development process is done for now. The objectives of the case have been 

reached successfully. The level of play is good. The engine can consistently beat me and 

I’m on the 60th percentile of players in the chess.com database around 1100-1200 rating. 

So, we can assess that the engine has a medium-low level of play. On the other hand, 

between the possibility of visualization and different test games played, it was possible to 

see how the engine kept evolving and how it improved with each iteration. The engine is 

still far from the best, one of its main flaws is the time required to come with a move. Right 
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now, there is no move ordering implemented in any way which will help drastically with the 

speed the Alpha-beta pruning will operate. Other possible solutions for the speed are adding 

transposition tables and an incremental evaluation function, so the engine does not have to 

calculate over and over positions that it has already seen.  

One of the difficulties encountered while doing the case was learning how to code in a 

different language like python and how to use Jupyter Notebook. This was my first time 

using Jupyter and some of the libraries used in this project.  

Most of the time in the development process was spent fixing bugs and reassuring that the 

different algorithms were implemented correctly. There were a lot of bugs when trying to 

use the different libraries and sometimes, the engine will fail to check if a position is a draw 

or not, so it will randomly draw the game when it’s ahead on material. To check if the algo-

rithms were implemented correctly, I had to check in multiple manners. To check if the 

search and evaluation functions were implemented correctly, I had to check the time it took 

for finding the correct move and compare it to previous iterations of the engine to see if it 

had improved. And to check if it was not missing good moves or if the evaluation function 

was implemented successfully, I had to check the engine of similar strength against each 

other but with different depths. If the engine with a higher depth can consistently beat the 

one with lower depth the evaluation function and search function have been implemented 

correctly.  
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5 Summary  

This research was made to create a low-mid level chess engine and analyze how it evolved 

with the different improvements that were added along the way. With the results achieved, 

we can conclude that goals were achieved successfully. This does not mean that the engine 

cannot be further improved and developed. Engine still takes a long to process get the best 

move on the position. On a depth of 5, it can take up to 30 to 40 minutes to make the move. 

A move ordering heuristic will be highly recommended to enhance the speed of the engine.  

I would like to highlight the game seven. There is a very interesting interaction that I analyze 

in the chapter 4.3.7 where black gets the knight trapped because it does not have enough 

depth and white is playing with a higher depth sees the 5-move sequence to capture it. This 

leave us wondering, if the engine did not take that long to find a move, if we could execute 

the engine on depths of 10 or 12, like other engines like Stockfish can do without much 

effort, what will be the true strength of the evaluation function that was implemented. 

During the research of this project, I have realized how complex and how much work have 

been put into developing chess engines and how far away are we from reaching the limit. It 

always feels like we can make smaller improvements to the engine, and you will never be 

done. There will be always something to improve in the chess engine world whether it will 

be through conventional method or neural networks. 
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