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Insinöörityön tavoitteena oli luoda pilviympäristöön infrastruktuuri johon asiakkaan vanha 
ympäristö tultaisiin siirtämään. Samalla lähdettiin tutkimaan onko budjetilla sekä tietotur-
valla yhteyksiä toisiinsa ja kuinka suuri vaikutus niillä on toisiinsa.  
 
Insinöörityö tuotettiin projektina Eficodelle joka DevOpsiin orientoitunut ohjelmisto yritys 
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Käymme myös pintaraapaisulta läpi Kubernetestä, Dockeria sekä Terraformia koska ne 
toimivat tämän insinöörityön perustana. Insinöörityössä käydään muun muassa läpi Kuber-
neteksen servicejä, Docker konttien ja normaalin virtuaalikoneen eroja sekä miten infra-
struktuuria voidaan säilyttää koodin muodossa. 
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nusten optimointia katsottiin tarkemmin ja käytettiin hyväksi. Näillä oli suuri vaikutus insi-
nöörityön lopputulokseen. 
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1 Introduction 

Even though many services are moving towards the cloud nowadays, it is still a bit bitter 

to many. The enormous bills of cloud services, when done wrong, scare off users. This 

thesis will explore the many ways of creating a working and secure Kubernetes cluster 

in the cloud with a budget in mind. In this project, investigating was done to find answers 

to the following questions: How are costs cut in cloud services? Does cutting costs affect 

the security of the service? 

The project was commissioned by a DevOps-oriented software company called Eficode 

Oy. Eficode’s customer who will be referred to as Customer X used to run their produc-

tion environment in a cloud-hosted Rancher instance. The purpose of this project was to 

migrate the production environment to the Google Cloud Platform. The biggest reason 

for this change was that the version of Rancher the customer had in place was no longer 

getting security updates. Because Customer X is working in the medical field, it was 

essential to ensure all the necessary security-related actions were taken.  

1.1 Technical objectives 

The main objective was to create a working and secure version of the Rancher  environ-

ment for the Google Cloud Platform. The traffic between the web application and the 

SQL database needed to be secured and the database could only be accessed by au-

thorized users and applications. 

1.2 Financial objectives 

Costs also needed to be considered, which might impact the task of securing the envi-

ronment because many security features are chargeable. Most of the current nuisance 

related to cloud services comes from the “high” price of the bill. The possible solutions 

for these problems will discussed in this thesis. 
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2 Planning 

2.1 Infrastructure 

The planning phase of the infrastructure was simple because an existing plarform had 

been already made that just needed to be transferred to Google Cloud Platform (GCP). 

A container management system was needed to run the dockerized microservices and 

a database to hold the data. In the following chapter, a closer look will be taken at GCP’s 

methods and services. 

2.2 CloudSQL 

CloudSQL is a database service offered and hosted in GCP. Google’s CloudSQL offers 

fully managed MySQL, PostgreSQL, and SQL Server databases. CloudSQL also offers 

built-in functionality that ensures high availability and reliability. Quickly configurable rep-

lication and backups ensure safety in unpleasant scenarios [1.] 

The downsides of using a Google-maintained database are trust and confidentiality. How 

can the users be sure that data is not leaked or modified by the maintainer? The data-

base might return false data because of a defect in the system, or the data integrity might 

suffer[2.] 

2.3 Kubernetes 

Kubernetes is an open-sourced container management platform initially developed by 

Google and later continued by Cloud Native Computing Foundation [3.] Kubernetes is 

filled with built-in features such as secret management, service discovery, load balanc-

ing, self-healing, and automated rollbacks. Kubernetes is highly customizable so that the 

features can be disabled upon demand. 
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Kubernetes is highly used in the industry because of its many benefits. It enables faster 

scaling and updating of applications in a DevOps mindset manor. Portability, easy de-

ployment, near-zero downtime, flexibility, secret management, among other features, 

bring a set of tools to enable the user to do whatever they imagine.  

 

Figure 1. Kubernetes architecture. based on data from Kubernetes website [3]. 

Docker is not the only container runtime used in nodes. Some might prefer containerd or 

rocket. Different parts of Kubernetes are controlled by the control plane, the core of which 

is the API server. The API server can be controlled through command-line interfaces 

such as kubectl or kubeadm. The API lets the user query and control, for example, the 

Pods and Namespaces in Kubernetes. The architecture is illustrated in figure 1. 

The Control plane also has a scheduler, etcd, and controller manager. The scheduler 

watches pods and nodes and makes scheduling decisions based on different metrics 

that include constraints and deadlines. Etcd is the server that contains all the cluster 
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data. The controller manager contains all the controllers for nodes, endpoints, replica-

tions, tokens, and service accounts. Controllers watch the state of the cluster and attempt 

to make changes to the cluster to reach the desired state.  

 

Figure 2. Kubernetes architecture with CCM based on images from Kubernetes website [3]. 

Cloud-hosted Kubernetes platform usually contains one extra component, which is called 

Cloud-Controller-Manager  (CCM) (illustrated in figure 2). The purpose of the CCM is to 

link the cloud providers' API with the cluster. That way, the user can interact with the 

cluster from the cloud provider's dashboard. 

Users can run applications inside Kubernetes by defining workloads. Kubernetes comes 

with built-in workloads like Deployment, Job, or Cronjob. Workloads are usually defined 

in YAML, which is a markup language. Custom workloads can also be defined but that 

will not be focused in this thesis.  
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apiVersion: apps/v1 

kind: Deployment 

metadata: 

  name: nginx-deployment 

  labels: 

    app: nginx 

spec: 

  replicas: 3 

  selector: 

    matchLabels: 

      app: nginx 

  template: 

    metadata: 

      labels: 

        app: nginx 

    spec: 

      containers: 

      - name: nginx 

        image: nginx:1.14.2 

        ports: 

        - containerPort: 80 
 

Figure 3. Example YAML of a deployment workload 

The example workload in figure 3 deploys the Nginx web server with three replicas. Once 

the workload has been passed to the API server, the controller manager tries to fulfill the 

desired states defined in the workload. The user is not restricted to using built-in work-

loads and can define custom resources to fit the desired purposes. Networking in Kuber-

netes is also handled with similar YAML manifests. 

apiVersion: v1 

kind: Service 

metadata: 

  name: my-service 

spec: 

  ports: 

    - protocol: TCP 

      port: 80 

      targetPort: 9376 

Figure 4. Example service manifest 
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In figure 4, a service is defined to expose an application running on port 9376. ClusterIP 

creates a service for the cluster that can be internally accessed. External access can be 

allowed through a Kubernetes proxy. 

 

Figure 5. Illustration of ClusterIP solution in a cluster 

ClusterIP solution is usually used in a situation when only internal traffic is allowed (see 

figure 5). It is not the best practice to use this to expose applications to the internet in a 

production environment.  
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Figure 6. NodePort solution 

Other solutions to expose applications are node ports, a load balancer, and an ingress. 

The node port exposes the service on each node's IP at a static port (as illustrated in 

figure 6). A ClusterIP service, to which the NodePort service routes, is automatically cre-

ated [4.] 

This method is very cost-efficient but has a few downsides. Only one service per port 

can lead to many ports being open if many services are needed. From a security per-

spective, this is considered risky and should always be avoided.  
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Figure 7. Ingress solution  

The ingress is nowadays probably the most used and recommended way to expose 

large-scale applications in clusters. The ingress is not the most straightforward solution 

but a versatile one. The ingress itself is not a so-called “service,” but it acts as the load 

balancer for the services.  

The ingress controllers route traffic to the desired services in multiple different ways, 

path-based and domain-based being the most common (as illustrated in figure 7). There 

are also different ingress controllers available, like Google Cloud Load Balancer, Nginx, 

and Istio, to name a few [5.] 
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apiVersion: extensions/v1beta1 

kind: Ingress 

metadata: 

  name: ingress-example 

spec: 

  backend: 

    serviceName: example-service 

    servicePort: 80 

  rules: 

  - host: domain.com 

    http: 

      paths: 

      - backend: 

          serviceName: example-service 

          servicePort: 80 

  - host: foo.domain.com 

    http: 

      paths: 

      - backend: 

          serviceName: foo 

          servicePort: 8080 

  - host: domain.com 

    http: 

      paths: 

      - path: /bar 

        backend: 

          serviceName: bar 

          servicePort: 8800 

Figure 8. Example ingress YAML 

The traffic can be routed to different services with different ports and define paths in a 

web server manner (see figure 8). Kubernetes provides many more resources and de-

ployment methods like Helm charts, but those will not be the focus in this thesis. 

2.4 Docker 

Docker is a virtualization platform that solves the problem “Doesn’t work on my machine.” 

Instead of running an application in a traditional virtual machine, Docker enables the 

developer to place the running application in a container that can be deployed and 

shipped without having problems related to virtual machines. Docker’s architecture is 

simpler compared to a standard virtual machine [6.] 
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Figure 9. Virtual Machine architecture. image copied from docker website [6]. 

Applications running on a virtual machine only share the infrastructure and the hypervisor 

(see figure 9). A hypervisor allows virtual machines to share the resources of the host 

machine virtually. Each VM has its operating system, which makes them heavier to run 

compared to containers. In modern-day  microservices, having heavy virtual machines 

run lightweight applications does not meet with best practices. 

Running applications in virtual machines might also lead to conflicts with the guest OS. 

Sometimes applications have a hard time running in a different version of the same OS 

the application was developed for. This is also very inefficient and time-consuming.   
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Figure 10. Container architecture. image copied from docker website [6]. 

Docker containers share the host operating system (see figure 10), which means any 

machine that runs Docker can run the application, making containers extremely portable 

and deployable fast. Creating a Docker container is done by defining a Dockerfile.  

In a Dockerfile, the instructions are defined to build the container image. Each instruction 

is a layer, and when an instruction is changed, only the layer is changed, enabling fast 

and light updating of the container [6.]  
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FROM node:latest 

 

WORKDIR /usr/src/frontend 

 

COPY . . 

 

RUN npm install 

 

EXPOSE 80 

 

CMD ["npm", "start"] 

Figure 11. Example Dockerfile 

Images are often made from other images, just like in the example, figure 11. The exam-

ple Dockerfile creates a container that runs a frontend application on port 80 from the 

node base image. Containers are usually stored in an online registry publicly or privately, 

like Docker Hub and JFrog Artifactory.  

FROM node:15.11.0-strech 

 

WORKDIR /usr/src/frontend 

 

COPY . . 

 

RUN npm install 

 

EXPOSE 80 

 

CMD ["npm", "start"] 

Figure 12. Dockerfile with version defined 

Private image registries are considered safer because unauthorized parties cannot mess 

with the container images. Unofficial images might contain malicious content that is not 

wished for. The image user should also be aware of the version because if a malicious 

image is pushed to the registry, those who have the “latest” version in use might get 

harmed (see figure 12). It also makes it harder to determine which version was used and 

which version should be rollbacked in case of everything breaking down. 
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2.5 Infrastructure as code 

Managing IT infrastructure nowadays is not as painful as it used to be. Creating cloud 

infrastructure can be made using different IaC solutions and tools. Instead of manually 

clicking from the web interface of the cloud provider, provisioning can be done through 

structured files. IaC does not limit computers and virtual machines and can spin up other 

resources that the provider might have, like service accounts.  

Managing the infrastructure as code has many benefits. Users can ensure consistency 

between two similar environments. In addition, one of the main factors why there is a 

significant move towards managing IaC is speed. Once the user has templated the in-

frastructure, they can easily replicate it and modify it to the user's needs, which also 

means it can be scaled easily [7.] 

The tools used to create infrastructure as code do not vary much since major companies 

heavily dominate the market. The three big cloud providers have their services to define 

infrastructure as code, such as AWS CloudFormation, Google Cloud Resource Manager, 

and Azure Resource Manager. There are also third-party tools made like Hashicorp's 

Terraform, which currently is the market leader. 

It is important to create good quality infrastructure code to minimize the chance of secu-

rity breaches. There are some static analysis tools developed for this purpose. They 

were used in making the project. Hard-coded secrets in code or credentials are one of 

the examples faced in the real world. [8] Other issues might be suspicious comments, 

usage of HTTP without TLS, or default users with administrator privileges.  

Terraform will be focused in this thesis since it was used to make the infrastructure of 

the cluster. 
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2.6 Terraform 

Terraform uses a variation of HCL to define infrastructure resources. HCL stands for 

Hashicorp Configuration Language and is used mainly by Hashicorp products. HCL uses 

blocks to define resources. [9] 

resource "google_container_cluster" "gke-cluster" { 

  name                     = "example-cluster" 

  location                 = "europe-north1-a" 

  initial_node_count       = 1 

  remove_default_node_pool = true 

 

  master_auth { 

    username = "" 

    password = "" 

 

    client_certificate_config { 

      issue_client_certificate = false 

    } 

} 

Figure 13. Example resource block 

As can be seen from figure 13, blocks have types like the resource. After the block there 

are two labes that are expected by the resource block, the resource type, and the re-

source name. After labels the body of the block is defined, where more blocks and argu-

ments are provided that might required by the resource. 

provider "google" { 

  project = "example-project" 

  region  = "europe-north1" 

} 

Figure 14. Example provider block 

Before creating certain resources, provider needs to be defined (see figure 14). Providers 

are plugins made for Terraform to enable interaction with for example GCP. The provid-

ers add the resources and data sources to Terraform. There are different kinds of pro-

viders, official, verified, community-made and archived ones. Official providers are 

owned and maintained by Hashicorp, and verified providers are made by partnering com-

panies [10.] 
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module "ClusterModule" { 

  source   = "/path/to/module" 

   

  name     = "Example cluster" 

  location = "europe-north1" 

} 

Figure 15. Example module block 

It is a best practice to package and reuse configurations when possible, which can be 

achieved in Terraform via modules. The modules are containers of multiple resource 

definitions in a collection of files. Files are stored in the same directory, and the source 

of the module blocks is pointed at the directory to tell Terraform where they exist (see 

figure 15).  

variable "name" { 

  type        = string 

  default     = "example-name" 

  description = "Name of the example resource" 

} 

 

variable "location" { 

  type        = string 

  default     = "europe-north1" 

  description = "Location of the example resource" 

} 

 

output "gateway_ip" { 

  value       = google_compute_network.vpc_network.gateway_ipv4 

  description = "Example network gateway ip" 

} 

 

output "network" { 

  value       = google_compute_network.vpc_network.self_link 

  description = "Example network output" 

} 

Figure 16. Example variable and output blocks 

The users can pass the needed arguments from modules to resources via variables and 

access other resource attributes via outputs. The outputs can be viewed as the return 

values of Terraform. The variables help customize modules without changing the source 

code. The variables and outputs need to be defined in their blocks (see figure 16). 
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3 Implementation 

The starting of the implementation was started by creating accounts and providing the 

needed permissions for the GCP project. The work was started immediately. Before the 

project actually started, the resources GCP provides were looked at, and cost efficient 

calculations were made for the infrastructure.  

3.1 Creating the network 

First a Virtual Private Cloud Network, aka VPC was created. Two separate networks 

were created. First for the production environment and second for the development and 

test environment. Internal addresses and ingress traffic do not cost, but external ad-

dresses and egress traffic do. However, some services that handle the ingress traffic do 

cost like Load Balancers, Cloud NAT, and Protocol forwarding [11.] 

 

Figure 17. Network architecture 
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A private Kubernetes cluster needs subnet ranges defined for pods and services, so they 

were defined as shown in figure 17. the development network was separated from the 

production network because they did not need to communicate. Private cluster nodes do 

not have external IP addresses, so they cannot access the internet. The application run-

ning in the cluster needed to communicate with external services, so enabling of outgoing 

traffic needed to be done. 

# VPC 

resource "google_compute_network" "vpc_network" { 

  name                    = var.network_name 

  auto_create_subnetworks = "false" 

} 

 

# Private subnet 

resource "google_compute_subnetwork" "vpc_subnetwork_private" { 

  name = format("%s-subnetwork-private", var.network_name) 

 

  network = google_compute_network.vpc_network.self_link 

 

  private_ip_google_access = true 

  ip_cidr_range            = var.ip_cidr_range 

 

  secondary_ip_range { 

    range_name    = format("%s-pod-range", var.network_name) 

    ip_cidr_range = var.secondary_ip_range_1 

  } 

 

  secondary_ip_range { 

    range_name    = format("%s-svc-range", var.network_name) 

    ip_cidr_range = var.secondary_ip_range_2  

  } 

} 

Figure 18. Terraform code for the VPC network and subnet with secondary ranges. 

Allowing internal traffic between the applications and Google API’s were done as seen 

in figure 18.This helped to access google container registry easily. 
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Figure 19. Network architecture with NAT. based on information from Google documentation [12]. 

Enabling internet connectivity to private nodes is done with the cloud router and the cloud 

NAT. NAT provides a public IP to the nodes, which they can use to access the internet. 

(See figure 19.) Cloud Router is required by Cloud NAT and is used to route traffic from 

private instances like the ones that were used in this project.   

After allowing internet access from the private cluster, traffic between the internal ser-
vices and application needed to be allowed. Google Cloud Platform offers firewall rules 
that can be applied to networks. ICMP, SSH and HTTPS traffic was allowed from out-
side the VPC. All traffic between the internal components were allowed [12.] 

# Internal firewall 

resource "google_compute_firewall" "firewall_int" { 

  name    = format("%s-internal-firewall", var.network_name) 
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  network = google_compute_network.vpc_network.name 

   

  #Allow protocols 

  allow { 

    protocol = "all" 

  } 

  #Allow internal traffic [10.0.0.0/8] 

  source_ranges = [var.int_firewall_source_ranges] 

} 

 

# External Firewall 

resource "google_compute_firewall" "firewall_ext" { 

  name    = format("%s-external-firewall", var.network_name) 

  network = google_compute_network.vpc_network.name 

 

  allow { 

    protocol = "ICMP" 

  } 

 

  allow { 

    protocol = "tcp" 

    ports    = [var.ext_firewall_ports] 

  } 

 

  source_ranges = [var.ext_firewall_source_ranges] 

} 

Figure 20. Firewall rules in the Terraform configuration. 

The terraform configuration in figure 20 is missing one piece that was made in the rules. 

SSH traffic was allowed only from a VPN and SSH key holders which helped in cutting 

unauthorized access to the platform. With the configurations demonstrated in figures 18 

and 20,  

Networking played a crucial part in securing the environment within the budget since 

most of the networking features are low cost or free of charge. In the next chapter a look 

at the Kubenetes engine and cost optimization will be done. 
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3.2 Creating the Kubernetes cluster 

Before creating the Kubernetes cluster, a closer look at the options to optimize the cost 

needed to be made. Optimizing of the costs were done by adjusting the following speci-

fications:  

• Machine type 

• Size  

• Region 

• Committed use discounts 

• Autoscaling  

For the machine type, the n1-standard-2 was chosen since it was the closest to the old 

setup, which had proved to be working without any problems. Ramping down of the ser-

vers was done for the development environment since it did not handle as much traffic 

as the production. 

 

Figure 21. GKE best practice diagram 

The auto-scaling and auto-repair functions for the development environment were also 

disabled for the same reasoning. The best practice diagram in figure 21 was followed to 

achieve the best results.  
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Figure 22. Screenshot of the Google cloud price calculator  

Some testing was done using Google's price calculator. First, the customer was con-

tacted and asked if they wanted to commit to using Google Cloud for 1 or 3 years be-

cause, this could reduce the cost by about 33% according to the calculator. The esti-

mated cost of the three-year committed one node cluster is ~€30/month and without the 

same setup is ~€45/month (see figure 22). Preemptible nodes are the cheapest option, 

but they are not reliable if uptime is essential. Google might free these resources for 

other tasks if needed [13.] 

The region of the cluster needed to be in Finland since it was considered important to 

keep data in finland. There would have been cheaper regions to host the cluster in, for 

example, us-west1, but it was necessary to think about the possible problems, such as 

higher response times that come with having data across the globe in relation to the 

users.  
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After signing up for the committed use discount, provisioning of the cluster was started. 

Securing the GKE control plane was done using authorized network functionality built 

into GKE, which allowed controlling the actors who could connect to the Kubernetes 

control plane. Another option was to make a private endpoint that could be accessed 

using a bastion host, but that did not fit this setup.  

 

Figure 23. Diagram of authorized networks 

traffic to the control plane was allowed from the company network and the VPN. This 

way, unwanted actors could be limited from getting hand on to the control plane. (See 

figure 23.)   
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resource "google_container_cluster" "cluster" { 

  provider = google-beta 

 

  name       = var.cluster_name 

  network    = var.network 

  subnetwork = var.subnet 

 

  logging_service    = "logging.googleapis.com/kubernetes" 

  monitoring_service = "monitoring.googleapis.com/kubernetes" 

  min_master_version = var.min_master_version 

  node_version       = var.node_version 

 

  remove_default_node_pool = true 

  initial_node_count       = var.initial_node_count 

 

  master_auth { 

    username = "" 

    password = "" 

 

    client_certificate_config { 

      issue_client_certificate = "false" 

    } 

  } 

 

  network_policy { 

    enabled = var.network_policy 

  } 

 

  ip_allocation_policy { 

    cluster_secondary_range_name  = var.cluster_pods_range 

    services_secondary_range_name = var.cluster_services_range 

  } 

 

  private_cluster_config { 

    enable_private_endpoint = "false" 

    enable_private_nodes    = "true" 

    master_ipv4_cidr_block  = var.master_ipv4_block 

  } 

 

  master_authorized_networks_config { 

    var.cidr_blocks 

  } 

 

} 

Figure 24. Terraform code for Google Kubernetes Cluster 
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After having the cluster defined and configured (see figure 24), node pool needed to be 

defined for the cluster. As already mentioned, the n1-standard-2 was chosen as the ma-

chine type for the nodes. The maximum size of the pool was 2 for the production and 1 

for the development environment. Autoscaling will handle spinning up new nodes in case 

of more traffic. 

resource "google_container_node_pool" "primary_nodes" { 

  name               = var.node_pool_name 

  location           = var.zone 

  cluster            = google_container_cluster.cluster.name 

  initial_node_count = var.initial_node_count 

 

  autoscaling { 

    min_node_count = var.min_node_count 

    max_node_count = var.max_node_count 

  } 

 

  management { 

    auto_repair  = "true" 

    auto_upgrade = "true" 

  } 

 

  node_config { 

    preemptible  = var.preemptible 

    machine_type = var.machine_type 

    image_type   = "COS" 

 

    metadata = { 

      disable-legacy-endpoints = "true" 

    } 

  } 

} 

Figure 25. GKE Node pool as Terraform code. 

auto-upgrade and repair functionalities was also enabled to keep nodes healthy, running, 

and up to date always without a difficulty (see figure 25). This also brings more security 

because new binaries might contain security fixes and auto-update takes care of them 

almost instantly. 

The cost of the clusters came to be about €120/monthly but with the committed use the 

discount ended up being about €50/monthly which was a huge save.   
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3.3 Creating the database 

Using CloudSQL was considered better approach than hosting a database instance in-

side the cluster. This offered automated backups, high availability, and failover, with the 

trade of it slashing the budget a little. The CloudSQL pricing varies a lot based on the 

following factors.  

• Storage provisioned 

• CPU count for the instance 

• Amount of memory on the instance 

• Data location 

• Network traffic volume 

• Number of IP addresses  
 

A private IP for the database was only needed, so there were no additional costs from 

external IP allocation. The database did not need to handle much traffic, so only one 

virtual CPU was enough with 4 GB of RAM. Storage was set to 15GB of SSD with auto-

mated storage increase in case of the storage filling up even though it was considered 

highly unlikely.  

 

Figure 26. CloudSQL high availability diagram  

High availability was achieved by placing a standby instance in another zone in the same 

region (see figure 26).  



26 

 

 

 

resource "google_sql_database_instance" "masterdb" { 

  name             = var.sql_name 

  database_version = "POSTGRES_13" 

 

  settings { 

    availability_type = var.availability_type 

    tier              = var.sql_instance_type 

    disk_type         = var.sql_disk_type 

    disk_size         = var.sql_disk_size 

    disk_autoresize   = true 

 

    ip_configuration { 

      ipv4_enabled    = false 

      private_network = var.network 

    } 

 

    location_preference { 

      zone = var.zone 

    } 

 

    backup_configuration { 

      enabled    = true 

      start_time = "00:00" 

    } 

  } 

} 

Figure 27. CloudSQL terraform code. 

auto backups were enabled and timed to be at midnight, as shown in figure 27. This way, 

data loss could be minimized in case of disastrous scenarios where the database would 

fail. Security comes with a private IP address which can only be accessed inside the 

network. Cloud SQL also provides an option to control access to databases on an in-

stance level, which helps minimize unwanted actors from accessing the database.  

The whole Cloud SQL setup cost is a slight hit on the budget, costing ~€60 monthly. 

Being fully managed by Google guarantees less maintenance cost; automated backups 

ensure business continuity. Security updates and compliance is under Google's territory 

as well. This secondhandedly compensates the costs that might come from self-hosting 

the database.  
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4 Discussion 

As already mentioned, fast migration towards containerized environments is prone to 

security-related issues (see Chapter 2.4). Container runtime like Docker might be vul-

nerable which mitigates the security of the whole cluster. Other community members 

have been trying to tackle the issue by developing safer container run times. A study by 

a Swedish group, however, suggests that it might lead even to a trade five times higher 

in performance [14.]  

Secure storing of secrets and credentials is also one of the biggest issues that might 

lead to problems. Some criminals might use the credentials for their purpose, for exam-

ple, cryptojacking. Cryptojacking is malware that enables cryptocurrency mining on the 

infected computer. In 2018 a group of hackers was able to access Tesla’s unsecured 

Kubernetes dashboard and get Cloud credentials from there [15.] The car manufacturer 

suffered losses and suffered a data breach. This issue was tackled by blocking untrusted 

actors from accessing the administrator panel.  

Maximizing security, minimizing cost, and meeting customer demand have always been 

the impossible equation that still to this day needs work. New technology is rapidly 

changing and the maximum potential of the state of the art technology might never be 

reached in such a short time. Maximizing the cost efficiency of Kubernetes is different 

for each application and needs testing to avoid major drawbacks that might come from 

resource allocation [16.] 

Some studies suggest placing containers into existing resources or scheduling shut-

downs for resources that might not be needed at certain times. Most of the publications 

have one suggestion in common which is auto-scaling. For example, a study by Z. Zhong 

and R. Buyya demonstrates that the mentioned strategies might cut down costs even 

30% [17.]  Auto-scaling is described as one of the most efficient ways to cut costs in 

cloud computing. The committed use of reserved instances was found to be almost as 

effective in this thesis.   
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Putting a price on security is hard and often analyzed by many institutions and compa-

nies. Case studies suggest that having all the security is not realistic and that the ques-

tion of how much is enough is hard to answer [18.] Bryan Paynes’ paper suggests that 

securing a cloud application is high due to poor foundations for it. In this study however, 

it was proven that costs do not increase highly and the foundations might have come a 

bit further. 

Crimes have moved more towards the cyber world with the rapid adoption of new com-

puting technology with no end in sight [19.] It is expected to grow rapidly which makes 

security in this field critical and important. That is one of the reasons why the cost of 

security should be low and easily available for all users.  
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5 Conclusions 

The goals set before the work process were met by optimizing costs using the best prac-

tices. These included autoscaling, machine-type, size, and zone. The whole project 

ended up costing under €250/month, which can be considered reasonable. The security 

of the cluster was on the required level and and it is safe to put the cluster into production. 

Security was hardened by restricting access to the administrator panel of Kubernetes 

and by allowing only traffic from known sources to access critical infrastructure.  

 

Figure 28. Solution diagram 

The project outcome is illustrated in figure 28. The goals set in the beginning were met 

and the original research question was answered. The project showed that there is no 

need to thoughtlessly pour money into features to secure a Kubernetes cluster in the 

cloud. However, they bring an extra layer of security or help if the user has no prior 

knowledge of networking. Following the guides made by the cloud providers can take 
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users far in securing the cloud infrastructure. Carrying out this project required motiva-

tion, experience in networking, and communication skills with the customer. Adhering to 

to the work schedule and budget also required some attention.  

Regarding security, there are usually two different aspects to cloud and security. The 

first view usually considers the cloud environments unsafe for many reasons: bigger at-

tack surface and lack of visibility over the infrastructure layer. The second group usually 

considers the cloud environments safe because it is kept by companies that have large 

budgets to invest into security. Like most of the time, the truth usually lies somewhere in 

between the two the groups.  

The infrastructure managed to stay easily under the €300/month mark, which was given 

as the ideal budget. Costs could have gone even more under the budget by hosting the 

database inside the cluster, but the trade made sense in this case.  

Future improvements for this project will be perfecting the auto-scaling configuration, 

utilization of new GKE functionalities, improving the request rate in Cloud SQL, and hard-

ening the network security if needed.  

The objectives set in the beginning of the project were met, and migration was consid-

ered successful.   
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